TW201228019A - Light emitting diode structure and method for manufacturing the same - Google Patents

Light emitting diode structure and method for manufacturing the same Download PDF

Info

Publication number
TW201228019A
TW201228019A TW99144441A TW99144441A TW201228019A TW 201228019 A TW201228019 A TW 201228019A TW 99144441 A TW99144441 A TW 99144441A TW 99144441 A TW99144441 A TW 99144441A TW 201228019 A TW201228019 A TW 201228019A
Authority
TW
Taiwan
Prior art keywords
layer
light
electrical
semiconductor layer
emitting diode
Prior art date
Application number
TW99144441A
Other languages
Chinese (zh)
Inventor
Hsing-Mao Wang
Original Assignee
Chi Mei Lighting Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chi Mei Lighting Tech Corp filed Critical Chi Mei Lighting Tech Corp
Priority to TW99144441A priority Critical patent/TW201228019A/en
Priority to CN2011100422813A priority patent/CN102544284A/en
Publication of TW201228019A publication Critical patent/TW201228019A/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

A light emitting diode structure and a method for manufacturing the same are disclosed. A current distribution assistant structure is disposed between a net-type structure of an electrode and an emitting layer, so that the current can flow from an electrode to a current distribution assistant structure to achieve the effect of dispersing current uniformly. Besides, there is a horizontal gap and a vertical distance between the current distribution assistant structure and the electrode. Furthermore, an optimum light output can be obtained by matching up the horizontal gap and the vertical distance with each other.

Description

201228019 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種發光二極體結構及其製造方 法,特別是一種增加出光量的發光二極體結構及其製造 方法。 【先前技術】 • 傳統發光二極體由於半導體材料折射率(約2.2〜3.8) 較工氣折射率(約1)兩’因而外部量子效率受到令及射对 應的影響,當發先層產生的光入射角大== 產生全反射,部分光線經過幾次全反射後,被磊晶層或 者基板材料吸收,出光效率不易提高。 美國專利(US6,291,839)提出一網狀電極結構,以提 高出光效率。請參照第1圖及第2圖,第i圖係為美國 專利(US 6,291,839)之網狀電極結構之立體示意圖,第2 ❿圖係為第1圖中沿著A-A,剖面線之剖面示意4圖。在第 1圖及第2圖中,在p型半導體層細上形成具多個開 口 210的網狀電極230,取代傳統透明導電金屬薄膜之 導電層的電流擴散效果,並且在主動層22〇產生的光可 以從開口 210出射至外界,以提高出光量。然而,為避 免網狀電極230部份造成的遮光效應,一般希望將網狀 電極230的線寬變細到例如小於2微米,然而,當網狀 電極230變細後,開口 210尺寸變大,反而會因^電流 在P型半導體層200的橫向傳遞性不佳之特性,造成電 201228019 ^刀佈不均’而無法有效提升發光效率。另—方面 ^加網狀電極23G分佈密度來改善電流分佈均勻性,又 J使得網狀電極230遮光面積變大、開口 21〇尺寸變小, 導致光取出效率變低。 【發明内容】 有鑑於此,本發明之目的就是 體結構及其製造方法,藉以增加發光二極二ί m上曰述目的’依本發明之發光二極體結構, 以1電結構、第一電性電極、第二電性電極 結構位於基板上,蟲晶姓 構包各發光層、第—電性半導體層、第二電性半導體声, ΐ:半ί體半導體層位於基板上,發光層位於第曰-另:第==電性彻層位於發光層上。 於第二電性半導體層上並與第二電性半ί n連接。此外,電流分佈輔助結構位於發光層斑 第一電性電極之間,並與至少邱 曰” 數二電例如包含接_及複 且此些延伸電極=3此:;:電:電性連接,並 流傳導至延伸電極,過接觸塾將電 辅助結構電係二 體結結:::= 導電流予發光:極 田電⑽在延伸電極分散開時,電流 201228019 Γΐ、ΐ至電流分佈伽結構,藉此均⑽散電流。另 川刀佈辅助結構係例如位於相對應第二電性 方並位於半_層之中,所以在發光層產生 的光會有比較多的出光量,藉此增加光取出效率。201228019 VI. Description of the Invention: [Technical Field] The present invention relates to a light-emitting diode structure and a method of fabricating the same, and more particularly to a light-emitting diode structure that increases the amount of light emitted and a method of fabricating the same. [Prior Art] • The conventional light-emitting diode has a refractive index of the semiconductor material (about 2.2 to 3.8) and a refractive index of the working gas (about 1). Therefore, the external quantum efficiency is affected by the corresponding emission. The incident angle of light is large == Total reflection occurs, and after partial reflection of a part of the light, it is absorbed by the epitaxial layer or the substrate material, and the light-emitting efficiency is not easily improved. U.S. Patent No. 6,291,839 teaches a mesh electrode structure to improve light extraction efficiency. Please refer to FIG. 1 and FIG. 2, which is a perspective view of the mesh electrode structure of the US patent (US 6,291,839), and the second drawing is a section along the line AA in FIG. Figure 4 is shown. In FIGS. 1 and 2, a mesh electrode 230 having a plurality of openings 210 is formed on the p-type semiconductor layer to replace the current spreading effect of the conductive layer of the conventional transparent conductive metal film, and is generated in the active layer 22 The light can be emitted from the opening 210 to the outside to increase the amount of light emitted. However, in order to avoid the shadowing effect caused by the portion of the mesh electrode 230, it is generally desirable to reduce the line width of the mesh electrode 230 to, for example, less than 2 micrometers. However, when the mesh electrode 230 is tapered, the size of the opening 210 becomes large. On the contrary, due to the poor lateral transfer property of the current in the P-type semiconductor layer 200, the electric 201228019^distribution unevenness cannot effectively improve the luminous efficiency. On the other hand, the distribution density of the grid electrode 23G is used to improve the uniformity of the current distribution, and the J is made such that the light-shielding area of the mesh electrode 230 becomes larger and the size of the opening 21〇 becomes smaller, resulting in lower light extraction efficiency. SUMMARY OF THE INVENTION In view of the above, the object of the present invention is a body structure and a manufacturing method thereof, thereby increasing the structure of the light-emitting diode according to the present invention, and the first structure of the light-emitting diode according to the present invention. The electrical electrode and the second electrical electrode structure are located on the substrate, and the worm crystal layer comprises each of the luminescent layer, the first electrical semiconductor layer, and the second electrical semiconductor sound, and the 半: the semiconductor layer is located on the substrate, and the luminescent layer Located in the third layer - another: the == electrical layer is located on the light-emitting layer. And connected to the second electrical semiconductor layer. In addition, the current distribution auxiliary structure is located between the first electrical electrodes of the light-emitting layer spots, and is connected to at least a plurality of electrodes, for example, and includes the extension electrodes=3::: electricity: electrical connection, The parallel current is conducted to the extension electrode, and the electrical contact structure is electrically connected to the two-body junction:::= Conducting current to emit light: Polar field electricity (10) When the extended electrode is dispersed, current 201228019 Γΐ, ΐ to current distribution gamma structure Therefore, (10) the current is dispersed. The auxiliary structure of the Kawasaki cloth is, for example, located in the corresponding second electrical side and located in the half layer, so that the light generated in the light emitting layer has a relatively large amount of light, thereby increasing Light extraction efficiency.

此外’本發明更提出_種發光二極體結構之製造方 pi含二提供基板、第—電性半導體層、發光層以及 -電性半導體層之第—部份,其巾第—電性半導體層 係?型半導體層及N型半導體層之-者、第二電性半i 體層係P型半導體層及N型半導體層之另—者;接著利 用,阻定義預設之形狀及位置於第二電性半導體層上; 接著沉積導電材料層於第二電性半導體層及光阻丄;接 著利用_法去除光阻以及位於光阻 ,供第二電性半導體層之第二部份於導與 第-電性半導體層之第-部份上;以及提供第—電性電 極與第二電性電極H性電極係與第—電性半導體 層電性連接且第二電性電極係與第二電性半導體層電性 連接,其中,第二電性電極具有網狀結構。 承上所述,依本發明之發光二極體結構及其製造方 法,其可具下述優點: ⑴電流分佈辅助結構將電流更均勻分散於基板中。 (2)電流分佈辅助結構位於相對應第二電性電極之 開口之下方並位於第二電性半導體層中,所以在發光層 產生的光會有比較多的出光量,藉此增加光取出效率。 兹為使貴審查委員對本發明之技術特徵及所達到 201228019 之功效有更進一步之瞭解與認識,謹佐以較佳之實施例 及配合詳細之說明如後。 【實施方式】 以下將參照相關圖式,說明依本發明較佳實施例之 發光二極體結構及其製造方法,為使便於理解,下述實 施例中之相同元件係以相同之符號標示來說明。 請參閱第3圖,第3圖係為本發明之發光二極體結 構之第一實施例之剖面示意圖。如第3圖所示,本發明 之發光一極體結構包含基板3〇〇、蠢晶結構31 〇、第一電 性電極306、帛二電性電極3〇7錢電流分佈辅助結構 320。蠢晶結構31〇包含發光層3〇1、第一電性半導體層 302及弟一電性半導體層303。於本實施例中,第一電性 例如為N型,第二電性例如為p型。磊晶結構31〇位於 基板300上,其中,第一電性半導體層3〇2位於基板 上,發光層301位於第一電性半導體層3〇2上,第二電 性半導體層303位於發光層301上。發光層3〇1係位於 第一電性半導體層302及第二電性半導體層3〇3之間, 亦即,發光層301係位於N型半導體層及P型半導體層 之間。由P型半導體層提供電洞,N型半導體層提供電 子,並且電子電洞對於發光層301中進行複合(rec〇mbine) 而用來產生光線。基板300之材質係可以例如為藍寶石 (sapphire)、碳化矽(SiC)、砷化鎵(GaAs)、氮化鎵(GaN) 或矽(Si)。第一電性半導體層302例如為利用有機金屬化 學氣相沉積法(MOCVD)或分子束磊晶法(MBE)成長在基 201228019 板300上之N型氮化鎵系列材料層,其中,基板3〇〇與 N型氮化錄糸列材料層之間亦可成長一層緩衝層(未繪 示)’緩衝層(未繪示)之材質係例如氮化鋁(A1N)或氮化 鎵,而緩衝層係用來降低基板300與N型氮化錄系列材 料層晶格不匹配的問題。發光層301形成在N型氮化嫁 系列材料層上’發光層3 01係例如為氮化銘銦鎵 (AlInGaN)的多重量子井(MQW)結構。第二電性半導體層 303形成在發光層301上’第二電性半導體層303係例 • 如為P型氮化鎵系列材料層。此外,為了增加電子和電 洞在發光層301内結合的機會,可以在發光層3〇1與N 型氮化鎵系列材料層之間成長N型束縛 layer)或是在發光層301與P型氮化鎵系列材料層之間成 長P型束缚層(p-cladding layer),藉此將電子或電洞侷限 在發光層301中。另外,第一電性電極3〇6係與第一電 性半導體層302電性連接’並且第二電性電極3〇7係與 第二電性半導體層303電性連接。此外,於本實施例中, φ 第二電性電極307係呈網狀結構,網狀電極包含接觸墊 (contact pad)以及複數個延伸電極,於稍後文中有更詳細 的描述。電流分佈輔助結構320係位於發光層301與第 二電性電極307之間,並與至少部份該第二電性半導體 層303電性連接,用以辅助傳導電流予該發光二極體結 構。例如,電流分佈輔助結構320係位於P型半導體層 中,電流分佈輔助結構320係用來輔助傳導電流予磊晶 結構310。其中’電流分佈辅助結構32〇係例如鎳/金 (Ni/Au)、鎳 /銀(Ni/Ag)、鎳/金/鎳(Ni/Au/Ni)或鎳/銀/鎳 201228019 (Ni/Ag/Ni)的疊層結構,亦或是電流分佈辅助結構32〇 係例如透明導電氧化物薄膜。更明確的說,透明導電氧 化物薄膜係例如氧化銦錫(IT〇)或氧化鋅(Zn〇)。另外, 電流分佈輔助結構320之寬度係例如i至5微米。其中, 電流分佈輔助結構320之材質可為導電性良好的材料, 並可以選擇適當的厚度,以降低電流分佈輔助結構32〇 之電阻,增加輔助電流分佈之效果。 凊參閱第4圖及第5圖,第4圖係為本發明之發光 二極體結構之第—實施例之電流分佈示意圖,第5圖係 為本發明之發光二極體結構之網狀電極與電流分佈辅助 結構上視示意圖。在此要特別述明,第4圖巾從第二電 =極307之延伸電極及電流分佈輔助結構32〇出發的 弓丨線:、代表電流移動的方向。本發明之發光二極體結構In addition, the present invention further proposes that the fabrication unit pi of the light-emitting diode structure provides a substrate, a first electrical semiconductor layer, a light-emitting layer, and a first portion of the electrical semiconductor layer, and the first electrical semiconductor Layer system? a semiconductor layer and an N-type semiconductor layer, a second electrical half-layer, a P-type semiconductor layer, and an N-type semiconductor layer; and then, the resistor defines a predetermined shape and position in the second electrical property Depositing a conductive material layer on the second electrical semiconductor layer and the photoresist layer; then removing the photoresist and the photoresist by the method, and the second portion of the second electrical semiconductor layer is guided by the first And a first portion of the electrical semiconductor layer; and a first electrical electrode and a second electrical electrode, the H-electrode is electrically connected to the first electrical semiconductor layer, and the second electrical electrode and the second electrical The semiconductor layer is electrically connected, wherein the second electrical electrode has a mesh structure. As described above, the light-emitting diode structure and the method of manufacturing the same according to the present invention have the following advantages: (1) The current distribution auxiliary structure distributes the current more uniformly in the substrate. (2) The current distribution auxiliary structure is located below the opening of the corresponding second electrical electrode and is located in the second electrical semiconductor layer, so that the light generated in the light-emitting layer has a relatively large amount of light, thereby increasing the light extraction efficiency. . For a better understanding and understanding of the technical features of the present invention and the effects of 201228019, the preferred embodiments and the detailed description are as follows. [Embodiment] Hereinafter, a light-emitting diode structure and a manufacturing method thereof according to a preferred embodiment of the present invention will be described with reference to the related drawings. For ease of understanding, the same components in the following embodiments are denoted by the same reference numerals. Description. Please refer to FIG. 3, which is a cross-sectional view showing the first embodiment of the light emitting diode structure of the present invention. As shown in Fig. 3, the light-emitting diode structure of the present invention comprises a substrate 3A, an amorphous structure 31, a first electrical electrode 306, and a second electrical electrode 3?7 money current distribution auxiliary structure 320. The dormant structure 31A includes a light-emitting layer 3A1, a first electrical semiconductor layer 302, and a second-electroconductive semiconductor layer 303. In this embodiment, the first electrical property is, for example, an N-type, and the second electrical property is, for example, a p-type. The epitaxial structure 31 is located on the substrate 300, wherein the first electrical semiconductor layer 3〇2 is located on the substrate, the light emitting layer 301 is located on the first electrical semiconductor layer 3〇2, and the second electrical semiconductor layer 303 is located in the light emitting layer. 301. The light-emitting layer 3〇1 is located between the first electrical semiconductor layer 302 and the second electrical semiconductor layer 3〇3, that is, the light-emitting layer 301 is located between the N-type semiconductor layer and the P-type semiconductor layer. A hole is provided by the P-type semiconductor layer, the N-type semiconductor layer supplies electrons, and the electron hole is used for recombination in the light-emitting layer 301 to generate light. The material of the substrate 300 may be, for example, sapphire, tantalum carbide (SiC), gallium arsenide (GaAs), gallium nitride (GaN), or germanium (Si). The first electrical semiconductor layer 302 is, for example, an N-type gallium nitride series material layer grown on the base 201228019 plate 300 by metalorganic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE), wherein the substrate 3 A buffer layer (not shown) may be formed between the germanium and the N-type nitrided germanium material layer. The material of the buffer layer (not shown) is, for example, aluminum nitride (A1N) or gallium nitride, and the buffer is buffered. The layer is used to reduce the problem of lattice mismatch between the substrate 300 and the N-type nitride series material layer. The light-emitting layer 301 is formed on the N-type nitrided-series material layer. The light-emitting layer 310 is, for example, a multi-quantum well (MQW) structure of Ni-GaN. The second electrical semiconductor layer 303 is formed on the light-emitting layer 301. The second electrical semiconductor layer 303 is exemplified by a P-type gallium nitride series material layer. In addition, in order to increase the chance of electrons and holes being combined in the light-emitting layer 301, an N-type binding layer may be grown between the light-emitting layer 3〇1 and the N-type gallium nitride series material layer or in the light-emitting layer 301 and the P-type. A p-cladding layer is grown between the gallium nitride series material layers, thereby confining electrons or holes to the light-emitting layer 301. In addition, the first electrical electrode 3〇6 is electrically connected to the first electrical semiconductor layer 302 and the second electrical electrode 3〇7 is electrically connected to the second electrical semiconductor layer 303. Further, in the present embodiment, φ the second electrical electrode 307 has a mesh structure, and the mesh electrode includes a contact pad and a plurality of extension electrodes, which will be described in more detail later. The current distribution auxiliary structure 320 is disposed between the light-emitting layer 301 and the second electrical electrode 307, and is electrically connected to at least a portion of the second electrical semiconductor layer 303 to assist in conducting current to the light-emitting diode structure. For example, the current distribution assist structure 320 is located in the P-type semiconductor layer, and the current distribution assist structure 320 is used to assist in conducting current to the epitaxial structure 310. Wherein 'current distribution auxiliary structure 32 lanthanide such as nickel/gold (Ni/Au), nickel/silver (Ni/Ag), nickel/gold/nickel (Ni/Au/Ni) or nickel/silver/nickel 201228019 (Ni/ The laminated structure of Ag/Ni) or the current distribution auxiliary structure 32 is, for example, a transparent conductive oxide film. More specifically, the transparent conductive oxide film is, for example, indium tin oxide (IT〇) or zinc oxide (Zn〇). Additionally, the width of the current distribution auxiliary structure 320 is, for example, i to 5 microns. The material of the current distribution auxiliary structure 320 may be a material with good conductivity, and an appropriate thickness may be selected to reduce the resistance of the current distribution auxiliary structure 32〇 and increase the effect of the auxiliary current distribution. 4 and FIG. 5, FIG. 4 is a schematic diagram showing current distribution of the first embodiment of the light-emitting diode structure of the present invention, and FIG. 5 is a mesh electrode of the light-emitting diode structure of the present invention. Schematic diagram with the current distribution auxiliary structure. Here, it is specifically noted that the fourth figure is a bow line from the extension electrode of the second electric pole 307 and the current distribution auxiliary structure 32 :: a direction in which the current is moved. Light-emitting diode structure of the invention

Si/;5性電極3G7係為一網狀電極,包含一接觸墊 及複數個延伸電極312與接觸# 31 些延伸電極312形成一網狀㈣… 逐接”亥 ^成、凋狀結構❶該些延伸電極312與 鄰之電&分佈輔助結構32〇之間更具有水 340 ’水平間隙340孫μ他φ j· ' a隙 扒卞间丨承wo係延伸電極312 流分佈辅助結構320之一側面次单古面,、相鄰之電 由於電流在蟲晶結構310中=:向的距離。另外, 中側向傳遞效果僅及於有限之 距離’為了使電流在磊晶結構31〇 ::: 佳為0至i激半千間隙34G之距離,例如較 效分別從第二電性電極307_^ 電流有 之電流分佈辅助結構320之 ^ 12傳遞至相鄰 侧。換言之,電流從網狀 201228019 =傳::電約略侧向傳遞至電流分佈輔助 良好的材料,電流;:===, 另一彻丨,ra 权匆得遞至電机分佈辅助結構的 傳遞不易的缺電流於p型半導體層橫向 32〇之左側、‘.L Λ 自電流分佈輔助結構 3〇卜第-電性是下側繼續向下傳遞至發光層 網狀電極之多個延伸雷層/02及第一電性電極3〇6。藉由 • 320二= 312與多個電流分佈辅助結構 構佈於整個發一 光二==:=’f6圖係為本發明之發 結構上視示C 網狀電極與電流分佈輔助 構之第:實】帛7圖係為本發明之發光二極體結 包含接觸塾3i! 11复數個一延電^極307係為網狀電極’ •係與延伸電極31=: = = 2,其中接觸墊311 布於第二電性半導體/複數個延伸電極312係散 二電性半導體層=接狀結構,並與第 = 寺別限制其形狀’例如可以為放射狀、棋盤The Si/5 electrode 3G7 is a mesh electrode, and includes a contact pad and a plurality of extension electrodes 312 and a contact # 31. The extension electrodes 312 form a mesh (4). The extension electrode 312 and the adjacent electric & distribution auxiliary structure 32 更 have a water 340 'horizontal gap 340 Sun μ he φ j · ' a gap inter-turn 丨 bearing wo system extension electrode 312 flow distribution auxiliary structure 320 One side of the single single ancient surface, the adjacent electric current due to the current in the crystal structure 310 =: the distance of the direction. In addition, the middle lateral transmission effect is only a limited distance 'in order to make the current in the epitaxial structure 31〇: :: Preferably, the distance from 0 to i is half a thousand gaps 34G, for example, the effect is respectively transmitted from the second electric electrode 307_^ current distribution auxiliary structure 320 to the adjacent side. In other words, the current is from the mesh 201228019 = pass:: electricity is slightly transferred laterally to the current distribution to assist the good material, current;:===, another full, ra right to the motor distribution auxiliary structure is not easy to pass current in the p-type The left side of the semiconductor layer is 32 横向, '.L Λ self-current distribution auxiliary structure 3 The first electrical property is a plurality of extended lightning layer 02 and a first electrical electrode 3〇6 that are continuously transmitted downward to the light-emitting layer mesh electrode. By • 320 II = 312 and a plurality of current distribution auxiliary structures Constituting the entire hair-light two ==:='f6 figure is the structure of the C-shaped electrode and the current distribution assisted structure of the hair structure of the present invention: 帛7 is the light-emitting diode of the present invention The junction includes a contact 塾3i! 11 a plurality of extension electrodes 307 are mesh electrodes '• the system and the extension electrode 31=: == 2, wherein the contact pads 311 are disposed on the second electrical semiconductor/plural extension electrodes 312 Disperse two electrical semiconductor layers = joint structure, and limit the shape of the same with the temple = 'for example, can be radial, checkerboard

Si二 之網狀結構。藉由接觸墊311的傳導 :ΐ:=Γ電極312,並經由複數個延伸電極312 /電彳第二電性半導體層。 電極312與相鄰延伸電極313之開口間距係 201228019 例如2至7微米’並且電流分佈辅助結構32g係較佳位 2伸電極312與延伸電極3U之間的第二電性半導體 &並與第一電性半導體層形成歐姆接觸。再者,電 1佈辅助結構320可以各自獨立位於延伸電極312與 ί佈之間’或是相互連接成為整體結構。電流 刀,結構320之線寬可以例如為U 5微米,而盥 3相4〇鄰之延伸電極312、313具有〇至!微米的水平間隙 :奢繼續參照第3圖’本發明之發光二極 含反射層,形成於電流分佈辅助結構32〇上= 層330係設於電流分佈輔助結構320之至少一側並用來 7從發光層3G1產生至電流分佈辅助結構320的光 :。::,反射層330亦可同時設於電流分佈辅助結構 侧、下侧、左侧及右側。從發光層3〇1出發之 頭係代表光線可能的移動路徑,舉例來說,當電流分佈 輔助結構320係由不透光之導電材料組成時,藉由在: ^分佈輔助結構320表面形成反射層330,光線可^藉The mesh structure of Si II. The conduction through the contact pad 311 is: ΐ: = Γ electrode 312, and via the plurality of extension electrodes 312 / 彳 the second electrical semiconductor layer. The opening distance between the electrode 312 and the adjacent extension electrode 313 is 201228019, for example, 2 to 7 micrometers, and the current distribution auxiliary structure 32g is a second electrical semiconductor between the extension electrode 312 and the extension electrode 3U. An electrically semiconductor layer forms an ohmic contact. Furthermore, the electrical auxiliary structures 320 may be independently located between the extended electrodes 312 and ί or interconnected to form a unitary structure. For current knives, the line width of structure 320 can be, for example, U 5 microns, while the 盥 3 phase 4 adjacent extension electrodes 312, 313 have a 〇 to! The microscopic horizontal gap: the luxury continues with reference to Fig. 3 'the light-emitting diode-containing reflective layer of the present invention, formed on the current distribution auxiliary structure 32 = = the layer 330 is disposed on at least one side of the current distribution auxiliary structure 320 and is used for 7 The light-emitting layer 3G1 generates light to the current distribution auxiliary structure 320:. :: The reflective layer 330 can also be disposed on the side, the lower side, the left side, and the right side of the current distribution auxiliary structure. The head line starting from the light-emitting layer 3〇1 represents a possible moving path of the light. For example, when the current distribution assisting structure 320 is composed of an opaque conductive material, a reflection is formed on the surface of the distribution auxiliary structure 320. Layer 330, light can be borrowed

So反部:專遞’減少光線被電流分佈輔助結構 〇阻擋吸收,進而增加了出光的效果。換言之 射f 設於電流分佈辅助結構320.之-側時,可^ t取出效率。並且,電流分佈辅助結構32。在垂直; 向上與網狀電極之延伸電極312具有一段距 相鄰之延伸電極312在水 ,5時^、 3 4 0,因而光線均可以由這些間射至 I /水平間隙 流分佈輔助結構320也可以利用透光之導電材^成電 201228019 例如為氧化銦錫(ITO)或氧化鋅(ZnO)。當電流分佈輔助 結構320由透光之導電材料組成時,光線可以直接穿透 電流分佈輔助結構320而不至於被阻擋吸收,因而可以 不需要在電流分佈輔助結構320之表面形成反射層 330,且光取出效率可以更進一步提昇。於本發明實施例 中,基板300相對於磊晶結構310之另一侧,更可選擇 性地沉積一反射層360,以利於射向基板300的光線經 反射層360反射後出光。 ® 請參閱第8圖,第8圖係為本發明之發光二極體結 構之第四實施例之剖面示意圖。圖中,發光二極體結構 係包含基板300、磊晶結構310、第一電性電極306、第 二電性電極307、電流分佈輔助結構320以及介電層 350。其中’轰晶結構310包含發光層301、第一電性半 導體層304及第二電性半導體層305。第一電性半導體 層304位於基板300上,發光層301位於第一電性半導 體層304上’第二電性半導體層305位於發光層3〇1上。 ® 於本實施例中’第一電性例如為N型,第二電性例如為 P型。第一電性電極306係與第一電性半導體層3〇4電 性連接,並且第二電性電極3〇7係與第二電性半導體層 305電性連接。於本實施例中,第二電性電極3〇7係^ 網狀結構,網狀電極包含接觸墊(contactpad)以及複數個 延伸電極。本發明實施例大致類似於第一實施例,其 要不同在於:為了增加出光效果,在第二電性電極 上可以選擇性的沉積介電層350,介電層350之折射 較佳係低於第二電性半導體層305之折射率,並高於^ 201228019 裝膠材或空氣的折射率。介 氮化石夕。值得注意的是,介 ^如二氧化石夕或 覆蓋第二電性電極:二不限於需要完全 電性電極307’若是完全覆蓋第 時’可以藉由例如微影蝕刻的方式定義接觸=極307 的區域,以利第一電m 塾(未%示) 乐一電性電極307的電性連接。此冰^ :爲光效果亦可在第二電性電極3G7上沉積透2 未繪示),透明導電層(未繪示)係例如氧化銦錫2 二透:果導電層(未繪示)具有透光效果,所以So Counter: The special delivery 'reduced light is blocked by the current distribution auxiliary structure 〇, which increases the light output. In other words, when the shot f is set on the side of the current distribution assisting structure 320., the efficiency can be taken out. And, the current distribution assist structure 32. In the vertical direction, the extension electrode 312 of the mesh electrode has a distance from the adjacent extension electrode 312 in the water, at 5 o'clock, and 340, so that the light can be radiated from the intervening to the I/horizontal gap flow distribution auxiliary structure 320. It is also possible to use a light-transmissive conductive material to form electricity 201228019, for example, indium tin oxide (ITO) or zinc oxide (ZnO). When the current distribution auxiliary structure 320 is composed of a light-transmitting conductive material, the light can directly penetrate the current distribution auxiliary structure 320 without being blocked and absorbed, so that it is not necessary to form the reflective layer 330 on the surface of the current distribution auxiliary structure 320, and The light extraction efficiency can be further improved. In the embodiment of the present invention, a reflective layer 360 is selectively deposited on the other side of the epitaxial structure 310 to facilitate light emitted toward the substrate 300 to be reflected by the reflective layer 360. ® Referring to Figure 8, FIG. 8 is a cross-sectional view showing a fourth embodiment of the light-emitting diode structure of the present invention. In the figure, the light emitting diode structure comprises a substrate 300, an epitaxial structure 310, a first electrical electrode 306, a second electrical electrode 307, a current distribution auxiliary structure 320, and a dielectric layer 350. The 'bosonite structure 310' includes a light-emitting layer 301, a first electrical semiconductor layer 304, and a second electrical semiconductor layer 305. The first electrical semiconductor layer 304 is on the substrate 300, and the light-emitting layer 301 is on the first electrical semiconductor layer 304. The second electrical semiconductor layer 305 is located on the light-emitting layer 3.1. In the present embodiment, the first electrical property is, for example, an N-type, and the second electrical property is, for example, a P-type. The first electrical electrode 306 is electrically connected to the first electrical semiconductor layer 3〇4, and the second electrical electrode 3〇7 is electrically connected to the second electrical semiconductor layer 305. In this embodiment, the second electrical electrode 3〇7 is a mesh structure, and the mesh electrode includes a contact pad and a plurality of extension electrodes. The embodiment of the present invention is substantially similar to the first embodiment, except that in order to increase the light-emitting effect, the dielectric layer 350 can be selectively deposited on the second electrical electrode, and the refractive index of the dielectric layer 350 is preferably lower. The refractive index of the second electrical semiconductor layer 305 is higher than that of the ^201228019 adhesive or air. Intermittent nitriding stone. It is worth noting that, for example, the dioxide or the second electrical electrode is covered: the second is not limited to the need for the fully electrical electrode 307'. If it is completely covered, the contact can be defined by, for example, photolithography etching. The area is electrically connected to the first electric m 塾 (not shown). The ice can be deposited on the second electrical electrode 3G7 (not shown), and the transparent conductive layer (not shown) is, for example, indium tin oxide 2: transparent conductive layer (not shown) Has a light transmissive effect, so

構之第9圖’第9圖係為本發明之發光二極體結 /第貫她例之剖面示意圖。圖中,發光二極轉姓 係為一垂直電極式發光一 ~入·Η:_1 。 、°構 佈辅助結構32〇、ϋ=’包笛含基板3〇0、電流分 傅袅日日結構310、第一電性電極3〇6、 二:極Γ7以及介電層35〇。其中,蟲晶結構3Η) H ^ 體層3G4、第二電性半導體層305 及發光層301。第-電性半導體層綱位於基板雇上,Fig. 9 is a cross-sectional view showing the light-emitting diode junction/peripheral example of the present invention. In the figure, the illuminating dipole is a vertical electrode type illuminating one-input Η: _1. The structuring auxiliary structure 32 〇, ϋ = 'the whistle-containing substrate 3 〇 0, the current dividing 袅 day-and-day structure 310, the first electric electrode 3 〇 6, the second: the Γ 7 and the dielectric layer 35 〇. The insect crystal structure is 3 Η) H ^ bulk layer 3G4, the second electrical semiconductor layer 305, and the light-emitting layer 301. The first-electric semiconductor layer is located on the substrate,

發光層301位於第一電性半導體層3〇4上,第二電性 導體層305位於發光層3〇1上。於本實施例中,第一電 性例如為?型,第二電性例如為N型。例如,第一電性 半導體層304為P型氮化鎵系列材料層,第二電性半導 體層305為N型氮化鎵系列材料層,第一電性電極3〇6 為p型電極以及第二電性電極307 為N型電極。其中, 基板300之材質係例如矽、銅或碳化矽等導電基板。基 板300與第一電性半導體層3〇4之間係例如具有接合層 (未繪示)’接合層(未繪示)的材質係例如鈦/金。此外, 12 201228019 第一電性電極306係形成於第一電性半導體層3〇4相對 於基板300的另一面。接著在基板3〇〇上,依序沉積堆 疊第一電性半導體層3〇4、發光層301、第二電性半導體 層305以及具網狀結構之第二電性電極3〇7。第二電性 電極307之實施態樣類似於先前實施例,具有接觸墊及 複數個延伸電極,於此不再贅述。其中,電流分佈辅助 結構320係位於第二電性半導體層3〇5中,並與第二電 性半導體層305形成歐姆接觸。此外,在第二電性^極 3〇7上可以選擇性沉積介電層35〇,介電層35〇的折射率 係小於第二電性半導體層3G5e藉由第二電性電極3〇7 之多個延伸電極與多個電流分佈辅助結構32〇的搭配, 電流可以均勻地分佈於整個發光二極體結構,因而發 效率可以獲得提昇。 請^第1〇圖’第10圖係為本發明之發光二極體 Z 5 法之流程圖。第1〇圖令,步驟400係完成 二::之:光二極體結構在進行電流分佈辅助結構相關 I私别之製k步驟,包含提供一基板、一第一電性 =、-發光層以及第二電性半導體層之第-部份,其 弟一電性半導體層係P型半導體層及N型半導體之一 導體層係p型半導體廣及N型半導體層 # N 7 第—電性半導體層係例如p型氮化鎵 广 i氮化鎵層之一者,第二電性半導體層則為p型 =鎵或N型氮化鎵層之另—者。於此步驟中 ',第二電 2導體層之第-部份係具㈣二電 厚度,錄厚度之第二電性何縣,可”齡^輔 13 201228019 製程完成後再形成。接著步驟410至43〇係進行 之=佈辅助結構相關製造步驟。步驟410係在步驟4〇〇 電流導體層之第—部份上,湘光岐義預設 及银刻的助結構之形狀及位置。詳細來說,利用微影 /的方式,在欲形成電流分佈辅助結構的位置, 地移除第二電性半導體層,以曝露出 料声於暖ί導層之該些部份。步驟42G係沉積導電材 "曰道曝路出之第二半導體層及未移除之光阻上。換言 2夕材料層之一部分係沉積在已經定義好位置及形 :之曝露出的第二電性半導體層上,另一部份係= 未移除之光阻Μμ _. ’、積在 J ,而與電&为佈辅助結構預設位置上 的導電材枓層具有一高度段差。 以及^二t鄉43 〇係利用剝離法(Uft猶)去除該光阻 0,刺用、ί ί的導電材料層。在這邊要特別提到的 ;材料層之:定ίί電材料層的形狀跟位置以及沉積導 阻的位^ ίΐ導材料層同時沉積在有光阻和沒有光 ' 此時,透過剝離法去除光阻,位於沒 的位置的導電層就會遺留^汉有先阻 被去除。如此—來’遺留;來== 結i。導體層上的導電材料層形成了電流分佈輔助 产於電接Γ係提供第二電性半導體層之第二部 結構與第二電性半導體層之第-部份 化鎵i及N型二性半導體層之第二部份係例如P型氮 化錄滑及氮化錄I# 稣層之另一者,而具有一第二厚度。 201228019 換言之,第二電性半導體層係由第 組成’並且電流分佈輔助結構係 厚度所 中。最後,形成第-電性電極 、一導體層 係提供具網狀結構之第二電電/電極。步骤450 上,亚與第二電性半導體層電+=層 極與第-電性半導體層電性 及第—電性電 P型電極及N型電極之—者 電性電極係 及Ν型電極之另一者。於:f :„係Ρ型電極 •電極之前,更包含移除部份之第二電性4::: 半導體層以曝露出部份之=半= 與第-電性半導體層電=於=,半導體層上而 板為導電基板,第一電性電:二=中:若基 一電性半導體層之另—侧上,=^成在基板相對於第 性連接。 並與第一電性半導體層電 .離本二t所ΐ僅為舉例性’而非為限制性者。任何未脫 更均應包含於後附之申請專利範圍中。 、 【圖式簡單說明】 構之:二為美國專利(us 6,291,839)之網狀電極結 圖 第2圖係為第1圖中沿著a_a, 剖面線之剖面示意 15 201228019 第3圖係為本發明之發光二極體結構之第一實施 例之剖面示意圖。 第4圖係為本發明之發光二極體結構之第一實施 例之電流分佈示意圖。 第5圖係為本發明之發光二極體結構之網狀電極 與電流分佈輔助結構上視示意圖。 第6圖係為本發明之發光二極體結構之第二實施 例之網狀電極與電流分佈輔助結構上視示意圖。只 第7圖係為本發明之發光二極體結構之第三實施 例之網狀電極與電流分佈輔助結構上視示意圖。 第8圖係為本發明之發光二極體結構之第四實施 例之剖面示意圖。 第9圖係為本發明之發光一極體結構之第五實施 例之剖面示意圖。 第10圖係為本發明之發光二極體結構之製造方法 之流程圖。 【主要元件符號說明】 200 : P型半導體層 210 :開口 220 :主動層 230 :網狀電極 300 .基板 3〇1 :發光層 302 :第一電性半導體層 201228019The light-emitting layer 301 is located on the first electrical semiconductor layer 3〇4, and the second electrical conductor layer 305 is located on the light-emitting layer 3〇1. In this embodiment, the first electrical property is, for example? The second electrical property is, for example, an N type. For example, the first electrical semiconductor layer 304 is a P-type gallium nitride series material layer, the second electrical semiconductor layer 305 is an N-type gallium nitride series material layer, and the first electrical electrode 3〇6 is a p-type electrode and The two electric electrodes 307 are N-type electrodes. The material of the substrate 300 is a conductive substrate such as tantalum, copper or tantalum carbide. Between the substrate 300 and the first electrical semiconductor layer 3A, for example, a material having a bonding layer (not shown) bonding layer (not shown) is, for example, titanium/gold. Further, 12 201228019 The first electrical electrode 306 is formed on the other surface of the first electrical semiconductor layer 3〇4 with respect to the substrate 300. Next, on the substrate 3, the first electrical semiconductor layer 3?4, the light-emitting layer 301, the second electrical semiconductor layer 305, and the second electrical electrode 3?7 having a mesh structure are sequentially deposited. The second electrical electrode 307 is similar to the previous embodiment in that it has a contact pad and a plurality of extended electrodes, and details are not described herein. The current distribution auxiliary structure 320 is located in the second electrical semiconductor layer 3〇5 and is in ohmic contact with the second electrical semiconductor layer 305. In addition, a dielectric layer 35〇 can be selectively deposited on the second electrical gate 3〇7, and the dielectric layer 35〇 has a smaller refractive index than the second electrical semiconductor layer 3G5e by the second electrical electrode 3〇7 The combination of the plurality of extension electrodes and the plurality of current distribution auxiliary structures 32A, the current can be evenly distributed throughout the light-emitting diode structure, and thus the efficiency can be improved. Please refer to Fig. 10, which is a flow chart of the light-emitting diode Z 5 method of the present invention. In the first step, the step 400 is completed in two steps:: the photodiode structure is in the process of performing the current distribution auxiliary structure, and comprises providing a substrate, a first electrical=, and a light emitting layer. a first portion of the second electrical semiconductor layer, the first electrical semiconductor layer, a P-type semiconductor layer, and an N-type semiconductor, a conductor layer, a p-type semiconductor, and an N-type semiconductor layer #N 7 The layer is one of a p-type gallium nitride wide i-GaN layer, and the second electrical semiconductor layer is a p-type = gallium or N-type gallium nitride layer. In this step, 'the second part of the second electric 2 conductor layer (4) two electrical thickness, the second thickness of the recording thickness of the county, can be formed after the completion of the process of the age of 12 201228019. Then step 410 The manufacturing process is related to the fabric-assisted structure of step 43. Step 410 is the shape and position of the auxiliary structure of the phosphorescent pre-determination and silver engraving on the first part of the current conductor layer in step 4. In the lithography manner, the second electrical semiconductor layer is removed at a position where the current distribution auxiliary structure is to be formed to expose the portions of the heater layer. Step 42G deposition The conductive material " is exposed to the second semiconductor layer and the unremoved photoresist. In other words, one part of the material layer is deposited in a defined position and shape: the second electrical semiconductor layer exposed On the other part, the unremoved photoresist Μμ_. ', accumulates in J, and has a height difference between the conductive layer and the conductive layer at the preset position of the cloth auxiliary structure. Township 43 〇 system uses the stripping method (Uft Ju) to remove the photoresist 0, puncture, ί ί conductive The material layer is specially mentioned here; the material layer is: the shape and position of the layer of the electric material and the position of the deposition resistance. The layer of the conductive material is deposited at the same time as the photoresist and no light. The stripping method removes the photoresist, and the conductive layer located at the non-existent position will be removed. This is the result of the 'remaining; to == junction i. The conductive material layer on the conductor layer forms a current distribution to assist the production. The second portion of the second electrical semiconductor layer and the second portion of the first partial gallium i and N type semiconductor layer of the second electrical semiconductor layer are, for example, P-type nitride The other one of the sliding layer and the nitride layer has a second thickness. 201228019 In other words, the second electrical semiconductor layer is composed of the first component 'and the current distribution auxiliary structure thickness. Finally, the first is formed. The electric electrode and the one conductor layer are provided with a second electric/electrode having a mesh structure. In step 450, the sub- and second electric semiconductor layers are electrically +=layer and the first electric semiconductor layer and the first Electroelectric P-type electrode and N-type electrode - electrical electrode system and Ν type electricity The other one. In: f : „ Ρ Ρ 电极 • • 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 : : : : : : : : : The semiconductor layer is electrically ==, the semiconductor layer is on the board and the board is a conductive substrate, and the first electrical circuit is: 2 = medium: if the other side of the base-electric semiconductor layer is on the side, the substrate is connected to the first. And the first electrical semiconductor layer is electrically isolated from the present invention and is merely exemplary and not limiting. Any un-extraction should be included in the scope of the patent application attached. [Simple description of the diagram] The structure: The second is the mesh electrode junction diagram of the US patent (us 6,291,839). The second diagram is the a-a along the a-a in the first diagram, and the section of the section line is shown. 15 201228019 A schematic cross-sectional view of a first embodiment of a light emitting diode structure of the present invention. Fig. 4 is a schematic view showing the current distribution of the first embodiment of the structure of the light-emitting diode of the present invention. Fig. 5 is a top view showing the mesh electrode and current distribution auxiliary structure of the light emitting diode structure of the present invention. Fig. 6 is a top plan view showing a mesh electrode and a current distribution assisting structure of a second embodiment of the structure of the light emitting diode of the present invention. Only Fig. 7 is a schematic top view of the mesh electrode and current distribution auxiliary structure of the third embodiment of the light emitting diode structure of the present invention. Fig. 8 is a schematic cross-sectional view showing a fourth embodiment of the structure of the light-emitting diode of the present invention. Fig. 9 is a schematic cross-sectional view showing a fifth embodiment of the light-emitting diode structure of the present invention. Fig. 10 is a flow chart showing a method of manufacturing the light-emitting diode structure of the present invention. [Description of main component symbols] 200: P-type semiconductor layer 210: opening 220: active layer 230: mesh electrode 300. substrate 3〇1: light-emitting layer 302: first electrical semiconductor layer 201228019

303 第二電性半導體層 304 第一電性半導體層 305 第二電性半導體層 306 第一電性電極 307 第二電性電極 310 蟲晶結構 311 接觸墊 312 延伸電極 313 延伸電極 320 電流分佈輔助結構 330 反射層 340 水平間隙 350 介電層 360 反射層 400 步驟 410 步驟 420 步驟 430 步驟 440 步驟 450 步驟 17303 second electrical semiconductor layer 304 first electrical semiconductor layer 305 second electrical semiconductor layer 306 first electrical electrode 307 second electrical electrode 310 crystal structure 311 contact pad 312 extension electrode 313 extension electrode 320 current distribution assistance Structure 330 Reflective Layer 340 Horizontal Gap 350 Dielectric Layer 360 Reflective Layer 400 Step 410 Step 420 Step 430 Step 440 Step 450 Step 17

Claims (1)

201228019 七、申請專利範圍: 1. 一種發光二極體結構,包含: 一基板; 一磊晶結構,位於該基板上,包含: 一第一電性半導體層位於該基板上; 一發光層位於該第一電性半導體層上;以及 一第二電性半導體層位於該發光層上; 一第一電性電極,與該第一電性半導體 接; 一第二電性電極,位於該第二電性半導體層上並 與該第二電性半導體層電性連接;以及 一電流分佈輔助結構,位於該發光層與該第二電 性電極之間,並與至少部份該第二電性半導體層電性 連接。 2_,申请專利|巳圍帛1項所述之發光二極體結構,其中 忒第一電性半導體層為N型氮化鎵系列材料層,該第 二電性半導體層為P型氮化鎵系列材料層。 如申切專利I巳圍第j項所述之發光二極體結構,其中 該第-電性半導體層為p型氮化鎵系列材料層,該第 一電性半導體層為N型氮化鎵系列材料層。 =申明專利fen第1項所述之發光二極體結構,其中 =第广電性電極包含一接觸墊及複數個延伸電極,其 5亥些延伸電極係與該接觸墊電性連接,該些延伸 201228019 電極形成一網狀結構。 5· $申晴專利範圍第4項所述之發光二極體結構,更包 含一介電層,該介電層係設於該第二電性電極上其 中,該介電層之折射率係小於該第二電性半導體層。、 如申明專利範圍第4項所述之發光二極體結構,其中 該些延伸電極之線寬係小於等於2微米。 7. 如申請專利範圍第4項所述之發光二極體結構,其中 # 該些延伸電極之間距係2至7微米。 8. 如申明專利範圍第丨項所述之發光二極體結構,盆中 該電流分佈辅助結構係位於該第二電性半導體層之 中並與該第二電性半導體層形成歐姆接觸。a 9. 如申请專利範圍第8項所述之發光二極體結構, 該電流分佈辅助結構係位於該些延伸電極相鄰 之間。 咱 1G.如巾料利範圍第9項所述之發光二極體結構,其 該電/爪刀佈辅助結構與相鄰該些延伸電極复中之一 者具有—水平間隙,該水平間隙之長度係〇至、W米一。 11.如申請專利範圍第9項所述之發光二極體結構,^中 该電流分佈辅助結構之寬度係1至5微米。、 12^申請專利範圍第9項所述之發光二極體結構 1:反射層’該反射層係設於該電流分佈辅助結構: 13.如申請專利範圍第8項所述之發光二極體結構,其中 201228019 S電々"佈II助結構係為複數個獨立結構。 14.:::!^利範圍第8項所述之發光二極體結構,其中 U抓刀佈辅助結構係為一相互連接之整體結構。 該圍第1項所述之發光二極體結構,其中 。甫助結構係 Ni/AU、Ni/Ag、Ni/Au/Ni 或 16·如申請專利筋圖 詨雷泣八圍第項所述之發光二極體結構,其中 …瓜刀佈輔助結構係一透明導電氧化物薄膜。 17· 一種發光二極體結構之製造方法,包含: 提供基板、一第一電性半導體層、一發光層及 一第二電性半Iθ 知尤層以及 體層係PS半導卩份,其巾該第—電性半導 性半導體N型半導體層之—者、該第二電 曰’、型半導體層及Ν型半導體層之另一者; 性半二V上光阻定義-預設之形狀及位置於該第二電 阻上 沉積—導電㈣層於該第二魏何體層及該光 電材去除該光阻以及位於該総上的該導 料層二:第電:電:導半體=層:第二部份於該導電材 电Γ生牛導體層之第一部份上;以及 提供一第一電性電極 性電極係與該第-電.…電二電且極該第該—第電一: 20 201228019 ,其中,該第二 ,遐箱構之 前 製二述之發光二; 移除部份之該第二電性半導極之前’更包含 層’該第-電性電極係形成於該/ 」生半導體 而與該第一電性半導體層電性°連接H _導體層上201228019 VII. Patent application scope: 1. A light-emitting diode structure comprising: a substrate; an epitaxial structure on the substrate, comprising: a first electrical semiconductor layer on the substrate; a light-emitting layer is located on the substrate a first electrical semiconductor layer is disposed on the light emitting layer; a first electrical electrode is connected to the first electrical semiconductor; and a second electrical electrode is located in the second electrical And electrically connected to the second electrical semiconductor layer; and a current distribution auxiliary structure between the light emitting layer and the second electrical electrode, and at least a portion of the second electrical semiconductor layer Electrical connection. 2_, the patent application of the light-emitting diode structure described in the above, wherein the first electrical semiconductor layer is an N-type gallium nitride series material layer, and the second electrical semiconductor layer is a P-type gallium nitride layer. Series material layer. The light-emitting diode structure according to the above-mentioned item, wherein the first electrical semiconductor layer is a p-type gallium nitride series material layer, and the first electrical semiconductor layer is an N-type gallium nitride layer. Series material layer. The illuminating diode structure of claim 1, wherein the galvanic electrode comprises a contact pad and a plurality of extension electrodes, wherein the extension electrodes are electrically connected to the contact pads. Extension 201228019 The electrodes form a network structure. 5. The light-emitting diode structure of claim 4, further comprising a dielectric layer, wherein the dielectric layer is disposed on the second electrical electrode, and the refractive index of the dielectric layer Less than the second electrical semiconductor layer. The light-emitting diode structure of claim 4, wherein the extension electrodes have a line width of less than or equal to 2 micrometers. 7. The light-emitting diode structure of claim 4, wherein #the extension electrodes are between 2 and 7 microns apart. 8. The light-emitting diode structure of claim 2, wherein the current distribution auxiliary structure is located in the second electrical semiconductor layer and forms an ohmic contact with the second electrical semiconductor layer. A 9. The light-emitting diode structure of claim 8, wherein the current distribution auxiliary structure is located adjacent to the plurality of extension electrodes.发光1G. The light-emitting diode structure of claim 9, wherein the electric/claw cloth auxiliary structure and one of the adjacent ones of the extension electrodes have a horizontal gap, the horizontal gap The length is 〇 to W, one meter. 11. The light-emitting diode structure according to claim 9, wherein the current distribution auxiliary structure has a width of 1 to 5 μm. 12) The light-emitting diode structure described in claim 9 is: a reflective layer is disposed in the current distribution auxiliary structure: 13. The light-emitting diode according to claim 8 The structure, in which the 201228019 S electric 々 " cloth II assisted structure is a plurality of independent structures. 14.:::! ^ The range of the light-emitting diode structure described in item 8, wherein the U-grip cloth auxiliary structure is an interconnected integral structure. The light-emitting diode structure described in the first item, wherein. The auxiliary structure is Ni/AU, Ni/Ag, Ni/Au/Ni or 16· as claimed in the patent claim 筋 詨 詨 八 八 八 第 第 第 第 , , , , , , , , , , , Transparent conductive oxide film. 17. A method of fabricating a light-emitting diode structure, comprising: providing a substrate, a first electrical semiconductor layer, a light-emitting layer, and a second electrical half Iθ layer and a bulk layer PS semi-conductive portion, The other one of the first electrical semiconducting semiconductor N-type semiconductor layer, the second electrical 曰', the semiconductor layer, and the Ν-type semiconductor layer; the half-V-light resist definition - a predetermined shape And depositing a conductive (four) layer on the second resistor to the second Weihe body layer and the photo-electric material to remove the photoresist and the conductive layer on the crucible: electricity: electricity: guiding halves = layer The second portion is disposed on the first portion of the conductive material layer of the electric conductor; and providing a first electrical electrode electrode system and the first electric battery and the second electric Electric one: 20 201228019, wherein the second, the second box of the 遐 box is made of the second illuminating light; before the second electric semi-conducting electrode is removed, the 'more containing layer' is formed by the first electric electrode system And the semiconductor is electrically connected to the first electrical semiconductor layer and connected to the H_conductor layer 21twenty one
TW99144441A 2010-12-17 2010-12-17 Light emitting diode structure and method for manufacturing the same TW201228019A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW99144441A TW201228019A (en) 2010-12-17 2010-12-17 Light emitting diode structure and method for manufacturing the same
CN2011100422813A CN102544284A (en) 2010-12-17 2011-02-22 Light emitting diode structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99144441A TW201228019A (en) 2010-12-17 2010-12-17 Light emitting diode structure and method for manufacturing the same

Publications (1)

Publication Number Publication Date
TW201228019A true TW201228019A (en) 2012-07-01

Family

ID=46350715

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99144441A TW201228019A (en) 2010-12-17 2010-12-17 Light emitting diode structure and method for manufacturing the same

Country Status (2)

Country Link
CN (1) CN102544284A (en)
TW (1) TW201228019A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112670386B (en) * 2020-12-31 2022-09-20 深圳第三代半导体研究院 Light emitting diode and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7041529B2 (en) * 2002-10-23 2006-05-09 Shin-Etsu Handotai Co., Ltd. Light-emitting device and method of fabricating the same
CN101689587B (en) * 2007-06-15 2012-04-25 罗姆股份有限公司 Semiconductor light-emitting device
JP5077224B2 (en) * 2008-12-26 2012-11-21 豊田合成株式会社 Group III nitride semiconductor light emitting device and method for manufacturing the same
JP5237854B2 (en) * 2009-02-24 2013-07-17 パナソニック株式会社 Light emitting device

Also Published As

Publication number Publication date
CN102544284A (en) 2012-07-04

Similar Documents

Publication Publication Date Title
TWI599074B (en) Light emitting device
JP5715686B2 (en) Nitride semiconductor ultraviolet light emitting device
US8735185B2 (en) Light emitting device and fabrication method thereof
TWI378569B (en) Photonic crystal light emitting device
CN102804417B (en) Contact for light emitting semiconductor device
WO2012144046A1 (en) Nitride semiconductor ultraviolet light-emitting element
TW201225334A (en) Optoelectronic device and method for manufacturing the same
JP5713856B2 (en) Light transmissive metal electrode, electronic device and optical element
TW201216532A (en) Light-emitting diode structure and method for manufacturing the same
US20140183590A1 (en) Nitride semiconductor light emitting device and method of manufacturing the same
JP2008091862A (en) Nitride semiconductor light emitting device, and manufacturing method of nitride semiconductor light emitting device
KR101228130B1 (en) Semiconductor light-emitting element, manufacturing method, and light-emiting device
US9362449B2 (en) High efficiency light emitting diode and method of fabricating the same
US20150311400A1 (en) Light-emitting device
TW201214771A (en) Light emitting device, light emitting device package, and lighting device
JP2011040739A (en) Vertical light emitting diode and manufacturing method of the same
JP2011060966A (en) Light-emitting device
TW201212287A (en) Semiconductor light emitting device and method for manufacturing the semiconductor light emitting device
TW201110417A (en) Epitaxial substrate, light-emitting element, light-emitting device, and method for producing epitaxial substrate
TWI657595B (en) Optoelectronic semiconductor device
KR101018280B1 (en) Vertical Light Emitting Diode and manufacturing method of the same
KR101239852B1 (en) GaN compound semiconductor light emitting element
TW201228019A (en) Light emitting diode structure and method for manufacturing the same
TW201005991A (en) Light-emitting diode device and method for manufacturing the same
KR101205831B1 (en) Semiconductor light emitting device and manufacturing method of the same