TW201511816A - A low-energy consumption system for CO2 adsorption, concentration and energy conversion - Google Patents
A low-energy consumption system for CO2 adsorption, concentration and energy conversion Download PDFInfo
- Publication number
- TW201511816A TW201511816A TW102135119A TW102135119A TW201511816A TW 201511816 A TW201511816 A TW 201511816A TW 102135119 A TW102135119 A TW 102135119A TW 102135119 A TW102135119 A TW 102135119A TW 201511816 A TW201511816 A TW 201511816A
- Authority
- TW
- Taiwan
- Prior art keywords
- carbon dioxide
- adsorption
- concentration
- energy
- low
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/20—Technologies relating to oil refining and petrochemical industry using bio-feedstock
Landscapes
- Treating Waste Gases (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
本發明是有關於一種二氧化碳吸附濃縮與轉化能源系統,特別是指一種可以有效吸附並濃縮工業排放廢氣中二氧化碳的系統,使二氧化碳能夠再回收利用,並且還能利用微藻將二氧化碳轉變成生質柴油,製成能源產品。 The invention relates to a carbon dioxide adsorption concentration and conversion energy system, in particular to a system capable of effectively adsorbing and concentrating carbon dioxide in industrial exhaust gas, enabling carbon dioxide to be recycled and utilizing microalgae to convert carbon dioxide into biomass. Diesel, made into energy products.
隨著溫室效應日漸顯著,京都議定書也正式生效,同時二氧化碳捕獲及封存技術(Carbon dioxide Capture and Storage,簡稱CCS)也於2005年被聯合國之IPCC組織評估為可行方式之一,相關文獻與專利不勝枚舉。其中包括最普遍被探討的濕式吸收MEA法、乾式吸附法、薄膜法等。 As the greenhouse effect became more and more obvious, the Kyoto Protocol came into force. At the same time, Carbon dioxide Capture and Storage (CCS) was also evaluated as one of the feasible methods by the UN's IPCC in 2005. enumerate. These include the most commonly discussed wet absorption MEA method, dry adsorption method, and thin film method.
經搜尋二氧化碳吸附相關專利,有TW176857、TW592788及TW455505、CN200720034121.6等,然於前揭專利中的應用範圍或其所使用之材料均與本申請專利案不相同,另外,US 6,387,337 B1是使用鹼金屬(alkali metals)或鹼土金屬(alkali earth metals)做為吸附材,於一個雙床式反應器中與二氧化碳溫室氣體反應,其所使 用之吸附材及裝置亦與本申請專利案不相同。 After searching for related patents for carbon dioxide adsorption, there are TW176857, TW592788 and TW455505, CN200720034121.6, etc. However, the scope of application of the previously disclosed patents or the materials used therein are different from the patents of the present application, and US 6,387,337 B1 is used. Alkali metals or alkaline earth metals are used as adsorbent materials to react with carbon dioxide greenhouse gases in a two-bed reactor. The adsorbent material and device used are also different from the patent application.
因此,一種系統化且具有低耗能的二氧化碳吸附濃縮與轉化能源系統為相關學業界發展目標。 Therefore, a systematic and low-energy carbon dioxide adsorption concentration and conversion energy system is a development goal of the relevant industry.
因此,本發明之目的,即在提供一種系統化且具有低耗能的二氧化碳吸附濃縮與轉化能源系統。 Accordingly, it is an object of the present invention to provide a systemic and low energy consumption carbon dioxide adsorption concentration and conversion energy system.
於是本發明一種低耗能之二氧化碳吸附濃縮與轉化能源系統,包含一個低耗能二氧化碳吸脫附裝置、一個二氧化碳濃縮收集裝置,及一個二氧化碳轉化生質能源裝置,該低耗能二氧化碳吸脫附裝置包括一個用於去除待處理廢氣中硫氧化物的除硫氧化物器、一個用於調整待處理廢氣的溫濕度的調溫器、一個用於吸附待處理廢氣中之二氧化碳的二氧化碳吸附器、一個用於脫附該二氧化碳吸附器所捕獲的二氧化碳的二氧化碳脫附器,及一個用於回收吸附熱的熱回收器,該熱回收器將回收吸附熱提供給該二氧化碳脫附器作為脫附二氧化碳熱能以脫附二氧化碳,該二氧化碳濃縮收集裝置包括一個用於收集該二氧化碳脫附器釋出的高濃度二氧化碳的高濃度二氧化碳收集器、一個用於收集該二氧化碳脫附器釋出的低濃度二氧化碳的低濃度二氧化碳收集器、一個二氧化碳儲存器,及一個用於加強該二氧化碳脫附器脫附二氧化碳的真空幫浦,該真空幫浦的真空範圍為絕對壓力0.1~0.9bar,該二氧化碳轉化生質能源裝置包括一個加壓的二氧化碳微藻吸收器,該二氧化碳微藻吸收器的壓力為小於3kg/cm2。 Therefore, the present invention relates to a low-energy carbon dioxide adsorption concentration and conversion energy system, comprising a low-energy carbon dioxide adsorption and desorption device, a carbon dioxide concentration collection device, and a carbon dioxide conversion biomass energy device, the low-energy carbon dioxide absorption and desorption The apparatus includes a sulfur removal oxide device for removing sulfur oxides in the exhaust gas to be treated, a temperature regulator for adjusting the temperature and humidity of the exhaust gas to be treated, and a carbon dioxide adsorber for adsorbing carbon dioxide in the exhaust gas to be treated, a carbon dioxide desorber for desorbing carbon dioxide captured by the carbon dioxide adsorber, and a heat recovery unit for recovering heat of adsorption, the heat recovery unit providing recovered heat of adsorption to the carbon dioxide desorber as desorbed carbon dioxide Thermal energy to desorb carbon dioxide, the carbon dioxide concentration collection device comprising a high concentration carbon dioxide collector for collecting high concentration carbon dioxide released by the carbon dioxide desorber, and a low concentration carbon dioxide for collecting the carbon dioxide desorber Low concentration carbon dioxide collector, one two a carbon storage device, and a vacuum pump for reinforcing carbon dioxide desorber desorbing carbon dioxide, the vacuum pump has a vacuum range of 0.1 to 0.9 bar absolute, and the carbon dioxide conversion biomass energy device includes a pressurized The carbon dioxide microalgae absorber has a pressure of less than 3 kg/cm 2 .
本發明所述的低耗能之二氧化碳吸附濃縮與轉化能源系統,其中,該低耗能二氧化碳吸脫附裝置的二氧化碳吸附器為固定式填充床。 The low-energy carbon dioxide adsorption concentration and conversion energy system of the present invention, wherein the carbon dioxide adsorber of the low-energy carbon dioxide adsorption and desorption device is a fixed packed bed.
本發明所述的低耗能之二氧化碳吸附濃縮與轉化能源系統,其中,該低耗能二氧化碳吸脫附裝置的二氧化碳吸附器為流體化床。 The low-energy carbon dioxide adsorption concentration and conversion energy system of the present invention, wherein the carbon dioxide adsorber of the low-energy carbon dioxide absorption and desorption device is a fluidized bed.
本發明所述的低耗能之二氧化碳吸附濃縮與轉化能源系統,其中,該低濃度二氧化碳收集器為二氧化碳吸附器。 The low energy carbon dioxide adsorption concentration and conversion energy system of the present invention, wherein the low concentration carbon dioxide collector is a carbon dioxide adsorber.
本發明所述的低耗能之二氧化碳吸附濃縮與轉化能源系統,其中,該低濃度二氧化碳收集器為壓力桶槽。 The low energy carbon dioxide adsorption concentration and conversion energy system of the present invention, wherein the low concentration carbon dioxide collector is a pressure tank.
本發明所述的低耗能之二氧化碳吸附濃縮與轉化能源系統,其中,該二氧化碳微藻吸收器吸收二氧化碳與廢水中氮磷,使藻體增生,產出之藻體經由轉酯化後產生生質柴油,廢水也因減少氮磷而淨化。 The low-energy carbon dioxide adsorption concentration and conversion energy system of the present invention, wherein the carbon dioxide microalgae absorber absorbs carbon dioxide and nitrogen and phosphorus in the wastewater to accelerate the algae body, and the produced algae body is produced by transesterification. Quality diesel, wastewater is also purified by reducing nitrogen and phosphorus.
本發明所述的低耗能之二氧化碳吸附濃縮與轉化能源系統,其中,還包含一個設置於該調溫器與該二氧化碳吸附器間的風車。 The low energy consumption carbon dioxide adsorption concentration and conversion energy system of the present invention further comprises a windmill disposed between the temperature regulator and the carbon dioxide adsorber.
本發明所述的低耗能之二氧化碳吸附濃縮與轉化能源系統,其中,該二氧化碳吸附器內填充有二氧化碳吸附材並內含有熱流管,熱流管內通入流體,由外部常溫冷卻器通入常溫流體至熱流管中,控制該二氧化碳吸附器內的二氧化碳吸附材溫度,該二氧化碳吸附材為可重覆再生使用的二氧化碳吸附材,為經APTS改質奈米碳管、經 TEPA改質奈米碳管、經TEPA改質之矽鋁比六十的Y型沸石、13X沸石或NaY沸石。 The low-energy carbon dioxide adsorption concentration and conversion energy system of the present invention, wherein the carbon dioxide adsorber is filled with a carbon dioxide adsorbing material and contains a heat flow tube, and a fluid is introduced into the heat flow tube, and the external temperature cooler is passed to the normal temperature. The fluid is heated into the heat flow tube to control the temperature of the carbon dioxide adsorbing material in the carbon dioxide adsorber, and the carbon dioxide adsorbing material is a carbon dioxide adsorbing material which can be reused and regenerated, and is an APTS modified carbon nanotube. TEPA modified carbon nanotubes, TEPA modified yttrium aluminum than sixty Y zeolite, 13X zeolite or NaY zeolite.
本發明所述的低耗能之二氧化碳吸附濃縮與轉化能源系統,其中,二氧化碳吸附材由一個入料口進入該二氧化碳吸附器,已淨化之廢氣流出該二氧化碳吸附器並流經一個再生吸附材收集器,利用已淨化之廢氣冷卻再生吸附材並將再生吸附材攜帶至一個再生吸附材集料器,再生吸附材沉澱於該再生吸附材集料器中再輸送回該二氧化碳吸附器的入料口。 The low-energy carbon dioxide adsorption concentration and conversion energy system of the present invention, wherein the carbon dioxide adsorbing material enters the carbon dioxide adsorber from a feed inlet, and the purified exhaust gas flows out of the carbon dioxide adsorber and flows through a regenerated adsorbent material to collect Cooling the regenerated adsorbent material with the purified exhaust gas and carrying the regenerated adsorbent material to a regenerative adsorbent material collector, and the regenerated adsorbent material is precipitated in the regenerative adsorbent material collector and sent back to the inlet of the carbon dioxide adsorber .
本發明所述的低耗能之二氧化碳吸附濃縮與轉化能源系統,其中,該二氧化碳微藻吸收器以複數串聯方式連結,外殼為透明材質可使光線透入至二氧化碳微藻吸收器中,串聯的二氧化碳微藻吸收器可增加二氧化碳於液相中停留之時間、可維持系統之壓力,以及提高微藻吸收二氧化碳之效率。 The low-energy carbon dioxide adsorption concentration and conversion energy system of the present invention, wherein the carbon dioxide microalgae absorber is connected in a plurality of series, and the outer shell is made of a transparent material to allow light to penetrate into the carbon dioxide microalgae absorber, in series The carbon dioxide microalgae absorber increases the time it takes for carbon dioxide to stay in the liquid phase, maintains system pressure, and increases the efficiency of microalgae in absorbing carbon dioxide.
本發明之功效在於利用吸脫附作用將二氧化碳從煙道氣中分離並濃縮收集,過程中以該熱回收器回收吸附熱並提供給該二氧化碳脫附器作為脫附熱使用,此可有效降低能源使用與成本,達到節能減碳之目的,吸附濃縮之二氧化碳能夠回收至工業使用,並且可作為微藻之碳源,生產微藻並再轉化為生質柴油,除了達到減碳效益外,又能讓二氧化碳再利用,增加經濟效益兼具環保。 The invention has the advantages of separating and collecting carbon dioxide from the flue gas by suction and desorption, and recovering the heat of adsorption by the heat recovery device and supplying the carbon dioxide desorber as desorption heat, which can effectively reduce Energy use and cost, to achieve the purpose of energy saving and carbon reduction, the carbon dioxide adsorbed and concentrated can be recycled to industrial use, and can be used as a carbon source of microalgae to produce microalgae and then converted into biodiesel, in addition to achieving carbon reduction benefits, It can make carbon dioxide reuse, increase economic benefits and be environmentally friendly.
100‧‧‧低耗能二氧化碳吸脫附裝置 100‧‧‧Low-energy carbon dioxide absorption and desorption device
10‧‧‧除硫氧化物器 10‧‧‧Desulfurization device
20‧‧‧調溫器 20‧‧‧ thermostat
25‧‧‧風車 25‧‧‧ windmill
30‧‧‧二氧化碳吸附器 30‧‧‧Carbon dioxide adsorber
30f‧‧‧二氧化碳吸附器 30f‧‧‧Carbon dioxide adsorber
31‧‧‧二氧化碳吸附材 31‧‧‧Carbon dioxide adsorption material
31a‧‧‧再生吸附材 31a‧‧‧Recycled adsorbent
32‧‧‧含二氧化碳待處理廢氣 32‧‧‧Carbon dioxide-containing waste gas to be treated
33‧‧‧熱流管 33‧‧‧Hot flow tube
34‧‧‧常溫冷卻器 34‧‧‧Normal temperature cooler
35‧‧‧熱回收器 35‧‧‧heat recovery unit
36‧‧‧再生吸附材收集器 36‧‧‧Renewable adsorbent collector
37‧‧‧二氧化碳吸附材 37‧‧‧Carbon dioxide adsorption material
38‧‧‧入料口 38‧‧‧Inlet
39‧‧‧出料口 39‧‧‧Outlet
40‧‧‧二氧化碳脫附器 40‧‧‧Carbon dioxide desorber
41‧‧‧再生吸附材集料器 41‧‧‧Renewable Adsorption Material Collector
500‧‧‧二氧化碳濃縮收集裝置 500‧‧‧Carbon dioxide concentration collection device
50‧‧‧高濃度二氧化碳收集器 50‧‧‧High concentration carbon dioxide collector
51‧‧‧二氧化碳儲存器 51‧‧‧Carbon storage
52‧‧‧負壓收集室 52‧‧‧ Negative pressure collection room
55‧‧‧真空幫浦 55‧‧‧vacuum pump
56‧‧‧氣體壓縮器 56‧‧‧ gas compressor
59‧‧‧低濃度二氧化碳收集器 59‧‧‧Low concentration carbon dioxide collector
600‧‧‧二氧化碳轉化生質能源裝置 600‧‧‧CO2 conversion biomass energy plant
60‧‧‧二氧化碳微藻吸收器 60‧‧‧CO2 microalgae absorber
61‧‧‧微藻過濾器 61‧‧‧Microalgae filter
62‧‧‧轉酯器 62‧‧‧Transesterification
63‧‧‧藻液 63‧‧‧ algae liquid
64‧‧‧增壓後低濃度二氧化碳 64‧‧‧Low-concentration carbon dioxide after pressurization
65‧‧‧藻體 65‧‧‧ algae
A‧‧‧待處理廢氣 A‧‧‧Exhaust gas to be treated
B‧‧‧高濃度二氧化碳 B‧‧‧High concentration of carbon dioxide
B2‧‧‧低濃度二氧化碳 B2‧‧‧Low concentration carbon dioxide
C‧‧‧製程廢熱 C‧‧‧Process waste heat
D‧‧‧已淨化之廢氣 D‧‧‧ purified waste gas
E‧‧‧生質柴油 E‧‧‧Biodiesel
F‧‧‧工業原料 F‧‧‧Industrial raw materials
G‧‧‧淨化廢氣排出口 G‧‧‧purifying waste gas discharge
H‧‧‧廢水 H‧‧‧ Wastewater
I‧‧‧淨化過廢水 I‧‧‧ purified wastewater
本發明之其他的特徵及功效,將於參照圖式的 實施方式中清楚地呈現,其中:圖1為本發明一種低耗能二氧化碳吸附濃縮與轉化能源系統的較佳實施例的示意圖;圖2為本發明具體實施例一的示意圖;圖3為本發明具體實施例二的示意圖;圖4為本發明具體實施例三的示意圖;圖5為本發明具體實施例三的二氧化碳脫附濃度的示意圖;及圖6為本發明具體實施例四的示意圖。 Other features and effects of the present invention will be described with reference to the drawings. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a preferred embodiment of a low energy consumption carbon dioxide adsorption concentration and conversion energy system according to the present invention; FIG. 2 is a schematic view of a first embodiment of the present invention; 2 is a schematic view of a third embodiment of the present invention; FIG. 5 is a schematic view showing a carbon dioxide desorption concentration according to a third embodiment of the present invention; and FIG. 6 is a schematic view of a fourth embodiment of the present invention.
參閱圖1,本發明低耗能二氧化碳吸附濃縮與轉化能源系統之較佳實施例包含一個低耗能二氧化碳吸脫附裝置100、一個二氧化碳濃縮收集裝置500,及一個二氧化碳轉化生質能源裝置600。 Referring to Figure 1, a preferred embodiment of the low energy carbon dioxide adsorption concentration and conversion energy system of the present invention comprises a low energy carbon dioxide adsorption and desorption unit 100, a carbon dioxide concentration collection unit 500, and a carbon dioxide conversion biomass energy unit 600.
該低耗能二氧化碳吸脫附裝置100包括一個用於去除待處理廢氣A中硫氧化物的除硫氧化物器10、一個用於調整待處理廢氣A的溫濕度的調溫器20、一個用於吸附待處理廢氣A中之二氧化碳的二氧化碳吸附器30、一個用於脫附該二氧化碳吸附器30所捕獲的二氧化碳的二氧化碳脫附器40,及一個用於回收吸附熱的熱回收器35。 The low-energy carbon dioxide absorption and desorption device 100 includes a sulfur removal oxide device 10 for removing sulfur oxides in the exhaust gas A to be treated, a temperature regulator 20 for adjusting the temperature and humidity of the exhaust gas A to be treated, and a A carbon dioxide adsorber 30 for adsorbing carbon dioxide in the exhaust gas A to be treated, a carbon dioxide desorber 40 for desorbing carbon dioxide captured by the carbon dioxide adsorber 30, and a heat recovery unit 35 for recovering heat of adsorption.
該二氧化碳吸附器30可以為固定式填充床(如圖2)或流體化床(如圖3的該二氧化碳吸附器30f)。 The carbon dioxide adsorber 30 can be a fixed packed bed (as in Figure 2) or a fluidized bed (such as the carbon dioxide adsorber 30f of Figure 3).
當該二氧化碳吸附器30為流體化床時,該二氧化碳吸附器30是由多個改質的二氧化碳吸附材31經過流 體化床組合而成。待處理廢氣A流經該二氧化碳吸附器,其待處理廢氣A內包含的二氧化碳即被二氧化碳吸附材31所吸附,完成二氧化碳之吸附作用。 When the carbon dioxide adsorber 30 is a fluidized bed, the carbon dioxide adsorber 30 is passed through a plurality of modified carbon dioxide adsorbing materials 31. The body bed is combined. The waste gas A to be treated flows through the carbon dioxide adsorber, and the carbon dioxide contained in the waste gas A to be treated is adsorbed by the carbon dioxide adsorbing material 31 to complete the adsorption of carbon dioxide.
為了提升該二氧化碳吸附器30的吸附能力,並降低能源消耗,達成真正降低二氧化碳排放之目的,進一步使用該熱回收器35於低耗能二氧化碳吸附濃縮與轉化能源系統中。 In order to enhance the adsorption capacity of the carbon dioxide adsorber 30 and reduce energy consumption to achieve a true reduction in carbon dioxide emissions, the heat recovery unit 35 is further used in a low energy carbon dioxide adsorption concentration and conversion energy system.
該熱回收器35用於回收該二氧化碳吸附器30吸附二氧化碳同時所釋放的吸附熱,並有常溫冷卻器34帶入的低溫可降低該二氧化碳吸附器30的溫度,以能夠穩定該二氧化碳吸附器30的吸附能力。 The heat recovery unit 35 is for recovering the adsorption heat released by the carbon dioxide adsorber 30 while adsorbing carbon dioxide, and the low temperature brought in by the normal temperature cooler 34 can lower the temperature of the carbon dioxide adsorber 30 to stabilize the carbon dioxide adsorber 30. Adsorption capacity.
該熱回收器35也用於將回收的吸附熱提供給該二氧化碳脫附器40,提高該二氧化碳脫附器40脫附二氧化碳的效能,該熱回收器35也可以將製程廢熱C(例如煙氣的廢熱)提供給該二氧化碳脫附器40,使該二氧化碳脫附器40得以快速升溫將二氧化碳脫附出來,該二氧化碳脫附器40較佳的脫附溫度為80~160℃。 The heat recovery unit 35 is also used to provide the recovered heat of adsorption to the carbon dioxide desorber 40 to improve the desorption of carbon dioxide by the carbon dioxide desorber 40. The heat recovery unit 35 can also process waste heat of the process C (for example, flue gas). The waste heat is supplied to the carbon dioxide desorber 40, and the carbon dioxide desorber 40 is rapidly heated to desorb the carbon dioxide. The carbon dioxide desorber 40 preferably has a desorption temperature of 80 to 160 °C.
配合參閱圖4,該二氧化碳濃縮收集裝置500包括一個用於收集該二氧化碳脫附器40釋出的高濃度二氧化碳B的高濃度二氧化碳收集器50、一個用於收集該二氧化碳脫附器40釋出的低濃度二氧化碳B2的低濃度二氧化碳收集器59、一個二氧化碳儲存器51,及一個用於加強該二氧化碳脫附器40脫附二氧化碳的真空幫浦55,該真空幫浦55的真空範圍為絕對壓力0.1~0.9bar。 Referring to FIG. 4, the carbon dioxide concentration collection device 500 includes a high concentration carbon dioxide collector 50 for collecting the high concentration of carbon dioxide B released by the carbon dioxide desorber 40, and a collection of the carbon dioxide desorber 40 for collection. a low concentration carbon dioxide collector 59 of low concentration carbon dioxide B2, a carbon dioxide reservoir 51, and a vacuum pump 55 for enhancing the desorption of carbon dioxide by the carbon dioxide desorber 40, the vacuum range of the vacuum pump 55 being an absolute pressure of 0.1 ~0.9bar.
該二氧化碳脫附器40會釋出高濃度二氧化碳B(90~99%),並儲存於該高濃度二氧化碳收集器50中,該高濃度二氧化碳收集器50透過維持些微負壓使二氧化碳流入該高濃度二氧化碳收集器50的負壓收集室52中,此高濃度二氧化碳B可作為工業原料F。當該二氧化碳脫附器40將殘餘較低濃度二氧化碳B2(小於90%)釋出時(如圖5濃度曲線),低濃度二氧化碳B2由該真空幫浦55以負壓0.1~0.3bar抽出並儲存於該低濃度二氧化碳收集器59中。 The carbon dioxide desorber 40 releases a high concentration of carbon dioxide B (90-99%) and is stored in the high concentration carbon dioxide collector 50, which maintains a slight negative pressure to cause carbon dioxide to flow into the high concentration. In the negative pressure collection chamber 52 of the carbon dioxide collector 50, this high concentration carbon dioxide B can be used as the industrial raw material F. When the carbon dioxide desorber 40 releases the residual lower concentration carbon dioxide B2 (less than 90%) (as shown in the concentration curve of FIG. 5), the low concentration carbon dioxide B2 is extracted and stored by the vacuum pump 55 at a negative pressure of 0.1 to 0.3 bar. In the low concentration carbon dioxide collector 59.
該低濃度二氧化碳收集器59可為二氧化碳吸附器或壓力桶槽,若該低濃度二氧化碳收集器59為二氧化碳吸附器時,其操作如該低耗能二氧化碳吸脫附裝置的該二氧化碳吸附器40:吸附飽和後進入脫附程序可再將二氧化碳濃度提高提純;若該低濃度二氧化碳收集器59為壓力桶槽時,二氧化碳經些微加壓後以穩定壓力將二氧化碳輸送至一個二氧化碳微藻吸收器60。 The low concentration carbon dioxide collector 59 can be a carbon dioxide adsorber or a pressure tank tank. If the low concentration carbon dioxide collector 59 is a carbon dioxide adsorber, the carbon dioxide adsorber 40 operates as the low energy carbon dioxide adsorption and desorption unit: After the adsorption is saturated, the desorption process is further performed to further purify the carbon dioxide concentration; if the low concentration carbon dioxide collector 59 is a pressure tank, the carbon dioxide is slightly pressurized to deliver the carbon dioxide to a carbon dioxide microalgae absorber 60 at a steady pressure.
該二氧化碳轉化生質能源裝置600包括一個加壓的該二氧化碳微藻吸收器60。 The carbon dioxide conversion biomass energy plant 600 includes a pressurized carbon dioxide microalgae absorber 60.
該二氧化碳微藻吸收器60將回收的二氧化碳作為碳源,以廢水中氮磷、氨氮與亞硝酸作為氮源,使藻體增生,生產藻體並且同時淨化水質,該二氧化碳微藻吸收器60吸收二氧化碳與廢水,使產出之藻體經由轉酯化產生生質柴油E,生質柴油E為由廢水與廢氣生成之環保綠色燃料,廢水也因減少氮磷而淨化。 The carbon dioxide microalgae absorber 60 uses the recovered carbon dioxide as a carbon source, and uses nitrogen, phosphorus, ammonia nitrogen and nitrous acid as nitrogen sources in the wastewater to proliferate the algae, produce algae and simultaneously purify the water, and the carbon dioxide microalgae absorber 60 absorbs Carbon dioxide and waste water make the produced algae produce biodiesel E through transesterification. Biomass diesel E is an environmentally friendly green fuel produced by wastewater and waste gas, and the wastewater is also purified by reducing nitrogen and phosphorus.
該二氧化碳微藻吸收器60的壓力為小於3 kg/cm2。 The carbon dioxide microalgae absorber 60 has a pressure of less than 3 kg/cm 2 .
關於微藻的相關詳細說明如後:在提供壓力情況下可增加二氧化碳於藻液中之溶解度,並且以微氣泡曝氣盤(圖未示)產生二氧化碳微氣泡,易使藻液吸收二氧化碳並轉化為藻體,串聯的二氧化碳微藻吸收器60內有藻液與一般水或經過二級廢水處理之含氨氮的水,微藻以二氧化碳作為碳源,以廢水中氨氮與亞硝酸作為氮源,生產藻體並且淨化水質,較佳之藻液含有小球藻類(Chlorella vulgaris)之微藻,pH值為6~7為佳,二氧化碳濃度以小於30%為佳,二氧化碳壓力為小於2kg/cm2為佳,氨氮為小於10mg/l為佳。 The detailed description of the microalgae is as follows: the solubility of carbon dioxide in the algae liquid can be increased under the pressure supply, and the carbon dioxide microbubbles are generated by the microbubble aeration disk (not shown), which easily absorbs the carbon dioxide and converts the algae liquid. For the algae body, the carbon dioxide microalgae absorber 60 in series has algae liquid and normal water or ammonia nitrogen-containing water treated by secondary wastewater, and the microalgae uses carbon dioxide as a carbon source, and ammonia nitrogen and nitrous acid in the waste water as a nitrogen source. The algae body is produced and the water is purified. Preferably, the algae liquid contains microalgae of Chlorella vulgaris, preferably having a pH of 6 to 7, a carbon dioxide concentration of less than 30%, and a carbon dioxide pressure of less than 2 kg/cm 2 . Preferably, the ammonia nitrogen is preferably less than 10 mg/l.
吸收二氧化碳生成之微藻經過轉酯化反應後,產物為甘油與脂肪酸甲酯(Fatty Acid Methyl Esters;FAME),也就是所謂的生質柴油E,微藻中具有油脂成分,以三酸甘油脂(Triacylglycerols)為主,化學結構為一分子的甘油和三分子的脂肪酸結合而成,三酸甘油脂與甲醇與催化劑進行轉酯化反應後,產生甘油與脂肪酸甲酯,即為生質柴油E,微藻生質柴油製備的步驟詳細如下。 After the transesterification reaction of the microalgae that absorbs carbon dioxide, the product is glycerin and fatty acid methyl ester (Fatty Acid Methyl Esters; FAME), which is also called biodiesel E. The microalgae has a fat component and triglyceride. (Triacylglycerols) is mainly composed of one molecule of glycerol and three molecules of fatty acids. After transesterification of triglyceride with methanol and catalyst, glycerol and fatty acid methyl ester are produced, which is biodiesel E. The steps for preparing the microalgae biodiesel are as follows.
前處理步驟:破碎藻體的細胞壁,其可為微波法、微珠擊打法、超音波法、高壓滅菌法、均質法等。 Pretreatment step: disrupting the cell wall of the algal body, which may be a microwave method, a bead hitting method, an ultrasonic method, an autoclaving method, a homogenization method, or the like.
皂化反應步驟:微藻油脂中含有部分油離脂肪酸、水分與沉澱物,於轉酯化過程中容易產生皂化物,影響轉酯化速率,故透過添加鹼性催化劑如氫氧化鉀、氫氧化納,將油離脂肪酸反應成水溶性的脂肪酸鹽,以利後續 的轉酯化反應進行。 Saponification reaction step: the microalgae oil contains a part of oil from fatty acid, water and sediment, which is easy to produce saponification during the transesterification process, affecting the transesterification rate, so by adding a basic catalyst such as potassium hydroxide or sodium hydroxide Resolving oil from fatty acids into water-soluble fatty acid salts for subsequent The transesterification reaction proceeds.
轉酯化步驟:如同前述,醇類與三酸甘油脂反應,加入適當的催化劑加速轉酯化,即可生成脂肪酸酯與甘油。 The transesterification step: as described above, the alcohol is reacted with the triglyceride, and a suitable catalyst is added to accelerate the transesterification to form a fatty acid ester and glycerin.
如圖1所示,含二氧化碳之待處理廢氣自廢氣出口A進入低耗能二氧化碳吸附濃縮與轉化能源系統,經該除硫氧化物器10、該調溫器20、一個風車25、該二氧化碳吸附器30與該二氧化碳脫附器40,廢氣中二氧化碳經吸附後排出已淨化之廢氣D與分離出之高濃度二氧化碳B。 As shown in FIG. 1, the carbon dioxide-containing waste gas to be treated enters the low-energy carbon dioxide adsorption concentration and conversion energy system from the exhaust gas outlet A, through the sulfur removal oxide device 10, the temperature regulator 20, a windmill 25, and the carbon dioxide adsorption. And the carbon dioxide desorber 40, the carbon dioxide in the exhaust gas is adsorbed to discharge the purified exhaust gas D and the separated high concentration carbon dioxide B.
該熱回收器35回收該二氧化碳吸附器30產生的吸附熱與製程廢熱C,並將回收之熱能回饋至該二氧化碳脫附器40,節省大量能源消耗。由該二氧化碳脫附器40所產生的高濃度二氧化碳B由該高濃度二氧化碳收集器50儲存,可將高濃度二氧化碳B作為工業原料F使用,低濃度二氧化碳B2(參閱圖4)供給微藻作為碳源利用,最後將微藻轉化生產出生質柴油E。 The heat recovery unit 35 recovers the heat of adsorption generated by the carbon dioxide adsorber 30 and the process waste heat C, and returns the recovered heat energy to the carbon dioxide desorber 40, thereby saving a large amount of energy consumption. The high-concentration carbon dioxide B produced by the carbon dioxide desorber 40 is stored by the high-concentration carbon dioxide collector 50, and the high-concentration carbon dioxide B can be used as the industrial raw material F, and the low-concentration carbon dioxide B2 (see FIG. 4) is supplied to the microalgae as the carbon. Source utilization, and finally the microalgae is converted to produce the birth quality diesel E.
<具體實施例一> <Specific Example 1>
參閱圖1與圖2,該風車25於調溫器20後端用於抽入含二氧化碳待處理廢氣32,因大多數煙道氣體含有硫氧化物,為避免影響該二氧化碳吸附器30,先將待處理廢氣A經除該硫氧化物系統10,再進入該調溫器20以調整待處理廢氣A的溫度,同時也能調節待處理廢氣A的濕度,並能保護該風車25。 Referring to FIG. 1 and FIG. 2, the windmill 25 is used at the rear end of the thermostat 20 for drawing in the carbon dioxide-containing waste gas 32. Since most of the flue gas contains sulfur oxides, in order to avoid affecting the carbon dioxide adsorber 30, The exhaust gas A to be treated is passed through the sulfur oxide system 10, and then enters the thermostat 20 to adjust the temperature of the exhaust gas A to be treated, while also adjusting the humidity of the exhaust gas A to be treated, and protecting the windmill 25.
該二氧化碳吸附器30內填充有二氧化碳吸附材 31,並內含有熱流管33(為圖2中所指虛線處),熱流管33內通入流體可為熱媒油或水,由外部常溫冷卻器34通入常溫流體至熱流管33中,控制該二氧化碳吸附器30內的吸附材31溫度維持常溫,將吸附時之吸附熱能導出該二氧化碳吸附器30至該熱回收器35,並提供給該二氧化碳脫附器40熱能,達到低耗能的二氧化碳處理技術。 The carbon dioxide adsorber 30 is filled with a carbon dioxide adsorbing material 31, and contains a heat flow tube 33 (indicated by the dotted line in FIG. 2), the fluid flowing into the heat flow tube 33 may be heat medium oil or water, and the ambient temperature cooler 34 is passed into the normal temperature fluid to the heat flow tube 33. The temperature of the adsorbent material 31 in the carbon dioxide adsorber 30 is controlled to maintain a normal temperature, and the heat of adsorption at the time of adsorption is led to the carbon dioxide adsorber 30 to the heat recoverer 35, and the heat energy of the carbon dioxide desorber 40 is supplied to the low energy-consuming Carbon dioxide treatment technology.
該二氧化碳之吸附材31會針對待處理廢氣中之二氧化碳進行二氧化碳之吸附作用,以吸附淨化待處理廢氣中的二氧化碳,完成二氧化碳之吸附作用,最後經吸附淨化二氧化碳的淨化氣體再流出該二氧化碳吸附器30,流經氣體出口D排出。 The carbon dioxide adsorbing material 31 performs carbon dioxide adsorption on the carbon dioxide in the exhaust gas to be treated, adsorbs and purifies the carbon dioxide in the exhaust gas to be treated, completes the adsorption of carbon dioxide, and finally flows out the carbon dioxide adsorbent by adsorbing and purifying the carbon dioxide. 30, flowing through the gas outlet D to discharge.
該二氧化碳吸附材31為可重覆再生使用的吸附材,可為經APTS改質奈米碳管、經TEPA改質奈米碳管、經TEPA改質之矽鋁比六十的Y型沸石、13X沸石或NaY沸石。 The carbon dioxide adsorbing material 31 is an adsorbent material which can be reused and reused, and can be an APTS modified carbon nanotube, a TEPA modified carbon nanotube, a TEPA modified yttrium aluminum ratio of 60 Y zeolite, 13X zeolite or NaY zeolite.
該二氧化碳吸附器30可為固定式填充床或流體化床(圖3),若為固定式填充床則該二氧化碳吸附器30也具有脫附器功能,成為雙床式或多床式該二氧化碳吸、脫附器30、40(圖2),固定式填充床數目可依二氧化碳處理量與吸脫附之時間來決定。該二氧化碳脫附器40內的二氧化碳吸附材37達吸附飽和後實施二氧化碳脫附,除了該熱回收器35所回收的吸附熱可供該二氧化碳脫附器40利用外,一般二氧化碳吸附材37的脫附熱通常比吸附材31的吸附熱值要高,所以再加上回收的製程廢熱C給予該熱回 收器35增加熱值,就能足夠該二氧化碳脫附器40內的二氧化碳吸附材37脫附二氧化碳。 The carbon dioxide adsorber 30 can be a fixed packed bed or a fluidized bed (Fig. 3). If it is a fixed packed bed, the carbon dioxide adsorber 30 also has a desorber function, and is a double bed type or a multi bed type. The desorber 30, 40 (Fig. 2), the number of fixed packed beds can be determined according to the amount of carbon dioxide treatment and the time of suction and desorption. The carbon dioxide adsorbing material 37 in the carbon dioxide desorber 40 is subjected to adsorption and saturation, and then carbon dioxide is desorbed. Except that the heat of adsorption recovered by the heat recoverer 35 is available to the carbon dioxide desorber 40, the carbon dioxide adsorbing material 37 is generally removed. The heat of attachment is usually higher than the heat of adsorption of the adsorbent material 31, so that the heat of recovery of the process waste C is given to the heat back. By increasing the calorific value of the condenser 35, it is sufficient that the carbon dioxide adsorbing material 37 in the carbon dioxide desorber 40 desorbs carbon dioxide.
<具體實施例二> <Specific Embodiment 2>
參閱圖1與圖3,該二氧化碳吸附器30f可為流體化床,適合處理大風量的廢氣,如燃煤電廠的大型煙道廢氣,該二氧化碳吸附器30f是由多個改質的二氧化碳吸附材31經過流體化床組合而成。 Referring to Figures 1 and 3, the carbon dioxide adsorber 30f can be a fluidized bed suitable for treating large amounts of exhaust gas, such as large flue gas from a coal-fired power plant, the carbon dioxide adsorber 30f being a plurality of modified carbon dioxide adsorbing materials. 31 is a combination of fluidized beds.
進入該二氧化碳吸附器30f後,待處理廢氣往上方流動,二氧化碳吸附材31由上方的一個入料口38進入,二氧化碳吸附材31並由一個出料口39流至該二氧化碳脫附器40,待處理廢氣包含的二氧化碳為二氧化碳吸附材31所吸附,已淨化之廢氣D流出該二氧化碳吸附器30f,並流經一個再生吸附材收集器36,利用已淨化之廢氣D冷卻再生吸附材31a,並利用已淨化之廢氣D氣流將再生吸附材31a攜帶至一個再生吸附材集料器41,最後已淨化之廢氣D於該再生吸附材集料器41排出,而再生吸附材31a沉澱於該再生吸附材集料器41中,再生吸附材31a再由該再生吸附材集料器41輸送回該二氧化碳吸附器30f的該入料口38進行二氧化碳吸附,如此循環運作,節省冷卻與再生吸附材31a輸送之能源使用。 After entering the carbon dioxide adsorber 30f, the exhaust gas to be treated flows upward, and the carbon dioxide adsorbing material 31 enters from an upper inlet port 38, and the carbon dioxide adsorbing material 31 flows from a discharge port 39 to the carbon dioxide desorber 40. The carbon dioxide contained in the exhaust gas is adsorbed by the carbon dioxide adsorbing material 31, and the purified exhaust gas D flows out of the carbon dioxide adsorber 30f, passes through a regenerated adsorbent collector 36, and the regenerated adsorbent 31a is cooled and purified by the purified exhaust gas D. The purified exhaust gas D flows the regenerated adsorbent material 31a to a regenerated adsorbent material collector 41, and finally the purified exhaust gas D is discharged to the regenerated adsorbent material collector 41, and the regenerated adsorbent material 31a is deposited on the regenerated adsorbent material. In the hopper 41, the regenerated adsorbing material 31a is again transported back to the inlet port 38 of the carbon dioxide adsorber 30f for carbon dioxide adsorption, and the circulation operation is performed to save the cooling and regeneration of the adsorbing material 31a. Energy use.
<具體實施例三> <Specific Example 3>
參閱圖1、圖4與圖5,包含該高濃度二氧化碳收集器50、一個氣體壓縮器56、該二氧化碳儲存器51、該低濃度二氧化碳收集器59、該真空幫浦55及該二氧化碳微 藻吸收器60。 Referring to Figures 1, 4 and 5, the high concentration carbon dioxide collector 50, a gas compressor 56, the carbon dioxide reservoir 51, the low concentration carbon dioxide collector 59, the vacuum pump 55 and the carbon dioxide micro are included. Algae absorber 60.
該二氧化碳脫附器40首先釋出高濃度的二氧化碳B,當濃度高於目標回收濃度C1時,C1為例如30%,二氧化碳B以該高濃度二氧化碳收集器50收集,該高濃度二氧化碳收集器50內含複數個負壓收集室52,依序收集高濃度的二氧化碳B,再由該氣體壓縮器56抽出並壓縮至該二氧化碳儲存器51,後續再作為工業原料F。 The carbon dioxide desorber 40 first releases a high concentration of carbon dioxide B. When the concentration is higher than the target recovery concentration C1, C1 is, for example, 30%, and the carbon dioxide B is collected by the high concentration carbon dioxide collector 50. The high concentration carbon dioxide collector 50 A plurality of negative pressure collection chambers 52 are contained, and a high concentration of carbon dioxide B is sequentially collected, and then extracted and compressed by the gas compressor 56 to the carbon dioxide storage unit 51, and then used as an industrial raw material F.
剩餘殘餘的二氧化碳濃度小於C1的低濃度二氧化碳B2以該真空幫浦55抽出至該低濃度二氧化碳收集器59,其原理則為變壓變溫吸脫附法,抽出的低濃度二氧化碳B2可以經加壓至該二氧化碳微藻吸收器60處理,或可回流至該二氧化碳吸附器30再提高濃度。 The residual carbon dioxide B2 having a residual carbon dioxide concentration lower than C1 is withdrawn to the low-concentration carbon dioxide collector 59 by the vacuum pump 55, and the principle is a variable pressure temperature-temperature adsorption and desorption method, and the extracted low-concentration carbon dioxide B2 can be pressurized. The carbon dioxide microalgae absorber 60 is treated, or may be refluxed to the carbon dioxide adsorber 30 to increase the concentration.
<具體實施例四> <Specific Embodiment 4>
參閱圖1與圖6,該低濃度二氧化碳收集器59將加壓(小於3kg/cm2)的低濃度二氧化碳64送至該二氧化碳微藻吸收器60,該二氧化碳微藻吸收器60以複數串聯方式連結,微藻種類可為小球藻種等具高油脂含量之藻種,增壓後低濃度二氧化碳64通入串聯的二氧化碳微藻吸收器60,供微藻吸收二氧化碳後再從淨化廢氣排出口G排出,串聯的二氧化碳微藻吸收器60可增加二氧化碳於液相中停留之時間、可維持系統之壓力,以及提高微藻吸收二氧化碳之效率。 Referring to Figures 1 and 6, the low concentration carbon dioxide collector 59 delivers a pressurized (less than 3 kg/cm 2 ) low concentration carbon dioxide 64 to the carbon dioxide microalgae absorber 60, the carbon dioxide microalgae absorber 60 in a plurality of series The microalgae species may be a high oil content algae species such as chlorella species. After pressurization, the low concentration carbon dioxide 64 is introduced into the tandem carbon dioxide microalgae absorber 60 for the microalgae to absorb carbon dioxide and then from the purified waste gas discharge port. G discharge, the series carbon dioxide microalgae absorber 60 can increase the time that carbon dioxide stays in the liquid phase, maintain the pressure of the system, and increase the efficiency of the microalgae to absorb carbon dioxide.
該等二氧化碳微藻吸收器60的外殼為透明材質,可使光線透入至該等二氧化碳微藻吸收器60中,以具 體實施例四使用淡水小球藻,可將低濃度二氧化碳64的濃度從30%降至0.1%以下,此外,以廢水H中的氨氮作為微藻的氮源。由二氧化碳微藻吸收器60產生之藻液63排出至一個微藻過濾器61分離藻體65與淨化過廢水I,然後經一個轉酯器62將藻體65轉換成生質柴油E。 The carbon dioxide microalgae absorber 60 has a transparent material that allows light to penetrate into the carbon dioxide microalgae absorber 60 to In the fourth embodiment, the concentration of the low-concentration carbon dioxide 64 can be reduced from 30% to less than 0.1% using freshwater chlorella, and the ammonia nitrogen in the wastewater H is used as the nitrogen source of the microalgae. The algae liquid 63 produced by the carbon dioxide microalgae absorber 60 is discharged to a microalgae filter 61 to separate the algae body 65 from the purified wastewater I, and then the algae body 65 is converted into the biomass diesel E via a transesterifier 62.
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent changes and modifications made by the patent application scope and patent specification content of the present invention, All remain within the scope of the invention patent.
100‧‧‧低耗能二氧化碳吸脫附裝置 100‧‧‧Low-energy carbon dioxide absorption and desorption device
10‧‧‧除硫氧化物器 10‧‧‧Desulfurization device
20‧‧‧調溫器 20‧‧‧ thermostat
25‧‧‧風車 25‧‧‧ windmill
30‧‧‧二氧化碳吸附器 30‧‧‧Carbon dioxide adsorber
35‧‧‧熱回收器 35‧‧‧heat recovery unit
40‧‧‧二氧化碳脫附器 40‧‧‧Carbon dioxide desorber
500‧‧‧二氧化碳濃縮收集裝置 500‧‧‧Carbon dioxide concentration collection device
50‧‧‧高濃度二氧化碳收集 器 50‧‧‧High concentration carbon dioxide collection Device
600‧‧‧二氧化碳轉化生質能源裝置 600‧‧‧CO2 conversion biomass energy plant
60‧‧‧二氧化碳微藻吸收器 60‧‧‧CO2 microalgae absorber
A‧‧‧待處理廢氣 A‧‧‧Exhaust gas to be treated
B‧‧‧高濃度二氧化碳 B‧‧‧High concentration of carbon dioxide
C‧‧‧製程廢熱 C‧‧‧Process waste heat
D‧‧‧已淨化之廢氣 D‧‧‧ purified waste gas
E‧‧‧生質柴油 E‧‧‧Biodiesel
F‧‧‧工業原料 F‧‧‧Industrial raw materials
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102135119A TWI466711B (en) | 2013-09-27 | 2013-09-27 | A low-energy consumption system for co2 adsorption, concentration and energy conversion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102135119A TWI466711B (en) | 2013-09-27 | 2013-09-27 | A low-energy consumption system for co2 adsorption, concentration and energy conversion |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI466711B TWI466711B (en) | 2015-01-01 |
TW201511816A true TW201511816A (en) | 2015-04-01 |
Family
ID=52784725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102135119A TWI466711B (en) | 2013-09-27 | 2013-09-27 | A low-energy consumption system for co2 adsorption, concentration and energy conversion |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI466711B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI569866B (en) * | 2015-04-07 | 2017-02-11 | 中國鋼鐵股份有限公司 | Automatic controlling device and method for adsorbing carbon dioxide |
US11041420B2 (en) | 2016-09-21 | 2021-06-22 | M-Trigen, Inc. | Carbon capture system, apparatus, and method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW202310914A (en) * | 2021-05-05 | 2023-03-16 | 傑智環境科技股份有限公司 | Repurifying device for nitrogen oxides in exhaust gas of incinerator |
CN114909696B (en) * | 2022-04-28 | 2024-06-25 | 哈尔滨工业大学 | Adsorption type low-pressure CO2Gas-heat combined storage and combined supply device and operation method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3061094C (en) * | 2010-04-30 | 2023-10-24 | Peter Eisenberger | System and method for carbon dioxide capture and sequestration |
TW201204456A (en) * | 2010-07-27 | 2012-02-01 | Jg Environmental Tech Co Ltd | Concentrating apparatus for absorbing and desorbing carbon dioxide in gas and method thereof |
-
2013
- 2013-09-27 TW TW102135119A patent/TWI466711B/en not_active IP Right Cessation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI569866B (en) * | 2015-04-07 | 2017-02-11 | 中國鋼鐵股份有限公司 | Automatic controlling device and method for adsorbing carbon dioxide |
US11041420B2 (en) | 2016-09-21 | 2021-06-22 | M-Trigen, Inc. | Carbon capture system, apparatus, and method |
US11680504B2 (en) | 2016-09-21 | 2023-06-20 | Gridiron Llc | Carbon capture system, apparatus, and method |
Also Published As
Publication number | Publication date |
---|---|
TWI466711B (en) | 2015-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Abd et al. | Methane enrichment in biogas mixture using pressure swing adsorption: process fundamental and design parameters | |
CN202322831U (en) | Methane and landfill gas utilization system | |
WO2012051879A1 (en) | Method and apparatus for capturing carbon dioxide in flue gas with activated sodium carbonate | |
CN201135851Y (en) | A system for removing the carbon dioxide in flue gas of the generating plant using ammonia process | |
CN103961979A (en) | Multistage division regenerative carbon dioxide trapping system and technology | |
CN102559316A (en) | Methane purifying method and equipment thereof | |
SE2350521A1 (en) | System and method for synchronous recovery of carbon dioxide and nitrogen gas from flue gas by chemical method and psa method | |
CN103007679A (en) | Flue gas cleaning system capable of switching pollutant desorption technology and adsorbent regeneration technology and method thereof | |
CN102784546A (en) | An Efficient CO2 Capture System | |
TWI466711B (en) | A low-energy consumption system for co2 adsorption, concentration and energy conversion | |
CN101822929A (en) | Method for capturing carbon dioxide by utilizing electrical desorption technology | |
CN202942787U (en) | Switchable flue gas purification system for pollutant removal process and adsorbent regeneration process | |
Wang et al. | Carbon dioxide capture | |
CN103157346B (en) | Low-temperature rectisol and CO 2trapping coupling process and system | |
CN205223136U (en) | A desorption device that is used for pure marsh gas of pressure water elution | |
CN102350180A (en) | Regeneration system for smoke carbon dioxide capture solution | |
CN102703150A (en) | Dual-fluidized bed low-concentration methane concentrating method and system thereof | |
CN101428189A (en) | Apparatus and method for removing inhalation particulate matter of fire coal at front body to implement zero discharge of carbonic anhydride | |
CN110624363A (en) | Pressurization regeneration method for capturing carbon dioxide in flue gas by alcohol amine method | |
CN106824094A (en) | One kind is using modified gangue removing power-plant flue gas CO2System and its implementation | |
CN214319689U (en) | A system for recovering and storing CO2 in flue gas by hydrate method | |
CN102553433B (en) | A device and method for removing CO2 from coal-fired flue gas | |
CN101234281A (en) | A system for removing carbon dioxide from flue gas using solar energy | |
CN112473336A (en) | Hydrate method for recovering and storing CO in flue gas2Method (2) | |
CN201140032Y (en) | A device for removing carbon dioxide from flue gas by using solar energy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |