TW201237339A - Cooling apparatus and electronic apparatus - Google Patents

Cooling apparatus and electronic apparatus Download PDF

Info

Publication number
TW201237339A
TW201237339A TW100138838A TW100138838A TW201237339A TW 201237339 A TW201237339 A TW 201237339A TW 100138838 A TW100138838 A TW 100138838A TW 100138838 A TW100138838 A TW 100138838A TW 201237339 A TW201237339 A TW 201237339A
Authority
TW
Taiwan
Prior art keywords
liquid
evaporator
passage
porous body
outlet
Prior art date
Application number
TW100138838A
Other languages
Chinese (zh)
Inventor
Hiroki Uchida
Susumu Ogata
Seiji Hibino
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of TW201237339A publication Critical patent/TW201237339A/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20336Heat pipes, e.g. wicks or capillary pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops

Abstract

A cooling apparatus includes: an evaporator 1, including a porous body 12, a vapor channel 10 and a liquid channel 11 separated by the porous body, to evaporate a working fluid in liquid phase; a condenser 2 to condense the working fluid in vapor phase; a liquid reservoir tank 3 to reserve the working fluid in the liquid phase; a vapor line connecting 4 an outlet of the vapor channel in the evaporator and an inlet of the condenser; a liquid line 5 connecting an outlet of the condenser and a first inlet 3A of the liquid reservoir tank; a liquid supply line 6 connecting an outlet of the liquid reservoir tank and an inlet of the liquid channel in the evaporator; a liquid return line 7 connecting an outlet of the liquid channel in the evaporator and a second inlet 3B of the liquid reservoir tank; and a liquid transport unit 8 interposed in the liquid supply line.

Description

201237339 ·; 六、發明說明: . 【發明所屬之技術領域】 本發明係有關於一種冷卻裝置和電子裝置。 【先前技術】 一種提供在電子裝置如電腦以冷卻發熱元件如電子元 件的冷卻裝置的類型是氣體液體兩相流動的基礎上的冷卻 裝置。這種冷卻裝置利用產生的蒸發潛熱,當液相之工作 流體(液相工作流體)蒸發為汽相之工作流體(汽相工作流 體)時,達到更高的散熱性能。 例如迴路熱管(LHP)包括蒸發器,蒸發器包括芯和冷凝 器,其中,蒸發器之出口和冷凝器之入口以蒸氣管線連接, 而冷凝器之出口和蒸發器之入口以液體管線連接,迴路熱 管充滿工作流體。 此迴路熱管可藉由芯的毛細作用力流通工作流體,從 而輸送熱量,不需要例如液體輸送泵。有些冷卻裝置於液 體管線提供有液體輸送泵,以確保工作流體流通。 如上所述之迴路熱管提供之蒸發器包括外殼101熱連 接至發熱組件100,芯102緊密接觸外殼101的内壁體, 例如,如第14圖所示。 芯102具有管狀,芯102内具有孔洞103。芯102具 有開口端與封閉端,開口端在外殼101之入口之侧面(第 14圖之右侧面)上,而封閉端在外殼101之出口之侧面(第 14圖之左側面)上。芯102内之孔洞103與連接外殼101 之入口的液體管線104連通,定義經其流動液相工作流體 4 323562 201237339 之液體通道。外殼101之内壁體和芯102之間定義溝道 105。溝道105與連接外殼101之出口之蒸氣管線106連 通,定義經其流動汽相工作流體之蒸汽通道。特別是,芯 102之終端,即於外殼101之出口側上之芯102是封閉的, 定義芯102内之孔洞103之終端。換句話說,蒸發器中的 液體通道是終端。 在如上所述配置之迴路熱管,發熱組件100產生之熱 藉由芯102傳遞至液相工作流體,從而加熱液相工作流 體,這可能會導致產生在液相工作流體中之蒸汽氣泡。這 可能會導致乾涸,使難以維持冷卻性能。 特別是芯102之終端接觸蒸汽通道。因此,芯102之 終端附近之液體通道内的液相工作流體被加熱到與汽相工 作流體之溫度大致相同的溫度,這可能會加速蒸汽氣泡的 形成。此外,在適用於有效冷卻產生大量的熱的平面發熱 組件(如電子元件和印刷電路板)的薄平面蒸發器,發熱組 件100產生的熱更容易通過芯102傳遞至液相工作流體。 因此,液相工作流體之溫度增加,從而加速液相工作流體 中之蒸汽氣泡之產生。這往往造成乾涸,使難以維持冷卻 性能。 此外,具有終端液體通道之蒸發器,即使液體輸送泵 提供於液體管線和液相工作流體藉由液體輸送泵被運送到 蒸發器,液相工作流體產生的蒸汽氣泡不能被去除。 【發明内容】 對熟習該技術領域者而言,透過以下詳述係可立即明 5 323562 201237339 。白本發明之其他優點及特徵。所述及圖示之該實施例係提 ; 供實行本發明之最佳說明。本發明係能在不背離本發明的 情況下,於各種明顯態樣中作修改。因此,隨附圖式係作 例示用,而非限制本發明。 本發明為有鑑於前述之問題點所開發者,即使液相工 作流體中產生蒸汽氣泡’這些蒸汽氣泡报容易被去除,從 而實現提供穩定的散熱性能的冷卻裝置。 本發明之冷卻裝置,包括:蒸發器,包括多孔體,蒸 汽通道和由多孔體分離之液體通道,以蒸發液相之工作流 體;冷凝器,以凝結汽相之工作流體;液體儲集槽,以儲 備液相之工作流體;蒸氣管線,連接蒸發器之蒸汽通道之 出口和冷凝器之入口;液體管線,連接冷凝器之出口和液 體儲集槽之第一入口;液體供應管線,連接液體健集槽之 出口和蒸發器之液體通道之入口;液體返回管線,連接蒸 發器之液體通道之出口和液體儲集槽之第二入口;以及液 體輸送單元,插置於液體供應管線。 本發明之電子裝置,包括:電子元件’提供於電路板 之上;和冷卻裴置,以冷卻電子元件,冷卻裝置如上所述 配置’其中電子元件熱連接到蒸發器。 以下敛述將部份提出本發明之其他特徵及附加優點, 而對熟習該技術領域者在審視下列敘述後或可從本發明之 實行學習而使得本發明部分變為明顯。藉由附加之申請專 利範圍中特別提出之處,係能實現及獲得本發明之該優點 及特徵。 6 323562 201237339 【實施方式】 以下參照第1至5圖說明根據實施例之冷卻裝置和電 子裝置。 根據本實施例之冷卻裝置是一種冷卻發熱元件(如包 括在電子裝置之電子元件)的冷卻裝置,電子裝置例如電腦 (例如,伺服器和個人電腦)。電子裝置有時被稱為電子設 備。電子元件的例子包括:例如中央處理器(CPU)和LSI 芯片。 冷卻裝置是氣體液體兩相流動的基礎上的冷卻裝置。 這種冷卻裝置利用產生的蒸發潛熱,當液相之工作流體(液 相工作流體)蒸發為汽相之工作流體(汽相工作流體)時,達 到更高的散熱性能。 在這裡,於冷卻裝置的背景下描述實施例,冷卻裝置 包括適用於有效冷卻產生大量的熱的平面發熱組件的薄平 面蒸發器,平面發熱組件如電子元件和印刷板(電路板)。 請注意,薄平面蒸發器有時稱為薄蒸發器或平面蒸發器。 如第1圖所示,冷卻裝置包括:蒸發液相工作流體之 蒸發器1,凝結汽相工作流體之冷凝器2,儲備液相工作流 體之液體儲集槽3,經其流動汽相工作流體之蒸氣管線4, 經其流動液相工作流體之液體管線5,液體供應管線6, 液體返回管線7,和液體輸送泵8。注意,液體供應和液體 返回管線6和7簡稱為“液體管線”,因為它們是其中流 動液相工作流體之液體管線。雖然液體輸送泵8使用在這 實施例,不限制於此和可使用可輸送液相工作流體之任何 7 323562 201237339 液體輸送單元(液體輸送手段)。 在蒸發器1之蒸汽通道之出口(蒸汽通道)10以蒸氣管 線4連接冷凝器2之入口。冷凝器2之出口以液體管線5 連接到液體儲集槽3之第一入口 3A。液體儲集槽3之出口 3C以液體供應管線6連接在蒸發器1的液體通道11之入 口。在蒸發器1的液體通道11之出口以液體返回管線7 連接到液體儲集槽3之第二入口 3B。此外,液體輸送泵8 插置於該液體供應管線6。更真體地說,以液體供應管線 6,液體儲集槽3之出口 3C連接到液體輸送泵8之攝入開 口 8A,液體輸送泵8之排放開口 8B連接到在蒸發器1的 液體通道11之入口。 在此實施例,蒸發器1包括芯12,蒸汽通道10和液 體通道11由芯12分開,發熱組件9(熱源)熱連接至蒸發 器1。在此實施例,提供蒸汽通道10接近在蒸發器1之發 熱組件9,而提供液體通道11遠離在蒸發器1之發熱組件 9。這樣的構造防止發熱組件9的熱藉由芯12傳遞至液相 工作流體,從而減少或消除在液相工作流體之蒸汽氣泡之 產生。芯12是多孔體。在此實施例,芯12是具有較小的 熱導率之多孔體。更具體地說,芯12是樹脂製成之多孔 體。多孔體最好有約10微米或以下之平均孔直徑(最好約 6微米或更小)。可使用汞注射方法確定平均孔徑。 在此實施例,如第2圖所示,例如,蒸發器1包括外 殼13熱連接至發熱組件9,芯12緊密接觸外殼13内壁體。 芯12具有管狀,芯12内具有孔洞14。芯12在外殼 8 323562 201237339 • 13之入口的側面(第2圖之右側面)上和在出口的側面(第2 : 圖之左側面)上具有開口端。芯12之内孔洞14連通與外殼 13之入口連接的液體管線6和與外殼13出口連接的液體 管線,定義經其流動液相工作流體的液體通道u。 在這種方式下,芯12之出口侧面上的芯12之端(即芯 12之内孔洞14)並非終端且連通與外殼13的出口連接的液 體官線。換句話說’在蒸發器15之液體通道丨丨不是終端, 與連接蒸發器1的人口和出口側面之液體管線第6和7連 通。 溝道15定義於外殼13内壁體和芯12之間。溝道15 與連接到蒸發器1之出口的蒸氣管線4連通,定義經其流 動相工作流體的蒸汽通道1 〇。 在喊種方式下,蒸發器1中的液體通道11與連接蒸 發器1之人口和出口侧面的液體管線6和7連通。換句話 說,在蒸發11 1之液體通道11包括出Π,以及人口,從入 二:伸到出口,並連接蒸發器1之入口和出口側面上的液 體官線6和7。 如第1圖所示,連接蒸發器、之入口和出口側面的液 體管線6和7連接到洛紗隹 接液體儲集槽3,定義允許液相工作流 體的流通的流通路線(環路)。 2㈣流經蒸發器丨之液體通道丨丨之液相工作流 丄口發器1流通,而非保留在蒸發器卜 幻二此、如第2圖所不’即使由於熱自發熱組件9通過 心「熱池漏)傳遞’在芯12内之液體通道U内之液相 323562 9 201237339 工作流體中產生蒸汽氣泡,這些蒸汽氣泡很容易由促進液 相工作流體的流動從芯12内的液體通道11去除。這可以 防止乾涸,從而保持冷卻性能,並實現穩定的散熱性能。 特別是,芯12之端接觸蒸汽通道10。因此,芯12之 端附近的液體通道11内之液相工作流體被加熱到與汽相 工作流體之溫度大致相同的溫度,可加速蒸汽氣泡的形 成。此外,在適用於有效地冷卻產生相當數量之熱之平面 發熱組件之薄平面蒸發器,例如電子元件和印刷電路板, 自發熱組件9之熱更容易通過芯12傳遞至液相工作流體。 因此,液相工作流體的溫度增加,從而加速蒸汽氣泡的產 生。特別是,例如於更薄和更廣(更長)之蒸發器1,由於 芯12内之液體通道11的高度減少,往往阻止液相工作流 體進入蒸汽氣泡下面,此可導致在芯12之端附近的乾涸。 在這種情況下,這些蒸汽氣泡很容易從芯12内的液體通道 11去除,從而防止乾涸,實現穩定的散熱性能。 如上配置的冷卻裝置,供給蒸發器1中之液體通道11 的部分液相工作流體從面臨蒸發器1中之蒸汽通道10之芯 12之表面洩漏。換言之,流經蒸發器1中之液體通道11 的入口的部分液相工作流體通過芯12洩漏至蒸發器1之側 面之蒸汽通道10。 自芯12之表面洩漏之液相工作流體由自發熱組件9 通過外殼13傳遞之熱蒸發(汽化)為汽相工作流體,因為部 分芯12熱接觸蒸發器1之部分外殼13。 如第1圖所示,洩漏和蒸發之汽相工作流體通過蒸發 10 323562 201237339 •:器1中之蒸汽通道10和蒸氣管線4流入冷凝器2。此後, • 汽相工作流體之熱在冷凝器2中去除,汽相工作流體被冷 卻凝結(流動性)成液相工作流體。 凝結之液相工作流體通過液體管線5流入液體儲集 槽3。換句話說,從冷凝器2的液相工作流體從液體儲集 槽3的第一入口 3A流入液體儲集槽3。 液體儲集槽3保留液相工作流體由液體輸送泵8通過 液體供應管線6提供蒸發器1的液體通道11。 因此,工作流體逆流液體儲集槽3,液體供應管線6, 蒸發器1,蒸氣管線4,冷凝器2和液體管線5定義的流 通路線。 另一方面,提供蒸發器1之液體通道11之液相工作流 體的剩餘部分流經蒸發器1之液體通道11之出口,然後通 過液體返回管線7返回液體儲集槽3。更具體地說,流經 蒸發器1之液體通道11之入口之液相工作流體的剩餘部分 保持在液相或部分液相工作流體由從芯12之熱汽化成汽 相工作流體,從而形成混合相工作流體,流經蒸發器1之 液體通道11之出口,並通過液體返回管線7返回到液體 儲集槽3。 在這種方式中,工作流體逆流液體儲集槽3,液體供 應管線6,蒸發器1和液體返回管線7定義的流通路線。 此冷卻裝置達到顯著較高的冷卻性能(熱輕射特徵), 因為可以有效地籍蒸發潛熱和顯熱輸送自發熱組件9的熱。 更具體地說,當洩露至芯12之外之蒸汽通道10之液 11 323562 201237339 :相工作流體汽化時,從發熱組件9傳遞至蒸發器1之部分 ; 熱儲存在汽相工作流體作為蒸發潛熱(汽化熱),然後通過 蒸氣管線4輸送到冷凝器2,進行熱輻射。 此外,自發熱組件9傳遞至蒸發器1的部分熱通過芯 12被輸送至液體通道11,並儲存在液體通道11中的液相 工作流體作為顯熱。如果液相工作流體之溫度超過其飽和 溫度,部分液相工作流體相變為汽相。 在這種冷卻裝置,因為由液體輸送泵8流通流經液體 通道11的工作流體,在高溫下之液相工作流體通過液體返 回管線7被運送到液體儲集槽3。例如通過液體返回管線 7,熱量從液體返回管線7表面韓射。在這種方式下,除了 汽相工作流體之外,在高溫下之液相工作流體被排出蒸發 器1,而非保留在蒸發器1。換句話說,從發熱組件9傳遞 至蒸發器1之整個熱運出蒸發器之外,從而實質完全輻射 熱。因此,有可能維持蒸發器1在較低的溫度下,從而實 現了顯著較高的散熱性能。 正如先前提的,冷卻裝置是包括蒸發器1之迴路熱管 (LHP),蒸發器1包括芯12和冷凝器2,其中蒸發器1之 出口和冷凝器2的入口與蒸氣管線4連接,而冷凝器2之 出口與蒸發器1的入口連接液體管線5和6,迴路熱管充 填工作流體。 此迴路熱管可由蒸發器1提供芯12之毛細力由流通工 作流體輸送熱,從而輸送熱。換句話說,熱可通過蒸發器 1内之汽壓力輸送到冷凝器2。 12 323562 201237339 •在此實施例,如上所述配置的迴路熱管更提供液體儲 :集槽3,液體返回管線7,和液體輸送泵8。 在此實施例’液體返回管線7的·&quot;端連接到在蒸發器 1的液體通道11之出口,而液體返回管線7另一端連接到 液體儲集槽3。更具體地說,蒸發器1之液體通道丨丨的出 口以液體返回管線7連接到液體儲集槽3的第二入口 3B。 此外’液體儲集槽3和液體輸送泵8是插置於連接冷凝器 2之出口與蒸發器1的入口之液體管線5和6。更具體地 說’液體管線5和液體供應管線6提供為連接冷凝器2 之出口與蒸發器1的入口之液體管線,其中冷凝器2之出 口和液體儲集槽3之第一入口 3A與液體管線5連接,而液 體儲集槽3的出口 3C與蒸發器1的液體通道π的入口與 液體供應管線6連接。此外,液體輸送泵8插置於該液體 供應管線6。 此迴路熱管具有用於流通工作流體的路線:第一路線 (第一迴路)通過液體儲集槽3,液體供應管線6,蒸發器 1,蒸氣管線4,冷凝器2,和液體管線5流通;和第二路 線(第二迴路)通過液體儲集槽3,液體供應管線6,蒸發 器1,和液體返回管線7流通。在這種配置中,流經第一 路線的工作々IL體主要是由芯12之毛細管力流通,而流經第 一路線之工作流體主要是由液體輸送泵8流通。 當作為受料元之祕H和作為散熱單元之冷凝器相 f遙遠’定義較長的熱輸送輯,或#液體通道於薄蒸發 器較窄’如微通道,流通路線中之壓力損失將增加。在這 13 323562 201237339 樣的配置,將需要較大的液體輸送泵(或需要多個液體輸送 ; 果)。 相比之下,在此實施例,由液體輸送泵8之動力流通 液相工作流體之第二路線較短。此外,由於這種冷卻裝置 採用蒸發潛熱,由液體輸送泵8供應蒸發器1的液相工作 流體的量(較小量的流體)相比在單相採用顯熱之冷卻裝置 減少。 因此,因只需要較小量的工作流體通過較短流通路線 流通,流通路線中的壓力損失減少和相應可使用較小的液 體輸送泵8(或更小量的液體輸送泵8)。換句話說,即使以 較小的液體輸送果8,可流通足夠量的工作流體,而無需 較大的液體輸送泵(或不需較多的液體輸送泵)。 此外,更薄和更寬的薄平面蒸發器1,難以由橫跨大 面積芯12均勻地浸潰液相工作流體以蒸發液相工作流體。 在這種蒸發器,例如因芯12部分乾涸,工作流體之流通是 不穩定的。液體輸送泵8之提供可消除此等問題,從而實 現穩定的散熱性能。因此,以較小的液體輸送栗8的協助 下,可以使用薄平面蒸發器有效地冷卻產生大量熱之平面 發熱組件,如電子元件和印刷電路板。這意味著,由減少 蒸發器1之厚度(高度)(降低高度,同時增加面積),和減 少液體輸送泵的大小(或使用較少的液體輸送泵8,體積減 小和節能)可以實現平面發熱組件之有效冷卻。請注意,液 體輸送泵(S)大小和/或數量之減少意味液體輸送泵8容量 的減少。 14 323562 201237339 ( 此外’即使作為雙熱單元之蒸發器1和作為散熱單元 - 之冷凝器相距遙遠,從而增加熱輸送距離,可使用較小的 液體輸送泵8。更具體地說,即使蒸發器1和冷凝器是相 距遙遠,因此增加熱輸送距離,熱可在蒸發器1提供之芯 12之毛細力和蒸發器1之汽壓力的協助下輸送到相距遙遠 的冷凝器2。從而’可得有效率和高性能的薄平面蒸發器i 的冷卻裝置。 在此實施例,液體儲集槽3具有之高度足以分離的液 相工作流體和汽相工作流體之間,如第圖3所示。換句話 說,液體儲集槽3具有之高度足以定義液相工作流體上空 間,而保留液體儲集槽3的液相工作流體。 特別是液體儲集槽3的第二入口 3B最好提供較第一 入口 3A遠的液體儲集槽3的出口 3C。更具體地說,液體 儲集槽3最好包括連接該液體供應管線6的出口 3c,提供 在出口 3C附近並連接液體管線5的第一入口 3A,提供出 口 3C更遠的並連接液體返回管線7的第二入口 3B。 在此實施例,提供液體儲集槽3之出口 3C在液體儲集 槽3的壁體3X上的較低的位置,即工作流體的流通方向 的下游的壁體。此外,提供液體儲集槽3的第二入口 3B 在相對液體儲集槽3的一壁體3X之另一壁體3Y上,即工 作流體的流通方向的上游的壁體。此外,液體儲集槽3之 第一入口 3A提供在垂直於液體儲集槽3之一個和另一個壁 體3X和3Y的壁體32上。在此實施例,連接到液體儲集 槽3之第一入口 3A的液體管線5延伸液體儲集槽3内部, 323562 15 201237339 -· 使其一端設在液體儲集槽3的出口 3C附近。 ^ 在這種方式下,未在蒸發器1蒸發而流經在蒸發器1 的液體通道11然後經液體返回管線7返回液體儲集槽3 的液相工作流體,引入液體儲集槽3盡可能遠於液體儲集 槽3的出口 3C的位置。因而,如果存在蒸汽氣泡,確保從 液相工作流體移除。 另一方面,凝結在冷凝器2和經液體管線5返回液體 儲集槽3之液相工作流體引入液體儲集槽3盡可能接近於 液體儲集槽3的出口 3C的位置。從而在冷凝器2冷卻而無 蒸汽氣泡的液相工作流體更快速地排出液體儲集槽3的出 口 3C,然後藉由液體輸送泵8提供給蒸發器1。 此外,藉由液體儲集槽3的出口 3C置於較低的位置, 即使含蒸汽氣泡之液相工作流體流入液體儲集槽3,蒸汽 氣泡冒出槽3的較上的位置並防止被引入流經液體儲集槽 3的出口的工作流體。 以上配置之冷卻裝置是用於冷卻電子裝置20(如電腦) 内之電子元件21(見第4圖)。在這種情況下,電子裝置20 包括電子元件21和配置如上所述之冷卻裝置22(見第1 圖)以冷卻這些電子元件21,其中電子元件21是熱連接到 冷卻裝置22的蒸發器1。 在這種情況下,電子元件21可經電路板23(如印刷板) 接觸冷卻裝置22的蒸發器1之前面(頂侧面)和背面(底側 面)中之至少一者(見第4圖),或電子元件21可直接接觸 冷卻裝置22的蒸發器1之前和背面中之至少一者。 16 323562 201237339 例如,電路板23,如印刷電路板,包括有安裝其上之 電子元件21 ’可提供於冷卻裝置22的蒸發器丨之前和背 面之至少之一上(見第4圖)。另外,冷卻裝置22的蒸發 器1可置於電路板(如印刷電路板)上提供之電子元件之前 面上。另外,可設置提供於電路板(如印刷電路板)上之電 子元件,使電子元件直接接觸冷卻裝置22的蒸發器丨之 前面。具有安裝其上的電子元件之電路板自電子元件接觸 收熱作為發熱組件。此電路板被稱為板式發熱組件或平面 (平板)發熱組件,因為整個電路板產生熱和具有板形。 在下文中,將參照第4和5圖描述示範的電子裝置 包括平面蒸發器1以有效冷卻平面發熱組件24,其提供於 平面蒸發器1的前面和背面上。 如第5圖所示,蒸發器1包括外殼13(在此實施例是 金屬外设)’外设13包括液體入口 13A,液體出口 13B,和 蒸汽出口 13C,芯12是樹脂製成的多孔體,樹脂製成的液 體入口側歧管25 ’和樹脂製成的液體出口侧歧管26。 在此實施例,芯12包括平面部分12a,提供於平面部 分12A之前面和背面上、在第一方向延伸並相互平行排列 之複數突出部分12β,和形成於平面部分12a内、在與第 一方向垂直的第二方向延伸並相互平行排列之複數通孔 12C。 在此實施例,如第4圖所示,具有複數於前面侧上各 具有矩形截面之突出部分12B和具有複數於背面侧上各 具有半圓形橫截面之凹槽12CX之兩個樹脂多孔板12AX的 17 323562 201237339201237339 ·; VI. Description of the invention: 1. Field of the Invention The present invention relates to a cooling device and an electronic device. [Prior Art] A type of cooling device which is provided in an electronic device such as a computer to cool a heat generating member such as an electronic component is a gas-liquid two-phase flow. This cooling device utilizes the latent heat of vaporization to achieve higher heat dissipation when the liquid phase working fluid (liquid phase working fluid) evaporates into the vapor phase working fluid (vapor phase working fluid). For example, a loop heat pipe (LHP) includes an evaporator, and the evaporator includes a core and a condenser, wherein an outlet of the evaporator and an inlet of the condenser are connected by a vapor line, and an outlet of the condenser and an inlet of the evaporator are connected by a liquid line, and the circuit The heat pipe is filled with working fluid. The loop heat pipe can circulate the working fluid by the capillary force of the core, thereby transferring heat without requiring, for example, a liquid transfer pump. Some cooling units are provided with a liquid transfer pump in the liquid line to ensure the flow of working fluid. The evaporator provided by the loop heat pipe as described above includes the outer casing 101 thermally coupled to the heat generating component 100, and the core 102 closely contacts the inner wall of the outer casing 101, for example, as shown in Fig. 14. The core 102 has a tubular shape with a bore 103 therein. The core 102 has an open end and a closed end, the open end is on the side of the inlet of the outer casing 101 (the right side of Fig. 14), and the closed end is on the side of the outlet of the outer casing 101 (the left side of Fig. 14). A hole 103 in the core 102 communicates with a liquid line 104 connecting the inlet of the outer casing 101, defining a liquid passage through which the liquid phase working fluid 4 323562 201237339 flows. A channel 105 is defined between the inner wall of the outer casing 101 and the core 102. The channel 105 is in communication with a vapor line 106 connecting the outlet of the outer casing 101 defining a vapor passage through which the vaporous phase working fluid flows. In particular, the end of the core 102, i.e., the core 102 on the exit side of the outer casing 101, is closed, defining the end of the hole 103 in the core 102. In other words, the liquid passage in the evaporator is the terminal. In the loop heat pipe configured as described above, the heat generated by the heat generating component 100 is transferred to the liquid phase working fluid by the core 102, thereby heating the liquid phase working fluid, which may result in generation of vapor bubbles in the liquid phase working fluid. This can cause dryness and make it difficult to maintain cooling performance. In particular, the terminal of the core 102 contacts the steam passage. Therefore, the liquid phase working fluid in the liquid passage near the end of the core 102 is heated to a temperature substantially the same as the temperature of the vapor phase working fluid, which may accelerate the formation of vapor bubbles. In addition, the heat generated by the heat generating component 100 is more easily transferred to the liquid phase working fluid through the core 102 in a thin planar evaporator suitable for effective cooling of planar heat generating components that generate a large amount of heat, such as electronic components and printed circuit boards. Therefore, the temperature of the liquid phase working fluid is increased to accelerate the generation of vapor bubbles in the liquid phase working fluid. This often causes dryness, making it difficult to maintain cooling performance. Further, the evaporator having the terminal liquid passage, even if the liquid delivery pump is supplied to the liquid line and the liquid phase working fluid is transported to the evaporator by the liquid transfer pump, the vapor bubbles generated by the liquid phase working fluid cannot be removed. SUMMARY OF THE INVENTION For those skilled in the art, the following detailed description is immediately apparent to 5 323562 201237339. Other advantages and features of the invention. The embodiment described and illustrated is a preferred embodiment for carrying out the invention. The present invention can be modified in various obvious forms without departing from the invention. Accordingly, the drawings are intended to be illustrative and not restrictive. The present invention has been developed in view of the foregoing problems, and even if vapor bubbles are generated in the liquid phase working fluid, these vapor bubbles are easily removed, thereby realizing a cooling device that provides stable heat dissipation performance. The cooling device of the present invention comprises: an evaporator comprising a porous body, a vapor passage and a liquid passage separated by the porous body to evaporate the working fluid in the liquid phase; a condenser to condense the working fluid of the vapor phase; and a liquid storage tank, a working fluid for storing a liquid phase; a vapor line connecting the outlet of the vapor passage of the evaporator and an inlet of the condenser; a liquid line connecting the outlet of the condenser and the first inlet of the liquid storage tank; and a liquid supply line connecting the liquid An inlet of the collection tank and an inlet of the liquid passage of the evaporator; a liquid return line, an outlet connecting the liquid passage of the evaporator and a second inlet of the liquid storage tank; and a liquid delivery unit interposed in the liquid supply line. The electronic device of the present invention comprises: an electronic component 'provided on the circuit board; and a cooling device for cooling the electronic component, the cooling device being configured as described above, wherein the electronic component is thermally connected to the evaporator. Additional features and advantages of the invention will be set forth in part in the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; This advantage and features of the present invention can be realized and obtained by the particulars of the appended claims. 6 323562 201237339 [Embodiment] A cooling device and an electronic device according to an embodiment will be described below with reference to Figs. The cooling device according to the present embodiment is a cooling device that cools a heat generating component such as an electronic component included in an electronic device such as a computer (e.g., a server and a personal computer). Electronic devices are sometimes referred to as electronic devices. Examples of electronic components include, for example, a central processing unit (CPU) and an LSI chip. The cooling device is a cooling device based on the two-phase flow of gas and liquid. This cooling device utilizes the latent heat of vaporization generated to achieve higher heat dissipation performance when the liquid phase working fluid (liquid phase working fluid) evaporates into the vapor phase working fluid (vapor phase working fluid). Here, an embodiment is described in the context of a cooling device comprising a thin planar evaporator suitable for effectively cooling a planar heat generating component that generates a large amount of heat, such as an electronic component and a printed board (circuit board). Please note that thin flat evaporators are sometimes referred to as thin evaporators or flat evaporators. As shown in Fig. 1, the cooling device comprises: an evaporator 1 for evaporating a liquid phase working fluid, a condenser 2 for condensing a vapor phase working fluid, a liquid reservoir 3 for storing a liquid phase working fluid, and a flowing vapor phase working fluid therethrough. The vapor line 4, the liquid line 5 through which the liquid phase working fluid flows, the liquid supply line 6, the liquid return line 7, and the liquid transfer pump 8. Note that the liquid supply and liquid return lines 6 and 7 are simply referred to as "liquid lines" because they are liquid lines in which the liquid phase working fluid flows. Although the liquid delivery pump 8 is used in this embodiment, it is not limited thereto and any 7 323562 201237339 liquid delivery unit (liquid delivery means) that can transport the liquid phase working fluid can be used. At the outlet (steam passage) 10 of the steam passage of the evaporator 1, the inlet of the condenser 2 is connected by a vapor line 4. The outlet of the condenser 2 is connected to the first inlet 3A of the liquid storage tank 3 by a liquid line 5. The outlet 3C of the liquid reservoir 3 is connected to the inlet of the liquid passage 11 of the evaporator 1 by a liquid supply line 6. The outlet of the liquid passage 11 of the evaporator 1 is connected to the second inlet 3B of the liquid storage tank 3 by a liquid return line 7. Further, a liquid transfer pump 8 is inserted in the liquid supply line 6. More specifically, with the liquid supply line 6, the outlet 3C of the liquid storage tank 3 is connected to the intake opening 8A of the liquid transfer pump 8, and the discharge opening 8B of the liquid transfer pump 8 is connected to the liquid passage 11 of the evaporator 1. The entrance. In this embodiment, the evaporator 1 includes a core 12, the vapor passage 10 and the liquid passage 11 are separated by a core 12, and a heat generating component 9 (heat source) is thermally connected to the evaporator 1. In this embodiment, the steam passage 10 is provided adjacent to the heat generating assembly 9 of the evaporator 1, and the liquid passage 11 is provided away from the heat generating assembly 9 of the evaporator 1. Such a configuration prevents the heat of the heat generating component 9 from being transferred to the liquid phase working fluid by the core 12, thereby reducing or eliminating the generation of vapor bubbles in the liquid phase working fluid. The core 12 is a porous body. In this embodiment, the core 12 is a porous body having a small thermal conductivity. More specifically, the core 12 is a porous body made of a resin. The porous body preferably has an average pore diameter of about 10 μm or less (preferably about 6 μm or less). The average pore size can be determined using a mercury injection method. In this embodiment, as shown in Fig. 2, for example, the evaporator 1 includes the outer casing 13 thermally coupled to the heat generating component 9, and the core 12 closely contacts the inner wall of the outer casing 13. The core 12 has a tubular shape with a bore 14 therein. The core 12 has an open end on the side of the inlet of the housing 8 323562 201237339 • 13 (on the right side of Fig. 2) and on the side of the outlet (2: left side of the figure). The inner bore 14 of the core 12 communicates with a liquid line 6 connected to the inlet of the outer casing 13 and a liquid line connected to the outlet of the outer casing 13, defining a liquid passage u through which the liquid phase working fluid flows. In this manner, the end of the core 12 on the exit side of the core 12 (i.e., the bore 14 in the core 12) is not terminal and communicates with the liquid official line that is connected to the outlet of the outer casing 13. In other words, the liquid passage in the evaporator 15 is not the end, and is connected to the liquid lines 6 and 7 connecting the population of the evaporator 1 and the side of the outlet. The channel 15 is defined between the inner wall of the outer casing 13 and the core 12. The channel 15 is in communication with a vapor line 4 connected to the outlet of the evaporator 1, defining a vapor channel 1 经 through its mobile phase working fluid. In the mode of screaming, the liquid passage 11 in the evaporator 1 is in communication with the liquid lines 6 and 7 connecting the population of the evaporator 1 and the outlet side. In other words, the liquid passage 11 in the evaporation 11 1 includes the discharge port, and the population, from the second to the outlet, and connects the liquid official lines 6 and 7 on the inlet and outlet sides of the evaporator 1. As shown in Fig. 1, the liquid lines 6 and 7 connected to the sides of the evaporator, the inlet and the outlet are connected to the yam liquid storage tank 3, defining a circulation path (loop) allowing the circulation of the liquid phase working fluid. 2 (4) The liquid phase flow through the evaporator 丨 liquid channel 丄 丄 丄 , , , , , , , , , , , , , , , , 蒸发 蒸发 蒸发 蒸发 蒸发 蒸发 蒸发 蒸发 蒸发 蒸发 蒸发 、 、 、 、 、 、 、 、 、 、 、 、 "Hot cell leak" transfers 'liquid phase 323562 in the liquid channel U in the core 12 9 201237339 Steam bubbles are generated in the working fluid, which are easily facilitated by the flow of the liquid working fluid from the liquid channel 11 in the core 12 This prevents dryness, thereby maintaining cooling performance and achieving stable heat dissipation performance. In particular, the end of the core 12 contacts the vapor passage 10. Therefore, the liquid phase working fluid in the liquid passage 11 near the end of the core 12 is heated. The formation of vapor bubbles can be accelerated at temperatures substantially the same as the temperature of the vapor phase working fluid. In addition, thin planar evaporators, such as electronic components and printed circuit boards, are suitable for effectively cooling planar heat generating components that generate a significant amount of heat. The heat of the self-heating component 9 is more easily transferred to the liquid phase working fluid through the core 12. Therefore, the temperature of the liquid phase working fluid is increased, thereby accelerating the production of steam bubbles. In particular, for example, in a thinner and wider (longer) evaporator 1, since the height of the liquid passage 11 in the core 12 is reduced, the liquid phase working fluid is often prevented from entering below the vapor bubble, which may result in the core 12 In this case, the vapor bubbles are easily removed from the liquid passage 11 in the core 12, thereby preventing dryness and achieving stable heat dissipation performance. The cooling device configured as above supplies the liquid in the evaporator 1. A portion of the liquid phase working fluid of the passage 11 leaks from the surface of the core 12 facing the vapor passage 10 in the evaporator 1. In other words, a portion of the liquid phase working fluid flowing through the inlet of the liquid passage 11 in the evaporator 1 leaks through the core 12 to The steam passage 10 on the side of the evaporator 1. The liquid phase working fluid leaking from the surface of the core 12 is evaporated (vaporized) by the heat transferred from the heat generating component 9 through the outer casing 13 into a vapor phase working fluid because the partial core 12 is in thermal contact with the evaporator. Part 1 of the outer casing 13. As shown in Fig. 1, the vapor phase working fluid leaking and evaporating flows into the cold by evaporation 10 323562 201237339 •: the steam passage 10 and the vapor line 4 in the vessel 1 2. After this, • the heat of the vapor phase working fluid is removed in the condenser 2, and the vapor phase working fluid is cooled and condensed (flowing) into a liquid phase working fluid. The condensed liquid phase working fluid flows into the liquid reservoir through the liquid line 5. Tank 3. In other words, the liquid phase working fluid from the condenser 2 flows from the first inlet 3A of the liquid reservoir 3 into the liquid reservoir 3. The liquid reservoir 3 retains the liquid phase. The working fluid is passed by the liquid delivery pump 8. The liquid supply line 6 provides the liquid passage 11 of the evaporator 1. Therefore, the working fluid counterflows the liquid distribution tank 3, the liquid supply line 6, the evaporator 1, the vapor line 4, the condenser 2 and the liquid line 5 define the circulation route. In one aspect, the remainder of the liquid phase working fluid providing the liquid passage 11 of the evaporator 1 flows through the outlet of the liquid passage 11 of the evaporator 1, and then returns to the liquid storage tank 3 through the liquid return line 7. More specifically, the remaining portion of the liquid phase working fluid flowing through the inlet of the liquid passage 11 of the evaporator 1 is maintained in the liquid phase or a portion of the liquid phase working fluid is vaporized from the heat of the core 12 into a vapor phase working fluid, thereby forming a mixture. The phase working fluid flows through the outlet of the liquid passage 11 of the evaporator 1 and returns to the liquid reservoir 3 through the liquid return line 7. In this manner, the working fluid countercurrents the liquid reservoir 3, the liquid supply line 6, the evaporator 1 and the liquid return line 7 define the flow path. This cooling device achieves a significantly higher cooling performance (thermal light radiance characteristic) because the heat of the heat generating component 9 can be efficiently transferred by evaporating latent heat and sensible heat. More specifically, when the liquid 11 323562 201237339 of the steam passage 10 leaking out of the core 12 is vaporized by the working fluid, it is transferred from the heat generating component 9 to the portion of the evaporator 1; the heat is stored in the vapor phase working fluid as the latent heat of vaporization (vaporization heat), which is then sent to the condenser 2 through the vapor line 4 for heat radiation. Further, part of the heat transferred from the heat generating unit 9 to the evaporator 1 is sent to the liquid passage 11 through the core 12, and the liquid phase working fluid stored in the liquid passage 11 is used as sensible heat. If the temperature of the liquid phase working fluid exceeds its saturation temperature, part of the liquid phase working fluid phase changes to the vapor phase. In this cooling device, since the working fluid flowing through the liquid passage 11 flows through the liquid transfer pump 8, the liquid phase working fluid at a high temperature is transported to the liquid storage tank 3 through the liquid return line 7. For example, through the liquid return line 7, heat is emitted from the liquid return line 7 surface. In this manner, the liquid phase working fluid at a high temperature is discharged from the evaporator 1 except for the vapor phase working fluid, instead of remaining in the evaporator 1. In other words, the entire heat transferred from the heat generating component 9 to the evaporator 1 is carried out of the evaporator, thereby substantially completely radiating heat. Therefore, it is possible to maintain the evaporator 1 at a lower temperature, thereby achieving significantly higher heat dissipation performance. As previously mentioned, the cooling device is a loop heat pipe (LHP) comprising an evaporator 1, the evaporator 1 comprising a core 12 and a condenser 2, wherein the outlet of the evaporator 1 and the inlet of the condenser 2 are connected to the vapor line 4, and condensed The outlet of the vessel 2 is connected to the inlets of the evaporator 1 to the liquid lines 5 and 6, which are filled with working fluid. This loop heat pipe can be supplied with heat from the circulating working fluid by the capillary 1 providing the capillary force of the core 12 to deliver heat. In other words, heat can be delivered to the condenser 2 by the vapor pressure in the evaporator 1. 12 323562 201237339 • In this embodiment, the loop heat pipe configured as described above further provides a liquid reservoir: the sump 3, the liquid return line 7, and the liquid transfer pump 8. In this embodiment, the '&quot; end of the liquid return line 7 is connected to the outlet of the liquid passage 11 at the evaporator 1, and the other end of the liquid return line 7 is connected to the liquid storage tank 3. More specifically, the outlet of the liquid passage port of the evaporator 1 is connected to the second inlet 3B of the liquid storage tank 3 by the liquid return line 7. Further, the liquid storage tank 3 and the liquid transfer pump 8 are liquid lines 5 and 6 which are inserted in the inlet of the condenser 2 and the inlet of the evaporator 1. More specifically, the liquid line 5 and the liquid supply line 6 are provided as a liquid line connecting the outlet of the condenser 2 and the inlet of the evaporator 1, wherein the outlet of the condenser 2 and the first inlet 3A of the liquid storage tank 3 are liquid The line 5 is connected, and the outlet 3C of the liquid storage tank 3 and the inlet of the liquid passage π of the evaporator 1 are connected to the liquid supply line 6. Further, a liquid transfer pump 8 is inserted in the liquid supply line 6. The loop heat pipe has a route for circulating the working fluid: the first route (first loop) flows through the liquid reservoir 3, the liquid supply line 6, the evaporator 1, the vapor line 4, the condenser 2, and the liquid line 5; And the second route (second loop) is circulated through the liquid reservoir 3, the liquid supply line 6, the evaporator 1, and the liquid return line 7. In this configuration, the working 々IL body flowing through the first route is mainly circulated by the capillary force of the core 12, and the working fluid flowing through the first route is mainly circulated by the liquid transfer pump 8. When the secret element H as the receiving element and the condenser phase f as the heat dissipating unit are far away to define a longer heat transport series, or the #liquid channel is narrower than the thin evaporator, such as a microchannel, the pressure loss in the circulation path will increase. . In this 13 323562 201237339-like configuration, a larger liquid delivery pump would be required (or multiple fluid delivery would be required; fruit). In contrast, in this embodiment, the second route of the liquid phase working fluid flowing by the power of the liquid transfer pump 8 is shorter. Further, since such a cooling device employs latent heat of vaporization, the amount of the liquid phase working fluid supplied by the liquid transfer pump 8 to the evaporator 1 (smaller amount of fluid) is reduced as compared with the sensible heat sink in the single phase. Therefore, since only a small amount of working fluid is required to flow through the shorter circulation path, the pressure loss in the circulation path is reduced and a smaller liquid delivery pump 8 (or a smaller amount of the liquid delivery pump 8) can be used accordingly. In other words, even if the fruit 8 is delivered with a smaller liquid, a sufficient amount of working fluid can be circulated without the need for a larger liquid delivery pump (or no more liquid delivery pump). Further, the thinner and wider thin planar evaporator 1 is difficult to uniformly immerse the liquid phase working fluid across the large-area core 12 to evaporate the liquid phase working fluid. In such an evaporator, for example, due to the partial drying of the core 12, the circulation of the working fluid is unstable. The provision of the liquid transfer pump 8 eliminates these problems and achieves stable heat dissipation performance. Therefore, with the aid of the smaller liquid transporting pump 8, a thin planar evaporator can be used to effectively cool planar heat generating components, such as electronic components and printed circuit boards, which generate a large amount of heat. This means that the plane can be realized by reducing the thickness (height) of the evaporator 1 (reducing the height while increasing the area), and reducing the size of the liquid delivery pump (or using less liquid delivery pump 8, volume reduction and energy saving). Effective cooling of the heating element. Note that a decrease in the size and/or amount of the liquid transfer pump (S) means a decrease in the capacity of the liquid transfer pump 8. 14 323562 201237339 (In addition, even if the evaporator 1 as a dual thermal unit and the condenser as a heat sink - are far apart, thereby increasing the heat transfer distance, a smaller liquid transfer pump 8 can be used. More specifically, even the evaporator 1 and the condenser are far apart, thus increasing the heat transfer distance, heat can be transported to the distant condenser 2 with the assistance of the capillary force of the core 12 provided by the evaporator 1 and the vapor pressure of the evaporator 1. Thus A cooling device for an efficient and high performance thin planar evaporator i. In this embodiment, the liquid reservoir 3 has a liquid electrolyte working fluid and a vapor phase working fluid of sufficient height to separate, as shown in FIG. In other words, the liquid reservoir 3 has a height sufficient to define the space above the liquid working fluid while retaining the liquid phase working fluid of the liquid reservoir 3. In particular, the second inlet 3B of the liquid reservoir 3 preferably provides The outlet 3C of the liquid inlet tank 3 far from the first inlet 3A. More specifically, the liquid reservoir tank 3 preferably includes an outlet 3c connected to the liquid supply line 6, provided near the outlet 3C and connected to the liquid line The first inlet 3A of 5 provides a second inlet 3B further to the outlet 3C and is connected to the liquid return line 7. In this embodiment, the outlet 3C of the liquid reservoir 3 is provided on the wall 3X of the liquid reservoir 3. a lower position, that is, a wall downstream of the flow direction of the working fluid. Further, the second inlet 3B of the liquid reservoir 3 is provided on the other wall 3Y of a wall 3X opposite to the liquid reservoir 3. That is, the wall upstream of the flow direction of the working fluid. Further, the first inlet 3A of the liquid reservoir 3 is provided on the wall 32 perpendicular to one of the liquid reservoirs 3 and the other walls 3X and 3Y. In this embodiment, the liquid line 5 connected to the first inlet 3A of the liquid storage tank 3 extends inside the liquid storage tank 3, 323562 15 201237339 -· one end is provided near the outlet 3C of the liquid storage tank 3. ^ In this manner, the liquid phase working fluid which is not evaporated in the evaporator 1 and flows through the liquid passage 11 in the evaporator 1 and then returned to the liquid storage tank 3 via the liquid return line 7 is introduced into the liquid storage tank 3 as far as possible. At the position of the outlet 3C of the liquid reservoir 3. Thus, if steam is present The air bubbles ensure the removal from the liquid working fluid. On the other hand, the liquid phase working fluid introduced into the condenser 2 and returned to the liquid reservoir 3 via the liquid line 5 is introduced into the liquid reservoir 3 as close as possible to the liquid reservoir. The position of the outlet 3C of the tank 3. Thus, the liquid phase working fluid cooled in the condenser 2 without vapor bubbles is discharged more quickly to the outlet 3C of the liquid storage tank 3, and then supplied to the evaporator 1 by the liquid transfer pump 8. By the outlet 3C of the liquid storage tank 3 being placed at a lower position, even if the liquid phase working fluid containing the vapor bubbles flows into the liquid storage tank 3, the vapor bubbles emerge from the upper position of the tank 3 and are prevented from being introduced into the stream. Working fluid passing through the outlet of the liquid reservoir 3. The cooling device configured above is for cooling the electronic component 21 in the electronic device 20 (such as a computer) (see Fig. 4). In this case, the electronic device 20 includes the electronic component 21 and the cooling device 22 (see FIG. 1) configured as described above to cool the electronic components 21, wherein the electronic component 21 is the evaporator 1 thermally connected to the cooling device 22. . In this case, the electronic component 21 may contact at least one of the front side (top side) and the back side (bottom side) of the evaporator 1 of the cooling device 22 via the circuit board 23 (eg, a printed board) (see FIG. 4). Or the electronic component 21 can directly contact at least one of the front and the back of the evaporator 1 of the cooling device 22. 16 323562 201237339 For example, a circuit board 23, such as a printed circuit board, including electronic components 21' mounted thereon, may be provided on at least one of the front and back sides of the evaporator 冷却 of the cooling device 22 (see Figure 4). Alternatively, the evaporator 1 of the cooling device 22 can be placed on the front side of the electronic components provided on a circuit board such as a printed circuit board. Alternatively, an electronic component provided on a circuit board such as a printed circuit board may be disposed such that the electronic component directly contacts the front of the evaporator 冷却 of the cooling device 22. A circuit board having electronic components mounted thereon receives heat from the contact of the electronic components as a heat generating component. This board is called a plate heating assembly or a flat (flat) heating assembly because the entire board generates heat and has a plate shape. In the following, the exemplary electronic device will be described with reference to Figures 4 and 5 including a planar evaporator 1 to effectively cool the planar heat generating assembly 24, which is provided on the front and back sides of the planar evaporator 1. As shown in Fig. 5, the evaporator 1 includes a casing 13 (in this embodiment, a metal peripheral). The peripheral 13 includes a liquid inlet 13A, a liquid outlet 13B, and a steam outlet 13C. The core 12 is a porous body made of resin. A liquid inlet side manifold 25' made of resin and a liquid outlet side manifold 26 made of resin. In this embodiment, the core 12 includes a planar portion 12a provided on the front surface and the back surface of the planar portion 12A, a plurality of protruding portions 12β extending in the first direction and arranged in parallel with each other, and formed in the planar portion 12a, in the first portion The plurality of through holes 12C extending in the second direction perpendicular to the direction and arranged in parallel with each other. In this embodiment, as shown in Fig. 4, there are a plurality of protruding portions 12B each having a rectangular cross section on the front side and two resin porous plates having a plurality of grooves 12CX each having a semicircular cross section on the back side. 12AX's 17 323562 201237339

J 背面粘合在一起,以形成包括平面部分12A,突出部分12B ; 和通孔12C之芯12。 從而,一旦芯12包含在外殼13,前面上提供之複數 突出部分12B的前面接觸外殼13的上壁體,而背面上提 供之複數突出部分12B的前面接觸外殼13的底壁體。 從而,外殼13的上壁體四周的複數區域,芯12之平 面部分12A,和突出部分12B定義複數通孔,其在第一方 向延伸,並相互平行排列,定義汽相工作流體流動之蒸汽 通道10。更具體地說,提供於芯12的前面上的複數突出 部分12B之間的空間定義槽15,和複數槽15之上部以外 殼13的上壁體封閉,定義蒸汽通道10。 同樣,外殼13的底壁體四周的複數區域,芯12之平 面部分12A,和突出部分12B定義複數通孔,其在第一方 向延伸,並相互平行排列,定義汽相工作流體流動之蒸汽 通道10。更具體地說,提供於芯12的背面上的複數突出 部分12B之間的空間定義槽15,和複數槽15之上部以外 殼13的底壁體封閉,定義蒸汽通道10。 因此,在此實施例,蒸發器1包括於其相對侧面上的 複數蒸汽通道10,夾持芯12之平面部分12A。 此外,形成於芯12之平面部分12A内之複數通孔12C 定義液相工作流體流動之液體通道11。換句話說,提供於 芯12之平面部分12A之前面和背面之上的蒸汽通道10和 形成於芯12之平面部分12A之内的液體通道11藉由芯12 之平面部分12A分開。藉由芯12之毛細力提供液體通道 18 323562 201237339 11的液相工作流體,通過芯12的毛孔以漏到蒸汽通道10 側面。 此外,在此實施例,複數液體通道11在垂直第一方向 的第二方向延伸,並相互平行排列。換句話說,在此實施 例,液體通道11和蒸汽通道10在相互垂直的方向延伸。 因此,如以下將描述,液體出口 13B和蒸汽出口 13C提供 於蒸發器1之壁體中,其相互垂直。換句話說,液體返回 管線7和蒸氣管線4連接到相互垂直的蒸發器1之壁體。 因而,確保流經液體通道11的液相工作流體和流經蒸汽通 道10之汽相工作流體以簡單的配置分離,從而引導液相工 作流體至液體返回管線7,和汽相工作流體至蒸氣管線4。 因此,在此實施例,蒸發器1具有三層結構,其中堆 疊包括複數蒸汽通道10之蒸汽通道層,包括複數液體通道 11的液體通道層,和包括複數蒸汽通道10之蒸汽通道層。 換句話說,兩個外層定義蒸汽通道層和兩個蒸汽通道層之 間夾持之一個内層定義液體通道層。因此,蒸發器1包括 提供於芯12上部之蒸汽通道10(第一蒸汽通道),提供於 芯12底部之蒸汽通道10(第二蒸汽通道),和芯12内的液 體通道11。在此實施例,用於平面蒸發器1,外之蒸汽通 道層最好具有約1毫米或更小的高度,而内之液體通道層 最好具有約2毫米或更小的高度。 具體來說,在此實施例,芯12是具有約40%之孔隙 度和平均孔徑約5微米之聚四氟乙烯(PTFE)樹脂製成之多 孔體。此外,芯12厚度約4毫米,是從前面上的突出部分 19 323562 201237339 :12B端至背面上的突出部分12B端的厚度,且芯、12之平面 • 尺寸約110毫米χΐιο亳米。此外,蒸汽通道10具有約1 毫米XI毫米之截面,複數蒸汽通道1〇以約2毫米的間距 (節距)相互平行排列。此外,液體通道u具有約丨毫米 之橫截面直徑,複數液體通道以約2毫米的間距(節距)相 互平行排列。此外,蒸汽通道10和液體通道1}之間分離 的芯12之平面部分12A之最小厚度是〇 5毫米左右。 此外,如上所述配置之芯12包括附接到液體通道u 的一侧的液體入口侧歧管25和附接到另—侧的液體出口 側歧管26’且包含在外殼13,如第5圖所示。更具體地說, 外殼13包括一壁體上的液體入口 13A,相對一壁體的壁體 上的液體出口 13B,和垂直於一壁體的壁體上的蒸汽出口 13C。具有附接的液體入口側歧管25和液體出口侧歧管26 的芯12包含在外殼13,使其液體通道u自一壁體朝相對 外殼13的一壁體的壁體延伸。因此,芯12之蒸汽通道1〇 從垂直一壁體的壁體至相對壁體延伸。此外,液體入口侧 歧管25的開口和液體供應管線6連接至外殼Η之液體入 口 13 A,而液體出口側歧管2 6開口和液體返回管線7連接 到液體出口 13B’蒸氣管線4連接到蒸汽出口 i3C。在這種 方式下,芯12和之類的包含在外殼13,和液體供應管線6 和之類的附接至外殼13,使液體供應管線6 ’液體入口侧 歧管25 ’芯12之液體通道Π,液體出口側歧管26和液體 返回管線7相互接通,而芯12之蒸汽通道10和蒸氣管線 4相互接通。 323562 20 201237339 具體來說,在此實施例,例如,液體入口側歧管25 和液體出口側歧管26是MC尼龍組成的樹脂歧管。此外, 外殼13是具有約0. 3毫米厚度的壁體的銅外殼。這裡, 製造外殼13是藉由製作容器,銅製成,其在上部具有開 口,和蓋子,銅製成,以覆蓋上部開口;在容器封閉芯12 和等等;並焊接容器和蓋子以密封外殼13。 然後,如第4圖所示,如上所述配置之蒸發器1之平 面外殼13之兩面上(即頂面和底面上),設有具有複數電子 元件21 (發熱元件)安裝於其上之印刷電路板23,即,平 面發熱組件24。換句話說,平面蒸發器1之外殼13之兩 面上(即頂面和底面上),熱連接平面發熱組件24。 具體來說,平面蒸發器1之外殼13之頂面和平面發 熱組件24之背面,即具有複數電子元件21安裝於其上之 印刷電路板23的背面與導熱石夕脂緊密接觸,使從平面發熱 組件24的熱至平面蒸發器1。同樣,平面蒸發器1之外殼 13之底面和平面發熱組件24之背面,即具有複數電子元 件21安裝於其上之印刷電路板23的背面與導熱矽脂緊密 接觸,使從平面發熱組件24的熱至平面蒸發器1。在此實 施例,例如,藉由平面發熱組件24產生的熱大約是150 瓦。在這種情況下,約150瓦的熱是從每個頂和底面至平 面蒸發器1,共約300W熱。 上面描述的具有複數電子元件21安裝於其上之印刷 電路板23提供於電子裝置20。因此,熱連接到上述具有 複數電子元件21安裝於其上之印刷電路板23之平面蒸發 21 323562 201237339 .•器1提供於電子裝置20包括之冷卻裝置22,以冷卻包括 :在電子裝置20的電子元件21。因此,平面蒸發器1連接 到冷凝器2,液體儲集槽3 ’以及如上所述配置之冷卻裝置 22包括之液體輸送系8(見第1圖)。 具體來說,冷凝器2設於蒸發器1外大約300毫米的 位置。冷凝器2的入口以蒸氣管線4連接到上述平面蒸發 器1之蒸汽出口 13C。此外,冷凝器2之製造是例如藉由 四倍具有約300毫米之長度、約6毫米之外直徑、約5毫 米之内徑之銅管,而且銅管周圍鍛造(swaging)鋁散熱片 (散熱器)。此外,可提供具有冷凝器和吹氣風扇(冷卻單 疋,冷卻裝置)的冷凝裝置,以藉由吹氣至散熱片提高散熱 能力,從而提供強空氣冷卻。蒸氣管線4是具有約6毫米 之外徑以及約5毫米之内徑的銅管。代替散熱鰭片,可提 供其他類型散熱器,如散熱板。另外,可不提供散熱器而 藉由直接吹氣至管道提供冷卻。雖然在此實施例風冷式冷 部單7L使用自然空氣對流或吹氣的手段,不限制於此,和 可用利用水冷卻之水冷式冷卻單元。換句話說,冷凝裝置 可包括水冷式冷卻單元。 、液體儲集槽3置於相鄰独上所叙平面蒸發器卜 液體儲集槽3之第-入口 3Α以液體管線5連接至冷凝器2 之出口;液體儲集槽3的第二入口 3Β以液體返回管線7 連接至上述之平面蒸發器i之液體出口⑽;和液體㈣ 槽3的出口以液體供應管線6和液體輸送果8連接到上述 之平面蒸發器i的液體入口m。液體儲集槽3是由不錄 323562 22 201237339 鋼製成之槽和具有約0.3毫米之厚度,約50毫米χ35毫米 之底部外面積,約25毫米的高度的壁體。液體管線5是具 有約4毫米外直徑,約3毫米内徑的銅管。液體供應管線 6是外直徑約4毫米’内徑約3毫米之不銹鋼管’而液體 返回管線7是外直徑約4毫米,内徑約3毫米之銅管。液 體輸送泵8,例如使用電磁活塞式微型泵(PPLP-03060-001 型,Shinano Kenshi有限公司)。這裡,例如用乙醇作為 工作流體,因為乙醇具有約855千焦耳/公斤之蒸發潛熱 量和約785 kg/m3的密度,可傳遞每1毫升約671 j的熱 的量。假設約300W(=300J/S)的熱的量自平面發埶組件24 傳遞至平面蒸發器i,需要約G. 45毫升/秒或以^的流速。 因此,藉由液體輸送泵8調整到約〇.5春 笔升/秒(=約30毫 升/分鐘),流通液體量。請注意液體輪详石 利逆泵8可以是壓電 驅動膜片式泵或離心式渦輪泵。 因此,根據本實施例之冷卻裴置和電子裝置的優勢在 於,即使在液相工作流體產生蒸汽氣泊,α、、 ’埯些蒗汽氣泡很 容易被移除,從而實現穩定的散熱性能。 ...... 特別是在上述的實施例以包括薄平&amp; τ询蒸發器1之冷卻 裝置,可以有效冷卻產生大置的熱的平面發熱組件,如電 子元件和印刷電路板(電路板)。此外, 口马利用落發潛敎 和蒸汽壓力,可以使用較小的液體輸逆充 ........ 彻迗泵δ實現執傳輸。 可以達到更高的電子裝置如電腦的性能^。 … 具有操作電子元件21安裴於其上夕e 曰 士 、之印刷電路板23(總 熱產生量約300瓦)實際使用上述配置夕、人 置之令部裝置22(見 323562 23 201237339 第4和5圖)冷卻,和測量電子元件21的溫度。結果所有 的電子元件21保持約80 °C或更低溫度,因此提供令人滿 意的冷卻。 也證實只要包括電子元件21之印刷電路板23產生的 熱量保持在至多約300W,蒸發器1之芯12未乾涸,以及 防止電子元件21之異常高溫,提供穩定的散熱性能。 請注意,本發明不限於以上所述的實施例之配置,並 可以不同方式修改,而在本發明的範圍之内。 例如,主動熱輻射可提供散熱器在液體返回管線7, 從而更加強在上述的實施例的冷卻裝置的性能。例如,可 在部分液體返回管線7提供散熱片或散熱板,如散熱器。 此外,可提供吹氣風扇(冷卻單元,冷卻裝置)用於吹氣至 液體返回管線7提供的散熱器,用於提供冷卻的強制空冷。 另外,可不提供散熱器,藉由直接吹氣至液體返回管線7 提供冷卻。在此實施例藉由自然空氣對流或吹氣使用風冷 式冷卻單元,而不局限於此和可使用利用水冷卻方式之水 冷式冷卻單元。在這種情況下,從冷凝裝置中的冷卻單元 個別地提供液體返回管線7中的冷卻單元。 此外,如第6圖所示,液體返回管線7部分可提供於 包括冷凝器2和吹氣風扇(冷卻單元,冷卻裝置)之冷凝裝 置内,用於冷卻之主動熱輻射。例如,如果液體返回管線 7提供散熱器,其中設有散熱器之液體返回管線7部分可 提供於冷凝裝置内。在這種情況下,冷凝裝置中的冷卻單 元也可以用來作為冷卻單元,如吹氣風扇,用於冷卻液體 24 323562 201237339 -返回管線7。從而,流經液體返回管線7的工作流體可利 ; 用冷凝裝置的冷卻能力冷卻。另外,例如,如果液體返回 管線7沒有提供散熱器,藉由冷凝裝置之冷卻單元直接冷 卻液體返回管線7 » 此使在流經液體返回管線7的液相工作流體的蒸汽氣 泡主動移除。此外,例如,如果更大量之熱傳導到蒸發器 1,流經芯12的液相工作流體的溫度趨於增加。即使在這 種情況下’可藉由主動冷卻流經液體返回管線7的液相工 作流體改善冷卻性能。 雖然上述的實施例已描述設於平面蒸發器1之兩個表 面上的平面發熱組件24,並不限制於此。 例如,如第7圖所示,平面蒸發器1之一個面上提供 平面發熱組件24,使平面蒸發器1和平面發熱組件24相 互熱連接。 在這種情況下,可形成芯12為樹脂多孔板,樹脂多孔 板在矩形截面包括複數突出部分12B提供在前面侧上,在 第一方向延伸,並相互平行排列,而在半圓截面包括複數 凹槽12CX提供在背面側上,在垂直於第一方向之第二方向 延伸,並相互平行排列。 在這種情況下,可配置使一旦芯12包含在外殼13中, 其上形成複數突出部分12B的表面接觸外殼13的上壁體, 和其上形成複數凹槽12CX的表面接觸外殼13的底壁。 從而,外殼13的上壁環繞的複數區域、突出部分12β 的側面和複數突出部分12B之間的底面定義在第一方向延 323562 25 201237339 伸和排列平行相互之複數軌,定義經其流動汽相 工作流 體之蒸汽通道ίο。更具體地說,提供於&amp; 12的前面上的 複數突出部分12B之間的空間定義槽丨5,複數槽丨5之上 部以外殼13之上壁封閉,定義蒸汽通道1〇。此外,外殼 13的底壁環繞的複數區域和凹槽12α定義在第一方向延 伸並相互平行排列之複數通孔,定義經其流動液相工作流 體的液體通道。在這種情況下,平面發熱組件24熱連接其 上提供平面蒸發器1的蒸汽通道1〇的前面。換句話說,電 子元件21熱連接到其上提供平面蒸發器丨的蒸汽通道1〇 的侧面。 在這種情況下’平面蒸發器1包括在芯12的上侧上的 蒸汽通道10,即接觸平面發熱組件24的側上,和包括在 心12的底側上的液體通道η,即接觸平面發熱組件24的 相對側的側面上。換句話說,平面蒸發器i具有兩層結構, 其中堆疊包括複數蒸汽通道10之蒸汽通道層和包括複數 液體通道11之液體通道層。四此,瘵發器i私彷從伢於芯 12之上和底側面之一之上的蒸汽通道1〇和提供於芯u 上和底側面之另-之上的液體通道u。在此實施例, 面蒸發器1,上部蒸汽通道層最好具有約丨毫米或更 鬲度,而較低的液體通道層最好具有約1毫米或更]、二 度。以上配置的這種平面蒸發H丨比上述的實施例具 降低的高度(厚度;^ 、吏 具體來說,芯12的厚度,即自前面上的突出部分 的端至背面上的突出部分12β的端的厚度約2毫米。此外 323562 26 201237339 . 液體通道11的截面高度約〇. 5毫米。請注意,其他大小相 ; 似於上述的實施例的具體示範配置。 此外,如上述所配置之芯12包括附接至液體通道u 的一侧的液體入口侧歧管25和附接至另一側之液體出口 側歧管26,並包含在外殼13,如第8圖所示。更具體地說, 外殼13包括在一壁體上的液體入口 13A,在相對一壁體的 壁體上的液體出口 13B,和在垂直一壁體的壁體上的蒸汽 出口 13C。液體入口側歧管25和液體出口側歧管26所附 接的芯12是包含在外殼13,使其液體通道n自一壁體朝 相對外殼13的一壁體的壁體延伸。因此,芯12之蒸汽通 道10從垂直一壁體的壁體延伸至相對的壁體。此外,液 體入口側歧管25之開口和液體供應管線6連接外殼13之 液體入口 13A’而液體出口侧歧管26開口和液體返回管線 7連接到液體出口 13B,蒸氣管線4連接到蒸汽出口 13C。 在這種方式下,芯12和之類的包含在外殼13,和液體供 應官線6和之類的附接至外殼13,使液體供應管線6,液 體入口側歧管25,芯12之液體通道π,液體出口侧歧管 26和液體返回管線7相互接通,而芯12之蒸汽通道1〇和 蒸氣管線4相互接通。請注意,具體的構造,如歧管25 和26和外殼13之材料和大小,類似上述的實施例的具體 示範配置。 此外,如7第圖所示,平面蒸發器i之外殼13之頂面 和平面發熱組件24的背面,即,其上安裝有複數電子元件 21之印刷電路板23的背面緊密接觸導熱矽脂,使自平面 323562 27 201237339 •發熱組件24的熱傳至平面蒸發器1。在此實施例,例如平 ,面發熱組件24產生的熱大約是1 〇〇瓦。平面發熱組件24 包括的複數電子元件21產生的熱的總量約1〇〇 w。因此, 此熱量傳至平面蒸發器1。 此外,類似上述的實施例,冷卻裝置22包括的平面 蒸發器1連接到冷凝器2’液體儲集槽3,液體輸送果8(見 第1圖)。 具體來說,冷凝器.2之製造是例如藉由四倍具有約 3〇〇毫米之長度、約4毫米之外直徑、約3毫米之内徑之 鋼官,而且銅管周圍鍛造鋁散熱片(散熱器)。蒸氣管線4 是具有約4毫米之外徑以及約3毫米之内徑的銅管。液體 管線5是具有約3毫米之外徑以及約2毫米之内徑的銅管。 液體供應管線6是具有約3毫米之外徑以及約2毫米之内 徑的不銹鋼管,而液體返回管線7是具有約3毫米之外徑 以及約2毫米之内徑的銅軟管。如第9圖所示,例如壓電 式微型泵(Takasago電氣工業有限公司之型SMp32〇,2〇 毫升/分鐘之正常流速,35kPa的最大泵壓,和33毫米χ33 耄米x5. 5毫米的外部尺寸)用於液體輸送泵8。在這裡,使 用乙醇作為工作流體,例如,可傳遞每丨毫升約671J的熱 的篁’因為乙醇具有約855千焦/公斤之蒸發潛熱量及約 785kg/m3的密度。假設約100瓦( = 1〇〇J/s)的熱量自平面 發熱組件24傳遞至平面蒸發器卜需要約〇15毫升/秒或 以上的流速。因此,藉由液體輸送泵8流通的液體量調整 到〇· 166毫升/秒(=10毫升/分鐘)。請注意液體輸送泵8 323562 28 201237339 • 可以是電磁活塞式微型泵或離心式渦輪泵。請注意,其他 - 的構造,如大小,類似上述的實施例的具體示範配置。 其上安裝有操作電子元件21之印刷電路板23(具有约 100瓦的總發熱量),實際上使用這樣的冷卻裝置22冷卻, 和電子元件21的溫度進行測量。結果所有的電子元件21 保持約80°C或更低溫度,因此提供令人滿意的冷卻。也證 實只要電子元件21包括的印刷電路板23產生的熱量保持 在至多約100瓦之内,蒸發器1中的芯12未乾涸,防止電 子元件21的異常較高溫度,提供穩定的散熱性能。 此外,例如,如第10圖所示,第一平面蒸發器IX和 第二平面蒸發器1Y可分別提供在兩面上,即平面發熱組件 24之頂和底面,使第一和第二平面蒸發器IX和1Y和平面 發熱組件24相互熱連接。換句話說,如上述的第7圖所示, 平面發熱組件24可熱連接在平面蒸發器1上,和另一平面 蒸發器1可熱連接在平面發熱組件24上。 在這種情況下,第一和第二平面蒸發器IX和1Y包括 蒸汽通道10和液體通道11,蒸汽通道10在接觸平面發熱 組件24的側面上,液體通道11在相對接觸平面發熱組件 24的側面之側面上。因此,第一平面蒸發器IX包括提供 在芯12(第一多孔體)之頂和底侧之一之上的蒸汽通道10 (第一蒸汽通道),和提供在芯12之頂和底侧之另一之上的 液體通道1K第一液體通道)。此外,第二平面蒸發器1Y 包括提供在芯12(第二多孔體)之頂和底側之一之上的蒸 汽通道1〇(第二蒸汽通道),和提供在芯12之頂和底側之 29 323562 201237339 ’ 另一之上的液體通道ll(第二液體通道)。其上提供第一平 : 面蒸發器1X中的蒸汽通道10的侧面熱連接到電子元件21 ' 之背面侧面,其上提供第二平面蒸發器1Y中的蒸汽通道 10的側面熱連接到電子元件21之前面侧面。請注意,第 一和第二平面蒸發器IX和1Y之配置和特定示範配置類似 於上述之第7和8圖所示之平面蒸發器1。 此外,如第10圖所示,第一平面蒸發器IX之外殼13 之頂面(即蒸汽通道1〇側面上之外殼13之頂面)和平面熱 發組件24之底面(即其上安裝有複數電子元件21的印刷電 路板23的背面)經導熱矽脂緊密接觸。此外,第二平面蒸 發益1Y之外殼13之底面(即蒸汽通道1〇侧面上之外殼13 之前面)和平面熱發組件24之頂面(即其上安裝有複數電 ,子X件21的印刷電路板23的前面)經導熱矽脂緊密接觸。 從而’從平面發熱組件24的熱傳到上和下之第一和第二平 面蒸發器1X和1γ。在此實施例,例如平面發熱組件24 產生的熱大約是200瓦。由平面發熱組件24包括之複數電 元件21產生的熱的總置約2 〇 〇 此熱量傳到上部和第 一和第二平面蒸發器IX和1Υ。 此外,第一和第二平面蒸發器IX和1Υ連接到冷凝器 2,液體儲集槽3,和冷卻裝置22包括的液體輸送栗8, 如第11圖所示。 在此實施例,連接到冷凝器2之蒸氣管線4分為兩管, 分別連接到第一和第二平面蒸發g 1Χ*1Υ。更具體地說, 連接到第二平面蒸發器1Υ的蒸氣管線4Υ連接到連接冷凝 323562 30 201237339 . n 2和第-平面蒸發器lx的蒸氣管線4乂。 ; &amp;外,連接到液體儲集槽3之液體返回管線7分為兩 管,分別連接到第-和第二平面蒸發器ιχ*1γ。更具體地 說,連接到第二平面蒸發器1Υ的液體返回管線7Υ連接到連 接液體儲集槽3和第一平面蒸發器以的液體返回管線7χ。 此外,連接到液體儲集槽3之液體供應管線6分為兩 管,分別連接到第-和第二平面蒸發器^和1γ。更具體 地說,連接到第二平面蒸發器1γ的液體供應管線6γ經液 體輸送泵8連接到連接液體儲集槽3和第一平面蒸發器ιχ 的液體供應管線6Χ。 因此,第一平面蒸發器lx和第二平面蒸發器1γ相互 平行連接。換句話說,液體供應管線6γ,第二平面蒸發器 1Υ和蒸氣管線4Υ定義的路線平行連接到液體儲集槽3,液 體供應官線6Χ,第一平面蒸發器lx,蒸氣管線4χ,冷凝 盗2和液體管線5定義的路線。此外,液體儲集槽3,液 體供應管線6Χ,第一平面蒸發器ιχ*液體返回管線7乂定 義的路線平行連接到液體供應管線6γ,第二平面蒸發器 1Υ,和液體返回管線7Υ定義的路線。 請注意,上面的配置並不局限於此,第一平面蒸發器 IX和第一平面蒸發器1Υ可串聯連接。更具體地說,連接 到第一平面蒸發器IX中的液體通道u的出口的液體返回 管線7X可以連接到第二平面蒸發器ιγ中的液體通道n 的入口,代替液體供應管線βγ,而連接到第二平面蒸發器 1Υ中的液體通道11的出口的液體返回管線八可以連接到 323562 31 201237339 •液體儲集槽3,代替液體返回管線7X。在這種情況下,連 -- 接到冷凝器2之蒸氣管線4(4X和4Y)分別連接到第一和第 • 二平面蒸發器1X和1Y。此外,經液體輸送泵8連接到液 體儲集槽3的液體供應管線6(6X)連接到第一平面蒸發器 IX中的液體通道11的入口。此外,連接到第二平面蒸發 器1Y中的液體通道11的入口的液體供應管線6(6Y)連接 到第一平面蒸發器IX中的液體通道11的出口。此外,連 接到第二平面蒸發器1Y中的液體通道11的出口的液體返 回管線7(7Y)連接到液體儲集槽3。從而,自液體儲集槽3 通過液體供應管線6Χ供應到第一平面蒸發器lx後,液相 工作流體通過液體返回管線7Χ為液體供應管線供應到第 二平面蒸發器1Υ,並通過液體返回管線7 Υ返回到液體儲 集槽3。 液體輸送果8 ’使用例如電磁活塞式微型栗(sh i nano Kenshi有限公司之型PPLP-03060-001,見第3圖)。在這 裡’使用乙醇作為工作流體,例如,可傳遞每1毫升約671 J的熱的量,因為乙醇具有約855千焦/公斤之蒸發潛熱量 及約785 kg/m3的密度。假設約200瓦(=200J/S)的熱量自 平面發熱組件24傳遞至第一和第二平面蒸發器lx和1Υ, 需要約0.3毫升/秒或以上的流速。因此,藉由液體輸送栗 8流通的液體量調整到0.333毫升/秒(=20毫升/分鐘請 注意液體輸送泵8可以是壓電驅動膜片式泵或離心式渦輪 泵。 請注意’其他具體的構造,如尺寸’類似於如上所述 323562 32 201237339 •的第7和8圖所示的平面蒸發器丨的情況。 : 此外,雖然部分的液體返回管線7提供於包括冷凝器 • 2和吹氣風扇(冷卻單元,冷卻方式)之冷凝裝置内,從而 提供在第11圖的用於冷卻的主動熱輻射,不局限於此而可 以使用在上述的實施例(見第1圖)類似的配置。 於其上安裝有操作電子元件21之印別電路板23(具有 總發熱量約200瓦),實際上使用此冷卻裝置22冷卻,和 測量電子元件21的溫度。結果所有的電子元件21保持約 8〇°C或更低溫度,因此提供令人滿意的冷卻。也證實只要 包括電子元件21之印刷電路板23產生的熱量保持在至多 約200W ’蒸發器lx和1γ之芯12未乾涸,以及防止電子 70件21之異常高溫,提供穩定的散熱性能。 特別是,由於可以甚至比上述的實施例減少如上所述 的第一和第二平面蒸發器IX和1Υ之高度(厚度),發熱組 件24的頂和底部之上可提供第一和第二平面蒸發器lx和 。因此,產生大量的熱(例如,如實現高密度封骏之3d 堆疊封裝)之發熱組件24可有效冷卻。 例如’如第12A和12B圖所示,3D堆疊封裝3〇是包 括複數半導體芯片31和31X(LSI芯片)三維堆疊之三維堆 豐封裴(LSI封裴)。因此,如第12a圖所示,即使在祁堆 登封裝30上提供上述的實施例的平面蒸發器1之情况下 然後安裝在印刷電路板(電路板)23上,位於底側面上(即 印刷電路板23侧面上)之半導體芯片31X產生的充分轎射 熱是困難的。為了解決這個問題,如第12B圖所示, 精由 33 323562 201237339 -提供印刷電路板23的背面側上之第一平面蒸發器IX,與 -- 三D堆積封裝30之前面側上之第二平面蒸發器1Y,包括 ' 於三D堆積封裝30之半導體芯片31和31X產生的熱可有 效地輻射。在這種情況下,如上所述,藉由使用更薄的第 一和第二平面蒸發器IX和1Y,包括於三D堆積封裝30 之半導體芯片31和31X產生的熱相比第12A圖所示之結構 可更有效地輻射,而安裝時不增加封裝的高度。 雖然在蒸發器1的蒸汽通道10和液體通道11在上述 實施例在相互垂直的方向延伸,不局限於此。例如,如第 13圖所示,可提供在蒸發器1的蒸汽通道10和液體通道 11以在同一方向延伸。 上述實施例係用以例示性說明本發明之原理及其功 效,而非用於限制本發明。任何熟習此項技藝之人士均可 在不違背本發明之精神及範疇下,對上述實施例進行修改。 因此本發明之權利保護範圍,應如後述之申請專利範圍所 列。 【圖式簡單說明】 第1圖係為根據本實施例之冷卻裝置之配置之示意圖; 第2圖係為根據本實施例之冷卻裝置之操作和效果之 橫截面示意圖; 第3圖係為根據本實施例之冷卻裝置提供之液體儲集 槽和液體輸送泵之配置之透視示意圖; 第4圖係為根據本實施例之冷卻裝置提供之蒸發器之 具體配置與包括冷卻裝置之電子裝置之具體配置之透視示 34 323562 201237339 - 意圖; 第5圖係為根據本實施例之冷卻裝置提供之蒸發器之 具體配置之透視示意圖; 第6圖係為根據本實施例之冷卻裝置之不同之配置之 透視不意圖, 第7圖係為根據本實施例之冷卻裝置提供之蒸發器之 不同具體配置與包括冷卻裝置之電子裝置之具體配置之透 視不意圖, 第8圖係為根據本實施例之冷卻裝置提供之蒸發器之 不同具體配置之透視示意圖; 第9圖係為根據本實施例之冷卻裝置提供之不同之液 體輸送泵之透視示意圖; 第10圖係為根據本實施例之冷卻裝置提供之蒸發器 之另一之不同具體配置與包括冷卻裝置之電子裝置之具體 配置之透視示意圖; 第11圖係為配置之示意圖,其中根據本實施例之冷卻 裝置使用另一不同之具體配置之蒸發器; 第12A與12B圖係為包括根據本實施例之冷卻裝置中 提供之蒸發器之另一之不同具體配置之電子裝置之效果之 橫截面示意圖; 第13圖係為根據本實施例之冷卻裝置中提供之蒸發 器之不同具體配置之透視示意圖; 第14圖係為傳統冷卻裝置中提供之蒸發器之橫截面 示意圖。 35 323562 201237339 - 【主要元件符號說明】 1 蒸發器 2 冷凝器 3 液體儲集槽 3A 第一入口 3B 第二入口 3C 出口 3X、3Y、 3Z 壁體 4 蒸氣管線 5 液體管線 6 液體供應管線 7 液體返回管線 8 液體輸送單元 8A 攝入開口 8B 排放開口 9 發熱組件 10 蒸汽通道 11 液體通道 12 多孔體 12A 平面部分 12AX 多孔板 12B 突出部分 12C 複數通孔 12CX 凹槽 13 外殼 13A 液體入口 13B 液體出口 13C 蒸汽出口 14 孔洞 15 溝道 20 電子裝置 21 電子元件 22 冷卻裝置 23 印刷電路板 24 發熱組件 25 液體入口側歧管 26 液體出口側歧管 30 堆疊封裝 31 半導體芯片 100 發熱組件 101 外殼 102 芯 103 孔洞 104 液體管線 105 溝道 106 蒸氣管線 36 323562The back sides of J are bonded together to form a core 12 including a flat portion 12A, a protruding portion 12B, and a through hole 12C. Thus, once the core 12 is contained in the outer casing 13, the front surface of the plurality of projecting portions 12B provided on the front surface contacts the upper wall portion of the outer casing 13, and the front surface of the plurality of projecting portions 12B provided on the back surface contacts the bottom wall portion of the outer casing 13. Thus, the plurality of regions around the upper wall of the outer casing 13, the planar portion 12A of the core 12, and the protruding portion 12B define a plurality of through holes extending in the first direction and arranged in parallel with one another to define a vapor passage for the flow of the vapor phase working fluid 10. More specifically, the space defining groove 15 between the plurality of projecting portions 12B provided on the front surface of the core 12, and the upper wall of the outer casing 13 of the upper portion of the plurality of grooves 15 are closed to define the steam passage 10. Similarly, the plurality of regions around the bottom wall of the outer casing 13, the planar portion 12A of the core 12, and the projection 12B define a plurality of through holes extending in the first direction and arranged in parallel with one another to define a vapor passage for the flow of the vapor phase working fluid. 10. More specifically, the space defining groove 15 between the plurality of projecting portions 12B provided on the back surface of the core 12, and the bottom wall of the outer casing 13 of the upper portion of the plurality of grooves 15 are closed to define the steam passage 10. Thus, in this embodiment, the evaporator 1 includes a plurality of vapor passages 10 on opposite sides thereof that sandwich the planar portion 12A of the core 12. Further, a plurality of through holes 12C formed in the planar portion 12A of the core 12 define a liquid passage 11 through which the liquid phase working fluid flows. In other words, the vapor passage 10 provided on the front surface and the back surface of the flat portion 12A of the core 12 and the liquid passage 11 formed in the flat portion 12A of the core 12 are separated by the flat portion 12A of the core 12. The liquid phase working fluid of the liquid passage 18 323562 201237339 11 is supplied by the capillary force of the core 12 to leak to the side of the steam passage 10 through the pores of the core 12. Further, in this embodiment, the plurality of liquid passages 11 extend in the second direction perpendicular to the first direction and are arranged in parallel with each other. In other words, in this embodiment, the liquid passage 11 and the steam passage 10 extend in mutually perpendicular directions. Therefore, as will be described below, the liquid outlet 13B and the steam outlet 13C are provided in the wall of the evaporator 1, which are perpendicular to each other. In other words, the liquid return line 7 and the vapor line 4 are connected to the walls of the mutually perpendicular evaporator 1. Thus, it is ensured that the liquid phase working fluid flowing through the liquid passage 11 and the vapor phase working fluid flowing through the steam passage 10 are separated in a simple configuration, thereby guiding the liquid phase working fluid to the liquid return line 7, and the vapor phase working fluid to the vapor line. 4. Therefore, in this embodiment, the evaporator 1 has a three-layer structure in which the vapor channel layer including the plurality of steam passages 10, the liquid passage layer including the plurality of liquid passages 11, and the vapor passage layer including the plurality of steam passages 10 are stacked. In other words, an inner layer defined between the two outer layer defining vapor channel layers and the two vapor channel layers defines a liquid channel layer. Therefore, the evaporator 1 includes a steam passage 10 (first steam passage) provided at the upper portion of the core 12, a steam passage 10 (second steam passage) provided at the bottom of the core 12, and a liquid passage 11 in the core 12. In this embodiment, for the planar evaporator 1, the outer steam passage layer preferably has a height of about 1 mm or less, and the inner liquid passage layer preferably has a height of about 2 mm or less. Specifically, in this embodiment, the core 12 is a porous body made of polytetrafluoroethylene (PTFE) resin having a porosity of about 40% and an average pore diameter of about 5 μm. Further, the core 12 has a thickness of about 4 mm, which is the thickness from the projection 19 323562 201237339 : 12B on the front side to the end of the projection 12B on the back surface, and the plane of the core 12 is about 110 mm χΐ ιο 亳. Further, the steam passage 10 has a cross section of about 1 mm and XI mm, and the plurality of steam passages 1 排列 are arranged in parallel with each other at a pitch (pitch) of about 2 mm. Further, the liquid passage u has a cross-sectional diameter of about 丨 mm, and the plurality of liquid passages are arranged in parallel with each other at a pitch (pitch) of about 2 mm. Further, the minimum thickness of the flat portion 12A of the core 12 separated between the steam passage 10 and the liquid passage 1} is about 毫米 5 mm. Further, the core 12 configured as described above includes a liquid inlet side manifold 25 attached to one side of the liquid passage u and a liquid outlet side manifold 26' attached to the other side and included in the outer casing 13, as in the fifth The figure shows. More specifically, the outer casing 13 includes a liquid inlet 13A on the wall, a liquid outlet 13B on the wall opposite to the wall, and a steam outlet 13C on the wall perpendicular to the wall. The core 12 having the attached liquid inlet side manifold 25 and the liquid outlet side manifold 26 is contained in the outer casing 13 such that its liquid passage u extends from a wall body toward the wall of a wall body of the opposite outer casing 13. Therefore, the steam passage 1 of the core 12 extends from the wall of the vertical wall to the opposite wall. Further, the opening of the liquid inlet side manifold 25 and the liquid supply line 6 are connected to the liquid inlet 13 A of the outer casing, and the liquid outlet side manifold 26 opening and the liquid return line 7 are connected to the liquid outlet 13B'. Steam outlet i3C. In this manner, the core 12 and the like are contained in the outer casing 13, and the liquid supply line 6 and the like, which are attached to the outer casing 13, so that the liquid supply line 6' liquid inlet side manifold 25' core 12 liquid passage That is, the liquid outlet side manifold 26 and the liquid return line 7 are connected to each other, and the steam passage 10 and the vapor line 4 of the core 12 are connected to each other. 323562 20 201237339 Specifically, in this embodiment, for example, the liquid inlet side manifold 25 and the liquid outlet side manifold 26 are resin manifolds composed of MC nylon. Further, the outer casing 13 is a copper outer casing having a wall thickness of about 0.3 mm. Here, the outer casing 13 is manufactured by making a container made of copper having an opening at the upper portion, and a cover made of copper to cover the upper opening; the core 12 and the like are closed in the container; and the container and the lid are welded to seal the outer casing 13. Then, as shown in Fig. 4, on both sides (i.e., on the top surface and the bottom surface) of the planar casing 13 of the evaporator 1 configured as described above, printing is provided with a plurality of electronic components 21 (heat generating components) mounted thereon. The circuit board 23, that is, the planar heat generating component 24. In other words, the planar heatsink assembly 24 is thermally coupled to both sides of the outer casing 13 of the planar evaporator 1 (i.e., on the top and bottom surfaces). Specifically, the top surface of the outer casing 13 of the planar evaporator 1 and the back surface of the planar heat generating component 24, that is, the back surface of the printed circuit board 23 on which the plurality of electronic components 21 are mounted are in close contact with the thermal conductive stone, so that the planar surface is made flat. The heat of the heat generating component 24 is heated to the planar evaporator 1. Similarly, the bottom surface of the outer casing 13 of the planar evaporator 1 and the back surface of the planar heat generating component 24, that is, the back surface of the printed circuit board 23 on which the plurality of electronic components 21 are mounted are in close contact with the thermal grease, so that the planar heat generating component 24 is Heat to the flat evaporator 1. In this embodiment, for example, the heat generated by the planar heat generating component 24 is approximately 150 watts. In this case, about 150 watts of heat is from each of the top and bottom surfaces to the flat evaporator 1 for a total of about 300 W of heat. The printed circuit board 23 having the plurality of electronic components 21 mounted thereon is provided to the electronic device 20. Therefore, the thermal connection to the planar evaporation 21 323562 201237339 having the printed circuit board 23 on which the plurality of electronic components 21 are mounted is provided in the cooling device 22 included in the electronic device 20 for cooling, including: in the electronic device 20 Electronic component 21. Therefore, the planar evaporator 1 is connected to the condenser 2, the liquid storage tank 3' and the cooling device 22 configured as described above include the liquid delivery system 8 (see Fig. 1). Specifically, the condenser 2 is disposed at a position of about 300 mm outside the evaporator 1. The inlet of the condenser 2 is connected by a vapor line 4 to the steam outlet 13C of the above-mentioned planar evaporator 1. Further, the condenser 2 is manufactured, for example, by four times a copper tube having a length of about 300 mm, a diameter of about 6 mm, an inner diameter of about 5 mm, and a swaging aluminum fin around the copper tube (heat dissipation) Device). In addition, a condensing unit having a condenser and a blowing fan (cooling unit, cooling unit) can be provided to provide high air cooling by blowing air to the fins to improve heat dissipation. The vapor line 4 is a copper tube having an outer diameter of about 6 mm and an inner diameter of about 5 mm. Instead of heat sink fins, other types of heat sinks, such as heat sinks, are available. Alternatively, cooling may be provided by direct blowing to the conduit without providing a heat sink. Although the air-cooled cold unit 7L in this embodiment uses natural air convection or air blowing means, it is not limited thereto, and a water-cooled cooling unit which utilizes water cooling can be used. In other words, the condensing unit can include a water cooled cooling unit. The liquid storage tank 3 is placed at the first inlet 3 of the adjacent flat evaporator evaporator liquid storage tank 3, and is connected to the outlet of the condenser 2 by the liquid line 5; the second inlet 3 of the liquid storage tank 3 The liquid outlet (10) is connected to the above-mentioned planar evaporator i with a liquid return line 7; and the outlet of the liquid (4) tank 3 is connected to the liquid inlet m of the above-mentioned planar evaporator i with a liquid supply line 6 and a liquid delivery fruit 8. The liquid storage tank 3 is a wall made of a steel which is not recorded with 323562 22 201237339 steel and has a thickness of about 0.3 mm, a bottom outer area of about 50 mm χ 35 mm, and a height of about 25 mm. The liquid line 5 is a copper tube having an outer diameter of about 4 mm and an inner diameter of about 3 mm. The liquid supply line 6 is a stainless steel tube having an outer diameter of about 4 mm and an inner diameter of about 3 mm, and the liquid return line 7 is a copper tube having an outer diameter of about 4 mm and an inner diameter of about 3 mm. The liquid transfer pump 8 is, for example, an electromagnetic piston type micro pump (Model PPLP-03060-001, Shinano Kenshi Co., Ltd.). Here, for example, ethanol is used as the working fluid, since ethanol has a latent heat of vaporization of about 855 kJ/kg and a density of about 785 kg/m3, and an amount of heat of about 671 j per 1 ml can be transferred. It is assumed that an amount of heat of about 300 W (= 300 J/s) is transferred from the flat hair unit 24 to the plane evaporator i, requiring a flow rate of about G. 45 ml/sec or . Therefore, the amount of liquid is circulated by the liquid transfer pump 8 adjusted to about 1.25 liters per liter (= about 30 milliliters per minute). Please note that the liquid wheel detailing pump 8 can be a piezoelectric driven diaphragm pump or a centrifugal turbo pump. Therefore, the advantages of the cooling device and the electronic device according to the present embodiment are that even if the liquid phase working fluid generates vapor gas, the α, , and 蒗 蒗 bubbles are easily removed, thereby achieving stable heat dissipation performance. In particular, in the above-described embodiment, the cooling device including the thin flat &amp; oxime evaporator 1 can effectively cool the planar heat generating components that generate large heat, such as electronic components and printed circuit boards (circuits). board). In addition, the mouth horse uses the falling hair snorkeling and steam pressure, and can use the smaller liquid to reverse the charge........ The pump δ realizes the transmission. Can achieve higher performance of electronic devices such as computers ^. ... having the operating electronic component 21 mounted on the eve of the e-Gentle, the printed circuit board 23 (total heat generation of about 300 watts) is actually used in the above-mentioned configuration, the person's order device 22 (see 323562 23 201237339 4th) And 5) cooling, and measuring the temperature of the electronic component 21. As a result, all of the electronic components 21 are maintained at a temperature of about 80 ° C or lower, thus providing satisfactory cooling. It has also been confirmed that as long as the heat generated by the printed circuit board 23 including the electronic component 21 is maintained at up to about 300 W, the core 12 of the evaporator 1 is not dried, and the abnormal high temperature of the electronic component 21 is prevented, providing stable heat dissipation performance. It is to be noted that the present invention is not limited to the configuration of the embodiments described above, and can be modified in various ways, and is within the scope of the present invention. For example, active heat radiation can provide a heat sink in the liquid return line 7, thereby enhancing the performance of the cooling apparatus of the above-described embodiments. For example, a heat sink or heat sink, such as a heat sink, may be provided in a portion of the liquid return line 7. Further, a blowing fan (cooling unit, cooling means) may be provided for blowing to the radiator provided by the liquid return line 7 for providing forced air cooling for cooling. Alternatively, no heat sink may be provided to provide cooling by direct blowing to the liquid return line 7. In this embodiment, the air-cooled cooling unit is used by natural air convection or blowing, and is not limited thereto and a water-cooling type cooling unit using water cooling can be used. In this case, the cooling unit in the liquid return line 7 is individually supplied from the cooling unit in the condensing device. Further, as shown in Fig. 6, the liquid return line 7 portion may be provided in the condensing means including the condenser 2 and the blowing fan (cooling unit, cooling means) for active heat radiation for cooling. For example, if the liquid return line 7 provides a heat sink, a portion of the liquid return line 7 in which the heat sink is disposed may be provided in the condensing unit. In this case, the cooling unit in the condensing unit can also be used as a cooling unit, such as a blowing fan, for cooling the liquid 24 323562 201237339 - return line 7. Thereby, the working fluid flowing through the liquid return line 7 can be advantageously cooled by the cooling capacity of the condensing device. Further, for example, if the liquid return line 7 does not provide a radiator, the liquid return line 7 is directly cooled by the cooling unit of the condensing unit. This causes the vapor bubbles of the liquid phase working fluid flowing through the liquid return line 7 to be actively removed. Further, for example, if a larger amount of heat is conducted to the evaporator 1, the temperature of the liquid phase working fluid flowing through the core 12 tends to increase. Even in this case, the cooling performance can be improved by actively cooling the liquid phase working fluid flowing through the liquid return line 7. Although the above embodiment has described the planar heat generating component 24 provided on the two surfaces of the planar evaporator 1, it is not limited thereto. For example, as shown in Fig. 7, a planar heat generating component 24 is provided on one side of the planar evaporator 1, so that the planar evaporator 1 and the planar heat generating component 24 are thermally connected to each other. In this case, the core 12 may be formed as a resin porous plate, and the resin porous plate may be provided on the front side in a rectangular section including the plurality of protruding portions 12B, extending in the first direction and arranged in parallel with each other, and including a plurality of concaves in the semicircular section The grooves 12CX are provided on the back side, extending in a second direction perpendicular to the first direction, and arranged in parallel with each other. In this case, it is configurable that once the core 12 is contained in the outer casing 13, the upper wall body of the surface contacting the outer casing 13 on which the plurality of projecting portions 12B are formed, and the surface on which the plurality of grooves 12CX are formed contact the bottom of the outer casing 13 wall. Thus, the plurality of regions surrounded by the upper wall of the outer casing 13, the side faces between the protruding portions 12β and the bottom surfaces of the plurality of protruding portions 12B are defined in the first direction extension 323562 25 201237339 and the parallel tracks are parallel and mutually defined, defining the flow through the flow phase thereof. The steam channel of the fluid ίο. More specifically, the space provided between the plurality of projecting portions 12B on the front surface of &amp; 12 defines a groove 5, and the upper portion of the plurality of grooves 5 is closed by the upper wall of the outer casing 13, defining a steam passage 1〇. Further, a plurality of regions surrounded by the bottom wall of the outer casing 13 and the recess 12α define a plurality of through holes extending in the first direction and arranged in parallel with each other, defining a liquid passage through which the liquid phase working fluid flows. In this case, the planar heat generating component 24 is thermally connected to the front of the steam passage 1 on which the planar evaporator 1 is provided. In other words, the electronic component 21 is thermally coupled to the side of the vapor passage 1〇 on which the planar evaporator 丨 is provided. In this case, the 'planar evaporator 1 includes a vapor passage 10 on the upper side of the core 12, that is, on the side contacting the planar heat generating component 24, and a liquid passage η included on the bottom side of the core 12, that is, the contact plane is heated. On the side of the opposite side of the assembly 24. In other words, the planar evaporator i has a two-layer structure in which the stack includes a vapor channel layer of a plurality of vapor channels 10 and a liquid channel layer including a plurality of liquid channels 11. In this case, the hairpin i privately flows from the steam passage 1〇 above the core 12 and one of the bottom sides and the liquid passage u provided on the other side of the core u and the bottom side. In this embodiment, the surface evaporator 1, the upper vapor passage layer preferably has a width of about 丨 mm or more, and the lower liquid passage layer preferably has about 1 mm or more and 2 degrees. The planar evaporation H 以上 of the above configuration has a reduced height (thickness; ^, 吏, specifically, the thickness of the core 12, that is, from the end of the protruding portion on the front side to the protruding portion 12β on the back surface, than the above embodiment. The thickness of the end is about 2 mm. Further, 323562 26 201237339. The cross-sectional height of the liquid passage 11 is about 〇5 mm. Note that other sizes are similar to the specific exemplary configuration of the above embodiment. Further, the core 12 is configured as described above. A liquid inlet side manifold 25 attached to one side of the liquid passage u and a liquid outlet side manifold 26 attached to the other side are included and contained in the outer casing 13, as shown in Fig. 8. More specifically, The outer casing 13 includes a liquid inlet 13A on a wall, a liquid outlet 13B on a wall opposite the wall, and a steam outlet 13C on the wall of a vertical wall. The liquid inlet side manifold 25 and the liquid The core 12 to which the outlet-side manifold 26 is attached is included in the outer casing 13 such that the liquid passage n extends from a wall toward a wall of a wall opposite the outer casing 13. Therefore, the steam passage 10 of the core 12 is vertical The wall of the wall extends to the opposite wall Further, the opening of the liquid inlet side manifold 25 and the liquid supply line 6 are connected to the liquid inlet 13A' of the outer casing 13 and the liquid outlet side manifold 26 opening and the liquid return line 7 are connected to the liquid outlet 13B, and the vapor line 4 is connected to the steam outlet 13C. In this manner, the core 12 and the like are contained in the outer casing 13, and the liquid supply official line 6 and the like are attached to the outer casing 13, so that the liquid supply line 6, the liquid inlet side manifold 25, the core 12 The liquid passage π, the liquid outlet side manifold 26 and the liquid return line 7 are connected to each other, and the steam passage 1〇 and the vapor line 4 of the core 12 are connected to each other. Note that specific configurations such as manifolds 25 and 26 and The material and size of the outer casing 13 is similar to the specific exemplary configuration of the above embodiment. Further, as shown in Fig. 7, the top surface of the outer casing 13 of the planar evaporator i and the rear surface of the planar heat generating assembly 24, i.e., The back side of the printed circuit board 23 of the plurality of electronic components 21 is in intimate contact with the thermal grease to transfer heat from the flat surface 323562 27 201237339 • the heat generating component 24 to the planar evaporator 1. In this embodiment, for example, the flat, surface heat generating component 24 is produced. The heat is about 1 watt. The total amount of heat generated by the plurality of electronic components 21 included in the planar heat generating component 24 is about 1 〇〇w. Therefore, this heat is transferred to the planar evaporator 1. Further, similar to the above embodiment, cooling The unit 22 comprises a planar evaporator 1 connected to a condenser 2' liquid reservoir 3, and a liquid transporting fruit 8 (see Fig. 1). Specifically, the condenser 2 is manufactured, for example, by four times with about 3 〇〇 mm length, diameter of about 4 mm, diameter of about 3 mm, and forged aluminum fins (heat sink) around the copper tube. Vapor line 4 has an outer diameter of about 4 mm and about 3 Copper tube with an inner diameter of millimeters. The liquid line 5 is a copper tube having an outer diameter of about 3 mm and an inner diameter of about 2 mm. The liquid supply line 6 is a stainless steel tube having an outer diameter of about 3 mm and an inner diameter of about 2 mm, and the liquid return line 7 is a copper hose having an outer diameter of about 3 mm and an inner diameter of about 2 mm. As shown in Fig. 9, for example, a piezoelectric micropump (the SMp32 crucible of the type of Takasago Electric Industries Co., Ltd., the normal flow rate of 2 〇ml/min, the maximum pumping pressure of 35 kPa, and 33 mm χ33 耄m x 5. 5 mm External dimensions) for the liquid delivery pump 8. Here, ethanol is used as the working fluid, for example, about 671 J per liter of hot 篁' because ethanol has a latent heat of vaporization of about 855 kJ/kg and a density of about 785 kg/m3. It is assumed that about 100 watts (= 1 〇〇 J/s) of heat is transferred from the planar heat generating component 24 to the planar evaporator. A flow rate of about 15 ml/sec or more is required. Therefore, the amount of liquid circulating through the liquid transfer pump 8 was adjusted to 166 ml/sec (= 10 ml/min). Please note that the liquid transfer pump 8 323562 28 201237339 • Can be an electromagnetic piston type micro pump or a centrifugal turbo pump. Note that the other - construction, such as size, is similar to the specific exemplary configuration of the embodiment described above. The printed circuit board 23 (having a total heat generation amount of about 100 watts) on which the electronic component 21 is mounted is actually cooled by such a cooling device 22, and the temperature of the electronic component 21 is measured. As a result, all of the electronic components 21 are maintained at a temperature of about 80 ° C or lower, thus providing satisfactory cooling. It is also confirmed that as long as the heat generated by the printed circuit board 23 included in the electronic component 21 is maintained within at most about 100 watts, the core 12 in the evaporator 1 is not dried, preventing an abnormally high temperature of the electronic component 21, providing stable heat dissipation performance. Further, for example, as shown in Fig. 10, the first planar evaporator IX and the second planar evaporator 1Y may be provided on both sides, i.e., the top and bottom surfaces of the planar heat generating component 24, so that the first and second planar evaporators The IX and 1Y and planar heat generating components 24 are thermally coupled to each other. In other words, as shown in Fig. 7 above, the planar heat generating component 24 can be thermally connected to the planar evaporator 1, and the other planar evaporator 1 can be thermally coupled to the planar heat generating component 24. In this case, the first and second planar evaporators IX and 1Y include a vapor passage 10 on the side contacting the planar heat generating assembly 24, and a liquid passage 11 on the opposite contact planar heat generating assembly 24. On the side of the side. Therefore, the first planar evaporator IX includes a vapor passage 10 (first steam passage) provided on one of the top and bottom sides of the core 12 (first porous body), and is provided on the top and bottom sides of the core 12 The liquid passage 1K on the other one is the first liquid passage). Further, the second planar evaporator 1Y includes a steam passage 1 (second steam passage) provided above one of the top and bottom sides of the core 12 (second porous body), and is provided at the top and bottom of the core 12. Side 29 323562 201237339 'The other liquid channel ll (second liquid channel). The first flat is provided thereon: the side of the vapor channel 10 in the surface evaporator 1X is thermally connected to the back side of the electronic component 21', on which the side of the vapor channel 10 in the second planar evaporator 1Y is thermally connected to the electronic component 21 front side. Note that the configuration and specific exemplary configuration of the first and second planar evaporators IX and 1Y are similar to the planar evaporator 1 shown in Figs. 7 and 8 described above. Further, as shown in Fig. 10, the top surface of the outer casing 13 of the first planar evaporator IX (i.e., the top surface of the outer casing 13 on the side of the steam passage 1) and the bottom surface of the planar heat generating assembly 24 (i.e., mounted thereon) The back surface of the printed circuit board 23 of the plurality of electronic components 21 is in close contact with the thermal grease. In addition, the second plane evaporates the bottom surface of the outer casing 13 (i.e., the front surface of the outer casing 13 on the side of the steam passage 1) and the top surface of the planar thermal assembly 24 (i.e., the plurality of electric components, the sub-X 21 are mounted thereon) The front side of the printed circuit board 23 is in close contact with the thermal grease. Thereby, the heat from the planar heat generating component 24 is transmitted to the upper and lower first and second planar evaporators 1X and 1?. In this embodiment, for example, the heat generated by the planar heat generating component 24 is approximately 200 watts. The total amount of heat generated by the plurality of electrical components 21 included in the planar heat generating component 24 is about 2 〇 〇 which is transferred to the upper and first and second planar evaporators IX and 1Υ. Further, the first and second planar evaporators IX and 1A are connected to the condenser 2, the liquid storage tank 3, and the liquid delivery pump 8 included in the cooling device 22, as shown in Fig. 11. In this embodiment, the vapor line 4 connected to the condenser 2 is divided into two tubes which are respectively connected to the first and second planes to evaporate g1Χ*1Υ. More specifically, the vapor line 4Υ connected to the second planar evaporator 1Υ is connected to a vapor line 4乂 connecting the condensation 323562 30 201237339 . n 2 and the first-plane evaporator 1x. In addition, the liquid return line 7 connected to the liquid storage tank 3 is divided into two tubes which are respectively connected to the first- and second-plane evaporators ιχ*1γ. More specifically, the liquid return line 7Υ connected to the second planar evaporator 1Υ is connected to the liquid return line 7χ connecting the liquid reservoir 3 and the first planar evaporator. Further, the liquid supply line 6 connected to the liquid storage tank 3 is divided into two tubes which are connected to the first and second plane evaporators ^ and 1γ, respectively. More specifically, the liquid supply line 6γ connected to the second planar evaporator 1γ is connected to the liquid supply line 6Χ connecting the liquid storage tank 3 and the first planar evaporator ι via the liquid transfer pump 8. Therefore, the first planar evaporator 1x and the second planar evaporator 1γ are connected in parallel to each other. In other words, the liquid supply line 6γ, the second planar evaporator 1Υ and the vapor line 4Υ define a route connected in parallel to the liquid reservoir 3, the liquid supply official line 6Χ, the first planar evaporator lx, the vapor line 4χ, the condensation stolen 2 and the route defined by the liquid line 5. Further, the liquid storage tank 3, the liquid supply line 6Χ, the first plane evaporator ι* liquid return line 7乂 defined route is connected in parallel to the liquid supply line 6γ, the second planar evaporator 1Υ, and the liquid return line 7Υ route. Note that the above configuration is not limited thereto, and the first planar evaporator IX and the first planar evaporator 1A may be connected in series. More specifically, the liquid return line 7X connected to the outlet of the liquid passage u in the first plane evaporator IX may be connected to the inlet of the liquid passage n in the second plane evaporator ιγ instead of the liquid supply line βγ The liquid return line VIII to the outlet of the liquid passage 11 in the second planar evaporator 1Υ can be connected to 323562 31 201237339 • Liquid reservoir 3 instead of the liquid return line 7X. In this case, the vapor line 4 (4X and 4Y) connected to the condenser 2 is connected to the first and second planar evaporators 1X and 1Y, respectively. Further, the liquid supply line 6 (6X) connected to the liquid storage tank 3 via the liquid transfer pump 8 is connected to the inlet of the liquid passage 11 in the first planar evaporator IX. Further, the liquid supply line 6 (6Y) connected to the inlet of the liquid passage 11 in the second planar evaporator 1Y is connected to the outlet of the liquid passage 11 in the first planar evaporator IX. Further, a liquid return line 7 (7Y) connected to the outlet of the liquid passage 11 in the second planar evaporator 1Y is connected to the liquid reservoir 3. Thereby, after the liquid storage tank 3 is supplied to the first planar evaporator 1x through the liquid supply line 6Χ, the liquid phase working fluid is supplied to the second planar evaporator 1Υ through the liquid return line 7Χ, and passes through the liquid return line. 7 Υ Return to the liquid reservoir 3. The liquid transporting fruit 8' uses, for example, an electromagnetic piston type miniature chestnut (type PPLP-03060-001 of sh i nano Kenshi Co., Ltd., see Fig. 3). Here, using ethanol as a working fluid, for example, an amount of heat of about 671 J per 1 ml can be delivered because ethanol has a latent heat of vaporization of about 855 kJ/kg and a density of about 785 kg/m3. Assuming that about 200 watts (= 200 J/s) of heat is transferred from the planar heat generating component 24 to the first and second planar evaporators lx and 1 , a flow rate of about 0.3 ml/sec or more is required. Therefore, the amount of liquid flowing through the liquid delivery pump 8 is adjusted to 0.333 ml/sec (= 20 ml/min. Note that the liquid delivery pump 8 can be a piezoelectrically driven diaphragm pump or a centrifugal turbo pump. Please note that 'other specifics The configuration, such as the size 'is similar to the case of the flat evaporator 丨 shown in Figures 7 and 8 of 323562 32 201237339 • In addition, although part of the liquid return line 7 is provided to include the condenser • 2 and blowing In the condensing device of the air fan (cooling unit, cooling mode), the active heat radiation for cooling in Fig. 11 is provided, and the configuration similar to the above embodiment (see Fig. 1) can be used without being limited thereto. The printing circuit board 23 on which the operation electronic component 21 is mounted (having a total heat generation amount of about 200 watts) is actually cooled using the cooling device 22, and the temperature of the electronic component 21 is measured. As a result, all the electronic components 21 remain. A temperature of about 8 ° C or lower, thus providing satisfactory cooling. It has also been confirmed that the heat generated by the printed circuit board 23 including the electronic component 21 is maintained at up to about 200 W 'evaporator lx and 1 The core 12 is not dried, and the abnormal high temperature of the electronic member 70 is prevented, providing stable heat dissipation performance. In particular, since the first and second planar evaporators IX and 1 as described above can be reduced even more than the above-described embodiments. Height (thickness), the first and second planar evaporators lx and can be provided above the top and bottom of the heat generating component 24. Therefore, a heat generating component that generates a large amount of heat (for example, a high-density sealed 3d stacked package) 24 can be effectively cooled. For example, as shown in Figs. 12A and 12B, the 3D stacked package 3A is a three-dimensional stacked package (LSI package) including a plurality of semiconductor chips 31 and 31X (LSI chips) three-dimensionally stacked. As shown in Fig. 12a, even if the planar evaporator 1 of the above-described embodiment is provided on the stacking package 30, it is then mounted on the printed circuit board (circuit board) 23 on the bottom side (i.e., the printed circuit board 23). The sufficient heat generated by the semiconductor chip 31X on the side is difficult. To solve this problem, as shown in Fig. 12B, the fine on the back side of the printed circuit board 23 is provided by 33 323562 201237339. The planar evaporator IX, and the second planar evaporator 1Y on the front side of the three-D stacked package 30, including the heat generated by the semiconductor chips 31 and 31X of the three-D stacked package 30, can be efficiently radiated. In this case, as described above, by using the thinner first and second planar evaporators IX and 1Y, the heat generated by the semiconductor chips 31 and 31X included in the three-D stacked package 30 is compared with the structure shown in Fig. 12A. The radiation can be radiated more efficiently without increasing the height of the package. Although the steam passage 10 and the liquid passage 11 in the evaporator 1 extend in mutually perpendicular directions in the above embodiment, it is not limited thereto. For example, as shown in Fig. 13, the steam passage 10 and the liquid passage 11 in the evaporator 1 may be provided to extend in the same direction. The above-described embodiments are intended to illustrate the principles of the invention and its advantages, and are not intended to limit the invention. Any of the above-described embodiments may be modified by those skilled in the art without departing from the spirit and scope of the invention. Therefore, the scope of protection of the present invention should be as set forth in the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the configuration of a cooling device according to the present embodiment; Fig. 2 is a schematic cross-sectional view showing the operation and effect of the cooling device according to the present embodiment; A perspective view of a configuration of a liquid storage tank and a liquid transfer pump provided by the cooling device of the embodiment; FIG. 4 is a specific configuration of the evaporator provided by the cooling device according to the embodiment and a specific configuration of the electronic device including the cooling device A perspective view of the configuration 34 323562 201237339 - Intent; FIG. 5 is a perspective schematic view of a specific configuration of the evaporator provided by the cooling device according to the embodiment; FIG. 6 is a different configuration of the cooling device according to the embodiment For the sake of fluoroscopy, FIG. 7 is a perspective view of a specific configuration of the evaporator provided by the cooling device according to the present embodiment and a specific configuration of the electronic device including the cooling device, and FIG. 8 is a cooling according to the present embodiment. A schematic perspective view of different specific configurations of the evaporator provided by the device; FIG. 9 is a schematic diagram of the cooling device provided according to the embodiment FIG. 10 is a schematic perspective view showing another different configuration of the evaporator provided by the cooling device according to the embodiment and a specific configuration of the electronic device including the cooling device; FIG. 11 is a perspective view of a specific configuration of the evaporator provided by the cooling device according to the embodiment; A schematic diagram of a configuration in which the cooling device according to the present embodiment uses another different specific configuration of the evaporator; FIGS. 12A and 12B are different specific configurations including the evaporator provided in the cooling device according to the present embodiment. A cross-sectional view showing the effect of the electronic device; Fig. 13 is a perspective schematic view showing different specific configurations of the evaporator provided in the cooling device according to the present embodiment; Fig. 14 is a horizontal view of the evaporator provided in the conventional cooling device Schematic diagram of the section. 35 323562 201237339 - [Main component symbol description] 1 evaporator 2 condenser 3 liquid reservoir 3A first inlet 3B second inlet 3C outlet 3X, 3Y, 3Z wall 4 vapor line 5 liquid line 6 liquid supply line 7 liquid Return line 8 Liquid delivery unit 8A Intake opening 8B Discharge opening 9 Heat generating component 10 Steam channel 11 Liquid channel 12 Porous body 12A Planar portion 12AX Perforated plate 12B Projection portion 12C Multi-pass hole 12CX Groove 13 Housing 13A Liquid inlet 13B Liquid outlet 13C Steam outlet 14 Hole 15 Channel 20 Electronics 21 Electronic component 22 Cooling device 23 Printed circuit board 24 Heated component 25 Liquid inlet side manifold 26 Liquid outlet side manifold 30 Stacked package 31 Semiconductor chip 100 Heated component 101 Housing 102 Core 103 Hole 104 liquid line 105 channel 106 vapor line 36 323562

Claims (1)

201237339 -七、申請專利範圍: , i. 一種冷卻裝置,包括: ' 蒸發器’包括多孔體和由該多孔體隔開之蒸汽通道 及液體通道,用於蒸發液相的工作流體; 冷凝器’用於凝結汽相的工作流體; 液體儲集槽’用於儲備該液相的工作流體; 蒸氣管線’連接該蒸發器中之該蒸汽通道之出口和 該冷凝器之入口; 液體管線,連接該冷凝器之出口和該液體儲集槽之 第一入口; 液體供應管線,連接該液體儲集槽之出口和該蒸發 器中之該液體通道之入口; 液體返回管線’連接該蒸發器中之該液體通道之出 口和該液體儲集槽之第二入口;以及 液體輸送單元’插置於該液體供應管線中。 2. 如申請專利範圍第1項所述之冷卻裝置,其中該多孔體 是由樹脂所形成之多孔體。 3. 如申請專利範圍第1或2項所述之冷卻裝置,其中該液 體返回管線包括散熱器。 4. 如申請專利範圍第1或2項所述之冷卻裝置,更包括冷 凝裝置,其包括該冷凝器和冷卻單元, 其中該液體返回管線的部分係設於該冷凝裝置内。 .如申睛專利範圍第1或2項所述之冷卻裝置,其中該液 體儲集槽之該第二入口比該第一入口離該液體儲集槽 323562 1 201237339 之該出口設置地更遠。 • 6.如申請專利範圍第1或2項所述之冷卻裝置,其中該蒸 汽通道和該液體通道相互正交延伸。 7.如申請專利範圍第1或2項所述之冷卻裝置,其中該蒸 汽通道包括設於該多孔體之頂面上方的第一蒸汽通道 及設於該多孔體之底面上方的第二蒸汽通道,且該液體 通道係設於該多孔體内的液體通道。 8·如申請專利範圍第1或2項所述之冷卻裝置,其中該蒸 汽通道是設於該多孔體之頂和底面中之一者上方之蒸 汽通道’該液體通道是設於該多孔體之頂和底面♦之另 一者上方之液體通道。 9. 如申請專利範圍第1或2項所述之冷卻裝置,其中該多 孔體的平均孔徑為10微米或更小。 10. —種電子裝置,包括: 電子元件’設於電路板上方; 冷部裝置,用於冷卻該電子元件,該冷卻裝置包括: 蒸發器,包括多孔體和由該多孔體隔開之蒸汽通道 及液體通道,料蒸魏相的作流體; 冷凝器,用於凝結汽相的工作流體; 液體儲集槽,料儲備該液相的卫作流體; 蒸氣管線,連接該蒸發器中之該蒸汽通道之出口和 該冷凝器之入口; 液體管線’連接該冷凝II之出口和該液體儲集槽之 323562 2 201237339 液體供應官線’連接該液體儲集槽之出口和該蒸發 器中之該液體通道之入口; …x 液體返回管線’連接該蒸發||中之該液體通道之出 口和該液體儲集槽之第二入口;以及 液體輸送單元,插置於該液體供應管線中, 其中該電子元件熱連接至該蒸發器。 11. 如申請專利範圍第10項所述之電子裝置,其中該多孔 體是由樹脂所形成之多孔體。 12. 如申請專利範圍第1〇或u項所述之電子裝置,其中該 液體返回管線包括散熱器。 13·如申請專利範圍第10或n項所述之電子裝置,更包括 冷凝裝置’其包括該冷凝器和冷卻單元, 其中該液體返回官線的部分係設於該冷凝裝置内。 14·如申睛專利範圍第10或11項所述之電子裝置,其中該 液體儲集槽之該第一入口比該第一入口離該液體儲集 槽之該出口設置地更遠。 15.如申請專利範圍第10或11項所述之電子裝置,其中蒸 汽通道包括設於該多孔體之頂面上方的第一蒸汽通道 及設於該多孔體之底面上方的第二蒸汽通道,且該液體 通道係設於該多孔體内的液體通道。 16·如申請專利範圍第15項所述之電子裝置,其中該電子 元件包括熱連接至該蒸發器之頂面的第一電子元件及 熱連接至該蒸發器之底面的第二電子元件。 17·如申請專利範圍第10或11項所述之電子裝置,其中該 323562 3 201237339 : 錢料辦該纽體之了!和底面巾之—者上方,# ; €道設於該多孔體之頂和底面中之另—者上方。 18. 如申明專利範圍第17項所述之電子 19p件熱連接至該蒸發器中料該蒸汽通 19. ^請專利範圍第1〇或u項所述之電子裝置 蒸發器包括: 第一蒸發器,包括第一 之頂和底面中之一者上方的 夕孔體之頂和底面令之另 以及 多孔體、設於該第一多孔體 第一蒸汽通道及設於該第 一者上方的第一液體通道; 第一蒸發器,包括第二多孔體、設於該第二多孔體 頂和底面中之—者上方的第二蒸汽通道及設於該第 -多孔體之頂和底面中之另—者上的第二液體通道, 一中°玄弟蒸發器中設有該蒸汽通道的面熱連接 到該電子元件㈣表面,且該第二蒸發时設有該蒸汽 通道的面熱連接到該電子元件的前表面。 如申明專利範圍第10或11項所述之電子裝置,其中該 多孔體的平均孔徑為10微米或更小。 4 323562201237339 - 7. Patent application scope: i. A cooling device comprising: 'evaporator' comprising a porous body and a vapor passage and a liquid passage separated by the porous body, a working fluid for evaporating the liquid phase; a working fluid for condensing a vapor phase; a liquid storage tank 'a working fluid for storing the liquid phase; a vapor line 'connecting an outlet of the steam passage in the evaporator and an inlet of the condenser; a liquid line connecting the An outlet of the condenser and a first inlet of the liquid storage tank; a liquid supply line connecting an outlet of the liquid storage tank and an inlet of the liquid passage in the evaporator; a liquid return line 'connecting to the evaporator An outlet of the liquid passage and a second inlet of the liquid reservoir; and a liquid delivery unit 'plugged into the liquid supply line. 2. The cooling device according to claim 1, wherein the porous body is a porous body formed of a resin. 3. The cooling device of claim 1 or 2, wherein the liquid return line comprises a heat sink. 4. The cooling device of claim 1 or 2, further comprising a condensing device comprising the condenser and a cooling unit, wherein a portion of the liquid return line is disposed within the condensing device. The cooling device of claim 1 or 2, wherein the second inlet of the liquid reservoir is disposed further from the first inlet than the outlet of the liquid reservoir 323562 1 201237339. 6. The cooling device of claim 1 or 2, wherein the vapor passage and the liquid passage extend orthogonally to each other. 7. The cooling device according to claim 1 or 2, wherein the steam passage comprises a first steam passage disposed above a top surface of the porous body and a second steam passage disposed above a bottom surface of the porous body And the liquid passage is provided in a liquid passage in the porous body. 8. The cooling device according to claim 1 or 2, wherein the steam passage is a steam passage provided above one of a top and a bottom surface of the porous body, the liquid passage being provided in the porous body The liquid passage above the other of the top and bottom surfaces ♦. 9. The cooling device according to claim 1 or 2, wherein the porous body has an average pore diameter of 10 μm or less. 10. An electronic device comprising: an electronic component 'located above a circuit board; a cold device for cooling the electronic component, the cooling device comprising: an evaporator comprising a porous body and a vapor passage separated by the porous body And a liquid passage, a steamed Wei phase fluid; a condenser, a working fluid for condensing the vapor phase; a liquid storage tank, a reserve fluid for storing the liquid phase; a vapor line connecting the steam in the evaporator An outlet of the passage and an inlet of the condenser; a liquid line 'connecting the outlet of the condensation II and the liquid storage tank 323562 2 201237339 liquid supply official line 'connecting the outlet of the liquid storage tank and the liquid in the evaporator An inlet of the passage; ...x a liquid return line 'connecting the outlet of the liquid passage in the evaporation|| and a second inlet of the liquid storage tank; and a liquid delivery unit interposed in the liquid supply line, wherein the electron The component is thermally connected to the evaporator. 11. The electronic device of claim 10, wherein the porous body is a porous body formed of a resin. 12. The electronic device of claim 1, wherein the liquid return line comprises a heat sink. 13. The electronic device of claim 10, wherein the condensing device comprises a condenser and a cooling unit, wherein a portion of the liquid returning to the official line is disposed within the condensing device. The electronic device of claim 10, wherein the first inlet of the liquid reservoir is disposed further from the first inlet than the outlet of the liquid reservoir. 15. The electronic device of claim 10, wherein the vapor channel comprises a first vapor channel disposed above a top surface of the porous body and a second vapor channel disposed above a bottom surface of the porous body, And the liquid passage is provided in a liquid passage in the porous body. The electronic device of claim 15, wherein the electronic component comprises a first electronic component thermally coupled to a top surface of the evaporator and a second electronic component thermally coupled to a bottom surface of the evaporator. 17. The electronic device according to claim 10 or 11, wherein the 323562 3 201237339: the money to do the new body! Above the bottom surface of the porous body, the top of the porous body is placed above the other. 18. The electronic 19p piece as described in claim 17 of the patent scope is thermally connected to the evaporator. The electronic device evaporator according to the scope of claim 1 or u includes: first evaporation And a top surface and a bottom surface of the outer hole body above the one of the first top and the bottom surface, and the porous body, the first steam passage disposed on the first porous body and disposed above the first one a first liquid passage; the first evaporator includes a second porous body, a second steam passage disposed above the top and bottom surfaces of the second porous body, and a top and a bottom surface of the first porous body a second liquid passage on the other, wherein a surface of the vapor channel in which the steam passage is provided is thermally connected to the surface of the electronic component (4), and the surface heat of the steam passage is provided during the second evaporation Connected to the front surface of the electronic component. The electronic device according to claim 10, wherein the porous body has an average pore diameter of 10 μm or less. 4 323562
TW100138838A 2010-12-01 2011-10-26 Cooling apparatus and electronic apparatus TW201237339A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010268684 2010-12-01
JP2011059735A JP2012132661A (en) 2010-12-01 2011-03-17 Cooling device and electronic device

Publications (1)

Publication Number Publication Date
TW201237339A true TW201237339A (en) 2012-09-16

Family

ID=46151878

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100138838A TW201237339A (en) 2010-12-01 2011-10-26 Cooling apparatus and electronic apparatus

Country Status (4)

Country Link
US (1) US20120137718A1 (en)
JP (1) JP2012132661A (en)
CN (1) CN102486355A (en)
TW (1) TW201237339A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI494051B (en) * 2012-11-19 2015-07-21 Acer Inc Fluid heat exchange apparatus
CN106134304A (en) * 2014-05-15 2016-11-16 慧与发展有限责任合伙企业 Fluid manifold
TWI813381B (en) * 2022-07-15 2023-08-21 技嘉科技股份有限公司 Electronic device and heat dissipation assembly thereof

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8422218B2 (en) * 2007-04-16 2013-04-16 Stephen Samuel Fried Liquid cooled condensers for loop heat pipe like enclosure cooling
US9869519B2 (en) 2012-07-12 2018-01-16 Google Inc. Thermosiphon systems for electronic devices
WO2014101048A1 (en) * 2012-12-27 2014-07-03 Feng Jin High-efficiency heat dissipation device
CN103019347A (en) * 2013-01-19 2013-04-03 重庆大学 Radiator of laptop
GB2511354A (en) * 2013-03-01 2014-09-03 Iceotope Ltd A module for cooling one or more heat generating components
WO2014147837A1 (en) * 2013-03-22 2014-09-25 富士通株式会社 Cooling system and electronic apparatus
FR3006431B1 (en) * 2013-05-29 2015-06-05 Euro Heat Pipes DEVICE FOR TRANSPORTING HEAT WITH A DIPHASIC FLUID
CN103369934A (en) * 2013-07-17 2013-10-23 曙光信息产业(北京)有限公司 Cooling device and server with cooling device
CN103591568B (en) * 2013-11-19 2015-10-28 深圳市华星光电技术有限公司 Heat-radiation loop pipe and the backlight module with this heat-radiation loop pipe
CN104869785B (en) * 2014-02-20 2021-01-15 联想(北京)有限公司 Electronic equipment
JP6372159B2 (en) * 2014-05-19 2018-08-15 富士通株式会社 Evaporator, cooling device and electronic equipment
CN103996499B (en) * 2014-05-23 2016-03-02 常熟市友邦散热器有限责任公司 The evaporated liquor full-liquid type phase change heat exchange device of oil-filled transformer
GB2537797B (en) * 2014-09-24 2019-01-02 The Sure Chill Company Ltd Cooling apparatus and method
US9693484B2 (en) * 2015-05-07 2017-06-27 Dell Products, L.P. Apparatus and method for cooling an information handling system
EP3193571B1 (en) * 2015-10-23 2020-08-26 Huawei Technologies Co., Ltd. Heat pipe based cooling system and power equipment
CN105466258B (en) * 2015-12-11 2018-12-25 浙江陆特能源科技股份有限公司 Superconducting pipe observing and controlling oscillation device
CN105431020B (en) * 2015-12-29 2018-10-30 曙光信息产业(北京)有限公司 Liquid cooling system for server
CN105764305B (en) * 2016-03-28 2019-03-22 努比亚技术有限公司 Radiator, mobile terminal and cooling system
US10746475B2 (en) * 2016-08-01 2020-08-18 California Institute Of Technology Multi-phase thermal control apparatus, evaporators and methods of manufacture thereof
CN106705541A (en) * 2016-12-02 2017-05-24 新乡市振英机械设备有限公司 Temperature reduction cooling system for vibration feeder
DE102016123512A1 (en) * 2016-12-06 2018-06-07 Coolar UG (haftungsbeschränkt) evaporator device
US10345052B2 (en) * 2016-12-21 2019-07-09 Hamilton Sundstrand Corporation Porous media evaporator
US11340023B1 (en) 2017-03-24 2022-05-24 Triad National Security, Llc Counter gravity heat pipe techniques
JP2017133828A (en) * 2017-04-03 2017-08-03 富士通株式会社 Cooling system and electronic device
FR3065279B1 (en) * 2017-04-18 2019-06-07 Euro Heat Pipes EVAPORATOR WITH OPTIMIZED VAPORIZATION INTERFACE
CN107504598B (en) * 2017-08-29 2019-11-29 广东美的制冷设备有限公司 Air-conditioner outdoor unit and air-conditioning
CN107782189B (en) * 2017-09-27 2020-03-03 北京空间飞行器总体设计部 Positive pressure resistant and high-power flat-plate evaporator and processing method thereof and flat-plate loop heat pipe based on evaporator
KR102468383B1 (en) * 2017-09-28 2022-11-21 현대자동차주식회사 Battery cooling system for vehicle
CN107835617A (en) * 2017-11-01 2018-03-23 深圳兴奇宏科技有限公司 Loop heat pipe structure
CN108135112B (en) * 2017-12-21 2019-07-30 重庆硕德信息技术有限公司 Security appliance monitoring device
JP6997008B2 (en) * 2018-02-27 2022-01-17 新光電気工業株式会社 Flat plate loop heat pipe
JP2019160831A (en) * 2018-03-07 2019-09-19 富士通株式会社 Cooling plate and information processing apparatus
CN108444325B (en) * 2018-03-19 2024-02-27 桂林电子科技大学 Cooling device combining nano film and micro channel
CN108519009B (en) * 2018-04-13 2023-06-27 中国科学院理化技术研究所 Heat pipe device
FR3081214B1 (en) 2018-05-18 2020-05-22 Irt Antoine De Saint Exupery EVAPORATOR OF A FLUID LOOP AND FLUID LOOP COMPRISING SUCH AN EVAPORATOR
US11114713B2 (en) 2018-06-21 2021-09-07 California Institute Of Technology Thermal management systems for battery cells and methods of their manufacture
JP7204374B2 (en) * 2018-08-13 2023-01-16 新光電気工業株式会社 Loop type heat pipe and its manufacturing method
WO2020041749A1 (en) * 2018-08-24 2020-02-27 Washington University Methods and systems for evaporation of liquid from droplet confined on hollow pillar
US11408684B1 (en) * 2018-10-11 2022-08-09 Advanced Cooling Technologies, Inc. Loop heat pipe evaporator
IT201800009390A1 (en) * 2018-10-12 2020-04-12 Francesco Romanello FORCED CONVECTION TWO-PHASE COOLING SYSTEM
JP7250584B2 (en) * 2019-03-27 2023-04-03 日立Astemo株式会社 cooling system
JP7210379B2 (en) * 2019-05-31 2023-01-23 新光電気工業株式会社 loop heat pipe
RU195806U1 (en) * 2019-10-16 2020-02-05 Акционерное общество "Научно-исследовательский институт Приборостроения имени В.В. Тихомирова" Base for electronic unit
JP7305512B2 (en) * 2019-10-17 2023-07-10 新光電気工業株式会社 Loop type heat pipe and its manufacturing method
JP7294113B2 (en) * 2019-12-19 2023-06-20 三菱電機株式会社 Pump-type heat exhaust system for spacecraft
US11406041B1 (en) * 2020-03-26 2022-08-02 Amazon Technologies, Inc. Modular liquid cooling assembly
EP3919850A1 (en) * 2020-06-03 2021-12-08 ABB Schweiz AG Loop heat pipe for low voltage drives
US11802739B2 (en) * 2020-09-01 2023-10-31 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling assemblies having channels to supply fluid to wick structures
CN112203476B (en) * 2020-10-12 2022-11-15 上海海事大学 Porous medium liquid film small channel cooling device
CN112261841A (en) * 2020-10-23 2021-01-22 中国电子科技集团公司第二十九研究所 Electronic equipment cooling liquid supply system and method based on phase change capsule heat storage and temperature control
CN113566628B (en) * 2021-06-29 2023-03-14 苏州浪潮智能科技有限公司 Loop heat pipe adopting surrounding type liquid storage cavity
CN114025142B (en) * 2021-10-28 2023-06-13 四川启睿克科技有限公司 Liquid cooling heat dissipation cold head, liquid cooling heat dissipation system and laser television
US11877424B2 (en) * 2022-04-21 2024-01-16 Quanta Computer Inc. Cold plate for cooling electronic component

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3609991A (en) * 1969-10-13 1971-10-05 Ibm Cooling system having thermally induced circulation
JP3424427B2 (en) * 1995-07-27 2003-07-07 ソニー株式会社 Nonvolatile semiconductor memory device
US5761037A (en) * 1996-02-12 1998-06-02 International Business Machines Corporation Orientation independent evaporator
CN1111715C (en) * 1998-11-03 2003-06-18 陈烈涛 Heat pipe system for boiler
US8136580B2 (en) * 2000-06-30 2012-03-20 Alliant Techsystems Inc. Evaporator for a heat transfer system
US6948556B1 (en) * 2003-11-12 2005-09-27 Anderson William G Hybrid loop cooling of high powered devices
US7149086B2 (en) * 2004-12-10 2006-12-12 Intel Corporation Systems to cool multiple electrical components
US7661464B2 (en) * 2005-12-09 2010-02-16 Alliant Techsystems Inc. Evaporator for use in a heat transfer system
US8051675B1 (en) * 2006-09-13 2011-11-08 EADS North America, Inc. Thermal system
TWI318679B (en) * 2007-05-16 2009-12-21 Ind Tech Res Inst Heat dissipation system with an plate evaporator
US8443613B2 (en) * 2008-08-27 2013-05-21 Thermotek, Inc. Vehicle air comfort system and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI494051B (en) * 2012-11-19 2015-07-21 Acer Inc Fluid heat exchange apparatus
US9423189B2 (en) 2012-11-19 2016-08-23 Acer Incorporated Fluid heat exchange apparatus
CN106134304A (en) * 2014-05-15 2016-11-16 慧与发展有限责任合伙企业 Fluid manifold
US10837719B2 (en) 2014-05-15 2020-11-17 Hewlett Packard Enterprise Development Lp Fluid manifold
TWI813381B (en) * 2022-07-15 2023-08-21 技嘉科技股份有限公司 Electronic device and heat dissipation assembly thereof

Also Published As

Publication number Publication date
JP2012132661A (en) 2012-07-12
CN102486355A (en) 2012-06-06
US20120137718A1 (en) 2012-06-07

Similar Documents

Publication Publication Date Title
TW201237339A (en) Cooling apparatus and electronic apparatus
WO2014157147A1 (en) Cooling apparatus
US7369410B2 (en) Apparatuses for dissipating heat from semiconductor devices
JP4978401B2 (en) Cooling system
TW201115102A (en) Cooled electronic module with pump-enhanced, dielectric fluid immersion-cooling
JPWO2010058520A1 (en) Boiling cooler
US9696094B2 (en) Cooling unit
KR20090058356A (en) The flat plate type micro heat transport device
JP2006237188A (en) Liquid cooling system
WO2015146110A1 (en) Phase-change cooler and phase-change cooling method
JP2012202570A (en) Evaporator and cooling apparatus
JP2013245875A (en) Cooling device and electronic device
JP2022518854A (en) Phase transition radiator
JP2008311501A (en) Cooling device for electronic equipment
JP5334288B2 (en) Heat pipes and electronics
JP2011038700A (en) Heat transport unit, and electronic apparatus
TWI276396B (en) Closed-loop latent heat cooling method, and capillary force or non-nozzle module thereof
TWI576556B (en) Evaporator, cooling apparatus and electronic apparatus
JP5449801B2 (en) Heat transport unit and electronic equipment
JP5252059B2 (en) Cooling system
TWI375507B (en)
TWM592640U (en) Steady flow pressure-charging device of evaporator
CN113758324A (en) Loop type heat pipe for low-voltage driver
JP7299441B1 (en) boiling cooler
JP5903549B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR