TW201211256A - Erythropoietin-expressing adipose cell populations - Google Patents

Erythropoietin-expressing adipose cell populations Download PDF

Info

Publication number
TW201211256A
TW201211256A TW100120587A TW100120587A TW201211256A TW 201211256 A TW201211256 A TW 201211256A TW 100120587 A TW100120587 A TW 100120587A TW 100120587 A TW100120587 A TW 100120587A TW 201211256 A TW201211256 A TW 201211256A
Authority
TW
Taiwan
Prior art keywords
cells
cell population
epo
population
renal
Prior art date
Application number
TW100120587A
Other languages
Chinese (zh)
Inventor
Joydeep Basu
Christopher W Genheimer
John W Ludlow
Sarah F Quinlan
Namrata D Sangha
Roger Ilagan
Kelly I Guthrie
Russell W Kelley
Sharon C Presnell
Thomas Spencer
Timothy A Bertram
Deepak Jain
Original Assignee
Tengion Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tengion Inc filed Critical Tengion Inc
Publication of TW201211256A publication Critical patent/TW201211256A/en

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The present invention relates to isolated cell populations derived from adipose tissue that express erythropoietin (EPO).

Description

201211256 六、發明說明: 【發明所屬之技術領域】 本發明與衍生自脂肪組織的表現紅血球生成素(EPO)的分離 的細胞群體有關。 [先前技術] 慢性腎臟疾病(CKD)影響美國的超過1900萬人,通常是 包括肥胖、糖尿病和高血壓的代謝失調的結果。對資料的檢查揭 示,增加的速率是由於高血壓和非胰島素依賴型糖尿病(NIDDM) 繼發的腎衰竭的發展(United States Renal Data System: Costs of CKD and ESRD (美國腎資料系統:CKD和ESRD的代價). Bethesda, MD, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases 編著,2007 pp 223-238)——這兩種疾病也在世界範圍增加。藉由目標是控制潛 在的疾病狀態的改變生活方式和藥理學介入來控制處於進展的 1-3期的CKD患者,而藉由透析和藥物方案來控制處於4-5期的 患者,該藥物方案通常包括抗高血壓藥、紅血球生成刺激劑 (ESA)、鐵和維生素D補充。慢性腎衰竭在人類以及一些家畜中 常見。患有腎衰竭的患者不僅經歷腎功能的喪失(尿毒症),而且 發展貧血,因爲骨髓不能夠經由紅血球生成產生足量的紅血球 (RBC )。紅血球恒定性取決於腎中駐留的特化的間質成纖維細胞 的紅血球生成素(EP0)的產生和骨髓中定靶的前驅紅血球回應 於EP0並製造更多RBC的能力二者。腎衰竭的貧血是由於腎中 156850.doc 201211256 EPO的產生減少和尿毒性因子對在骨髓中EPO的作用的負效應二 者。 目前,治療慢性腎衰竭的臨床方法包括透析和腎移植以恢復 腎過濾和尿產生,系統遞送重組EPO或EPO類似物以恢復紅血 球品質(erythroid mass )。臨床前硏究已經檢查了由基因治療方法 產生的產生EPO的細胞的體內效力和安全性。然而,需要提供實 質和持久的腎功能增加的新的治療範例,以減慢疾病進程並改進 這一患者群體的生活品質,同時減少每年對醫學保健體系造成的 費用負擔。再生醫學技術可提供對CKD的下一代的治療選擇。公 認脂肪是內分泌器官,具有顯著的代謝生物活性。脂肪組織包括 脂肪細胞' 血管酿細胞 '外膜細胞 '成纖維細胞 '巨噬細胞' 幹細胞、具有MSC-樣生物活性的前驅和平滑肌-樣細胞(Crisan,Μ 等,Cell Stem Cell 3, 301,2008 ; da Silva Meirelles,L 等,J Cell Sci 119, 2204, 2006 ; Lin,G 等,Stem Cells Dev 17, 1053, 2008 ; Basu,J 等,Tissue Eng Part C,In Press,2011 )。這其中,目前正積極地開 發MSC-樣和平滑肌-樣細胞群體在組織工程和再生醫學中的應用 (Basu, J.和 Ludlow, J.W. Trends Biotechnol 28, 526, 2010 ; Basu,J 等,Tissue Eng Part C Methods,2011 May 19 [Epub ahead of print)。在更高位準,脂肪組織可基於白色還是棕色脂肪細胞佔優 勢而分爲白色或棕色。白色脂肪細胞代表脂肪組織中主要的脂質 儲存媒介,而棕色脂肪細胞負責介導脂質代謝,因此相應地在粒 線體中富集。可發現脂肪組織廣泛地遍及身體地分佈,作爲獨特 156850.doc 201211256 的、區域特異性儲庫(depot)。白色脂肪組織(WAT)的主要儲 庫是腹部皮下組織脂肪組織和內臟脂肪組織(SAT和VAT)。VAT 本身可進一步細分爲網膜、腸系膜、腹膜後、生殖腺和心包的儲 庫(Bjorndal,B 等,J Obes,2011,Volume 2011,Article ID 490650, 15 . pages ; Cook,Α·和 Cowan,C., Adipose (March 31,2009),StemBook , 編著· The Stem Cell Research Community )。脂肪庫的特徵爲結構組201211256 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to an isolated cell population derived from adipose tissue exhibiting erythropoietin (EPO). [Prior Art] Chronic kidney disease (CKD) affects more than 19 million people in the United States, usually as a result of metabolic disorders including obesity, diabetes, and hypertension. Examination of the data revealed that the rate of increase was due to the development of renal failure secondary to hypertension and non-insulin-dependent diabetes mellitus (NIDDM) (United States Renal Data System: Costs of CKD and ESRD (US Kidney Data System: CKD and ESRD) The price). Bethesda, MD, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2007 pp 223-238) - These two diseases are also increasing worldwide. Controlling stage 1-3 CKD patients with progressive lifestyle and pharmacological interventions that target potential disease states, while dialysis and drug regimens are used to control patients in stage 4-5. It usually includes antihypertensives, red blood cell stimulating agents (ESA), iron and vitamin D supplements. Chronic renal failure is common in humans as well as in some livestock. Patients with renal failure not only experience loss of renal function (uremia), but also develop anemia because the bone marrow cannot produce sufficient red blood cells (RBC) via red blood cell production. Red blood cell constancy depends on the production of erythropoietin (EP0) of specialized interstitial fibroblasts resident in the kidney and the ability of the targeted red blood cells in the bone marrow to respond to EP0 and produce more RBCs. Anemia of renal failure is due to a reduction in the production of EPO in the kidney and a negative effect of urinary toxic factors on the effects of EPO in the bone marrow. Currently, clinical methods for treating chronic renal failure include dialysis and kidney transplantation to restore renal filtration and urine production, and systemic delivery of recombinant EPO or EPO analogs to restore erythroid mass. Preclinical studies have examined the in vivo efficacy and safety of EPO-producing cells produced by gene therapy methods. However, new therapeutic paradigms of substantial and sustained increase in renal function are needed to slow the progression of the disease and improve the quality of life of this patient population, while reducing the annual burden on the medical care system. Regenerative medicine technology can provide the next generation of treatment options for CKD. The recognized fat is an endocrine organ with significant metabolic biological activity. Adipose tissue includes adipocytes 'angiogenic cells' outer membrane cells 'fibroblasts 'macrophage' stem cells, precursors of MSC-like biological activity and smooth muscle-like cells (Crisan, et al, Cell Stem Cell 3, 301, 2008; da Silva Meirelles, L et al, J Cell Sci 119, 2204, 2006; Lin, G et al, Stem Cells Dev 17, 1053, 2008; Basu, J et al, Tissue Eng Part C, In Press, 2011). Among them, the application of MSC-like and smooth muscle-like cell populations in tissue engineering and regenerative medicine is currently actively being developed (Basu, J. and Ludlow, JW Trends Biotechnol 28, 526, 2010; Basu, J et al., Tissue Eng Part C Methods, 2011 May 19 [Epub ahead of print). At a higher level, adipose tissue can be divided into white or brown based on whether white or brown fat cells predominate. White adipose cells represent the major lipid storage media in adipose tissue, while brown adipose cells are responsible for mediating lipid metabolism and are therefore enriched accordingly in the mitochondria. Adipose tissue can be found to be widely distributed throughout the body as a unique region-specific depot of 156850.doc 201211256. The main reservoirs of white adipose tissue (WAT) are abdominal subcutaneous tissue adipose tissue and visceral adipose tissue (SAT and VAT). VAT itself can be further subdivided into reservoirs of omentum, mesentery, retroperitoneum, gonads and pericardium (Bjorndal, B et al, J Obes, 2011, Volume 2011, Article ID 490650, 15 . pages; Cook, Α· and Cowan, C. , Adipose (March 31, 2009), StemBook, edited by The Stem Cell Research Community). Fat store

織、轉錄體學、蛋白體學和分泌體學表現型(expressionprofile) 和生物功能的獨特模式。例如,由內臟、皮下和生殖腺脂肪儲庫 產生的分泌組(secretome )是對來源特異性的(Roca-Rivada,A等, JProteomics 74(7): 1068-1079, 2011)。進一步,藉由對帶有人源化 脂蛋白譜的轉基因小鼠的轉錄體學和脂質體學分析已經觀察到皮 下、附睾和腸系膜脂肪之間的顯著功能差異(Caesar,R等,PLoS One 5(7):ell525, 2010)。最後,具有MSC-樣生物活性的脂肪衍生 基質細胞的多譜系分化潛力顯示爲依賴於來源的儲庫(Levi, B 等,Plast Reconstr Surg 126, 822, 2010 ; Schipper,B.M 等,Ann PlastA unique pattern of weaving, transcriptomics, proteomics, and expression profiles and biological functions. For example, the secretome produced by the visceral, subcutaneous, and gonad fat reservoirs is source specific (Roca-Rivada, A et al, JP Rotomicics 74(7): 1068-1079, 2011). Further, significant functional differences between subcutaneous, epididymal and mesenteric fat have been observed by transcriptomics and liposome analysis of transgenic mice with humanized lipoprotein profiles (Caesar, R et al, PLoS One 5 ( 7): ell525, 2010). Finally, the multi-lineage differentiation potential of MSC-like biologically active adipose-derived stromal cells appears to be a source-dependent reservoir (Levi, B et al, Plast Reconstr Surg 126, 822, 2010; Schipper, B.M, et al., Ann Plast

Surg 60, 538, 2008)。儘管有這些系統性觀察結果,與單獨器官相 , 關的脂肪之間轉錄體學、蛋白質體學和功能差異的分析和表徵仍 - 待硏究。更具體地’理解衍生自不同來源的實體器官相關脂肪的 基質細胞展示的再生潛力變化,可能顯著地影響定靶這些器官的 組織工程和再生醫學(TE/RM)產物的開發。 【發明內容】 本發明涉及衍生自從身體任何適當脂肪來源獲得的脂肪組織 156850.doc 201211256 的細胞群體。在一個實施方案中,該細胞群體是表現紅血球生成 素(EPO)的分離的脂肪細胞群體。脂肪組織的適當來源包括但 不限於:心臟脂肪、肝臟脂肪、皮下脂肪、腹部或內臟脂肪、白 色脂肪、棕色S旨肪和腎脂肪。在一個實施方案中,表現EPO的細 胞群體可衍生自腎脂肪組織。該細胞群體可衍生自腎蒂脂肪組織 (renal pedicle adipose tissue )和/或腎盞脂肪組織。在一個其它實 施方案中,該細胞群體可衍生自脂肪基質血管部分(SVF)。 在另一實施方案中,該細胞群體還表現VEGF 〇 EP0及/或 VEGF的表現是低氧調節的表現。在一個其它實施方案中,該細 胞群體表現EP0 $專錄本和/或EP0多肽。在另一實施方案中,該 細胞群體表現VEGF轉錄本及/或VEGF多肽。 在一個其它實施方案中,S旨肪衍生細胞群體表現的EP0多肽 的特徵是不同於非脂肪細胞群體的轉譯後修飾。該非脂肪細胞群 體可選自以下組成的組:角質細胞、肝細胞和原代腎細胞。 在另一實施方案中,腎脂肪衍生細胞群體表現的EP0多肽的 特徵是不同於非腎脂肪細胞群體的轉譯後修飾。該非腎脂肪細胞 群體可選自以下組成的組:角質細胞、肝細胞、內臟脂肪基質細 胞和原代腎細胞。 在一些實施方案中,該腎脂肪衍生細胞群體差異地表現與腎 臟再生相關的生物標記。該生物標記的差異表現可以是增加的表 現。該生物標記可以是WT-1 〇該WT-1生物標記可以是可表現的 WT-1轉錄本,包括KTS+和/或KTS_轉錄本。該生物標記可以是 156850.doc 201211256 WT-1多肽。 在另一方面,本發明提供製備表現紅血球生成素(EPO)的 脂肪基質細胞群體的方法。在一個實施方案中,該方法包括消化 脂肪組織的步驟。該方法還可包括消耗被消化的脂肪細胞組織以 提供基質血管成分(SVF )的步驟。消耗步驟可在消化步驟之後進 行。SVF將包含表現EPO的脂肪基質細胞群體。在一個實施方案 中,脂肪組織可以是腎脂肪組織,表現EP0的腎脂肪基質細胞群 體是本文所述的腎源脂肪基質(KiSAS)細胞群體。 在一個其它方面,本發明提供向需要的受治療者提供用於改 進的腎功能的可植入建構物。在一個實施方案中,該建構物包含 生物相容性基質。在另一實施方案中,該建構物還具有表現沉積 到該基質表面上或包埋到該基質表面中的表現紅血球生成素 (EP0)的脂肪細胞群體。在一個其它實施方案中,表現EP0的 脂肪基質細胞群體是本文所述的KiSAS細胞群體。 在又一個方面,本發明提供治療需要的受治療者的腎病的方 法。在一個實施方案中,該方法包括向受治療者施用包含表現紅 血球生成素(EP0)的脂肪細胞群體的組合物的步驟。在另一實 施方案中,表現EP0的脂肪基質細胞群體是本文所述的KiSAS細 胞群體。 在一個其它方面,本發明提供藉由使用建構物治療需要的受 治療者的腎病的方法。在一個實施方案中,該方法包括向受治療 者施用建構物的步驟。該建構物可具有生物相容性基質。在另一 156850.doc 201211256 實施方案中,該建構物還可具有沉積到該基質表面上或包埋到該 基質表面中的表現紅血球生成素(EPO)的脂肪細胞群體。在一 個其它實施方案中,表現EPO的脂肪基質細胞群體是本文所述的 KiSAS細胞群體。 【實施方式】 本發明與衍生自脂肪組織的分離的細胞群體、分離該細胞群 體的方法、接種該細胞(建構物)的支架(scaffold )或基質(matrice ) 和製造該支架或基質的方法、和利用該細胞群體或建構物治療需 要的患者的方法有關。已經發現,衍生自脂肪組織基質血管成分 (SVF)的細胞群體表現紅血球生成素(EPOVEPO表現可以是 EP0轉錄本及/或EP0多肽的表現。該細胞群體還表現VEGF轉 錄本及/或VEGF多肽。EP0和/或VEGF的表現是低氧調節的表 現。該脂肪組織可來源於體內任何適當來源,包括但不限於心臟 脂肪、肝臟脂肪、皮下脂肪、內臟脂肪、白色脂肪、棕色脂肪。 在一個實施方案中,該脂肪組織可以是腎脂肪組織。該腎脂 肪衍生的細胞群體在本文可稱爲腎源脂肪基質(KiSAS)細胞群 體。KiSAS細胞群體表現EP0和血管內皮生長因子(VEGF )。發 現這種表現以低氧調節的方式發生。而且,發現該細胞表現對腎 脂肪來源的基質細胞具有特異性的腎原性轉錄因子WT1,還發現 腎中壁龕特異性脂肪儲庫可由不同WT1轉錄剪接變體界定。本發 明證明,脂肪組織是表現EP0的細胞的功能上獨特的儲庫,提供 了可用在腎的組織工程和再生療法中的細胞群體的替代細胞來 156850.doc 201211256 源。 1.定義 除非另外指明,否則本文使用的技術術語和科學術語具有本 發明所屬技術領域中具有通常知識者通常理解的相同含義。Surg 60, 538, 2008). Despite these systematic observations, the analysis and characterization of transcripts, proteomics, and functional differences between fats associated with individual organs remains to be seen. More specifically, understanding the changes in reproductive potential exhibited by stromal cell displays derived from solid organ-related fats from different sources may significantly affect the development of tissue engineering and regenerative medicine (TE/RM) products that target these organs. SUMMARY OF THE INVENTION The present invention relates to a population of cells derived from adipose tissue 156850.doc 201211256 obtained from any suitable fat source in the body. In one embodiment, the population of cells is an isolated population of adipocytes that exhibit erythropoietin (EPO). Suitable sources of adipose tissue include, but are not limited to, heart fat, liver fat, subcutaneous fat, abdominal or visceral fat, white fat, brown S fat, and kidney fat. In one embodiment, the population of cells expressing EPO can be derived from renal adipose tissue. The population of cells can be derived from renal pedicle adipose tissue and/or renal pelvis adipose tissue. In one other embodiment, the population of cells can be derived from a fatty matrix vascular fraction (SVF). In another embodiment, the population of cells also exhibits a manifestation of VEGF 〇 EP0 and/or VEGF as a manifestation of hypoxia regulation. In one other embodiment, the population of cells exhibits an EP0 $Special Record and/or an EPO polypeptide. In another embodiment, the population of cells exhibits a VEGF transcript and/or a VEGF polypeptide. In one other embodiment, the EPO polypeptide exhibited by the S-derived cell population is characterized by a post-translational modification that is different from the non-fat cell population. The non-fat cell population can be selected from the group consisting of keratinocytes, hepatocytes, and primary kidney cells. In another embodiment, the EPO polypeptide expressed by the population of renal adipose-derived cells is characterized by a post-translational modification that is different from the non-renal adipocyte population. The non-renal adipocyte population can be selected from the group consisting of keratinocytes, hepatocytes, visceral fat stromal cells, and primary kidney cells. In some embodiments, the population of renal adipose-derived cells differentially exhibits biomarkers associated with renal regeneration. The differential performance of the biomarker can be an increased performance. The biomarker can be WT-1. The WT-1 biomarker can be a exemplable WT-1 transcript, including a KTS+ and/or KTS_transcript. The biomarker can be 156850.doc 201211256 WT-1 polypeptide. In another aspect, the invention provides a method of preparing a population of adipose stromal cells that exhibit erythropoietin (EPO). In one embodiment, the method includes the step of digesting adipose tissue. The method can also include the step of consuming the digested adipocyte tissue to provide a stromal vascular component (SVF). The consumption step can be performed after the digestion step. The SVF will comprise a population of adipose stromal cells that exhibit EPO. In one embodiment, the adipose tissue can be renal adipose tissue and the renal adipose stromal cell population exhibiting EP0 is a population of renal adipose-matrix (KiSAS) cells as described herein. In one other aspect, the invention provides an implantable construct for improved renal function to a subject in need thereof. In one embodiment, the construct comprises a biocompatible matrix. In another embodiment, the construct further has a population of adipocytes expressing erythropoietin (EP0) that are deposited onto the surface of the substrate or embedded in the surface of the substrate. In one other embodiment, the population of adipose stromal cells exhibiting EP0 is a population of KiSAS cells as described herein. In yet another aspect, the invention provides a method of treating a kidney disease in a subject in need thereof. In one embodiment, the method comprises the step of administering to the subject a composition comprising a population of adipocytes expressing erythropoietin (EP0). In another embodiment, the population of adipose stromal cells exhibiting EP0 is a population of KiSAS cells as described herein. In one other aspect, the invention provides a method of treating a kidney condition in a subject in need thereof by using a construct. In one embodiment, the method comprises the step of administering a construct to the subject. The construct can have a biocompatible matrix. In another 156850.doc 201211256 embodiment, the construct can also have a population of adipocytes expressing erythropoietin (EPO) deposited onto the surface of the substrate or embedded in the surface of the substrate. In one other embodiment, the population of adipose stromal cells exhibiting EPO is a population of KiSAS cells as described herein. [Embodiment] The present invention relates to an isolated cell population derived from adipose tissue, a method of isolating the cell population, a scaffold or matrix inoculated with the cell (construct), and a method of manufacturing the scaffold or matrix, It is related to a method of treating a patient in need thereof using the cell population or construct. It has been found that a population of cells derived from an adipose tissue matrix vascular component (SVF) exhibits erythropoietin (EPOVEPO expression can be an expression of an EPO transcript and/or an EPO polypeptide. The cell population also exhibits a VEGF transcript and/or a VEGF polypeptide. The performance of EP0 and/or VEGF is indicative of hypoxia regulation. The adipose tissue may be derived from any suitable source in the body including, but not limited to, heart fat, liver fat, subcutaneous fat, visceral fat, white fat, brown fat. In the protocol, the adipose tissue may be renal adipose tissue. The renal adipose-derived cell population may be referred to herein as a renal-derived adipose matrix (KiSAS) cell population. The KiSAS cell population exhibits EP0 and vascular endothelial growth factor (VEGF). The performance occurs in a manner of hypoxia regulation. Moreover, the cell is found to exhibit a renal proliferative transcription factor WT1 specific for renal adipose-derived stromal cells, and it has also been found that the renal meridian-specific fat reservoir can be transcribed from different WT1 transcripts. Variant definition. The present invention demonstrates that adipose tissue is a functionally unique reservoir of cells expressing EP0, Alternative cells for cell populations available in tissue engineering and regenerative therapies of the kidneys 156850.doc 201211256 Sources 1. Definitions Unless otherwise indicated, the technical and scientific terms used herein have the ordinary knowledge in the art to which the present invention pertains. The same meaning that people usually understand.

Principles of Tissue Engineering(組織工程原理),第 3 版.(R Lanza, R Langer,& J Vacanti編著),2007爲本領域中具有通常知識者提供 本申請案中使用的許多術語的一般指導。 本領域中具有通常知識者將認識到,與本文描述的方法和材 料相似或等價的許多方法和材料可用於本發明的實踐。事實上, 本發明不以任何方式限制於所描述的方法和材料。爲了本發明的 目的,以下定義如下術語。 本文所用的術語“低氧”培養條件是指其中細胞經受培養系統 中可利用的氧含量相對標準培養條件減少的培養條件,標準培養 條件中細胞在大氣氧含量(約21%)培養。非低氧條件在本文稱 爲正常或含氧量正常的培養條件。 本文所用的術語“氧可調的”是指細胞基於細胞可利用氧的量 而調節基因表現(上調或下調)的能力。“低氧誘導的,,是指回應 於氧張力減少而上調基因表現(無論誘導前或初始的氧張力爲 何)。 術語“建構物”是指沉積到一種或多種合成或天然產生的生物 相容材料製成的支架或基質表面上或表面中的一個或多個細胞群 156850.doc 201211256 體。該一個或多個細胞群體可被一種或多種合成或天然產生的生 物相容聚合物、蛋白或肽製成的生物材料包被,沉積到該生物材 料上、包埋在該生物材料中、連接於該生物材料、接種於該生物 材料或俘獲在該生物材料中。該一個或多個細胞群體可與生物材 料或支架或基質在體外或體內組合。通常,選擇用於形成支架/生 物材料的一種或多種生物相容材料以指引、促進或提供其上沉積 的至少一個細胞群體形成多細胞三維體制。也可選擇用於產生建 構物的一種或多種生物材料以指引、促進或提供建構物或建構物 的細胞組分與內源宿主組織分散及/或整合,或指引、促進或提供 建構物或建構物的細胞組分地存活、移入、耐受或功能表現。 術語“標記”或“生物標記”通常是指一種基於DNA、RNA、蛋 白、醣類或醣脂類的分子標記,其在培養的細胞群體中的表現或 存在可藉由標準方法(或本文公開的方法)檢測,並與培養細胞 群體中的一個或多個細胞一致,爲特定細胞類型。該標記可以是 細胞表現的多肽或染色體上可鑑定的物理位置,諸如基因、限制 性內切核酸酶識別位點或編碼天然細胞表現的多肽的核酸(如, mRNA)。該標g己可以是基因的表現區,稱爲“基因表現標記”,或 沒有已知編碼功能的DNA的一些區段。可在直接衍生自組織樣品 的細胞群體中檢測生物標記。 術語“差異表現的基因”、“差異基因表現,,和其同義形式可互 換地使用,是指其在第一細胞或細胞群體中的表現相對於其在第 二細胞或細胞群體中的表現被活化到更高或更低位準的基因。該 156850.doc -10- 201211256 術語還包括其表現在培養的第一或第二細胞的各代期間隨著時間 在不同階段被活化到更高或更低位準的基因。還應理解的是,差 異表現的基因可在核酸位準或蛋白位準被活化或抑制,或可經受 可選擇地剪接以產生不同多肽產物。這種差異可由例如mRNA位 準、表面表現、多肽的分泌或其它分配的差異來證明。差異基因 表現可包括比較一種或多種基因或其基因產物的表現,或比較一 種或多種基因或其基因產物之間的表現比例,或甚至比較同一基 因的兩種不同加工產物,其在第一細胞/細胞群體與第二細胞/細胞 群體之間不同。差異表現包括基因或其表現產物的暫時的或細胞 的表現模式在例如,第一細胞群體與第二細胞群體之間的定量以 及定性差異。爲了本發明的目的,當在第一細胞群體和第二細胞 群體中指定基因的表現之間有差異時,認爲存在“差異基因的表 現”。 術語“抑制”、吓調,,、“低表現”和“減少,,可互換使用,是指基 因的表現、或編碼一種或多種蛋白或蛋白亞基的RNA分子或等價 RNA分子的位準,或一種或多種蛋白或蛋白亞基的活性相對於一 種或多種對照減少,所述對照諸如,例如,一種或多種陽性對照 及/或陰性對照。 術語“上調”或“過表現”用於表示基因的表現、或編碼一種或 多種蛋白或蛋白亞基的RNA分子或等價RNA分子的位準、或一 種或多種蛋白或蛋白亞基的活性相對於一種或多種對照增加,所 述對照諸如,例如,一種或多種陽性對照及/或陰性對照。 156850.doc • 11 - 201211256 術語“受治療者”是指適合治療的任何單獨人類受治療者’包 括患者,其正在經歷或已經經歷腎病、貧血或EPO缺乏的一種或 多種症候、症狀或其它指標症狀。這樣的受治療者包括但不限於 最近被診斷爲腎病、貧血或EPO缺乏,或此前被診斷爲腎病、貧 血或EPO缺乏且現在經歷反復或復發,或處於腎病、貧血或EPO 缺乏風險中的受治療者,無論誘因爲何。受治療者可能此前已經 治療T腎病、貧血或EPO缺乏,或未經如此治療° 術語“患者”是指期望對其治療的任何單獨動物,更優選哺乳 動物(包括非人類動物,諸如例如,犬、貓、馬、兔、動物園動 物、牛、豬、綿羊和非人類靈長類)。最優選地,本文的患者是人 類。 術語“樣品”或“患者樣品”或“生物樣品”通常是指從受治療者 或患者、體液、身體組織、細胞系、組織培養物或其它來源獲得 的任何生物樣品。該術語包括組織活檢樣品,諸如例如,腎活檢 樣品。該術語包括培養的細胞,諸如例如,培養的哺乳動物腎細 胞。從哺乳動物獲得組織活檢樣品和培養的細胞的方法是本領域 公知的。如果術語“樣品”單獨使用,其仍然表示“樣品”是“生物樣 品”或“患者樣品”,即,這些術語可互換使用。 本文所用的術語“貧血”是指由於受治療者產生EP0的細胞產 生功能性EPO蛋白不足,和/或EPO蛋白向系統循環的釋放不足, 及/或骨髓中成紅血球不能夠回應EPO蛋白引起的紅血球數目及/ 或血紅蛋白位準的缺乏。患有貧血的受治療者不能夠維持紅血球 156850.doc -12- 201211256 恆定性。大體上,貧血的發生可伴隨腎功能下降或喪失(如,慢 性腎衰竭)、與相對EPO缺乏相關的貧血、與充血性心力衰竭相 關的貧血、與骨髓抑制性治療諸如化療或抗病毒治療(如,AZT) 相關的貧血、與非骨髓樣癌相關的貧血、與病毒感染諸如HIV相 . 關的貧血、和慢性疾病諸如自體免疫疾病(如,類風濕性關節炎)、 , 肝病和多器官系統衰竭的貧血。 術語“EPO缺乏”是指用紅血球生成素受體激動劑(如,重組 EPO、EPO肽類比物或EPO類似物)或紅血球生成刺激劑(ESA ) 可治療的任何疾病或病症,包括貧血。 本文所用的術語“腎病”是指任何階段或程度的急性或慢性腎 衰竭相關的病症,導致腎失去進行血液過濾功能和從血液排出過 量液體、電解質和廢物的能力。腎病還包括內分泌功能障礙諸如 貧血(紅血球生成素缺乏)和礦物質不平衡(維生素D缺乏)。腎 病可來源於腎,或可能是繼發於多種疾病,包括(但不限於)心 力哀竭、咼血壓、糖尿病、自體免疫疾病或肝病。腎病可以是對 腎的急性損傷後發展的慢性腎衰竭的疾病,如,缺血及/或暴露 ,於雜對腎的損傷可能導致急體衰竭;急體損纖恢復不完 .. 全可能導致慢性腎衰竭的發展。 術語“治療”是職腎病、貧血、Bp〇缺乏、腎小管轉運不足 或腎小職過不足的治療性治獅_丨域關性臟,其中目 標是遲、阻止或減慢(減輕)定革巴的病症。需麵献們包 括已經患有腎病、貧血、EPO缺乏、瞥小管轉運不足或腎小球據 156850.doc -13· 201211256 過不足的人們,以及容易患有腎病、貧血、EPO缺乏、腎小管轉 運不足或腎小球濾過不足的人們,或將預防腎病、貧血、EPO缺 乏、腎小管轉運不足或腎小球濾過不足的人們。本文所用的術語 “治療,,包括穩定及/或改進腎功能。 2.細胞群體 本發明提供由EPO $專錄本及/或EPO多肽的表現顯示的表現 紅血球生成素(EPO)的脂肪組織衍生細胞的群體。該細胞還表 現VEGF轉錄本及/或VEGF多肽。EPO和VEGF表現是低氧調節 的。脂肪組織可來源於體內任何適當來源,包括但不限於,心臟 脂肪、肝臟脂肪、皮下脂肪、內臟脂肪、白色脂肪、棕色脂肪。 在一個實施方案中,本文描述的細胞群體可衍生自需要治療的受 治療者自體的脂肪來源。該細胞群體也可衍生自非受治療者自體 的脂肪來源,包括但不限於,同種異體、或同系(同源或同基因) 來源。 在一個實施方案中,脂肪組織來源可以是腎脂肪組織。衍生 自腎脂肪的細胞群體可稱爲腎源脂肪基質(KiSAS)細胞群體。 KiSAS細胞群體可衍生自與腎相關的任何脂肪組織,包括但不限 於,腎蒂及/或腎盞(腎大盞或腎小盞)相關的脂肪組織。在一個 實施方案中,KiSAS細胞群體衍生自腎脂肪基質血管成分(SVF )。 在一方面,脂肪衍生細胞群體以被低氧條件調節的方式表現 EP0。本發明的細胞群體的特徵是EP0表現和對氧的生物反應 156850.doc -14- 201211256 性’以致培養系統的氧張力減少導致誘導EPO表現。在一個實施 方案中,當細胞群體在其中與在可利用氧的正常大氣(〜21%)含 量下培養的細胞群體相比,細胞經歷培養系統中可利用氧含量減 少的條件下培養時,EP0表現被誘導。在一個實施方案中,相對 於在正常氧條件培養的細胞,在較低氧條件培養的細胞表現更大 位準的EP0 〇大體上,在可利用氧含量減少時(也稱爲低氧培養 條件)培養細胞是指減少的氧含量是相對於在可利用氧的正常大 氣含量(也稱爲正常或含氧量正常的培養條件)培養細胞時減少。 在一個實施方案中,低氧細胞培養條件包括在約少於1%氧、約少 於2%氧、約少於3%氧、約少於4%氧、或約少於5%氧時培養細 胞。在另一實施方案中,正常或含氧量正常的培養條件包括在約 10%氧、約12%氧、約13%氧、約14%氧、約15%氧、約16%氧、 約17%氧、約18%氧、約19%氧 '約20%氧或約21%氧培養細胞。 在一個其它實施方案中,獲得了 EP0的誘導或增加的表現, 且可藉由在約少於5%可利用氧時培養細胞,並與在大氣(約21% ) 氧培養的細胞比較EP0表現位準而觀察到。在另一實施方案中, 藉由包括以下的方法,在能夠表現EP0的細胞培養物中獲得EP0 的誘導:第一培養階段,其中細胞培養物在大氣氧(約21%)培 養一段時間,和第二培養階段,其中可利用氧含量減少,同一細 胞在約少於5%可利用氧下培養。 在另一實施方案中,回應於低氧條件的EP0表現由HIFla 調節。本領域中具有通常知識者將理解,本領域已知的其它氧操 156850.doc -15- 201211256 作培養條件可用於本文所述的細胞。 在一方面,與已知表現EPO的其它細胞群體及/或脂肪來源 相比,本文所述的細胞群體在其EPO表現方面不同。差異可以是 在轉錄本位準、多肽位準及/或轉譯後位準上。 在一個實施方案中,與非脂肪細胞群體相比,KiSAS細胞群 體在更高位準表現EPO多肽。非脂肪細胞群體包括但不限於肝臟 脂肪、心臟脂肪、白色脂肪和棕色脂肪。這在圖5 PJ釋(參見實 施例1) 〇 已經發現,與其它細胞群體表現的EPO相比,本發明的脂肪 衍1生的表現EPO的細胞群體表現帶有特異性轉譯後修飾的EPO 〇 這可藉由使用多種技術來證明。例如,等電點焦聚(IEF)已經用 於檢測從個體獲得的樣品中EPO的不同形式(Catlin等,Clinical Chemistry 48;11,2057-2059 (2002); Breidbach 等,Clinical Chemistry 49:6, 901-907 (2003))〇如實施例1所述,與EPO的其它可能來源, 包括角質細胞、肝細胞、非腎脂肪和原代腎細胞群體相比,發現 進行IEF的來自腎脂肪組織的EPO具有不同的遷移模式(圖4A)。 電泳道3對應KiSAS細胞群體中表現的EPO,遷移模式不同於其 它電泳道。例如,如果IEF膠體具有pH梯度,其中膠體頂部是酸 性最強(+),膠體底部是鹼性最強(-),那麼KiSAS EPO比來自內臟 (非腎)脂肪基質細胞群體的EPO (電泳道4)遷移到酸性更強 的點。在一個實施方案中,與選自以下組成的組的細胞群體表現 的EP0相比,KiSAS細胞群體表現的酸性更強的EP0 (由IEF顯 156850.doc -16- 201211256 示):角質細胞、肝細胞、內臟(非腎)脂肪基質細胞和原代腎細 胞群體。 圖4A還顯示,與來自角質細胞、肝細胞、腎脂肪和原代腎 細胞群體的EPO相比,內臟脂肪基質細胞中表現的EPO以不同遷 • 移模式遷移。電泳道4對應內臟脂肪細胞群體中表現的EPO,遷 . 移模式不同於其它電泳道。例如,內臟脂肪EPO比來自腎脂肪基 質細胞群體的EPO (電泳道3 )或來自原代腎細胞群體的EPO (電 泳道6-7)遷移到酸性更低的點。在一個實施方案中,與由選自以 下組成的組的細胞群體表現的EPO相比,內臟脂肪細胞群體表現 的酸性更低的EPO (由IEF顯示):角質細胞、肝細胞、腎脂肪基 質細胞和原代腎細胞群體。 在另一方面,KiSAS細胞群體表現與再生相關的生物標記。 在一個實施方案中,該生物標記是WT-卜KiSAS細胞群體可以比 非腎源脂肪基質細胞群體更高的位準表現一種或多種所述生物標 記。非腎源脂肪基質細胞群體可以是內臟脂肪基質細胞群體。 3.分離表現EPO的細胞群體的方法 意料之外地發現’脂肪組織是表現EPO的細胞來源。在一方 面,本發明提供分開和分離表現紅血球生成素(EPO)的脂肪細 胞群體的方法’該脂肪細胞群體用於治療用途,包括治療腎病、 貧血、EPO缺乏、腎小管轉運不足和腎小球濾過不足。 自體腎源脂肪基質細胞群體可直接從需要治療的受治療者獲 156850.doc -17- 201211256 得。非自體細胞群體可衍生自適當供體。細胞可在活檢樣品中分 ϋ外,胞可在使用前冷凍或擴增。 對於腎脂肪,細胞群體從新消化,即,機械或酶促消化的脂 肪腎組織或從哺乳動物腎細胞體外培養物分離。腎脂肪組織可從 腎蒂或腎大盞獲得。蒂可從腎切下。來自腎大盞的腎脂肪組織可 從完整人類腎對切的髓質切下。腎盞脂肪可從髓質切下。 解剖後,可按照以下示例方案處理脂肪組織樣品(參見實施 例1)。將脂肪組織用PBS/0.1%健大黴素(Iiwitrogen-Gibco)徹底 洗滌,在 37。0 用 DMEM-HG (Invitrogen-Gibco)中 0.3%膠原酶 I (Worthington)、1% BSA消化最多1小時。樣品可以600 g離心 20分鐘,吸去脂肪細胞上清液。可將剩餘基質血管成分重懸在 a-MEM/10%FBS (Invitrogen-Gibco)中,並在組織培養培養箱中 放置24-48小時。非粘附細胞群體可藉由用PBS洗滌3次去除。 細胞群體的培養可在低氧條件下,藉由將其在〇r消耗(低氧) (2% )培養箱中維持不同時間段。爲了確認低氧調節途徑的完整, 可檢查細胞群體的生物標記如,EPO和/或VEGF的表現。 在一方面,本發明的細胞群體特徵是EPO表現和對氧的生物 響應性,以致培養系統的氧張力的減少導致誘導EPO表現。細胞 群體是氧可調的。在一個實施方案中,當細胞群體在其中與在可 利用氧的正常大氣(〜21%)含量下培養的細胞群體相比,細胞經 歷培養系統中可利用氧含量減少的條件下培養時,EP0表現被誘 導。在一個實施方案中,相對於在正常氧條件培養的產生EP0的 156850.doc -18· 201211256 細胞,在較低氧條件培養的細胞表現更大位準的EPO。大體上, 在可利用氧含量減少(也稱爲低氧培養條件)時培養細胞是指減 少的氧含量相對於在可利用氧的正常大氣含量(也稱爲正常或含 氧量正常的培養條件)下培養細胞時被減少。在一個實施方案中, . 低氧細胞培養條件包括在約少於1%氧、約少於2%氧、約少於3% • 氧、約少於4%氧或約少於5%氧時培養細胞。在另一實施方案中, 正常或含氧量正常的培養條件包括在約10%氧、約12%氧、約13°/〇 氧、約14%氧、約15%氧、約16%氧、約17%氧、約18%氧、約 19%氧、約20%氧或約21%氧時培養細胞。 在一個其它實施方案中,獲得了 EP0的誘導或增加的表現, 且可藉由在約少於5%可利用氧時培養細胞,並與在大氣(約21% ) 氧培養的細胞比較EP0表現位準而觀察到。在另一實施方案中, 藉由包括以下的方法,在能夠表現EP0的細胞培養物中獲得EP0 的誘導:第一培養階段,其中細胞培養物在大氣氧(約21%)培 養一段時間,和第二培養階段,其中可利用氧含量減少,同一細 胞在約少於5%可利用氧下培養。在另一實施方案中,回應於低氧 , 條件的EP0表現由HIF1 α調節。本領域中具有通常知識者將理 . 解,本領域已知的其它氧操作培養條件可用於本文描述的細胞。 用於分開和分離本發明的細胞群體的示例技術包括基於目標 細胞群體中包含的不同細胞類型的差異比重,以密度梯度分開。 任何指定細胞類型的比重可受細胞中細微性程度、細胞內水體積 和其它因素影響。在一方面,本發明提供用於跨多種物種(包括 156850.doc -19· 201211256 但不限於,人類、犬和齧齒類)分離細胞群體的最佳梯度條件。 在另一方面,本發明提供利用螢光啓動的細胞分選(FACS) 富集及/或消減細胞類型的方法。在一個實施方案中’可利用BD FACSAria™或等價物富集及/或消減細胞類型。 在另一方面,本發明提供利用磁性細胞分選富集和/或消減細 胞類型的方法。在一個實施方案中,可利用MiltenyiautoMACS® 系統或等價物富集及/或消減KiSAS細胞群體。 在另一方面,本發明提供三維培養脂肪衍生細胞群體的方 法。在一方面,本發明提供經由連續灌注培養細胞群體的方法。 在一個實施方案中’灌注條件包括短暫、間歇或連續的液體流動 (灌注)。在一個實施方案中,其中培養細胞的培養基以使得動 力經由該流動被傳遞給細胞的方式間歇或連續地循環或攪動。在 一個實施方案中’經受短暫、間歇或連續液體流動的細胞以使得 細胞在提供用於這種三維結構形成的骨架及/或空間的材料中或材 料上以三維結構存在的方式培養。在一個實施方案中,細胞在多 孔狀珠球上培養,利用搖式平臺、繞轉式平臺或自旋式燒瓶而經 受間歇或連續液體流動。在另一實施方案中,細胞在三維支架上 培養,放置在裝置中,從而支架是靜止的,液體定向地流動穿過 或跨過支架。本領域中具有通常知識者將理解,本領域已知的其 它灌注培養條件可用於本文描述的細胞。 I56850.doc -20· 201211256 如本文所述,低或低氧的氧條件可用製備本發明的細胞群體 的方法。然而,可使用本發明的方法而沒有低氧條件形成的步驟。 在一個實施方案中,可使用含氧量正常的條件。 本領域中具有通常知識者將理解’本領域已知的分離和培養 的其它方法可用於本文所述的細胞。 4·基質或支架 如Bertram等,美國公開申請20070276507 (藉由引用全文倂 入本文)所述的,聚合基質或支架可成形爲大量的期望構型,以 滿足大量的總系統、幾何或空間限制。在一個實施方案中,本發 明的基質或支架可以是三維的,可成形以符合器官或組織結構的 尺寸和形狀。例如,在聚合支架用於治療腎病、貧血、EPO缺乏、 腎小管轉運不足或腎小球濾過不足的用途中,可能需要三維(3-D) 基質。可能使用多種不同形狀的3-D支架。當然,聚合基質可成 形爲不同大小和形狀以符合不同大小的患者。聚合基質還可以其 它方式成形以適應患者的特殊需求。在另一實施方案中,聚合基 質或支架可以是生物相容的多孔聚合支架。支架可從多種合成或 天然產生的材料形成,該材料包括但不限於,開孔聚乳酸 (OPLA®)、纖維素醚、纖維素、纖維素酯、氟化聚乙烯、苯酚 的(phenolic)、聚-4-甲基戊烯、聚丙烯腈、聚醯胺、聚醯胺醯亞 胺、聚丙烯酸酯、聚苯並噁唑、聚碳酸酯、聚氰基芳基醚、聚酯、 聚酯碳酸酯、聚醚、聚醚醚酮、聚醚醯亞胺、聚醚酮、聚醚颯、 156850.doc -21 - 201211256 聚乙烯、聚氟烯烴、聚醯亞胺、聚烯烴、聚噁二唑、聚苯醚、聚 苯硫醚、聚丙烯、聚苯乙烯、多硫化物、聚楓、聚四氟乙烯、聚 硫醚、聚三哗、聚胺酯、聚乙烯、聚偏二氟乙烯、再生纖維素、 矽酮、脲甲醛、膠原、層粘連蛋白、纖連蛋白、絲、彈力素、藻 酸、透明質酸、瓊脂糖、或其共聚物或物理混合物。支架構型可 從液態水凝膠懸液變化到軟的多孔支架、到剛性的保持形狀的多 孔支架。 水凝膠可從多種聚合材料形成,可用在多種生物醫學應用 中。水凝膠可在物理上描述爲親水聚合物的三維網狀物。取決於 水凝膠的類型,其含有不同百分比的水,但總體不溶於水。儘管 它們的高含水量,但由於親水殘基的存在,7jC凝膠能夠另外結合 大體積的液體。水凝膠充分溶脹而不改變其凝膠結構。根據使用 聚合物的性質和產物的其它特殊設備,可具體地改變水凝膠的基 本物理特徵。 優選地,水凝膠由爲生物惰性和與哺乳動物組織生理上相容 的聚合物、生物衍生的材料、合成衍生的材料或其組合製成。水 凝膠材料優選地不引起炎性反應。可用於形成水凝膠的其它材料 的實例包括(a)改性藻酸、(b)藉由暴露於單價陽離子而膠化的多 醣(如,結冷膠和鹿角菜膨)、⑹爲非常粘的液體,或爲觸變性 的,隨著時間通過結構的緩慢進化而形成凝膠的多醣(如,透明 質酸)、和(d)聚合水凝膠前驅物(如,聚環氧乙院_聚丙二醇嵌 段共聚物和蛋白)。美國專利號6,224,893 B1提供了適於製備根 156850.doc -22· 201211256 據本發明的水凝膠的多種聚合物和該聚合物的化學性質的詳細描 述。 支架或生物材料的特徵可以使得細胞能夠附連於支架或生物 材料,並與支架或生物材料相互作用,及/或可提供可在其中捕獲 細胞的多孔空間。在一個實施方案中,本發明的多孔支架或生物 材料允許細胞群體添加或沉積到構造爲多孔支架的生物材料上 (如,藉由附連細胞)和/或支架的孔中(如,藉由捕獲細胞)。 在另一實施方案中,支架或生物材料允許或促進支架中的細胞: 細胞相互作用及/或細胞:生物材料相互作用以形成如本文所述的 建構物。 在一個實施方案中,根據本發明使用的生物材料包括水凝膠 形式的透明質酸(HA),包含的HA分子大小從5.1 kDA到>2χ 1〇6 kDa。在另一實施方案中,根據本發明使用的生物材料包括多孔泡 沫形式的透明質酸,包含的HA分子大小也從5.1 kDA到>2 X 1G6 kDa。在又一實施方案中,根據本發明使用的生物材料包括基於聚 乳酸(PLA)的泡沬,具有開孔結構,孔徑爲約50微米到約300 微米。 本領域中具有通常知識者將理解,本領域已知的其它類型的 合成或天然產生的材料可用於形成本文所述的支架。 5.建構物 在一方面,本發明提供接種或沉積有本文所述的脂肪衍生的 156850.doc -23- 201211256 表現EPO的細胞群體的一種或多種聚合支架或基質。已經接種有 細胞群體的這種支架,在本文可稱爲“建構物”。 在一方面,本發明提供用於在需要的受治療者治療腎病、貧 血或EP0缺乏的可植入建構物,該建構物具有一個或多個本文所 述的細胞群體。在一個實施方案中,該建構物由生物相容材料或 生物材料、包括一種或多種合成或天然產生的生物相容材料的支 架或基質和藉由附連及/或捕獲沉積在支架表面上或包埋在支架表 面中的本文所述的細胞群體製成。在某些實施方案中,該建構物 由生物材料和細胞群體製成,細胞被生物材料成分包被、沉積到 生物材料成分上、沉積生物材料組分中、附連於生物材料成分、 被生物材料成分捕獲、包埋在生物材料成分中,或與生物材料成 分組合。該細胞群體可用於與基質組合以形成建構物。在一個實 施方案中,該細胞群體與基質直接接觸以形成建構物。 在另一實施方案中,建構物的沉積的細胞群體或細胞成分是 表現EP0的KiSAS細胞群體。接種的KiSAS細胞群體可以是氧-可調的表現EP0的細胞。在其它實施方案中,KiSAS細胞特徵是 一種或多種生物標記的表現。該生物標記可以是選自以下組成的 組的腎小管細胞生物標記:cubilin ; E養粘蛋白;NPHS1 (先天性 變性腎炎1、芬蘭型(腎升壓素));足萼蛋白;維生素D3 25-羥化 酶(CYP2D25)、Wnt4和其任何組合。在另一實施方案中,該生 物標記可選自以下組成的組:WT卜VEGF、EP0和其任何組合。 該生物標記可以是已知腎器官發育中牽涉的腎再生生物標記, 156850.doc -24- 201211256 如,WT1。 在一個實施方案中,沉積有細胞的建構物適於在植入或施用 到受治療者的腎後,改進受治療者的腎功能。 在一個實施方案中,沉積到生物材料或支架上或與 形成本發明的建構物的細胞群體衍生自多種來源,諸如自體來 源。非自體來源也適於使用,包括但不限於’同種異體或同系(同 源或同基因)來源。 本領域中具有通常知識者將理解,存在多種適於沉積戌以其 它方式組合細胞群體與生物材料以形成建構物的方法。 6.使用方法 在一方面,本發明涵蓋向需要這種治療的受治療考提供脂肪 衍生細胞群體或建構物的方法。在一個實施方案中,該方法包括 提供基質的步驟,該基質將接種或沉積細胞群體以形$__^ 〇 沉積步驟可包括在基質上培養細胞群體。在基質上沉 以形成建構物後,可將建構物植入患者的治療部位。 在一方面,本發明提供用於以本文所述的細胞群體治療需要 的受治療者的腎病、貧血或EPO缺乏的方法。在一個實施方案中, 該方法包括向受治療者施用包括細胞群體的組合物。在另一實施 方案中,該組合物還包括用於治療本文所述的疾病或病症,沉積 到生物材料中、沉積到生物材料上、包埋在生物材料中、以生物 材料包被、或被生物材料捕獲以形成本文所述的可植入建構物的 3 156850.doc -25· 201211256 細胞群體。在一個實施方案中,該細胞群體單獨使用或聯合其它 細胞或生物材料使用以在急性或慢性疾病狀態中刺激再生,所述 其它細胞或生物材料如,水凝膠、多孔支架、或天然或合成的肽 或蛋白。 在另一方面,受治療者中腎病、貧血或EPO缺乏由本發明的 方法有效治療可經由紅血球生成及/或腎功能的多種指標症狀觀察 到。在一個實施方案中,紅血球恆定性的指標症狀包括但不限於 血細胞比容(HCT)、血紅蛋白(HB)、紅血球平均血紅蛋白 (MCH)、紅血球計數(RBC)、網狀紅血球數目、網狀紅血球%、 紅血球平均容積(MCV)和紅血球分佈寬度(RDW)。在一個其 它實施方案中,腎功能的指標症狀包括但不限於血清白蛋白、白 蛋白與球蛋白之比(A/G比)、血清磷、血清鈉、腎大小(超音波 測量)、血清鈣、磷鈣比、血清鉀、蛋白尿、尿肌酐、血清肌酐、 血尿素氮(BUN)、膽固醇位準、甘油三酯位準和腎小球濾過率 (GFR)。而且,總體健康和健康的多種指標症狀包括但不限於體 重增加或減少、存活、血壓(平均系統血壓、舒張壓或收縮壓) 和身體耐力表現。 在另一實施方案中,有效治療由腎功能的一種或多種指標症 狀的穩定證明。腎功能的穩定藉由觀察到本發明方法治療的受治 療者中指標症狀相比於未經本發明方法治療的受治療者中同樣指 標症狀的變化來證明。可選地,腎功能的穩定可通過觀察到本發 明方法治療的受治療者中指標症狀相比於同一受治療者在治療之 156850.doc 26· 201211256 前同樣指標症狀的變化來證明。第一指標症狀的變化可以是値的 增加或減少。在一個實施方案中,本發明提供的治療可包括受治 療者中血尿素氮(BUN)位準的穩定,其中在受治療者中觀察到 的BUN位準比具有相似疾病狀態但未經本發明方法治療的受治 療者低。在一個其它實施方案中,治療可包括受治療者中血清肌 酐位準的穩定,其中在受治療者中觀察到的血清肌酐位準比具有 相似疾病狀態但未經本發明方法治療的受治療者低。在另一實施 方案中,治療可包括受治療者d的血細胞比容(HCT)位準的穩 定,其中在受治療者中觀察到的HCT位準比具有相似疾病狀態但 未經本發明方法治療的受治療者高。在另一實施方案中,治療可 包括受治療者中紅血球(RBC)位準的穩定,其中在受治療者中 觀察到的RBC位準比具有相似疾病狀態但未經本發明方法治療的 受治療者高。本領域技術人員將理解,可測量本文所述或本領域 已知的一種或多種其它指標症狀以確定受治療者的腎病的有效治 療0 在另一方面,本發明涉及在需要的受治療者提供紅血球恆定 性的方法。在一個實施方案中,該方法包括以下步驟:(a)向受治 療者施用細胞群體;和(b)確定來自受治療者的生物樣品中,紅血 球生成指標症狀的位準相對於對照中的指標症狀位準不同,其中 指標症狀位準的差異(i)指示受治療者回應於施用步驟(a),或(ii)指 示受治療者的紅血球恆定性。在另一實施方案中,該方法包括以 下步驟:⑷向受治療者施用包含本文所述細胞群體的組合物;和 156850.doc -27· 201211256 (b)確定來自受治療者的生物樣品中,紅血球生成指標症狀的位準 相對於對照中的指標症狀位準不同,其中指標症狀位準的差異① 指示受治療者回應於施用步驟⑷,或⑼指示受治療者的紅血球恆 定性。在另一實施方案中,該方法包括以下步驟:⑷提供生物材 料或生物相容的聚合支架;(b)以本文所述的方式將本發明的細胞 群體沉積到生物材料或支架上或沉積到生物材料或支架中以形成 可植入建構物;(c)將建構物植入受治療者;和⑹確定來自受治 療者的生物樣品中,紅血球生成指標症狀的位準相對於對照中的 指標症狀位準不同,其中指標症狀位準的差異①指示受治療者回 應於施用步驟⑻,或(ϋ)指示受治療者的紅血球恆定性。 在另一方面,本發明涉及向需要的受治療者提供腎功能穩定 和紅血球恆定性恢復的方法,所述受治療者具有腎功能缺乏和貧 血及/或EPO缺乏。在一個實施方案中,該方法包括施用細胞群體 或包含該細胞群體的建構物的步驟。在這一實施方案中,受治療 者的治療的證明是藉由與未治療的受治療者或受治療者的治療前 指標症狀相比,腎功能的至少一種指標症狀的改善伴隨紅血球生 成的至少一種指標症狀的改善。 在一方面,本發明提供藉由施用脂肪衍生的表現EPO的細胞 群體,⑴治療腎病、貧血或EPO缺乏;⑼穩定腎功能,(邱恢 復紅血球恆定性,或(iv)其任何組合的方法,其中施用的有益效 果比施用非脂肪衍生的表現EPO的細胞群體的細胞群體的效果更 好或提高,或比未施用脂肪衍生的細胞群體的效果更好或提高。 156850.doc -28· 201211256 在另一實施方案中,該脂肪細胞群體提供改進位準的血清血尿素 氮(BUN)。在另一實施方案中,該脂肪細胞群體提供改進的血清 中蛋白保留。在另一實施方案中,該脂肪細胞群體提供改進位準 的血清膽固醇及/或甘油三酯。在另一實施方案中,該脂肪細胞群 . 體提供改進位準的維生素D。在一個實施方案中,該脂肪細胞群 . 體提供改進的磷:鈣比。在另一實施方案中,該脂肪細胞群體提供 改進位準的血紅蛋白。在進一步的實施方案中,該脂肪細胞群體 提供改進位準的血清肌酐。在又一實施方案中,該脂肪細胞群體 提供改進位準的血細胞比容。在進一步的實施方案中,該脂肪細 胞群體提供改進位準的紅血球數目(RBC#)。在一個實施方案中, 改進位準的血細胞比容恢復到95%正常健康位準。在進一步的實 施方案中,該脂肪細胞群體提供改進的網狀紅血球數目。在其它 實施方案中,該脂肪細胞群體提供改進的網狀紅血球百分比。在 又其它實施方案中,該脂肪細胞群體提供改進位準的紅血球分佈 寬度(RDW)。在又一實施方案中,該脂肪細胞群體提供改進位準 的血紅蛋白。在又一實施方案中,該脂肪細胞群體提供骨髓中紅 , 血球生成的反應,以致骨髓細胞構成接近正常,且骨髓細胞:紅血 , 球比接近正常。在一個其它實施方案中,該脂肪細胞群體提供改 進的血壓。 在另一方面,本發明提供藉由施用脂肪衍生的表現EPO的細 胞群體,⑴治療腎病、貧血或EPO缺乏;(ii)穩定腎功能,(iii)恢 復紅血球恆定性,或(iv)其任何組合的方法,其中施用本文所述 156850.doc -29- 201211256 脂肪細胞群體的有益效果特徵是與施用重組EPO (rEPO)提供的 有益效果相比的相當或改進的紅血球恆定性。 在一個實施方案中,該脂肪衍生的表現EPO的細胞群體施用 於需要的受治療者時,提供與施用重組EPO蛋白相比改進的紅血 球恆定性(由血細胞比容、血紅蛋白或RBC#確定)。在一個實施 方案中,該脂肪細胞群體施用時提供與重組EPO相比改進位準的 血細胞比容、RBC或血紅蛋白。在進一步的實施方案中,脂肪細 胞群體的單劑量或遞送施用時,提供被治療受治療者紅血球恆定 性(由血細胞比容、血紅蛋白或RBC#的增加確定)的改進,持續 的時間段顯著地超過重組EPO蛋白的單劑量或遞送提供的紅血球 恆定性的改進持續的時間段。在另一實施方案中,重組EPO以約 100 IU/kg、約 200 IU/kg、約 300 IU/kg、約 400 IU/kg、或約 500 IU/kg 的劑量遞送。本領域中具有通常知識者將理解,本領域已知的其 它劑量重組EP0可以是適當的。 本發明的另一實施方案涉及本文所述的脂肪衍生的表現EP0 的細胞群體、或本文所述的可植入建構物用於製備可用於在需要 的受治療者中治療腎病、貧血或EPO缺乏’在需要的受治療者中 提供紅血球恆定性,或在需要的受治療者中改進腎功能的藥物的 用途。 在又一方面,本發明提供在需要的受治療者中治療腎病的方 法,包括:向受治療者施用包含脂肪衍生的表現EP0的細胞§¥11 或包含脂肪衍生的表現EPO的細胞群體的建構物的組合物。在某 156850.doc -30- 201211256 些實施方案中,該方法包括確定來自受治療者的檢驗樣品中腎功 能指標症狀的位準相對於對照中的指標症狀位準不同’其中指標 症狀位準的差異指示受治療者一種或多種腎功能的衰退的減少、 一種或多種腎功能的穩定或改進。 . 在某些實施方案中,將被本發明方法治療的腎病伴有紅血球 . 生成素(EPO)缺乏。在某些實施方案中,該EPO缺乏是貧血。 在一些實施方案中,該EPO缺乏或貧血繼發於受治療者腎衰竭而 發生。在一些其它實施方案中,該EPO缺乏或貧血是繼發於選自 以下組成的組的病症而發生:慢性腎衰竭、原發性EPO缺乏、化 療或抗病毒治療、非髓樣癌、HIV感染、肝病、心力衰竭、類風 濕性關節炎或多器官系統衰竭。在某些實施方案中,該方法中使 用的組合物還包括包含一種或多種生物相容的合成聚合物及/或天 然產生的蛋白或肽的生物材料,其中該脂肪細胞群體以該生物材 料包被、沉積到該生物材料上或該生物材料中、被該生物材料捕 獲、懸浮在該生物材料中、包埋在該生物材料中和/或以其它方式 與該生物材料組合。在某些實施方案中,本發明方法中使用的脂 - 肪細胞群體衍生自哺乳動物脂肪組織或培養的脂肪組織細胞。在 , 其它實施方案中,該脂肪細胞群體衍生自需要的受治療者自體的 腎樣品。在一個實施方案中,該樣品是腎脂肪組織活檢樣品。在 其它實施方案中,本發明方法中使用的脂肪細胞群體衍生自非自 體腎脂肪組織樣品。 在又一方面,本發明提供本發明的脂肪細胞群體或可植入建 156850.doc -31- 201211256 構物用於製備可用於在需要其的受治療者中治療腎病、貧血或 EPO缺乏的藥物的用途。 在另一方面,本發明提供用於在需要其的受治療者中再生自 體腎的腎功能的方法。在一個實施方案中,該方法包括向受治療 者的腎施用或植入本文所述的脂肪細胞群體或建構物的步驟。自 體腎中再生的腎功能可由大量指標症狀表徵,該指標症狀包括但 不限於’自體腎功能或能力的發展(function or capacity in the native kidney)、自體腎中功能或能力的改進、和自體腎中某些標記的表 現。在一個實施方案中,功能或能力的發展或改進可基於以上描 述的紅血球恆定性和腎功能的各種指標症狀而觀察。 本文所述的脂肪細胞群體、以及包含該脂肪細胞群體的建構 物可用於向自體腎提供再生作用。再生作用可由以下表徵:腎功 能的一種或多種指標症狀的穩定(如本文所述)及/或紅血球恆定 性的恢復(如本文所述)。 7·施用方法和途徑 本發明的脂肪細胞群體和/或建構物可單獨施用或聯合其它 生物活性組分施用。 所述的脂肪細胞群體的治療有效量可從受治療者安全接 收的細胞的最大數目到治療腎病(如,一種或多種腎功能的穩定、 減少衰退率、或改進)所必需的細胞得最小數目變化。在某些實 施方案中,本發明的方法提供施用本文所述的脂肪細胞群體的劑 156850.doc -32- 201211256 量爲約10,000細胞/kg、約20,000細胞/kg、約30,000細胞/kg、約 40,000 細胞/kg、約 50,000 細胞/kg、約 100,000 細胞/kg、約 200,000 細胞/kg、約 300,000 細胞/kg、約 400,000 細胞/kg、約 500,000 細 胞/kg、約 600,000 細胞/kg、約 700,000 細胞/kg、約 800,000 細胞 , /kg、約 900,000 細胞/kg、約 l.lxlO6細胞/kg、約 1.2xl06細胞/kg、 約 1.3xl06細胞/kg、約 1·4χ106細胞/kg、約 1.5xl06細胞/kg、約 1.6xl06 細胞/kg、約 1.7xl06 細胞/kg、約 1.8xl06 細胞/kg、約 1.9xl06 細胞/kg、約2.1xl06細胞/kg、約2.1xl06細胞/kg、約1.2xl06細胞 /kg、約 2·3χ106細胞/kg、約 2.4xl06細胞/kg、約 2.5xl06細胞/kg、 約 2.6xl06細胞/kg、約 2.7xl06細胞/kg、約 2.8xl06細胞/kg、約 2.9xl06細胞/kg、約 3xl06細胞/kg、約 3.1xl06細胞/kg、約 3.2xl06 細胞/kg、約3.3xl06細胞/kg、約3.4xl06細胞/kg、約3_5xl06細胞 /kg、約 3.6xl06細胞/kg、約 3.7xl06細胞/kg、約 3.8xl06細胞/kg、 約 3.9xl06 細胞/kg、約 4xl06 細胞/kg、約 4.1xl06 細胞/kg、約 4.2xl06 細胞/kg、約4.3xl06細胞/kg、約4.4xl06細胞/kg、約4.5xl06細胞 /kg、約 4.6xl06細胞/kg、約 4.7xl06細胞/kg、約 4.8xl06細胞/kg、 - 約4.9xl06細胞/kg、或約5xl06細胞/kg。在另一實施方案中,給予 , 受治療者的細胞劑量可以是單劑量或單劑量加另外劑量。在其它 實施方案中,劑量可作爲本文所述的建構物提供。在其它實施方 案中,給予受治療者的細胞劑量可基於估計的腎品質或功能性腎 品質來計算。 本文所述的治療有效量的細胞群體或其混合物可懸浮在藥學 156850.doc -33· 201211256 上可接受的載體或賦形劑中。這種載體包括但不限於基礎培養基 加1%血清白蛋白、鹽水、緩衝鹽水、右旋糖、水、ss原、藻酸鹽、 透明質酸、纖維蛋白膠、聚乙二醇、聚乙烯醇、羧甲基纖維素和 其組合。製劑應適合施用的方式。 因此,本發明提供脂肪細胞群體用於製造在受治療者中治療 腎病的藥物的用途。在一些實施方案中,該藥物可進一步包含重 組多肽,諸如生長因子、趨化因子或細胞因子。在進一步的實施 方案中,該藥物包含人類脂肪衍生細胞群體。用於製造該藥物的 細胞可利用提供於本文所述方法的任何變化形式分離、衍生或富 集。 根據常規方案,將細胞製品、建構物或組合物配製爲適於向 人類施用的藥物組合物。通常,例如,用於靜脈施用、動脈內施 用或腎囊中施用的組合物是無菌等滲緩衝水溶液。需要時,組合 物還可包括局部麻醉劑以緩解在注射部位的任何疼痛。通常,各 成分分別提供或在單位劑量形式中混合在一起,例如,作爲氣密 容器諸如標示活性劑量的安瓿中冷藏的濃縮物。當組合物將藉由 輸注施用時,其可用含有無菌藥品級水或鹽水的輸注瓶分配。當 組合物將藉由注射施用時,可提供注射用無菌水或鹽水的安韶;, 從而各成分可在施用前混合。 藥學上可接受的載體部分地由待施用的具體組合物確定,以 及由用於施用組合物的具體方法確定。因此,存在許多藥物組合 物的適虽製劑(爹見如,Alfonso R Gennaro (編著),Remington: The 156850.doc -34· 201211256Principles of Tissue Engineering, 3rd edition. (R Lanza, R Langer, & J Vacanti), 2007 provides general guidance to many of the terms used in this application by those of ordinary skill in the art. Those skilled in the art will recognize that many methods and materials similar or equivalent to those described herein can be used in the practice of the invention. In fact, the invention is not limited in any way by the methods and materials described. For the purposes of the present invention, the following terms are defined below. As used herein, the term "hypoxic" culture conditions refers to culture conditions in which cells are subjected to a reduction in the available oxygen content in a culture system relative to standard culture conditions in which cells are cultured at atmospheric oxygen levels (about 21%). Non-hypoxic conditions are referred to herein as normal or normoxic culture conditions. As used herein, the term "oxygen tunable" refers to the ability of a cell to modulate gene expression (up or down) based on the amount of oxygen available to the cell. "Hypoxia-induced, refers to up-regulation of gene expression in response to a decrease in oxygen tension (regardless of pre- and initial oxygen tension). The term "construct" refers to deposition into one or more synthetic or naturally occurring biocompatible species. One or more cell populations on or in the surface of a scaffold or substrate made of material 156850. Doc 201211256 body. The one or more cell populations may be coated with a biomaterial made of one or more synthetic or naturally occurring biocompatible polymers, proteins or peptides, deposited onto the biomaterial, embedded in the biomaterial, and joined The biological material is inoculated into the biological material or captured in the biological material. The one or more cell populations can be combined with the biomaterial or scaffold or matrix in vitro or in vivo. Typically, one or more biocompatible materials used to form the scaffold/biomaterial are selected to direct, promote or provide at least one cell population deposited thereon to form a multicellular three dimensional system. The one or more biological materials used to create the construct may also be selected to direct, facilitate or provide for the dispersion and/or integration of cellular components of the construct or construct with the endogenous host tissue, or to direct, facilitate or provide constructs or constructs. The cellular components of the substance survive, migrate, tolerate or function. The term "marker" or "biomarker" generally refers to a molecular marker based on DNA, RNA, proteins, carbohydrates or glycolipids whose expression or presence in a cultured cell population can be by standard methods (or disclosed herein) The method) detects and is consistent with one or more cells in the cultured cell population for a particular cell type. The marker can be a polypeptide or a identifiable physical location on the chromosome, such as a gene, a restriction endonuclease recognition site, or a nucleic acid (e.g., mRNA) encoding a polypeptide expressed by a native cell. The target g may be a region of expression of a gene, referred to as a "gene expression marker", or some segment of DNA having no known coding function. Biomarkers can be detected in a population of cells derived directly from tissue samples. The terms "differentially expressed gene", "differential gene expression," and its synonymous form are used interchangeably to mean that their performance in a first cell or cell population is relative to their performance in a second cell or cell population. Activate to a higher or lower level of the gene. The 156850. Doc -10- 201211256 The term also includes genes which are expressed at higher or lower levels at different stages over time during the generation of the first or second cells of culture. It will also be appreciated that differentially expressed genes can be activated or inhibited at the nucleic acid level or protein level, or can be subjected to alternative splicing to produce different polypeptide products. This difference can be demonstrated by differences in, for example, mRNA level, surface appearance, secretion of the polypeptide, or other distribution. Differential gene expression can include comparing the performance of one or more genes or their gene products, or comparing the ratio of expression between one or more genes or their gene products, or even comparing two different processed products of the same gene in a first cell / The cell population differs from the second cell/cell population. The differential performance includes a temporal or cellular expression pattern of the gene or its expression product, for example, a quantitative and qualitative difference between the first cell population and the second cell population. For the purpose of the present invention, when there is a difference between the expressions of the designated genes in the first cell population and the second cell population, it is considered that "the expression of the differential gene" exists. The terms "inhibition", "stimulation", "low performance" and "reduction", used interchangeably, refer to the expression of a gene, or the level of an RNA molecule or equivalent RNA molecule encoding one or more protein or protein subunits. , or the activity of one or more protein or protein subunits is reduced relative to one or more controls, such as, for example, one or more positive controls and/or negative controls. The term "upregulation" or "overexpression" is used to mean The expression of a gene, or the level of an RNA molecule or equivalent RNA molecule encoding one or more protein or protein subunits, or the activity of one or more protein or protein subunits is increased relative to one or more controls, such as, for example, For example, one or more positive controls and/or negative controls. 156850. Doc • 11 - 201211256 The term “subject” refers to any individual human subject suitable for treatment ‘including a patient who is experiencing or has experienced one or more symptoms, symptoms or other indicative symptoms of kidney disease, anemia or EPO deficiency. Such subjects include, but are not limited to, those recently diagnosed with kidney disease, anemia, or EPO deficiency, or previously diagnosed with kidney disease, anemia, or EPO deficiency and who are now undergoing recurrence or relapse, or at risk of kidney disease, anemia, or EPO deficiency. Healer, no matter what. The subject may have previously been treated for T-nephropathy, anemia or EPO deficiency, or not treated as such. The term "patient" refers to any individual animal that is desired to be treated, more preferably a mammal (including non-human animals such as, for example, dogs) , cats, horses, rabbits, zoo animals, cattle, pigs, sheep and non-human primates). Most preferably, the patient herein is human. The term "sample" or "patient sample" or "biological sample" generally refers to any biological sample obtained from a subject or patient, body fluid, body tissue, cell line, tissue culture, or other source. The term includes tissue biopsy samples such as, for example, kidney biopsy samples. The term includes cultured cells such as, for example, cultured mammalian kidney cells. Methods for obtaining tissue biopsy samples and cultured cells from mammals are well known in the art. If the term "sample" is used alone, it still means that the "sample" is a "biological sample" or a "patient sample", that is, these terms are used interchangeably. The term "anemia" as used herein refers to a deficiency in the production of functional EPO protein by cells producing EPO in a subject, and/or insufficient release of EPO protein into the systemic circulation, and/or the inability of the red blood cells in the bone marrow to respond to EPO proteins. The number of red blood cells and/or the lack of hemoglobin levels. Subjects with anemia cannot maintain red blood cells 156850. Doc -12- 201211256 Constancy. In general, anemia can be accompanied by a decline or loss of renal function (eg, chronic renal failure), anemia associated with relative EPO deficiency, anemia associated with congestive heart failure, and myelosuppressive therapy such as chemotherapy or antiviral therapy ( For example, AZT) is associated with anemia, anemia associated with non-myeloid carcinoma, and viral infections such as HIV.  Anemia, and chronic diseases such as autoimmune diseases (eg, rheumatoid arthritis), liver disease, and anemia of multiple organ system failure. The term "EPO deficiency" refers to any disease or condition, including anemia, that can be treated with a erythropoietin receptor agonist (eg, recombinant EPO, EPO peptide analog or EPO analog) or red blood cell stimulating agent (ESA). As used herein, the term "kidney disease" refers to a condition associated with acute or chronic renal failure at any stage or extent that causes the kidney to lose its ability to perform hemofiltration functions and to remove excess fluid, electrolytes, and waste from the blood. Nephropathy also includes endocrine dysfunction such as anemia (erythropoietin deficiency) and mineral imbalance (vitamin D deficiency). Kidney disease can be derived from the kidney, or it can be secondary to a variety of diseases including, but not limited to, heart failure, blood pressure, diabetes, autoimmune disease or liver disease. Kidney disease can be a condition of chronic renal failure that develops after acute injury to the kidney. For example, ischemia and/or exposure, damage to the kidneys may lead to acute body failure; emergency fiber loss can not be recovered. .  It may lead to the development of chronic renal failure. The term "treatment" is a therapeutic treatment of lions with occupational kidney disease, anemia, lack of Bp〇, insufficient renal tubular transport, or insufficient renal insufficiency. The goal is to delay, prevent or slow down (reduce) the decision. Ba's illness. Need to be included include kidney disease, anemia, EPO deficiency, insufficient tubule transport or glomerular 156850. Doc -13· 201211256 People who are under-represented, and people who are prone to kidney disease, anemia, EPO deficiency, insufficient renal tubular transport or glomerular filtration, or will prevent kidney disease, anemia, EPO deficiency, renal tubular insufficiency or kidney People with insufficient ball filtration. The term "treatment," as used herein, includes stabilizing and/or improving renal function. Cell populations The present invention provides a population of adipose tissue-derived cells that exhibit erythropoietin (EPO) expression by the performance of EPO$Specialized and/or EPO polypeptides. The cell also displays a VEGF transcript and/or a VEGF polypeptide. EPO and VEGF behave hypoxic. The adipose tissue may be derived from any suitable source in the body including, but not limited to, heart fat, liver fat, subcutaneous fat, visceral fat, white fat, brown fat. In one embodiment, the population of cells described herein can be derived from a source of adipose of the subject in need of treatment. The population of cells can also be derived from a source of adiposes that are not autologous to the subject, including, but not limited to, allogeneic, or homologous (homologous or isogenic) sources. In one embodiment, the adipose tissue source can be renal adipose tissue. A population of cells derived from renal fat may be referred to as a population of renal adipose matrix (KiSAS) cells. The KiSAS cell population can be derived from any adipose tissue associated with the kidney, including but not limited to, adipose tissue associated with the renal pedicle and/or renal pelvis (renal hernia or renal pelvis). In one embodiment, the KiSAS cell population is derived from a renal adipose matrix vascular component (SVF). In one aspect, the adipose-derived cell population exhibits EP0 in a manner that is modulated by hypoxic conditions. The cell population of the invention is characterized by EP0 expression and biological response to oxygen 156850. Doc -14- 201211256 Sexuality such that a decrease in oxygen tension in the culture system leads to induction of EPO performance. In one embodiment, EP0 is cultured under conditions in which the cell population undergoes a reduced oxygen content in the culture system when the cell population is in a cell population that is cultured at a normal atmospheric (~21%) level of available oxygen. Performance is induced. In one embodiment, the cells cultured under lower oxygen conditions exhibit a greater level of EP0 相对 relative to cells cultured under normoxic conditions, generally, when the available oxygen content is reduced (also known as hypoxic culture conditions) Culturing cells means that the reduced oxygen content is reduced relative to the culture of cells at normal atmospheric levels of available oxygen (also known as normal or normoxic culture conditions). In one embodiment, the hypoxic cell culture conditions comprise culturing at about less than 1% oxygen, about less than 2% oxygen, about less than 3% oxygen, about less than 4% oxygen, or less than about 5% oxygen. cell. In another embodiment, the normal or normoxic culture conditions comprise about 10% oxygen, about 12% oxygen, about 13% oxygen, about 14% oxygen, about 15% oxygen, about 16% oxygen, about 17 The cells were cultured with % oxygen, about 18% oxygen, about 19% oxygen 'about 20% oxygen, or about 21% oxygen. In one other embodiment, an induction or increased expression of EP0 is obtained, and the cells can be cultured by using less than about 5% of available oxygen and compared to EP0 expression in cells cultured in the atmosphere (about 21%). Observed at the level. In another embodiment, the induction of EP0 is obtained in a cell culture capable of expressing EP0 by a method comprising: a first culture stage in which the cell culture is cultured in atmospheric oxygen (about 21%) for a period of time, and In the second culture stage, where the oxygen content is reduced, the same cells are cultured under about less than 5% available oxygen. In another embodiment, the EP0 response in response to hypoxic conditions is modulated by HIFla. Those of ordinary skill in the art will appreciate other oxygen manipulations known in the art 156850. Doc -15- 201211256 Culture conditions can be used for the cells described herein. In one aspect, the population of cells described herein differ in their EPO performance compared to other cell populations and/or fat sources known to exhibit EPO. The difference can be at the transcript level, the polypeptide level, and/or the post-translation level. In one embodiment, the KiSAS cell population exhibits an EPO polypeptide at a higher level than the non-fat cell population. Non-fat cell populations include, but are not limited to, liver fat, heart fat, white fat, and brown fat. This is illustrated in Figure 5 PJ (see Example 1). It has been found that the EPO-producing cell population of the present invention exhibits a specific post-translationally modified EPO compared to EPO exhibited by other cell populations. This can be demonstrated by using a variety of techniques. For example, isoelectric point pyrolysis (IEF) has been used to detect different forms of EPO in samples obtained from individuals (Catlin et al, Clinical Chemistry 48; 11, 2057-2059 (2002); Breidbach et al, Clinical Chemistry 49:6, 901-907 (2003)) As described in Example 1, compared to other possible sources of EPO, including keratinocytes, hepatocytes, non-renal fat, and primary kidney cell populations, IEF was found to be derived from renal adipose tissue. EPOs have different migration modes (Figure 4A). Electrophoresis channel 3 corresponds to EPO expressed in the KiSAS cell population, and the migration pattern is different from other electrophoresis channels. For example, if the IEF colloid has a pH gradient with the top of the colloid being the strongest (+) and the bottom of the colloid being the strongest (-), then the KiSAS EPO is more than the EPO from the visceral (non-renal) adipose stromal cell population (electrophoresis 4) Move to a more acidic point. In one embodiment, the KiSAS cell population exhibits a more acidic EP0 (expressed by IEF 156850) compared to EP0 expressed by a population of cells selected from the group consisting of: Doc -16- 201211256 shows: keratinocytes, hepatocytes, visceral (non-renal) adipose stromal cells and primary renal cell populations. Figure 4A also shows that EPO exhibited in visceral adipose stromal cells migrates in different migration modes compared to EPO from keratinocytes, hepatocytes, renal fat and primary kidney cell populations. Electrophoresis channel 4 corresponds to the EPO expressed in the visceral fat cell population.  The shift mode is different from other electrophoresis channels. For example, visceral fat EPO migrates to a lower acid point than EPO (electrophoresis channel 3) from a renal fat-derived cell population or EPO (electrical lane 6-7) from a primary renal cell population. In one embodiment, the visceral fat cell population exhibits less acidic EPO (shown by IEF) compared to EPO expressed by a population of cells selected from the group consisting of: keratinocytes, hepatocytes, renal adipose stromal cells And primary kidney cell populations. In another aspect, the KiSAS cell population exhibits biomarkers associated with regeneration. In one embodiment, the biomarker is a population of WT-KiSAS cells that can exhibit one or more of said biomarkers at a higher level than a population of non-renal adipose stromal cells. The non-renal adipose stromal cell population can be a population of visceral adipose stromal cells. 3. A method of isolating a population of cells expressing EPO It has unexpectedly been found that 'adipose tissue is a source of cells that express EPO. In one aspect, the invention provides a method of isolating and isolating a population of adipocytes expressing erythropoietin (EPO) for therapeutic use, including treatment of kidney disease, anemia, EPO deficiency, renal tubular insufficiency, and glomeruli Insufficient filtration. The autologous renal adipose stromal cell population can be obtained directly from the subject in need of treatment 156,850. Doc -17- 201211256 Yes. Non-autologous cell populations can be derived from appropriate donors. The cells can be separated from the biopsy sample and the cells can be frozen or expanded prior to use. For renal fat, the cell population is isolated from fresh digestion, i.e., mechanically or enzymatically digested fatty kidney tissue or from mammalian kidney cell culture in vitro. Renal adipose tissue can be obtained from the kidney pedicle or the kidney sputum. Ti can be cut from the kidneys. Renal adipose tissue from the kidney sputum can be excised from the medulla of the intact human kidney. The renal pelvis fat can be cut from the medulla. After dissection, adipose tissue samples can be processed according to the following exemplary protocol (see Example 1). Add adipose tissue to PBS/0. 1% gentamicin (Iiwitrogen-Gibco) was thoroughly washed at 37. 0 in DMEM-HG (Invitrogen-Gibco). Digestion with 3% collagenase I (Worthington) and 1% BSA for up to 1 hour. The sample can be centrifuged at 600 g for 20 minutes to aspirate the supernatant of the adipocyte. The remaining stromal vascular components can be resuspended in a-MEM/10% FBS (Invitrogen-Gibco) and placed in a tissue culture incubator for 24-48 hours. The non-adherent cell population can be removed by washing 3 times with PBS. The cell population can be cultured under hypoxic conditions for a different period of time in a 〇r depleted (low oxygen) (2%) incubator. To confirm the integrity of the hypoxic regulatory pathway, the performance of biomarkers such as EPO and/or VEGF of the cell population can be examined. In one aspect, the cell population of the invention is characterized by EPO expression and biological responsiveness to oxygen such that a decrease in oxygen tension in the culture system results in induction of EPO performance. The cell population is oxygen-adjustable. In one embodiment, EP0 is cultured under conditions in which the cell population undergoes a reduced oxygen content in the culture system when the cell population is in a cell population that is cultured at a normal atmospheric (~21%) level of available oxygen. Performance is induced. In one embodiment, 156850 is produced relative to EP0 produced under normal oxygen conditions. Doc -18· 201211256 Cells, cells cultured in lower oxygen conditions exhibit a greater level of EPO. In general, culturing cells at a reduced oxygen content (also known as hypoxic culture conditions) refers to a reduced oxygen content relative to the normal atmospheric content of available oxygen (also known as normal or normoxic culture conditions). ) The cells are reduced when cultured. In one embodiment, .  Hypoxic cell culture conditions include culturing the cells at about less than 1% oxygen, about less than 2% oxygen, about less than 3% oxygen, about less than 4% oxygen, or about less than 5% oxygen. In another embodiment, the normal or normoxic culture conditions comprise about 10% oxygen, about 12% oxygen, about 13[deg.]/helium oxygen, about 14% oxygen, about 15% oxygen, about 16% oxygen, The cells are cultured at about 17% oxygen, about 18% oxygen, about 19% oxygen, about 20% oxygen, or about 21% oxygen. In one other embodiment, an induction or increased expression of EP0 is obtained, and the cells can be cultured by using less than about 5% of available oxygen and compared to EP0 expression in cells cultured in the atmosphere (about 21%). Observed at the level. In another embodiment, the induction of EP0 is obtained in a cell culture capable of expressing EP0 by a method comprising: a first culture stage in which the cell culture is cultured in atmospheric oxygen (about 21%) for a period of time, and In the second culture stage, where the oxygen content is reduced, the same cells are cultured under about less than 5% available oxygen. In another embodiment, in response to hypoxia, the conditional EP0 expression is modulated by HIF1 alpha. Those with ordinary knowledge in the field will understand.  Other oxygen processing culture conditions known in the art can be used for the cells described herein. Exemplary techniques for isolating and isolating cell populations of the invention include separating by density gradients based on differential specific gravity of different cell types contained in a population of target cells. The specific gravity of any given cell type can be affected by the degree of fineness in the cell, the volume of water within the cell, and other factors. In one aspect, the invention provides for use across a wide variety of species (including 156850. Doc -19· 201211256 But not limited to, human, canine and rodent) optimal gradient conditions for separating cell populations. In another aspect, the invention provides a method of enriching and/or attenuating cell types using fluorescence activated cell sorting (FACS). In one embodiment, BD FACSAriaTM or equivalent can be utilized to enrich and/or attenuate cell types. In another aspect, the invention provides a method of enriching and/or attenuating cell types using magnetic cell sorting. In one embodiment, the KiSAS cell population can be enriched and/or subtracted using the MiltenyiautoMACS® system or equivalent. In another aspect, the invention provides a method of three-dimensionally culturing a population of adipose derived cells. In one aspect, the invention provides a method of culturing a population of cells via continuous perfusion. In one embodiment, the perfusion conditions include a brief, intermittent or continuous flow of liquid (perfusion). In one embodiment, the medium in which the cells are cultured is circulated or agitated intermittently or continuously in such a manner that the force is transmitted to the cells via the flow. In one embodiment, the cells undergoing transient, intermittent or continuous fluid flow are cultured in such a manner that the cells are present in a three-dimensional structure in or on the material providing the framework and/or space for such three-dimensional structure formation. In one embodiment, the cells are cultured on multi-hole beads and subjected to intermittent or continuous liquid flow using a shaker platform, a rotary platform or a spin-on flask. In another embodiment, the cells are cultured on a three-dimensional scaffold and placed in the device such that the scaffold is stationary and the liquid flows directionally through or across the scaffold. Those of ordinary skill in the art will appreciate that other perfusion culture conditions known in the art can be used with the cells described herein. I56850. Doc -20· 201211256 As described herein, low or low oxygen oxygen conditions can be used to prepare a cell population of the invention. However, the method of the present invention can be used without the steps of forming under low oxygen conditions. In one embodiment, conditions with normal oxygen content can be used. Those of ordinary skill in the art will appreciate that other methods of isolation and culture known in the art can be used with the cells described herein. 4. The matrix or scaffold is as described in Bertram et al., U.S. Patent Application Serial No. 20070276507, the entire disclosure of which is incorporated herein by reference in its entirety herein in its entirety, the entire disclosure of the entire disclosure of . In one embodiment, the matrix or scaffold of the present invention may be three dimensional and shaped to conform to the size and shape of the organ or tissue structure. For example, in the use of polymeric stents for the treatment of kidney disease, anemia, EPO deficiency, insufficient tubular transport, or insufficient glomerular filtration, a three-dimensional (3-D) matrix may be required. It is possible to use a variety of different shapes of 3-D brackets. Of course, polymeric matrices can be shaped into different sizes and shapes to accommodate patients of different sizes. The polymeric matrix can also be shaped in other ways to suit the particular needs of the patient. In another embodiment, the polymeric matrix or scaffold can be a biocompatible porous polymeric scaffold. The scaffold can be formed from a variety of synthetic or naturally occurring materials including, but not limited to, open polylactic acid (OPLA®), cellulose ether, cellulose, cellulose esters, fluorinated polyethylene, phenolic, Poly-4-methylpentene, polyacrylonitrile, polyamide, polyamidoximine, polyacrylate, polybenzoxazole, polycarbonate, polycyanoaryl ether, polyester, polyester Carbonate, polyether, polyetheretherketone, polyetherimide, polyetherketone, polyether oxime, 156850. Doc -21 - 201211256 Polyethylene, Polyfluoroolefin, Polyimide, Polyolefin, Polyoxadiazole, Polyphenylene Ether, Polyphenylene Sulfide, Polypropylene, Polystyrene, Polysulfide, Poly Maple, Polytetra Fluorine, polythiol, polytrimethylene, polyurethane, polyethylene, polyvinylidene fluoride, regenerated cellulose, anthrone, urea formaldehyde, collagen, laminin, fibronectin, silk, elastin, alginic acid, Hyaluronic acid, agarose, or a copolymer or physical mixture thereof. The branched structure can be changed from a liquid hydrogel suspension to a soft porous scaffold to a rigid, retaining shape multi-well scaffold. Hydrogels can be formed from a variety of polymeric materials and can be used in a variety of biomedical applications. A hydrogel can be physically described as a three-dimensional network of hydrophilic polymers. Depending on the type of hydrogel, it contains varying percentages of water but is generally insoluble in water. Despite their high water content, the 7jC gel is able to additionally bind large volumes of liquid due to the presence of hydrophilic residues. The hydrogel swells sufficiently without changing its gel structure. The basic physical characteristics of the hydrogel can be specifically altered depending on the particular equipment used to characterize the product and the product. Preferably, the hydrogel is made of a polymer that is biologically inert and physiologically compatible with mammalian tissue, a biologically derived material, a synthetically derived material, or a combination thereof. The hydrogel material preferably does not cause an inflammatory reaction. Examples of other materials that can be used to form the hydrogel include (a) modified alginic acid, (b) polysaccharides gelled by exposure to monovalent cations (eg, gellan gum and carrageenan), and (6) very sticky. Liquid, or thixotropy, a gel that forms a gel over time due to the slow evolution of the structure (eg, hyaluronic acid), and (d) a polymeric hydrogel precursor (eg, polyepoxy _ Polypropylene glycol block copolymers and proteins). U.S. Patent No. 6,224,893 B1 provides a suitable preparation for root 156850. Doc -22· 201211256 A detailed description of various polymers of hydrogels according to the invention and the chemical nature of the polymers. The scaffold or biomaterial can be characterized to enable the cells to attach to the scaffold or biomaterial and interact with the scaffold or biomaterial, and/or can provide a porous space in which the cells can be captured. In one embodiment, the porous scaffold or biomaterial of the present invention allows a population of cells to be added or deposited onto a biomaterial constructed as a porous scaffold (eg, by attaching cells) and/or pores of the scaffold (eg, by Capture cells). In another embodiment, the scaffold or biomaterial allows or promotes cells in the scaffold: cell interactions and/or cells: biomaterial interactions to form a construct as described herein. In one embodiment, the biomaterial used in accordance with the present invention comprises hyaluronic acid (HA) in the form of a hydrogel comprising a HA molecule size of 5. 1 kDA to > 2 χ 1 〇 6 kDa. In another embodiment, the biomaterial used in accordance with the present invention comprises hyaluronic acid in the form of a porous foam comprising a HA molecule size also from 5. 1 kDA to > 2 X 1G6 kDa. In yet another embodiment, the biomaterial used in accordance with the present invention comprises a polylactic acid (PLA) based foam having an open cell structure with a pore size of from about 50 microns to about 300 microns. Those of ordinary skill in the art will appreciate that other types of synthetic or naturally occurring materials known in the art can be used to form the stents described herein. 5. Constructs In one aspect, the invention provides inoculation or deposition of the fat-derived 156850 described herein. Doc -23- 201211256 One or more polymeric scaffolds or matrices of a population of EPO-expressing cells. Such scaffolds that have been seeded with a population of cells may be referred to herein as "constructs." In one aspect, the invention provides an implantable construct for treating a kidney disease, anemia, or an EPO deficiency in a subject in need thereof, the construct having one or more of the cell populations described herein. In one embodiment, the construct is deposited on the surface of the stent by a biocompatible material or a biomaterial, a scaffold or matrix comprising one or more synthetic or naturally occurring biocompatible materials, and by attachment and/or capture. The cell population described herein is embedded in the surface of the scaffold. In certain embodiments, the construct is made of a biomaterial and a cell population, the cells are coated with the biomaterial component, deposited onto the biomaterial component, deposited in the biomaterial component, attached to the biomaterial component, Material components are captured, embedded in, or combined with biological material components. This population of cells can be used in combination with a matrix to form a construct. In one embodiment, the population of cells is in direct contact with the substrate to form a construct. In another embodiment, the deposited cell population or cellular component of the construct is a population of KiSAS cells that exhibit EP0. The population of inoculated KiSAS cells can be an oxygen-adjustable cell that exhibits EP0. In other embodiments, the KiSAS cell characteristic is the expression of one or more biomarkers. The biomarker may be a tubular cell biomarker selected from the group consisting of cubilin; E-mucin; NPHS1 (congenital degenerative nephritis 1, Finnish (kidney vasopressin)); ankle protein; vitamin D3 25 - hydroxylase (CYP2D25), Wnt4 and any combination thereof. In another embodiment, the biomarker can be selected from the group consisting of WT VEGF, EP0, and any combination thereof. The biomarker may be a renal regeneration biomarker involved in the development of known renal organs, 156,850. Doc -24- 201211256 For example, WT1. In one embodiment, the cell-deposited construct is adapted to improve renal function of the subject after implantation or administration to the kidney of the subject. In one embodiment, the population of cells deposited onto or formed with the biomaterial or scaffold is derived from a variety of sources, such as autologous sources. Non-autologous sources are also suitable for use, including but not limited to 'allogeneic or homologous (homologous or isogenic) sources. Those of ordinary skill in the art will appreciate that there are a variety of methods suitable for depositing strontium in other ways to combine cell populations with biological materials to form constructs. 6. Methods of Use In one aspect, the invention contemplates methods of providing a population or construct of adipose-derived cells to a subject in need of such treatment. In one embodiment, the method comprises the step of providing a substrate that will inoculate or deposit a population of cells to form a $__^ 沉积 deposition step comprising culturing a population of cells on the substrate. After the substrate has been sunk to form a construct, the construct can be implanted into the treatment site of the patient. In one aspect, the invention provides methods of nephropathy, anemia, or EPO deficiency in a subject in need of treatment with a cell population as described herein. In one embodiment, the method comprises administering to the subject a composition comprising a population of cells. In another embodiment, the composition further comprises for treating a disease or condition as described herein, deposited into a biological material, deposited onto a biological material, embedded in a biological material, coated with a biological material, or Biomaterial capture to form the implantable constructs described herein 3 156850. Doc -25· 201211256 Cell population. In one embodiment, the cell population is used alone or in combination with other cells or biological materials to stimulate regeneration in an acute or chronic disease state, such as a hydrogel, a porous scaffold, or a natural or synthetic Peptide or protein. In another aspect, renal disease, anemia, or EPO deficiency in a subject is effectively treated by the methods of the present invention and can be observed via various indicator symptoms of erythropoiesis and/or renal function. In one embodiment, the indicator symptoms of red blood cell constancy include, but are not limited to, hematocrit (HCT), hemoglobin (HB), red blood cell mean hemoglobin (MCH), red blood cell count (RBC), number of reticulocytes, reticulocyte percentage , red blood cell mean volume (MCV) and red blood cell distribution width (RDW). In one other embodiment, the indicator symptoms of renal function include, but are not limited to, serum albumin, albumin to globulin ratio (A/G ratio), serum phosphorus, serum sodium, kidney size (ultrasonic measurement), serum calcium , phosphorus to calcium ratio, serum potassium, proteinuria, urinary creatinine, serum creatinine, blood urea nitrogen (BUN), cholesterol level, triglyceride level and glomerular filtration rate (GFR). Moreover, multiple indicators of overall health and wellness include, but are not limited to, increased or decreased weight, survival, blood pressure (mean systemic blood pressure, diastolic blood pressure or systolic blood pressure), and physical endurance performance. In another embodiment, the treatment of stability of one or more indicator symptoms of renal function is effectively treated. Stabilization of renal function was demonstrated by observing that the indicated symptoms in the treated subjects treated by the method of the invention were compared to the same indicator symptoms in the subjects not treated by the method of the invention. Alternatively, stabilization of renal function can be achieved by treating the subject in a subject treated by the method of the invention compared to the same subject being treated at 156,850. Doc 26· 201211256 Before the same indicator changes in the symptoms to prove. The change in the symptoms of the first indicator can be an increase or decrease in sputum. In one embodiment, the treatment provided by the invention may comprise a stabilization of the blood urea nitrogen (BUN) level in the subject, wherein the BUN level observed in the subject has a similar disease state but is not subjected to the method of the invention The subject being treated is low. In one other embodiment, the treatment can include stabilization of the serum creatinine level in the subject, wherein the serum creatinine level observed in the subject is lower than the subject having a similar disease state but not treated by the method of the invention. . In another embodiment, the treatment can include stabilization of the hematocrit (HCT) level of the subject d, wherein the HCT level observed in the subject is comparable to having a similar disease state but not treated by the method of the invention. The subject is high. In another embodiment, the treatment can include stabilization of the red blood cell (RBC) level in the subject, wherein the RBC level observed in the subject is greater than the subject having a similar disease state but not treated by the method of the invention high. Those skilled in the art will appreciate that one or more other indicator symptoms described herein or known in the art can be measured to determine an effective treatment for a kidney disease in a subject. In another aspect, the invention relates to providing to a subject in need thereof The method of red blood cell constancy. In one embodiment, the method comprises the steps of: (a) administering a population of cells to a subject; and (b) determining a level of symptoms of the erythropoiesis indicator in the biological sample from the subject relative to an indicator in the control Symptom levels are different, wherein the difference in indicator symptom level (i) indicates that the subject responds to administration step (a), or (ii) indicates the subject's red blood cell constancy. In another embodiment, the method comprises the steps of: (4) administering to the subject a composition comprising a population of cells described herein; and 156850. Doc -27· 201211256 (b) Determining the level of symptoms of the red blood cell production index in the biological sample from the subject is different from the index level of the indicator in the control, wherein the difference in the indicator symptom level 1 indicates that the subject responds to Administration step (4), or (9) indicates the red blood cell constence of the subject. In another embodiment, the method comprises the steps of: (4) providing a biomaterial or a biocompatible polymeric scaffold; (b) depositing a population of cells of the invention onto a biomaterial or scaffold or depositing in the manner described herein Biomaterial or scaffold to form an implantable construct; (c) implanting the construct into the subject; and (6) determining the level of symptoms of the red blood cell production indicator from the biological sample from the subject relative to the index in the control Symptom levels are different, with a difference 1 in the indicator symptom level indicating that the subject responds to administration step (8), or (ϋ) indicating the subject's red blood cell constancy. In another aspect, the invention relates to a method of providing renal function stabilization and red blood cell constancy recovery to a subject in need thereof, the subject having renal dysfunction and anemia and/or EPO deficiency. In one embodiment, the method comprises the step of administering a population of cells or a construct comprising the population of cells. In this embodiment, the treatment of the subject is evidenced by an improvement in at least one indicator of renal function accompanied by at least one indicator of red blood cell production by a pre-treatment indicator symptom of the untreated subject or subject. An indicator of improvement in symptoms. In one aspect, the invention provides a method of treating EPO-derived cell populations by administering a fat, (1) treating kidney disease, anemia, or EPO deficiency; (9) stabilizing renal function, (Qi recovering red blood cell constancy, or (iv) any combination thereof, The beneficial effects of administration therein are better or better than the effect of administering a cell population of non-fat-derived EPO-expressing cell populations, or better or better than the effect of not administering a fat-derived cell population. Doc -28 - 201211256 In another embodiment, the adipocyte population provides a modified level of serum blood urea nitrogen (BUN). In another embodiment, the population of adipocytes provides improved retention of protein in serum. In another embodiment, the population of adipocytes provides improved levels of serum cholesterol and/or triglycerides. In another embodiment, the population of adipocytes.  The body provides an improved level of vitamin D. In one embodiment, the population of adipocytes.  The body provides an improved phosphorus to calcium ratio. In another embodiment, the population of adipocytes provides an improved level of hemoglobin. In a further embodiment, the adipocyte population provides improved levels of serum creatinine. In yet another embodiment, the population of adipocytes provides an improved level of hematocrit. In a further embodiment, the population of fatty cells provides an improved level of red blood cells (RBC#). In one embodiment, the improved level of hematocrit is restored to a 95% normal health level. In a further embodiment, the population of adipocytes provides an improved number of reticulocytes. In other embodiments, the population of adipocytes provides an improved percentage of reticulocytes. In still other embodiments, the population of adipocytes provides a modified level of red blood cell distribution width (RDW). In yet another embodiment, the population of adipocytes provides improved levels of hemoglobin. In yet another embodiment, the population of adipocytes provides red, hematopoietic responses in the bone marrow such that the bone marrow cells are nearly normal, and the bone marrow cells: red blood, the ball ratio is near normal. In one other embodiment, the population of adipocytes provides improved blood pressure. In another aspect, the invention provides a cell population exhibiting EPO by administering a fat, (1) treating kidney disease, anemia or EPO deficiency; (ii) stabilizing renal function, (iii) restoring red blood cell constancy, or (iv) any of A combined method wherein the 156850 described herein is administered. Doc -29- 201211256 The beneficial effects of the adipocyte population are characterized by comparable or improved red blood cell constancy compared to the beneficial effects provided by administration of recombinant EPO (rEPO). In one embodiment, the fat-derived EPO-expressing cell population, when administered to a subject in need thereof, provides improved red blood cell constancy (determined by hematocrit, hemoglobin or RBC#) as compared to administration of the recombinant EPO protein. In one embodiment, the adipocyte population provides improved hematocrit, RBC or hemoglobin as compared to recombinant EPO when administered. In a further embodiment, the single dose or delivery administration of the adipocyte population provides an improvement in red blood cell constancy (determined by an increase in hematocrit, hemoglobin or RBC#) in the treated subject, for a significant period of time. The improvement over the single dose of recombinant EPO protein or delivery provides red blood cell constancy for a sustained period of time. In another embodiment, the recombinant EPO is delivered at a dose of about 100 IU/kg, about 200 IU/kg, about 300 IU/kg, about 400 IU/kg, or about 500 IU/kg. Those of ordinary skill in the art will appreciate that other dosage recombination EP0 known in the art may be suitable. Another embodiment of the invention relates to a fat-derived EP0-expressing cell population described herein, or an implantable construct as described herein, for use in the preparation of a kidney disease, anemia or EPO deficiency for use in a subject in need thereof 'Use of a drug that provides red blood cell constancy in a subject in need, or improves renal function in a subject in need thereof. In yet another aspect, the invention provides a method of treating kidney disease in a subject in need thereof, comprising: administering to a subject a fat-derived cell expressing EP0 §¥11 or a cell population comprising a fat-derived EPO-expressing cell Composition of matter. At some 156850. Doc -30- 201211256 In some embodiments, the method comprises determining that the level of symptoms of renal function indicators in the test sample from the subject is different from the level of the indicator in the control, wherein the difference in the indicator symptom level indicates treatment A decrease in one or more renal functions, a stabilization or improvement in one or more renal functions. .  In certain embodiments, the kidney disease to be treated by the method of the invention is accompanied by red blood cells.  The lack of pheromone (EPO). In certain embodiments, the EPO deficiency is anemia. In some embodiments, the EPO deficiency or anemia occurs secondary to renal failure in the subject. In some other embodiments, the EPO deficiency or anemia occurs secondary to a condition selected from the group consisting of chronic renal failure, primary EPO deficiency, chemotherapy or antiviral therapy, non-medullary cancer, HIV infection. , liver disease, heart failure, rheumatoid arthritis or multiple organ system failure. In certain embodiments, the composition for use in the method further comprises a biomaterial comprising one or more biocompatible synthetic polymers and/or naturally occurring proteins or peptides, wherein the population of adipocytes is packaged in the biomaterial Being, deposited onto or in the biological material, captured by the biological material, suspended in the biological material, embedded in the biological material, and/or otherwise combined with the biological material. In certain embodiments, the population of lipid-cells used in the methods of the invention is derived from mammalian adipose tissue or cultured adipose tissue cells. In other embodiments, the population of adipocytes is derived from a kidney sample of the subject in need of the subject. In one embodiment, the sample is a renal adipose tissue biopsy sample. In other embodiments, the population of adipocytes used in the methods of the invention is derived from a sample of non-autologous renal adipose tissue. In yet another aspect, the invention provides a population of adipocytes of the invention or implantable construct 156850. The doc-31-201211256 construct is useful for the preparation of a medicament useful for treating kidney disease, anemia or EPO deficiency in a subject in need thereof. In another aspect, the invention provides a method for regenerating renal function of an autologous kidney in a subject in need thereof. In one embodiment, the method comprises the step of administering or implanting a population or construct of an adipocyte as described herein to the kidney of the subject. Renal function regenerated in the autologous kidney can be characterized by a number of indicator symptoms including, but not limited to, 'function or capacity in the native kidney', improvement in autologous renal function or ability, And the performance of certain markers in the autologous kidney. In one embodiment, the development or improvement of a function or ability can be observed based on the red blood cell constancy and various indicator symptoms of renal function described above. The population of adipocytes described herein, as well as constructs comprising the population of such adipocytes, can be used to provide regenerative effects to the autologous kidney. Regeneration can be characterized by stabilization of one or more indicator symptoms of the renal function (as described herein) and/or recovery of red blood cell constancy (as described herein). 7. Methods and Routes of Administration The adipocyte population and/or construct of the present invention may be administered alone or in combination with other biologically active components. The therapeutically effective amount of the population of adipocytes can be from the maximum number of cells that are safely received by the subject to the minimum number of cells necessary to treat kidney disease (eg, stabilization of one or more renal functions, reduction in rate of decline, or improvement). Variety. In certain embodiments, the methods of the invention provide a medicament for administering a population of adipocytes as described herein 156850. The amount of doc-32-201211256 is about 10,000 cells/kg, about 20,000 cells/kg, about 30,000 cells/kg, about 40,000 cells/kg, about 50,000 cells/kg, about 100,000 cells/kg, about 200,000 cells/kg, about 300,000 cells/kg, about 400,000 cells/kg, about 500,000 cells/kg, about 600,000 cells/kg, about 700,000 cells/kg, about 800,000 cells, /kg, about 900,000 cells/kg, about l. lxlO6 cells / kg, about 1. 2xl06 cells/kg, about 1. 3xl06 cells/kg, about 1. 4χ106 cells/kg, about 1. 5xl06 cells/kg, about 1. 6xl06 cells/kg, about 1. 7xl06 cells/kg, about 1. 8xl06 cells/kg, about 1. 9xl06 cells / kg, about 2. 1xl06 cells / kg, about 2. 1xl06 cells / kg, about 1. 2xl06 cells / kg, about 2 · 3 χ 106 cells / kg, about 2. 4xl06 cells/kg, about 2. 5xl06 cells / kg, about 2. 6xl06 cells/kg, about 2. 7xl06 cells / kg, about 2. 8xl06 cells/kg, about 2. 9xl06 cells/kg, about 3xl06 cells/kg, about 3. 1xl06 cells/kg, about 3. 2xl06 cells / kg, about 3. 3xl06 cells / kg, about 3. 4xl06 cells/kg, about 3_5xl06 cells/kg, about 3. 6xl06 cells/kg, about 3. 7xl06 cells/kg, about 3. 8xl06 cells/kg, about 3. 9xl06 cells/kg, about 4xl06 cells/kg, about 4. 1xl06 cells/kg, about 4. 2xl06 cells / kg, about 4. 3xl06 cells / kg, about 4. 4xl06 cells / kg, about 4. 5xl06 cells / kg, about 4. 6xl06 cells/kg, about 4. 7xl06 cells/kg, about 4. 8xl06 cells / kg, - about 4. 9 x l06 cells/kg, or about 5 x 106 cells/kg. In another embodiment, the cellular dose administered to the subject can be a single dose or a single dose plus another dose. In other embodiments, the dosage can be provided as a construct as described herein. In other embodiments, the cellular dose administered to the subject can be calculated based on the estimated renal quality or functional renal quality. The therapeutically effective amount of the cell population described herein or a mixture thereof can be suspended in pharmacy 156850. Doc -33· 201211256 In an acceptable carrier or excipient. Such carriers include, but are not limited to, basal medium plus 1% serum albumin, saline, buffered saline, dextrose, water, ssogen, alginate, hyaluronic acid, fibrin glue, polyethylene glycol, polyvinyl alcohol , carboxymethyl cellulose and combinations thereof. The formulation should be suitable for the manner of administration. Accordingly, the present invention provides the use of a population of adipocytes for the manufacture of a medicament for treating kidney disease in a subject. In some embodiments, the medicament may further comprise a recombinant polypeptide, such as a growth factor, a chemokine, or a cytokine. In a further embodiment, the medicament comprises a population of human adipose derived cells. The cells used to make the drug can be isolated, derivatized or enriched using any of the variations provided by the methods described herein. The cell preparation, construct or composition is formulated into a pharmaceutical composition suitable for administration to a human according to a conventional protocol. Typically, for example, a composition for intravenous administration, intra-arterial administration or administration in a kidney capsule is a sterile isotonic buffered aqueous solution. If desired, the composition may also include a local anesthetic to relieve any pain at the site of the injection. Typically, the ingredients are provided separately or together in unit dosage form, for example, as an airtight container such as a refrigerated concentrate in an ampoule labeled with an active dose. When the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. When the composition is to be administered by injection, an ampoule of sterile water for injection or saline can be provided; whereby the ingredients can be mixed prior to administration. The pharmaceutically acceptable carrier is determined in part by the particular composition to be administered, and by the particular method used to administer the composition. Therefore, there are many suitable preparations for pharmaceutical compositions (see, for example, Alfonso R Gennaro (eds.), Remington: The 156850. Doc -34· 201211256

Science and Practice of Pharmacy (雷明頓:藥學理論和實踐),以 前稱爲 Remington's Pharmaceutical Sciences (雷明頓藥物科學)第 20 版,Lippincott,Williams & Wilkins, 2003,藉由引用全文倂入本 文)。藥物組合物通常配製爲無菌、大致上等滲,且完全符合美國 . 食品和藥品管理監督局的所有優良製造規範(GMP )規定。 . 本發明的一方面還提供藥物製劑,其包含本發明的脂肪細胞 群體和藥學上可接受的載體。在一些實施方案中,該製劑包含1〇4 至1〇9腎脂肪衍生細胞。 在一方面,本發明提供向需要的受治療者提供脂肪細胞群體 的方法。在一個實施方案中,細胞群體來源可以是自體或同種異 體、同系(同源或同基因)、和其任何組合。在來源不是自體的情 形中,該方法可包括施用免疫抑制劑。適當的免疫抑制劑包括但 不限於硫唑嘌呤、環磷醯胺、咪唑立賓、環孢素、他克莫司水合 物、苯丁酸氮芥、氯苯紮利二鈉、金諾芬、前列地爾、鹽酸胍立 莫司、biosynsorb、莫羅單抗、阿法賽特、噴司他丁、達克珠單抗、 西羅莫司、黴酚酸酯、來氟米特、巴厘昔單抗、鏈球菌DNA酶α、 • bindarid、克拉屈濱、吡美莫司、伊洛白介素、西利珠單抗、依法 .. 珠單抗、依維莫司、阿尼莫司、加維莫單抗(gavilimomab )、法拉 莫單抗 '氯法拉濱、雷帕黴素、希普利珠單抗(siplizumab)、柴 苓湯、LDP-03、CD4、SR-4355 卜 SK&F_106615、IDEC-114、 IDEC-13 卜 FTY-720、TSK-204、LF-080299、A-8628卜 A-802715、 GVH-313、HMR-1279、ZD-7349、IPL-423323、CBP-lOU、 156850.doc •35- 201211256 ΜΤ-1345 ' CNI-1493 ' CBP-2011 > J-695 > LJP-920 ' L-732531 ^ ABX-RB2、AP-1903、IDPS、BMS-205820、BMS-224818、 CTLA4-lg、ER-49890、ER-38925、ISAtx-247、RDP-58、 PNU-156804、LJP-1082、TMC-95A、TV-4710、PTR-262-MG 和 AGI-1096 (參見美國專利號7,563,822)。本領域中具有通常知識 者將瞭解其它適當的免疫抑制劑。 本發明的治療方法包括將分離的腎脂肪衍生細胞群體遞送到 個體。在一個實施方案中,優選向預期有益的部位直接施用細胞。 在一個實施方案中,本發明的細胞群體在遞送運載體中向個體遞 送。 依據本說明書,用於向受治療者施用細胞的多種手段對本領 域中具有通常知識者是明顯的。這種方法包括注射細胞到受治療 者的靶位。可將細胞插入遞送裝置或運載體中,遞送裝置或運載 體便於藉由注射或植入而引入受治療者。在某些實施方案中,遞 送運載體可包括天然材料。在某些其它實施方案中,遞送運載體 可包括合成材料。在一個實施方案中,遞送運載體提供模擬或適 當地符合器官構造的結構。在其它實施方案中,遞送運載體性質 是流體-樣的。這種遞送裝置可包括用於注射細胞和流體到接受的 受治療者身體中的管,如,導管。在優選實施方案中,該管另外 具有針頭,如,注射器,本發明的細胞可經由其弓丨入到受治療者 的期望部位。在一些實施方案中,將脂肪細胞群體配製爲經由導 管施用到血管(其中術語“導管”意爲包括用於向血管遞送物質 156850.doc -36· 201211256Science and Practice of Pharmacy, formerly known as Remington's Pharmaceutical Sciences, 20th Edition, Lippincott, Williams & Wilkins, 2003, incorporated herein by reference. Pharmaceutical compositions are typically formulated to be sterile, substantially isotonic, and fully compliant with all Good Manufacturing Practices (GMP) regulations of the US Food and Drug Administration. An aspect of the invention also provides a pharmaceutical formulation comprising a population of adipocytes of the invention and a pharmaceutically acceptable carrier. In some embodiments, the formulation comprises 1〇4 to 1〇9 kidney fat-derived cells. In one aspect, the invention provides a method of providing a population of adipocytes to a subject in need thereof. In one embodiment, the cell population source can be autologous or allogeneic, homologous (homologous or isogenic), and any combination thereof. In situations where the source is not autologous, the method can include administering an immunosuppressive agent. Suitable immunosuppressive agents include, but are not limited to, azathioprine, cyclophosphamide, mizoribine, cyclosporine, tacrolimus hydrate, chlorambucil, chlorpheniric disodium, auranofin, Alprostadil, erolimus hydrochloride, biosynsorb, morozumab, afaset, pentastatin, daclizumab, sirolimus, mycophenolate mofetil, leflunomide, balsam Monoclonal antibody, Streptococcal DNase alpha, • bindarid, cladribine, pimecrolimus, Ilo interleukin, cililizumab, according to law: benzumab, everolimus, anemox, orjamo Monoclonal antibody (gavilimomab), faramolumab 'clofarabine, rapamycin, siplizumab, chaiqin soup, LDP-03, CD4, SR-4355, SK&F_106615, IDEC- 114, IDEC-13 卜 FTY-720, TSK-204, LF-080299, A-8628, A-802715, GVH-313, HMR-1279, ZD-7349, IPL-423323, CBP-lOU, 156850.doc • 35- 201211256 ΜΤ-1345 ' CNI-1493 ' CBP-2011 > J-695 > LJP-920 ' L-732531 ^ ABX-RB2, AP-1903, IDPS, BMS-205820, BMS-224818, CTLA4-lg , ER-49890, ER-38925, I SAtx-247, RDP-58, PNU-156804, LJP-1082, TMC-95A, TV-4710, PTR-262-MG and AGI-1096 (see U.S. Patent No. 7,563,822). Those of ordinary skill in the art will be aware of other suitable immunosuppressive agents. The method of treatment of the invention comprises delivering an isolated population of renal adipose-derived cells to an individual. In one embodiment, the cells are preferably administered directly to the site of interest. In one embodiment, a population of cells of the invention is delivered to an individual in a delivery vehicle. In accordance with the present specification, a variety of means for administering cells to a subject will be apparent to those of ordinary skill in the art. This method involves injecting cells into the subject's target. The cells can be inserted into a delivery device or carrier that facilitates introduction into the subject by injection or implantation. In certain embodiments, the delivery vehicle can comprise a natural material. In certain other embodiments, the delivery vehicle can comprise a synthetic material. In one embodiment, the delivery vehicle provides a structure that mimics or properly conforms to the organ configuration. In other embodiments, the delivery vehicle properties are fluid-like. Such a delivery device can include a tube, such as a catheter, for injecting cells and fluid into the body of an intended subject. In a preferred embodiment, the tube additionally has a needle, such as a syringe, through which the cells of the invention can be inserted into the desired site of the subject. In some embodiments, the population of adipocytes is formulated to be administered to a blood vessel via a catheter (wherein the term "catheter" is meant to include the delivery of a substance to a blood vessel 156850.doc -36· 201211256

的多種管樣系統中的任一種)。可選地,細胞可插入生物材料或支 架中或插入其上,該生物材料或支架包括但不限於紡織品,諸如 織布、編織物、穗帶、網狀物和不織布、打孔薄膜、海綿和泡沬、 和珠,諸如固體珠或多孔珠、微粒、奈米顆粒等(如,Cultispher-S • 膠質珠-Sigma)。細胞可製備爲以多種不同形式遞送。例如,細胞 . 可懸浮在溶液或凝膠中。細胞可與藥學上可接受的載體或稀釋劑 混合,其中本發明的細胞保持存活。藥學上可接受的載體和稀釋 劑包括鹽水 '緩衝水溶液 '溶劑及/或分散介質。這種載體和稀釋 劑的使用是本領域已知的。溶液優選地是無菌和流體,通常將是 等滲的。優選地,溶液在製造和儲存條件下穩定,且藉由使用例 如,對羥基苯甲酸酯類、氯丁醇、苯酚、抗壞血酸、硫柳汞等而 保持不受微生物諸如細菌和真菌的污染作用。本領域中具有通常 知識者將理解,本發明的其細胞群體的遞送中使用的遞送運載體 可包括上述特徵的組合。 分離的腎脂肪衍生細胞群體的施用方式包括但不限於,系 統、腎內(如,實質)、靜脈或動脈內注射、和直接注射到預期活 • 性部位的組織。根據本發明使用的另外的施用方式包括經由直接 - 剖腹術、經由直接腹腔鏡檢查、經腹部、或經皮的單次或多次注 射。根據本發明使用的另外的施用方式還包括,例如,逆行輸注 和輸尿管腎盂輸注。施用的手術手段包括一步方案,諸如但不限 於,部分腎切除和建構物植入、部分腎切除、部分腎孟切除、網 膜土腹膜血管形成、圓錐或錐形到圓柱體的多病灶活檢針追蹤、 156850.doc -37- 201211256 和腎極(renalpole)-樣置換,以及兩步方案,包括例如,用於再 植的類器官-內部生物反應器。在另一實施方案中,細胞組合物分 別遞送到具體部位,或同時或經具體方法以時間控制的方式由一 種或多種本文所述的方法經遞送。 人類中適當的細胞植入劑量可從關於細胞活性例如EP0產 生的現有資訊確定,或從在臨床前硏究中進行的劑量硏究外推。 從體外培養和體內動物實驗,細胞的量可定量,並用於計算植入 材料的適當劑量。另外,可監測患者以確定是否相應地可進行另 外的植入或減少植入的材料。 可將一種或多種其它成分加到細胞群體,包括選擇的細胞外 基質成分,諸如本領域已知的一種或多種類型的膠原或透明質 酸、和/或生長因子、血小板富集血獎和藥物。 本領域中具有通常知識者將理解適於本文所述細胞群體的各 種製劑和施用方法。 8·試劑盒 本發明還包括包含任何以下的試劑盒:本發明的聚合基質和 支架以及相關材料、及/或細胞培養基和使用說明書。使用說明書 可包括’例如’培養細胞或施用細胞群體的說明。在一個實施方 案中,本發明提供包括本文所述的支架和翻書的試劑盒。在又 一貫施方案中,試劑盒包括用於檢測標記表現的藥劑、用於藥劑 麵的試離I使臓帽。遲試自群體中一 156850.doc •38· 201211256 種或多種生物標記表現的目的。試劑盒還可用於確定本文所述的 細胞群體、混合物或建構物的生物治療效力。 9·報告 . 賴_旙了廳目_«,旨Μ 胞群體特徵的報告或槪述。報告可包括關於本文所述的細胞群體 的任何限定特徵的資訊。本發明的方法和報告可進一步包括將報 告儲存在資料庫中。可選地,該方法可進一步在資料庫中產生受 治療者的5己錄,並用資料桃充該記錄。在一個實施方案中該幸g告 是書面報告’在另一個實施方案中,該報告是聽覺報告,在另一 個實施方案中’該報告是電子報告。涵蓋向醫師及/或患者提供該 報告。接收報告可進一步包括建立與包含資料和報告的伺服器電 腦的網路連接,並從伺服器電腦索取資料和報告。本發明提供的 方法還可完全或部分地自動化。 本說明書中提及的所有專利、專利申請和參考文獻藉由引用 全文倂入本文。 , 僅爲了示例的目的提供以下實施例,不意爲以任何方式限制 本發明的範圍。 實施例 實施例1 -腎脂肪中紅血球生成因子'血管fM件庆1孑和發育因子的 調節的表現 156850.doc -39- 201211256 藉由硏究在衍生自腎和非腎SVF來源並在帶有10%g台牛血清 的α-ΜΕΜ培養基中擴增的細胞(SVF細胞)中紅血球生成素 (ΕΡΟ)和血管內皮生長因子(VEGF)的體外表現,我們硏究從 脂肪基質血管成分(SVF )分離的細胞是否可能影響體內紅血球生 成和血管發生。從SVF細胞分離的ΕΡΟ和VEGF mRNA的表現 被低氧調節。儘管已經記載了肝、腎和腦衍生細胞的氧-調節的 EPO表現,本文報告脂肪SVF細胞的EPO表現與原代腎細胞或 肝細胞相當。等電點焦聚揭示,EPO mRNA的轉譯後加工模式在 衍生自腎和非腎脂肪的SVF細胞中不同,B音示腎和非腎脂肪組織 的功能不同。來自腎脂肪的SVF細胞還特異性表現涉及胚胎發生 期間的腎器官發育的轉錄因子維爾姆斯氏瘤1 (WT1)。總之,這 些資料與腎源脂肪基質(KiSAS )細胞可被引發以再造腎中的再生 微環境的觀念一致。這些發現開啓了分離實體-器官相關的脂肪衍 生細胞群體用於在器官-特異性再生藥物產物中的治療應用的可能 性,且可能代表用於治療EPO表現減少繼發的貧血的治療因子的 新來源。 在本文,我們將當前的硏究中集中在評價區分衍生自腎和非 腎來源的脂肪的基質細胞的功能標準,這經由分析確立的腎相關 的再生和發育標記:紅血球生成素(EPO )、VEGF和WT1。我們 首次證明,腎脂肪組織代表特異性表現EPO的儲庫,且衍生自腎 和非腎來源的脂肪的基質細胞群體以低氧調節的方式表現EPO和 VEGF 〇而且,我們顯示,關鍵腎原性轉錄因子WT1的表現對腎 156850.doc -40- 201211256 月旨肪來源的基質細胞具有特異性,且腎中的壁龕特異性脂肪儲庫 可由區別性的WT1轉錄剪接變體界定。總之,這些資料將功能上 獨特的、位置·特異性脂肪儲庫的槪念從系統位準擴大到器官-位 準,並確立應用腎來源的脂肪作爲用於腎的組織工程和再生療法 . 的替代細胞來源的基礎。 材料和方法 腎和非腎脂肪衍生細胞的分離.人類非腎脂肪皮下或經由內 臟抽脂(Zen-Bio, www.zen-bio.com)獲得。按照管理爲了硏究目 的使用人類組織的所有NIH規定,來自腎蒂的腎脂肪從經由 National Disease Research Institute (NDRI)捐贈的人類腎(正常成Any of a variety of tube systems). Alternatively, the cells can be inserted into or inserted into a biomaterial or scaffold including, but not limited to, textiles such as woven fabrics, braids, braids, meshes and nonwovens, perforated films, sponges, and Bubbles, and beads, such as solid or porous beads, microparticles, nanoparticles, etc. (eg, Cultispher-S • Colloidal Beads - Sigma). Cells can be prepared to be delivered in a variety of different forms. For example, cells can be suspended in a solution or gel. The cells can be mixed with a pharmaceutically acceptable carrier or diluent wherein the cells of the invention remain viable. Pharmaceutically acceptable carriers and diluents include saline 'buffered aqueous solutions' solvents and/or dispersion media. The use of such carriers and diluents is known in the art. The solution is preferably sterile and fluid and will generally be isotonic. Preferably, the solution is stable under the conditions of manufacture and storage and is protected from contamination by microorganisms such as bacteria and fungi by the use of, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. Those of ordinary skill in the art will appreciate that delivery vehicles for use in the delivery of their cell populations of the invention can include a combination of the above features. The mode of administration of the isolated renal adipose-derived cell population includes, but is not limited to, systemic, intrarenal (e.g., parenchymal), intravenous or intra-arterial injection, and direct injection into the tissue of the intended active site. Additional modes of administration for use in accordance with the present invention include single or multiple injections via direct-laparotomy, via direct laparoscopy, transabdominal, or transdermal. Additional modes of administration for use in accordance with the present invention also include, for example, retrograde infusion and ureteral renal pelvic infusion. Surgical procedures for administration include one-step protocols such as, but not limited to, partial nephrectomy and construct implantation, partial nephrectomy, partial nephrectomy, retinal peritoneal angiogenesis, conus or cone-to-cylinder multifocal biopsy needle tracking , 156850.doc -37- 201211256 and renal pole-like replacement, and a two-step protocol, including, for example, an organoid-internal bioreactor for replantation. In another embodiment, the cellular compositions are delivered separately to a particular site, or simultaneously or in a timed manner by a particular method, by one or more of the methods described herein. Appropriate cell implantation doses in humans can be determined from available information on cellular activity such as EP0 production, or from dose studies conducted in preclinical studies. From in vitro culture and in vivo animal experiments, the amount of cells can be quantified and used to calculate the appropriate dose of implant material. Additionally, the patient can be monitored to determine if additional implantation or material reduction can be performed accordingly. One or more additional ingredients may be added to the cell population, including selected extracellular matrix components, such as one or more types of collagen or hyaluronic acid, and/or growth factors, platelet enriched blood prizes, and drugs known in the art. . Those of ordinary skill in the art will appreciate various formulations and methods of administration suitable for the cell populations described herein. 8. Kits The present invention also encompasses kits comprising any of the following: polymeric matrix and scaffolds of the invention and related materials, and/or cell culture media and instructions for use. Instructions for use may include instructions such as 'culturing cells or administering a population of cells. In one embodiment, the invention provides a kit comprising a scaffold and a flip book as described herein. In a consistent embodiment, the kit includes an agent for detecting the expression of the marker, and a test strip for the face of the drug. Late trials from a group of 156850.doc •38· 201211256 for the purpose of multiple or multiple biomarkers. Kits can also be used to determine the biotherapeutic efficacy of the cell population, mixture or construct described herein. 9. Reports. Lai _ 旙 厅 厅 _ «, the report or description of the characteristics of the squad. The report may include information regarding any defined characteristics of the cell populations described herein. The method and report of the present invention can further include storing the report in a database. Optionally, the method can further generate a record of the subject in the database and fill the record with the data. In one embodiment, the report is a written report. In another embodiment, the report is an auditory report, and in another embodiment the report is an electronic report. Covers the report to physicians and/or patients. Receiving the report can further include establishing a network connection to the server computer containing the data and reports, and requesting information and reports from the server computer. The methods provided by the present invention may also be fully or partially automated. All patents, patent applications and references mentioned in this specification are hereby incorporated by reference in their entirety. The following examples are provided for illustrative purposes only and are not intended to limit the scope of the invention in any way. EXAMPLES Example 1 - Regulation of the regulation of erythropoiesis factor vascular fM cleavage and developmental factors in renal fat 156850.doc -39- 201211256 by deriving from sources derived from kidney and non-kidney SVF In vitro performance of erythropoietin (ΕΡΟ) and vascular endothelial growth factor (VEGF) in cells (SVF cells) amplified from 10% g of Taiwan bovine serum in α-ΜΕΜ medium, we studied from the fatty matrix vascular component (SVF) Whether isolated cells may affect red blood cell production and angiogenesis in vivo. The expression of sputum and VEGF mRNA isolated from SVF cells was regulated by hypoxia. Although the oxygen-regulated EPO manifestations of liver, kidney and brain-derived cells have been documented, it has been reported herein that EPO expression of adipose SVF cells is comparable to that of primary kidney cells or hepatocytes. The isoelectric focusing revealed that the post-translational processing mode of EPO mRNA was different in SVF cells derived from kidney and non-renal fat, and B-sound showed different functions of kidney and non-renal adipose tissue. SVF cells derived from renal fat also specifically express the transcription factor Wilms' tumor 1 (WT1) involved in the development of renal organs during embryogenesis. In summary, these data are consistent with the notion that renal adipose-derived matrix (KiSAS) cells can be triggered to regenerate the regenerative microenvironment in the kidney. These findings open up the possibility of isolating solid-organ-related fat-derived cell populations for therapeutic applications in organ-specific regenerative drug products, and may represent new therapeutic factors for the treatment of EPO-induced reduction of secondary anemia. source. In this paper, we focus our current research on evaluating functional criteria that distinguish stromal cells derived from kidney and non-kidney-derived fats, which are established through analysis of kidney-related regeneration and development markers: erythropoietin (EPO), VEGF and WT1. We demonstrate for the first time that renal adipose tissue represents a reservoir that specifically expresses EPO, and that stromal cell populations derived from kidney and non-kidney-derived fats express EPO and VEGF in a hypoxic manner. Moreover, we show that key nephrosity The expression of the transcription factor WT1 is specific for stromal cells derived from the kidney, and the tick-specific fat reservoir in the kidney can be defined by a differential WT1 transcriptional splice variant. In summary, these data expand the functionally unique, location-specific fat reservoirs from systemic to organ-level and establish the use of kidney-derived fat as tissue engineering and regenerative therapy for the kidney. The basis for replacing cell sources. Materials and Methods Isolation of renal and non-renal fat-derived cells. Human non-renal fat was obtained subcutaneously or via visceral liposuction (Zen-Bio, www.zen-bio.com). Renal fat from the kidney pedicle is passed from the human kidney donated by the National Disease Research Institute (NDRI) according to all NIH regulations governing the use of human tissue for research purposes.

人)切下。來自腎大盞的腎脂肪藉由對切完整人類腎並從髓質剖 下腎盞脂肪而獲得。用於分離犬腎脂肪的犬腎從University of North Carolina at Chapel Hill 獲得(Dr. Timothy Nichols 所贈)。用 於分離大鼠內臟和器官相關脂肪的大鼠腎來源於從Charles River Labs獲得的雄性Lewis大鼠。無論物種或組織來源,對所有脂肪 樣品如下處理:將脂肪組織用PBS/0.1%健大黴素 , (Invitr〇gen_Gibco)徹底洗滌,在 37〇C 用 DMEM-HG (Invitrogen-Gibco )中 0.3%膠原酶 I (Worthington )、1% BSA 消 化最多1小時。以600 g離心樣品20分鐘,吸去脂肪細胞上清液。 將剩餘基處血管成分重懸在α-ΜΕΜ/10% FBS (Invitrogen-Gibco ) 中’並在組織培養培養箱中放置24-48小時。非粘附細胞群體可藉 由用PBS洗滌3次而去除。對於包括低氧誘導的實驗,將細胞在 156850.doc •41 · 201211256 〇2-富集(2% )培養箱中保持所示的時間段。VEGF jnR^A表現用 作對照以證實低氧調節途徑的完整。 非脂肪細胞·來自大鼠或人類腎的腎原代腎細胞如此前所述 地分離(Basu 等,Cell Transplant 2011 Mar 24. [Epub ahead of print] ; Presnell SC 等,Tissue Eng Part C Methods,Π ⑶:261-273, 2011 )。人類周邊血衍生單核細胞如所述地分離(Spector,D丄.Cells, a laboratory manual (細胞實驗手冊).Cold Spring Harbor Press, 1997>CD34+ GCSF動員的/非動員的周邊血單核細胞cdnA購自 AllCells LLC。胎兒和成人肝細胞CDNA和角質細胞cDNA購自 ScienCell Research Laboratories。Man) cut it. Renal fat from the kidney sputum is obtained by cutting the intact human kidney and removing the renal pelvis fat from the medulla. Canine kidney used to isolate canine kidney fat was obtained from the University of North Carolina at Chapel Hill (a gift from Dr. Timothy Nichols). Rat kidneys used to isolate rat visceral and organ related fats were derived from male Lewis rats obtained from Charles River Labs. Regardless of species or tissue source, all fat samples were treated as follows: Adipose tissue was thoroughly washed with PBS/0.1% gentamicin, (Invitr〇gen_Gibco), and 0.3% in DMEM-HG (Invitrogen-Gibco) at 37 °C Collagenase I (Worthington), 1% BSA was digested for up to 1 hour. The sample was centrifuged at 600 g for 20 minutes and the supernatant of the adipocyte was aspirated. The remaining vascular components were resuspended in α-ΜΕΜ/10% FBS (Invitrogen-Gibco) and placed in a tissue culture incubator for 24-48 hours. The non-adherent cell population can be removed by washing 3 times with PBS. For experiments involving hypoxia induction, cells were maintained in the 156850.doc •41 · 201211256 〇2-enriched (2%) incubator for the indicated period of time. VEGF jnR^A was used as a control to confirm the integrity of the hypoxic regulatory pathway. Non-adipocytes • Primary renal kidney cells from rat or human kidney are isolated as previously described (Basu et al, Cell Transplant 2011 Mar 24. [Epub ahead of print]; Presnell SC et al., Tissue Eng Part C Methods, Π (3): 261-273, 2011). Human peripheral blood-derived monocytes are isolated as described (Spector, D丄. Cells, a laboratory manual). Cold Spring Harbor Press, 1997> CD34+ GCSF mobilized/non-mobilized peripheral blood mononuclear cells cdnA Available from AllCells LLC. Fetal and adult hepatocyte cDNA and keratinocyte cDNA were purchased from ScienCell Research Laboratories.

TaqMan qRT-PCR·利用 RNeasy Plus 微型試劑盒 (Qiagen) ’按照製造商的說明從細胞樣品純化RNA。利用 Superscript VILO cDNA 合成試劑盒(Invitrogen-Gibco )按照製造 商的說明從完整終體積的RNA產生cDNA。合成cDNA後,將每 種樣品1 ·· 1〇稀釋,直接用於建立如下的qRT-PCR: 10 μΐ master mix (2X )、1 μΐ引子/探針、9 μΐ cDNA 〇以下TaqMan引子/探針組從 Applied Biosystems 獲得:大鼠 EPO : Rn01481376_ml、大鼠 VEGF-A : Rn00582935、人類 EPO : Hs00171267_m卜人類 VEGF-A : Hs00900058_m 卜人類 WT-1 : Hs01103754_nU。還獲得 對以下的引子/探針組:cubulin、NPHSI、E-鈣粘著蛋白、足萼蛋 白、VitD經化酶和Wnt4。所有TaqMan反應在ABI7300即時熱 循環儀中利用預設循環參數進行。對PCR資料的分析利用比較性 156850.doc -42· 201211256TaqMan qRT-PCR • RNA was purified from cell samples using the RNeasy Plus Mini Kit (Qiagen) according to the manufacturer's instructions. cDNA was generated from the complete final volume of RNA using the Superscript VILO cDNA Synthesis Kit (Invitrogen-Gibco) according to the manufacturer's instructions. After synthesizing the cDNA, each sample was diluted 1 · 1 直接 and used directly to establish the following qRT-PCR: 10 μΐ master mix (2X ), 1 μΐ primer/probe, 9 μΐ cDNA 〇 below TaqMan primer/probe The group was obtained from Applied Biosystems: rat EPO: Rn01481376_ml, rat VEGF-A: Rn00582935, human EPO: Hs00171267_m, human VEGF-A: Hs00900058_m, human WT-1: Hs01103754_nU. The following primer/probe groups were also obtained: cubulin, NPHSI, E-cadherin, ankle protein, VitD-transferase, and Wnt4. All TaqMan reactions were performed using the preset cycle parameters in the ABI 7300 Instant Thermal Cycler. Analysis of PCR data using comparativeity 156850.doc -42· 201211256

Ct的相對定量(RQ)的方法進行。 EPO的等電點焦聚凝膠分析·將達1 X 106細胞或達30 mg 總脂肪組織在蛋白裂解緩衝液(50mMTrispH8.0 ; 150mM NaCl; 0.5%NP40和蛋白酶抑制劑,Roche)中裂解。將10 pg蛋白 裂解物載入到pH 3-7的等電點焦聚(IEF )凝膠(Irwitrogen-Gibco ) 上,如製造商建議地電泳。利用iBlot轉移系統(Invitrogen-Gibco ) 將IEF凝膠轉移到硝酸纖維素,用MAB 2871抗-hEPO單株抗體 (R&D Systems)以 1/500 在 TBST (Tris-緩衝鹽水,pH 7.0, 0.1% Tween-20 ) /2%乳中探測隔夜。第二抗體是以1/60000在TBST/2% 乳中的馬抗-小鼠IgG/HRP共轭物(Vector Labs )。 FACs和免疫-螢光·將細胞(0.5 X 106- 1 X 106 )固定在2%低 聚甲醛中,用Fe受體阻斷以阻止非特異性結合。藉由在PBS/0.2% Triton X-100/10%馬血清中培養30分鐘而使細胞透化。然後如製 造商建議的,將細胞與抗人類WT1的直接共軛抗體(SantaCruz) —起培養。最後一次洗滌(PBS, 0.2% Triton X-100)之後,使用 Guava EasyCyte微型表現測定系統,利用適當的螢光通道進行抗 原檢測。從每個樣品獲取至少5,000-10,000個事件。對於免疫-螢 光分析,利用細胞離心系統(Viescor)在1,500 rpm離心5分鐘, 將標記的細胞懸液直接離心到聚-L-賴胺酸塗佈的載玻片(Electron Microscopy Sciences )上。以包含 DAPI 的阻斷介質(Vector Labs ) 複染細胞,用Leica DMI 4000B螢光顯微鏡觀察。 結果 156850.doc -43 - 201211256 £P〇由多種細胞來源表現。爲了評價EPO mRNA從脂肪衍 生的基質細胞相對於確立的EPO來源的表現,進行了 TaqMan定 量RT-PCR。人類原代腎細胞用作校準物,並具有指定的rq値爲 1.0。樣品如下:H20作爲陰性對照(1);人類原代腎細胞(2);完整 胎兒肝(3) ; CD34+富集胎兒肝細胞(4);肝細胞(5);第4代角質細 胞(6);人類皮膚微血管內皮細胞(7);人類表皮角質細胞(8); CDM+、GCSF動員的周邊血衍生單核細胞(9); CD34+、正常周邊 血衍生單核細胞(10);第0代(11)、第1代(12)、第2代(13)、第4 代的脂肪(脂肪抽取液)基質細胞(14);第0代(15)、第1代(16)、 第2代(17)、第3代(18)和第4代(19)的脂肪(皮下)基質細胞。 如圖1A所示,從腎原代細胞(細胞類型2 )、胎兒肝(細胞類型3 )、 成人肝細胞(細胞類型5 )、角質細胞(細胞類型8和8 )和非動 員的CD34+ PBMNC (細胞類型10 )可觀察到EPO強表現。觀察 到用GCSF動員CD34+ PBMNC導致EPO mRNA表現(細胞類型 9 )靜默。在非腎源脂肪基質細胞的多個樣品諸如CD34+富集胎兒 肝細胞(細胞類型4)以及傳代的脂肪抽取液(細胞類型11-14) 和皮下(細胞類型15-10)脂肪基質細胞觀察到相對較低位準的 EPOmRNA。還直接相對於腎原代細胞評價了腎和非腎源的脂肪 基質細胞的EPO表現。樣品如下:原代腎細胞(1和2);暴露於低 氧條件的原代腎細胞⑶;第〇代的脂肪抽取液(4)和皮下(5)基質細 胞;第1代的脂肪抽取液⑹和皮下⑺基質細胞;第1代的腎大盞 衍生腎源脂肪基質細胞⑻;第1代(9)和第3代(10)的腎蒂衍生腎 156850.doc -44 - 201211256 源脂肪基質細胞;胎兒肝細胞用作陽性對照(η); h2〇用作陰性對 照(12)。如圖1B所示,EPO mRNA從原代腎細胞(細胞類型1_3 ) 和非腎源脂肪基質細胞(細胞類型3-7、9、10)二者的表現與從 原代腎細胞觀察到的相當。 . 腎脂肪衍生細胞的形態學特徵取決於腎的分離位置。我們分 . 離衍生自腎的腎蒂以及腎大盞區室的脂肪。衍生自腎大盞的脂肪 細胞與從腎蒂或從非腎來源獲得的脂肪細胞相比具有獨特的內皮 形態學,這種形態學具有顯著更多成纖維細胞外觀。 EPO mRNA從腎和非腎源的脂肪基質細胞中的表現被低氧 調節。EPO從腎表現的關鍵特徵是被環境氧調節(Sytkowski,A.J. Erythropoietin. Blood, brain and beyond. Wiley, 2004, Gleadle, J.M. Nephrology 14, 86, 2006)。基於這一標準,藉由在高和低環境氧的 條件下定量EPO mRNA的產生,進行實驗以確定EPO從脂肪基 質細胞的表現是否生理上相關。最初的硏究集中在齧齒類,因爲 大鼠是用於硏究CKD所選的小動物模型(Ueda等,Life Sci 84, 853, 2009 )。· EPO和VEGF的表現在4小時時因應於低氧被上調,轉移 , 到含氧量正常48小時時向基線返回〇=3 )。如圖2A所示,大鼠 . 內臟脂肪基質細胞在處理4小時時藉由EPO mRNA表現上調而回 應於低氧。VEGF mRNA從大鼠內臟脂肪基質細胞的表現也被低 氧緊密控制,在處理4小時時上調,隨後返回含氧量正常48小時 內下調(圖2B)。這一結果由人類KiSAS細胞反應。來自兩種分 離物的細胞中EPO表現因應於低氧在8小時內被上調,轉移到含 156850.doc -45- 201211256 氧量正常48小時內向基線返回0=3 )。如圖3A-D所示’在人類 腎蒂和腎大盞來源的脂肪基質細胞觀察到低氧誘導的EPO和 VEGF mRNA表現上調。來自兩種分離物的細胞中VEGF表現因 應於低氧在4小時內被上調,轉移到含氧量正常48小時內向基線 返回(《=3)。 EPO蛋白的表現在人類KiSAS細胞與人類腎原代細胞之間 相當。除了發現脂肪基質細胞中EPO mJRNA的表現位準相對於原 代腎細胞顯著較低以外,我們還希望藉由評價不同來源的脂肪之 間的EPO蛋白表現,從功能性或生物治療角度定量ΕΡ0。因此我 們利用等電點焦聚凝膠(IEF)硏究了 EPO蛋白從脂肪衍生基質 細胞的表現。IEF技術已經用於以高解析度區分多種不同修飾的 ΕΡ0 同種型(Lasne, F.和 de Ceaurriz J. Nature 405, 635, 2000 )。腎 和非腎源的脂肪基質細胞表現可藉由等電點焦聚凝膠電泳和 western墨點區分的不同EPO同種型。樣品如下:都在含氧量正常 下的人類角質細胞(1)、肝細胞(2)、腎脂肪基質細胞(3)、非腎脂肪 基質細胞(4)和原代腎細胞(5)、低氧下的原代腎細胞⑹、作爲陽丨生 對照的HepG2細胞⑺。抗-EPO單株抗體作爲墨點的探針用於 Western分析。電泳道5和ό的比較顯示原代腎細胞分離物的EPO 蛋白表現因應於低氧明顯上調。所有電泳道由蛋白總量(10 μβ) 標準化。圖4Α證明,EPO蛋白從人類KiSAS細胞(電泳道3 ) 直接表現的位準與從確立的EP0細胞來源,包括角質細胞(電泳 道1 )、肝細胞(電泳道2)和原代腎細胞(電泳道5、6)觀察到 156850.doc -46 - 201211256 的相當(Bodo等,FASEB J21,3346, 2007’Weidemann,A.和Johnson, R.S. Kidney Int 75, 682, 2009 )。EPO還被內臟(非腎)脂肪基質細 胞(電泳道4),但以顯著減少的位準表現。腎和非腎源的脂肪基 質細胞顯示不同的轉譯後EP〇修飾模式’導致IEF凝膠上獨特遷 . 移譜,可藉由比較電泳道3與電泳道4觀察到。此外,基於等電 點,來自腎或非腎源的脂肪基質細胞來源的EPO進一步可與由原 代腎細胞表現的EPO區分(比較電泳道3和4與電泳道5和ό )。 最後,由人類角質細胞和肝細胞(電泳道1和2)表現的ΕΡΟ同 種型可與來自所有其它細胞來源的ΕΡΟ同種型區分。 因爲犬是用於評價腎細胞療法選擇的大動物模型(Lee等, Blood Purif 26, 491,2008 ),我們利用IEF凝膠檢查了犬腎源的月旨 肪基質細胞和原代腎細胞中EPO蛋白的表現。樣品如下:含氧量 正常⑴和低氧(2)下的犬原代腎細胞、腎大盞源的脂肪基質細胞 (3)、腎蒂源的脂肪基質細胞(4),作爲陽性對照的重組犬EP0 (5)。 以抗-EPO單株抗體爲墨點探針用於Westem分析。所有電泳道由 蛋白總量(10 gg)標準化。圖4B證明,來源於腎大盞脂肪(電 • 泳道3 )或腎蒂脂肪(電泳道4 )的犬KiSAS細胞表現EPO蛋白 , 的位準與從犬原代腎細胞(電泳道1和2 )觀察到的相當。另外, 對於人類脂肪的情況’從來源於腎蒂或腎大盞的基質細胞表現的 EPO具有區別犬脂肪衍生的Ep〇與犬原代腎細胞表現的EP〇的 獨特IEF特徵。總之,這些資料證實,KiSAS細胞表現EP〇蛋白 的位準與從確立的EPO細胞來源包括腎細胞、肝細胞和角質細胞 156850.doc •47- 201211256 觀察到的相當,並證實不同來源的EPO可藉由等電點譜鑑定 (Lasne, F.和 de Ceaurriz J. Nature 405, 635, 2000; Bodo 等,FASEB J 21,3346, 2007 ; Weidemann,A.和 Johnson,R.S. Kidney Int 75, 682, 2009)。The relative quantification (RQ) method of Ct is carried out. EPO isoelectric point pyrogel analysis • Up to 1 X 106 cells or up to 30 mg total adipose tissue was lysed in protein lysis buffer (50 mM Tris pH 8.0; 150 mM NaCl; 0.5% NP40 and protease inhibitor, Roche). 10 pg of protein lysate was loaded onto an isoelectric point pyrolysis (IEF) gel (Irwitrogen-Gibco) at pH 3-7 and electrophoresed as recommended by the manufacturer. The IEF gel was transferred to nitrocellulose using the iBlot transfer system (Invitrogen-Gibco) with MAB 2871 anti-hEPO monoclonal antibody (R&D Systems) at 1/500 in TBST (Tris-buffered saline, pH 7.0, 0.1 % Tween-20) /2% milk detection overnight. The second antibody was a horse anti-mouse IgG/HRP conjugate (Vector Labs) in 1/60000 in TBST/2% milk. FACs and immuno-fluorescence. Cells (0.5 X 106- 1 X 106 ) were fixed in 2% paraformaldehyde and blocked with Fe receptors to prevent non-specific binding. Cells were permeabilized by incubation in PBS/0.2% Triton X-100/10% horse serum for 30 minutes. The cells were then incubated with a direct conjugated antibody against human WT1 (Santa Cruz) as suggested by the manufacturer. After the last wash (PBS, 0.2% Triton X-100), the Guava EasyCyte micro-performance assay system was used for antigen detection using appropriate fluorescent channels. Obtain at least 5,000-10,000 events from each sample. For immuno-fluorescence analysis, the labeled cell suspension was directly centrifuged to a poly-L-lysine coated slide (Electron Microscopy Sciences) by centrifugation at 1,500 rpm for 5 minutes using a cell centrifugation system (Viescor). on. Cells were counterstained with blocking media (Vector Labs) containing DAPI and visualized using a Leica DMI 4000B fluorescence microscope. Results 156850.doc -43 - 201211256 £P〇 is expressed by a variety of cellular sources. To evaluate the performance of EPO mRNA from fat-derived stromal cells relative to established EPO sources, TaqMan quantitative RT-PCR was performed. Human primary kidney cells were used as calibrators and had a specified rq値 of 1.0. The samples are as follows: H20 as a negative control (1); human primary kidney cells (2); intact fetal liver (3); CD34+ enriched fetal liver cells (4); hepatocytes (5); fourth generation keratinocytes (6) Human skin microvascular endothelial cells (7); human epidermal keratinocytes (8); CDM+, GCSF mobilized peripheral blood-derived monocytes (9); CD34+, normal peripheral blood-derived monocytes (10); (11), the first generation (12), the second generation (13), the fourth generation of fat (fat extract) stromal cells (14); the 0th generation (15), the first generation (16), the second Fat (subcutaneous) stromal cells of generation (17), 3rd generation (18) and 4th generation (19). As shown in Figure 1A, from primary renal cells (cell type 2), fetal liver (cell type 3), adult liver cells (cell type 5), keratinocytes (cell types 8 and 8), and non-mobilized CD34+ PBMNC ( Cell type 10) Strong EPO performance was observed. It was observed that mobilization of CD34+ PBMNC with GCSF resulted in EPO mRNA expression (cell type 9) silence. Observation of multiple stromal cells in non-renal adipose stromal cells such as CD34+ enriched fetal hepatocytes (cell type 4) and passaged fat extracts (cell type 11-14) and subcutaneous (cell type 15-10) adipose stromal cells To a relatively low level of EPO mRNA. The EPO performance of renal and non-renal adipose stromal cells was also evaluated directly relative to renal primary cells. The samples are as follows: primary kidney cells (1 and 2); primary kidney cells exposed to hypoxic conditions (3); third passage fat extracts (4) and subcutaneous (5) stromal cells; first generation fat extracts (6) and subcutaneous (7) stromal cells; first generation of renal sputum-derived renal adipose stromal cells (8); first generation (9) and third generation (10) of pedicle-derived kidney 156850.doc -44 - 201211256 source fat matrix Cells; fetal liver cells were used as a positive control (η); h2 was used as a negative control (12). As shown in Figure 1B, the performance of EPO mRNA from primary kidney cells (cell type 1_3) and non-renal adipose stromal cells (cell types 3-7, 9, 10) was comparable to that observed from primary kidney cells. . The morphological characteristics of renal adipose-derived cells depend on the location of the kidney. We divide the fat from the kidney pedicles derived from the kidneys and the kidneys. Adipocytes derived from the kidney sputum have a unique endothelial morphology compared to adipocytes obtained from the kidney pedicle or from a non-renal source, and this morphology has significantly more fibroblast appearance. The expression of EPO mRNA from renal and non-renal adipose stromal cells is regulated by hypoxia. A key feature of EPO from renal performance is regulation by ambient oxygen (Sytkowski, A.J. Erythropoietin. Blood, brain and beyond. Wiley, 2004, Gleadle, J.M. Nephrology 14, 86, 2006). Based on this standard, experiments were performed to quantify the production of EPO mRNA under conditions of high and low ambient oxygen to determine whether the performance of EPO from adipose cells was physiologically related. The initial study focused on rodents because rats were used to study the small animal models selected by CKD (Ueda et al, Life Sci 84, 853, 2009). · The performance of EPO and VEGF was up-regulated at 4 hours in response to hypoxia, and returned to baseline after 48 hours of normal oxygenation = 3). As shown in Fig. 2A, rat visceral adipose stromal cells responded to hypoxia by up-regulating EPO mRNA expression at 4 hours of treatment. The expression of VEGF mRNA from rat visceral adipose stromal cells was also tightly controlled by hypoxia, up-regulated at 4 hours of treatment, and then down-regulated within 48 hours of normal oxygen return (Fig. 2B). This result is reflected by human KiSAS cells. The EPO in the cells from the two isolates was up-regulated in 8 hours due to hypoxia, and transferred to the baseline containing 156850.doc -45-201211256 for 48 hours of normal oxygen return 0 = 3). As shown in Figures 3A-D, hypoxia-induced upregulation of EPO and VEGF mRNA was observed in adipose stromal cells derived from human kidney pedicles and renal pelvis. The VEGF in the cells from the two isolates was up-regulated in 4 hours due to hypoxia, and returned to baseline within 48 hours of normal oxygenation ("=3). The expression of the EPO protein is comparable between human KiSAS cells and human kidney primary cells. In addition to finding that the expression level of EPO mJRNA in adipose stromal cells is significantly lower than that of primary kidney cells, we also hope to quantify ΕΡ0 from a functional or biotherapeutic perspective by evaluating the performance of EPO proteins between fats from different sources. Therefore, we used the isoelectric point pyrogel (IEF) to study the performance of EPO proteins from adipose-derived stromal cells. The IEF technique has been used to distinguish a number of differently modified ΕΡ0 isoforms with high resolution (Lasne, F. and de Ceaurriz J. Nature 405, 635, 2000). Renal and non-renal adipose stromal cells exhibit different EPO isoforms distinguished by isoelectric focal point gel electrophoresis and western blotting. The samples are as follows: human keratinocytes (1), hepatocytes (2), renal adipose stromal cells (3), non-renal adipose stromal cells (4) and primary renal cells (5), both under normoxic conditions, low Primary kidney cells under oxygen (6), HepG2 cells as a control for impotence (7). The anti-EPO monoclonal antibody was used as a probe for the ink dot for Western analysis. Comparison of electrophoresis lane 5 and sputum showed that the EPO protein expression of primary kidney cell isolates was significantly up-regulated in response to hypoxia. All electrophoresis channels were normalized by the total amount of protein (10 μβ). Figure 4 shows that the EPO protein is directly expressed from human KiSAS cells (electrophoresis 3) and from established EPO cell sources, including keratinocytes (electrophoresis 1), hepatocytes (electrophoresis 2), and primary kidney cells ( The electrophoresis lanes 5, 6) were observed to be comparable to 156850.doc -46 - 201211256 (Bodo et al, FASEB J21, 3346, 2007 'Weidemann, A. and Johnson, RS Kidney Int 75, 682, 2009). EPO is also visceral (non-renal) adipose stromal cells (electrophoresis lane 4), but exhibits a significantly reduced level. Renal and non-renal fat-based cells show different post-translational EP〇 modification patterns' resulting in unique migration on the IEF gel, which can be observed by comparing electrophoresis lane 3 with electrophoresis lane 4. Furthermore, based on isoelectric points, EPO derived from renal or non-renal adipose stromal cells can be further distinguished from EPO expressed by primary kidney cells (comparisons of electrophoresis lanes 3 and 4 with electrophoresis lanes 5 and ό). Finally, the same isoforms expressed by human keratinocytes and hepatocytes (electrophoretic channels 1 and 2) can be distinguished from the same isoforms from all other cell sources. Because dogs are large animal models used to evaluate renal cell therapy selection (Lee et al, Blood Purif 26, 491, 2008), we used EIF gel to examine EPO in canine kidney derived stromal cells and primary kidney cells. The performance of the protein. The samples were as follows: canine primary renal cells under normal oxygen (1) and hypoxia (2), adipose stromal cells derived from renal sputum (3), adipose stromal cells derived from renal pedicle (4), and reconstituted as a positive control. Canine EP0 (5). Anti-EPO monoclonal antibodies were used as blot probes for Westem analysis. All electrophoresis channels were normalized by the total amount of protein (10 gg). Figure 4B demonstrates that canine KiSAS cells derived from kidney sputum fat (Electrical • Lane 3) or Kidney pedicle fat (electrophoresis tract 4 ) exhibit EPO protein levels from canine primary kidney cells (electrophoresis lanes 1 and 2) Observed quite. In addition, in the case of human fat, EPO expressed from stromal cells derived from kidney pedicle or renal pelvis has a unique IEF characteristic that distinguishes between Ep〇 derived from canine fat and EP〇 expressed in canine primary kidney cells. In conclusion, these data confirm that KiSAS cells exhibit an EP prion level comparable to that observed from established EPO cell sources including kidney cells, hepatocytes, and keratinocytes 156850.doc •47– 201211256 and confirm that EPO can be derived from different sources. Identification by isoelectric point spectroscopy (Lasne, F. and de Ceaurriz J. Nature 405, 635, 2000; Bodo et al, FASEB J 21, 3346, 2007; Weidemann, A. and Johnson, RS Kidney Int 75, 682, 2009 ).

腎源的脂肪組織是EPO的器官特異性儲庫。爲了確定EPO 從脂肪基質細胞群體的表現是否反映體內生理上相關的EPO儲 庫,我們藉由IEF檢查了不同來源的大鼠完整脂肪組織的EPO蛋 白表現。脂肪組織是可藉由等電點焦聚凝膠電泳和western墨點區 分的EPO表現細胞的儲庫。白色和棕色脂肪衍生自內臟儲庫。所 有電泳道將蛋白爲1〇 pg標準化。表格顯示EPO表現的定量密度 分析,表示爲每單位凝膠面積的條帶密度。如圖5所示,其中各 電泳道藉由載入的蛋白質量而標準化’ EPO的強表現與腎源的脂 肪組織特異性相關。儘管EPO可從脂肪組織的非腎器官來源諸如 肝和心臟檢測,腎來源的脂肪中表現是肝來源的脂肪的5倍,腎 來源的脂肪中表現是心臟來源的脂肪的2.8倍。有趣地,比較來源 於內臟脂肪儲庫的白色和棕色脂肪顯示白色脂肪中EP0表現是棕 色脂肪的5倍。 發育轉錄因子WT1的表現區分腎和非腎源的脂肪基質細 胞。我們推測,EPO之外的腎標記可能與不同來源的脂肪中器官 特異性表現模式相關。WT1是一種關鍵的鋅指轉錄因子’廣泛地 涉及器官發生。WT1用以調節腎發生的最早期階段’可用作再生 的標記(Roberts, S.G. Curr Opin Genet Dev 15, 542, 2005 ; Litbarg 156850.doc -48- 201211256 等,Cell Tissue Res. 328, 487, 2007 ; Zhou 等,Nature 454, 109, 2008 )。我們使用WT1的KTS+和KTS-轉錄剪接變體的特異性引 子(Hammes等,Cell 106, 319,2001)來硏究WT1在腎和非腎源 的脂肪基質細胞中的表現。如圖6A所示,WT1 mRNA的表現對 . 腎源的脂肪基質細胞(電泳道4和5 )具有特異性,從內臟脂肪基 質細胞(電泳道2和3 )沒有觀察到表現。有趣地,這兩種剪接變 體之比在來源於衍生自同一供體的腎大盞脂肪(電泳道4 )或腎蒂 月旨肪(電泳道5 )的基質細胞之間不同。所有電泳道以cDNA的 總量標準化:分子量梯用於按大小排列(1 )、脂肪抽取液基質細 胞(電泳道2 )、皮下脂肪基質細胞(電泳道3 )、腎大盞脂肪基質 細胞(電泳道4 )、腎蒂基質細胞(電泳道5 ) 〇僅從腎脂肪檢測 WT1表現。注意到,KTS+/KTS-剪接變體之比在衍生自同一供體 的腎大盞和腎蒂衍生的細胞來源之間不同。 通過經由FACs和免疫-螢光方法評價WT1蛋白在KiSAS細 胞中的表現,我們延伸了 WT1 RT-PCR分析。圖6B和(:顯示, 腎蒂和腎大盞衍生的脂肪基質細胞二者具有WT1+群體,從群體 , 的大約45% (腎蒂)變化到52% (腎大盞)。45.6%的腎蒂脂肪基 質細胞群體是WT1+ 〇 52.4%的腎大盞脂肪基質細胞群體是 WT1+。WT1的表現是核的和細胞質的(圖6D) ’如此前報告的 (Niksic 等,HumMol Gen 13,463, 2004)。注意到 ’ WT1 表現的 定位是細胞質和核。WT1 (綠色)、DNA (紅色)。 腎脂肪衍生的細胞特異性表現與腎發生相關的多種標記。藉 156850.doc •49· 201211256 由進行TaqMan QRT-PCR以定量評價與腎發生相關的其它腎標記 從腎和非腎脂肪衍生的細胞的表現,我們進一步延伸了基因表現 分析。分析了衍生自同一供體的腎大盞脂肪衍生的基質細胞和腎 蒂衍生的基質細胞。我們發現,腎脂肪衍生的細胞表現關鍵腎原 性轉錄因子WT1。WT1調整GDNF的表現,GDNF是一種能夠觸 發輸尿管芽形成的分泌的訊息傳導因子(Brodbeck & Englert, Pediatr Nephrol. 2004 Mar;19⑶:249-55 )。發現 WTI 從腎脂肪衍生 的細胞的表現顯著低於對腎原代細胞觀察到的。然而,在任何位 準沒有觀察到從非腎脂肪衍生的細胞的表現。 藉由QRT-PCR,我們還發現,腎脂肪衍生的細胞表現腎小管 細胞生物標記,包括cubulin、NPHSI、E-鈣粘著蛋白、足萼蛋白、 VitD羥化酶和Wnt4°NPHSI是腎小球足細胞中駐留的一種細胞粘 附蛋白(Ruotsalainen 等,Am JPathol 157(2000): 1905-16)。E_釣 粘著蛋白是腎小管上皮細胞的標記,功能是維持apicobasal極性 (Halbleib & Nelson,Genes Dev. 2006 Dec 1;20(23):3199-214)。分 析非腎脂肪細胞的E-鈣粘著蛋白和NPHSI表現,發現不表現這些 腎小管細胞生物標記。Renal adipose tissue is an organ-specific reservoir of EPO. To determine whether the performance of EPO from the adipose stromal cell population reflects the physiologically relevant EPO reservoir in vivo, we examined the EPO protein expression of intact adipose tissue from different sources by IEF. Adipose tissue is a reservoir of cells that can be expressed by EPO electrophoresis and western blotting. White and brown fats are derived from the visceral reservoir. All electrophoresis channels normalize the protein to 1 〇 pg. The table shows the quantitative density analysis of EPO performance, expressed as the band density per unit gel area. As shown in Figure 5, each of the electrophoresis lanes is normalized by the amount of protein loaded. The strong expression of EPO is related to the fat tissue specificity of the kidney. Although EPO can be detected from non-renal organ sources of adipose tissue such as liver and heart, kidney-derived fats are five times more likely to be liver-derived fats, and kidney-derived fats are 2.8 times more abundant than heart-derived fats. Interestingly, the comparison of white and brown fats derived from the visceral fat reservoir showed that EP0 in white fat was five times greater than that of brown fat. The expression of the developmental transcription factor WT1 distinguishes between renal and non-renal adipose stromal cells. We hypothesize that kidney markers other than EPO may be associated with organ-specific performance patterns in fat from different sources. WT1 is a key zinc finger transcription factor' that is extensively involved in organogenesis. WT1 is used to regulate the earliest stages of nephrogenesis as a marker for regeneration (Roberts, SG Curr Opin Genet Dev 15, 542, 2005; Litbarg 156850.doc -48-201211256, et al, Cell Tissue Res. 328, 487, 2007 ; Zhou et al, Nature 454, 109, 2008). We used the specific primers for KTS+ and KTS-transcribed splice variants of WT1 (Hammes et al, Cell 106, 319, 2001) to investigate the performance of WT1 in renal and non-renal adipose stromal cells. As shown in Fig. 6A, the expression of WT1 mRNA was specific to renal adipose stromal cells (electrophoresis lanes 4 and 5), and no expression was observed from visceral fat stromal cells (electrophoresis lanes 2 and 3). Interestingly, the ratio of the two splice variants differs between stromal cells derived from the kidney scorpion fat (electrophoresis channel 4) or the kidney tibia fat (electrophoresis channel 5) derived from the same donor. All electrophoresis channels are normalized to the total amount of cDNA: molecular weight ladders are used for size (1), fat extract stromal cells (electrophoresis channel 2), subcutaneous fat stromal cells (electrophoresis channel 3), renal sputum adipose stromal cells (electrophoresis) Lane 4), renal pedicled stromal cells (electrophoresis tract 5) 〇 WT1 expression was only detected from renal fat. It is noted that the ratio of KTS+/KTS-splice variants differs between the source of renal sputum derived from the same donor and the source of the kidney-derived cells. We evaluated the WT1 RT-PCR analysis by evaluating the expression of WT1 protein in KiSAS cells via FACs and immuno-fluorescence methods. Figure 6B and (: shows that both the renal pedicle and the renal sputum-derived adipose stromal cells have a WT1+ population, from about 45% (kidney pedicle) to 52% (kidney sputum) from the population. 45.6% of the kidney pedicle The adipose stromal cell population is WT1+ 〇52.4% of the renal sputum adipose stromal cell population is WT1+. The expression of WT1 is nuclear and cytoplasmic (Fig. 6D) 'as previously reported (Niksic et al, HumMol Gen 13, 463, 2004). The characterization of 'WT1' is cytoplasmic and nuclear. WT1 (green), DNA (red). Renal adipose-derived cells are characterized by a variety of markers associated with nephrogenesis. By 156850.doc •49· 201211256 by TaqMan QRT- PCR to quantitatively evaluate the performance of other renal markers associated with renal development from renal and non-renal fat-derived cells, we further extended gene expression analysis. Analysis of renal cellulite-derived stromal cells and kidneys derived from the same donor Stromal-derived stromal cells. We found that renal adipose-derived cells express the key progenitor transcription factor WT1. WT1 regulates the performance of GDNF, a secretion that triggers the formation of ureteric buds. Conduction factor (Brodbeck & Englert, Pediatr Nephrol. 2004 Mar; 19(3): 249-55). The performance of WTI-derived cells derived from kidney fat was found to be significantly lower than that observed in primary renal cells. However, at any level there was no The performance of cells derived from non-renal fat was observed. By QRT-PCR, we also found that renal adipose-derived cells express tubular biomarkers, including cubulin, NPHSI, E-cadherin, anthraquinone, VitD hydroxylase and Wnt4°NPHSI are a cell adhesion protein resident in glomerular podocytes (Ruotsalainen et al, Am JPathol 157 (2000): 1905-16). E_fishing adhesion proteins are renal tubular epithelial cells. Marking, the function is to maintain apicobasal polarity (Halbleib & Nelson, Genes Dev. 2006 Dec 1; 20(23): 3199-214). Analysis of E-cadherin and NPHSI expression in non-renal adipocytes, found not to exhibit these Tubulocellular biomarkers.

這些硏究確立了用於藉由定向分化策略初步嘗試誘導獲得腎 小管表型的腎標記表現基線。爲此目的,已經描述對胚胎幹細胞 和成人衍生的幹細胞的祖先群體朝向腎表型的定向分化的方法。 例如,應用活化素-A和視黃酸足以誘導鼠類胚體中包括WT1、 Wnt4和GDNF的多種早期腎發育標記的表現(Kim & Dressier,J 156850.doc -50· 201211256These studies established a baseline for renal marker expression for the initial attempt to induce tubular phenotype by directed differentiation strategies. To this end, methods for directed differentiation of ancestral populations of embryonic stem cells and adult-derived stem cells toward the renal phenotype have been described. For example, the use of activin-A and retinoic acid is sufficient to induce the expression of multiple early renal development markers in mutated embryoid bodies including WT1, Wnt4 and GDNF (Kim & Dressier, J 156850.doc -50· 201211256

Am Soc Nephrol 16(2〇05): 3527-34)。我們觀察到腎脂肪衍生的細 胞中足萼蛋白表現因應於1〇 μΜ視黃酸而上調。另外,非腎脂肪 衍生的細胞中腎小球標記足萼蛋白的位準回應於用骨形態發生蛋 白(BMPs)處理而升高。 . 在本報告中,我們顯示腎來源的脂肪代表迄今未鑑定的產生 EPO細胞的儲庫。低氧-含氧量正常轉變期間觀察到的EPO mRNA 表現下調沒有VEGF mRNA顯示的那樣緊密調節(圖1-3 ) ’儘管 VEGF和EPO mRNA二者經由相同的HIF-la/2(x介導的調節途徑 回應於低氧(Gleadle,J.M. Nephrology 14, 86, 2006)。對 EPO mRNA 的這種明顯較不嚴格的調節控制可能是因爲EPO mRNA與VEGF mRNA相比顯著較低的相對表現位準(Plotkin,M.D.和Goligorsky, M.S. Am J Physiol Renal Physiol 291,902, 2006 )。EPO 的表現不是 從細胞培養物產生的人爲現象由腎來源的脂肪組織是EPO表現儲 庫的觀察結果證實(圖5)。有趣地,圖5還顯示,儘管從非腎來 源的脂肪的EPO表現相對於腎來源的脂肪顯著較低,EPO仍然是 內臟來源的脂肪中區分白色與棕色脂肪細胞的特異性標記。如圖 ,.4A所示,EPO從KiSAS細胞的表現與從目前用於CKD繼發的貧 , 血的細胞療法開發的原代腎細胞群體觀察到的等價(Aboushwareb, T等,World J Uml 26, 295,2008 )’暗示腎來源的脂肪可代表用於 EPO遞送的細胞載體的替代細胞來源。 尿和相應血清中EPO等電同種型特徵的變化此前已有記載 (Lasne,F 等,Int J Biol Macromol 41,354, 2007 )。等電同種型譜 156850.doc -51 · 201211256 已經用於區分懷疑不正當自行用藥的運動員尿中重組與天然的 EPO ( Weidemann,A.和 Johnson,R.S. Kidney Int 75, 682, 2009 )。類 似地,對來源於腎和非腎儲庫的基質細胞群體的IEF凝膠電泳分 析顯示,這種細胞類型可以由EPO轉譯後修飾模式的獨特差異在 功能上區分(圖4A)。而且,可在來源於同一器官的不同來源的 月旨肪中觀察到其它的EPO等電點同種型,如由腎大盞或腎蒂-來源 的脂肪基質細胞表現的EPO的區別性IEF特徵證實(圖4B )。這 —資料導致相信腎大盞和腎蒂代表腎中不同脂肪儲庫的想法。 我們對腎和非腎來源的脂肪基質細胞表現的EPO的差異轉 譯後修飾模式的觀察結果使得我們硏究可能潛在用於進一步區分 腎和非腎脂肪儲庫的其它關鍵腎標記的表現狀態。爲此目的,WT1 是一種鋅指轉錄因子,廣泛地牽涉在器官發生中。WT1用以調節 腎發生的最早期階段,可用作再生的標記(Roberts,S.G. CmrOpin Genet Dev 15, 542, 2005 ; Litbarg 等,Cell Tissue Res. 328, 487, 2007 ; Zhou 等,Nature 454, 109, 2008 )。WT1 mRNA 的表現對腎 源的脂肪基質細胞具有特異性(圖6A)。沒有從內臟來源的脂肪 檢測到WT1 mRNA。WT1的轉錄調節是複雜的,已經表徵了具有 區別性生物功能的多種剪接變體。WT1的KTS+和KTS-變體區別 是存在或不存在鋅指3和4之間的3個胺基酸(KTS )。報告 KTS+/KTS-WT1剪接變體之比在多種組織之間是不變的,這一平 衡的操作可觸發嚴重的發育異常(Hammes,A等,Cell 106, 319, 2001)。觀察到腎來源的脂肪基質細胞(但不是非腎來源的脂肪基 156850.doc -52- 201211256 質細胞)特異性表現WT1與觀察到腎和非腎源的脂肪基質細胞之 間EPO在表現位準和轉譯後修飾的差異一致(圖4B )。觀察到的 衍生自同一個體的同一器官的不同來源的脂肪基質細胞中 KTS+/KTS-WT1剪接變體之比的差異是顯著的;這種差異與此前 的報告(Hammes,A等,Cell 106, 319,2001)相反,但與本文記 載的EPO IEF特徵的器官和壁龕特異性變化性一致,提供脂肪中 儲庫特異性功能性的進一步證實。有趣地,只有大約5〇%的衍生 自腎大盞或腎蒂儲庫的基質細胞群體是WT1+ (圖6B和C ),暗 示這些脂肪組織中可能存在兩種功能不同的細胞亞群。Am Soc Nephrol 16 (2〇05): 3527-34). We observed that the expression of the ankle protein in renal fat-derived cells was up-regulated in response to 1 μ μ of retinoic acid. In addition, the level of glomerular marker ankle protein in non-renal fat-derived cells is increased in response to treatment with bone morphogenetic proteins (BMPs). In this report, we show that kidney-derived fat represents a reservoir that has not been identified to date to produce EPO cells. The downregulation of EPO mRNA observed during normal hypoxia-oxygen conversion was not as tightly regulated as VEGF mRNA showed (Figure 1-3) 'although both VEGF and EPO mRNA were mediated via the same HIF-la/2 (x) The regulatory pathway is responsive to hypoxia (Gleadle, JM Nephrology 14, 86, 2006). This significantly less stringent regulatory control of EPO mRNA may be due to a significantly lower relative performance level of EPO mRNA compared to VEGF mRNA. (Plotkin, MD and Goligorsky, MS Am J Physiol Renal Physiol 291, 902, 2006). The performance of EPO is not evidenced by the human phenomenon produced by cell cultures from observations of renal-derived adipose tissue that is an EPO expression reservoir (figure 5) Interestingly, Figure 5 also shows that although EPO performance from non-renal derived fats is significantly lower than kidney-derived fat, EPO is still a specific marker for distinguishing white and brown adipocytes from visceral-derived fat. As shown in Fig. 4A, the performance of EPO from KiSAS cells is equivalent to that observed in primary kidney cell populations developed from cell therapy for CKD secondary to poor (Aboushwareb, T, etc., World J Uml). 26, 295, 2008) ' implies that kidney-derived fats may represent alternative cell sources for cell carriers for EPO delivery. Changes in isoelectric characteristics of EPO in urine and corresponding serum have previously been documented (Lasne, F et al, Int J Biol) Macromol 41, 354, 2007). Isoelectric isoforms 156850.doc -51 · 201211256 has been used to distinguish between urinary reconstitution and natural EPO in athletes suspected of improper self-medication (Weidemann, A. and Johnson, RS Kidney Int 75) , 682, 2009). Similarly, IEF gel electrophoresis analysis of stromal cell populations derived from kidney and non-kidney reservoirs revealed that this cell type can be functionally distinguished by the unique differences in EPO post-translational modification patterns (Fig. 4A) Moreover, other EPO isoelectric isotypes can be observed in different sources derived from the same organ, such as the difference in EPO manifested by renal sputum or kidney pedicle-derived adipose stromal cells. The IEF signature was confirmed (Fig. 4B). This data led to the belief that the renal sputum and the kidney pedicle represent different fat reservoirs in the kidney. We interpreted the differential EPO of renal and non-renal derived adipose stromal cells. Observations modification patterns enables us WH study may show potential for further differentiate the status of other key renal and non-renal kidney fat reservoir mark. To this end, WT1 is a zinc finger transcription factor that is widely involved in organogenesis. WT1 is used to regulate the earliest stages of nephrogenesis and can be used as a marker for regeneration (Roberts, SG CmrOpin Genet Dev 15, 542, 2005; Litbarg et al, Cell Tissue Res. 328, 487, 2007; Zhou et al, Nature 454, 109 , 2008). The expression of WT1 mRNA was specific for renal adipose stromal cells (Fig. 6A). WT1 mRNA was not detected from visceral-derived fat. The transcriptional regulation of WT1 is complex and has been characterized by a variety of splice variants with distinct biological functions. The KTS+ and KTS-variants of WT1 differ in the presence or absence of three amino acids (KTS) between zinc fingers 3 and 4. Reporting that the ratio of KTS+/KTS-WT1 splice variants is constant across multiple tissues, this balanced operation can trigger severe dysplasia (Hammes, A et al, Cell 106, 319, 2001). It was observed that renal-derived adipose stromal cells (but not non-kidney-derived fat-based 156850.doc-52-201211256 cytoplasmic cells) specifically exhibited EPO expression levels between WT1 and observed adipose stromal cells of renal and non-renal origin. The difference was consistent with the post-translational modification (Fig. 4B). The difference in the ratio of KTS+/KTS-WT1 splice variants in adipose stromal cells from different sources derived from the same organ of the same individual was significant; this difference is in contrast to previous reports (Hammes, A et al, Cell 106, 319, 2001) Conversely, but consistent with the organ and tick specific variability of the EPO IEF features described herein, further confirmation of reservoir-specific functionality in fat is provided. Interestingly, only about 5% of the stromal cell population derived from the renal pelvis or renal pedicle reservoir is WT1+ (Fig. 6B and C), suggesting that there may be two distinct subpopulations of cells in these adipose tissue.

總之,我們在本報告中顯示,脂肪組織是EPO的新來源。我 ί門證明,EPO和VEGFmRNA從脂肪(腎和非腎來源)的表現被 環境氧調節,與從原代腎細胞或其它確立的EPO來源觀察到的直 接相當。腎和非腎來源的脂肪具有獨特的功能特徵,藉由EPO表 現位準和轉譯後修飾的差異表現。這些資料暗示,腎和非腎脂肪 代表根本上不同的脂肪儲庫。爲此目的,腎和非腎源的脂肪基質 細胞的EPO蛋白表現可基於IEF凝膠的區別性遷移模式區分,這 , 是兩種細胞類型之間EPO轉譯後修飾差異的結果。而且,KiSAS ^ 細胞重現了原代腎細胞功能表型的多個另外方面,包括關鍵腎原 性轉錄因子WT1的表現。腎脂肪可能可以適合於腎小管功能性的 獲得。在這一方面,我們已經觀察到KiSAS細胞原代培養物中確 立的腎小管標記回應於用已知形態發生劑諸如視黃酸調節(我們 未公佈的觀察結果)而誘導。腎脂肪可代表用於治療CKD繼發的 156850.doc -53· 201211256 慢性貧血的可能理想的替代細胞來源,因爲腎脂肪可以比腎原代 細胞更大的量分離,如在與腎小管器官諸如膀胱相關的脂肪的情 形,可不受腎癌患者發生轉移的影響(Jenkins,Μ·Α.和Munch,L.C. Urology 59,444, 2002 ; Genheimer,C.W 等,Appl ImmunohistochemIn summary, we show in this report that adipose tissue is a new source of EPO. I have shown that the performance of EPO and VEGF mRNA from fat (kidney and non-kidney sources) is regulated by ambient oxygen, directly comparable to that observed from primary kidney cells or other established EPO sources. Renal and non-renal derived fats have unique functional characteristics, manifested by differences in EPO expression levels and post-translational modifications. These data suggest that kidney and non-renal fat represent fundamentally different fat reservoirs. For this purpose, EPO protein expression of renal and non-renal adipose stromal cells can be distinguished based on the differential migration pattern of IEF gels, which is the result of differences in EPO post-translational modifications between the two cell types. Moreover, KiSAS ^ cells reproduce many additional aspects of the primary renal cell functional phenotype, including the performance of the key progenitor transcription factor WT1. Renal fat may be suitable for the acquisition of tubular function. In this regard, we have observed that established tubular markers in primary cultures of KiSAS cells are induced in response to modulation with known morphogens such as retinoic acid (our unpublished observations). Renal fat may represent a potentially alternative source of alternative cells for the treatment of CKD secondary 156850.doc-53·201211256 chronic anemia, as renal fat can be separated by greater amounts than primary renal cells, as in tubal organs such as Bladder-associated fat is not affected by metastasis in patients with renal cancer (Jenkins, Μ·Α. and Munch, LC Urology 59, 444, 2002; Genheimer, CW, etc., Appl Immunohistochem

Mol Morphol 19, 184, 2011 )。總之,腎脂肪衍生的細胞的特性(如, 可調節的EPO和VEGF產生、關鍵腎原性轉錄因子WT1的表現), 指示腎脂肪衍生的細胞群體可有助於在損傷部位治療性植入,或 便於產生患病腎中的再生微環境。 【圖式簡單說明】Mol Morphol 19, 184, 2011). In summary, the characteristics of renal adipose-derived cells (eg, regulatable EPO and VEGF production, the performance of the key pro-nogenetic transcription factor WT1), suggest that a renal-derived cell population can contribute to therapeutic implantation at the site of injury, Or facilitate the production of a regenerative microenvironment in the diseased kidney. [Simple description of the map]

圖1A顯示由人類細胞和組織來源的TaqMan qRTPCR比較分 析確定的多種細胞類型的EPO表現。圖1B顯示由TaqMan qRT-PCR比較分析確定的,腎和非腎來源的脂肪基質細胞的EPO 的表現與原代腎細胞相當。 圖2顯示由TaqMan qRT-PCR分析確定的,大鼠內臟脂肪基 質細胞的EPO (A.)和VEGF (B.)的調節的表現。 圖3顯示由TaqMan qRT-PCR分析確定的,人類腎蒂(A) 和人類腎大盞(B)脂肪基質細胞的EPO的調節的表現,和由 TaqMan qRT-PCR分析確定的,人類腎蒂(C)和人類腎大盞(D) 脂肪基質細胞的VEGF的調節的表現。 圖4A顯示人類腎和非腎來源的脂肪基質細胞的EPO的表現 與原代腎細胞、肝細胞和角質細胞相當。圖4B顯示犬腎來源的脂 156850.doc -54· 201211256 肪基質(KiSAS)細胞的EPO的表現與犬原代腎細胞相當。 圖5顯示由IEF分析的脂肪組織的EPO蛋白表現的結果。 圖6A顯示人類腎和非腎來源的脂肪基質細胞中WT1剪接變 體(KTS+/KTS-)的半定量RT-PCR分析。圖6B和C顯示腎大盞 或腎蒂相關脂肪基質細胞中WT1+細胞分佈的FACs分析。圖6D 顯示腎大盞脂肪基質細胞和腎蒂脂肪基質細胞中WT1+細胞分佈 的免疫-營光分析。 156850.doc -55-Figure 1A shows EPO performance of various cell types as determined by TaqMan qRTPCR comparative analysis of human cell and tissue sources. Figure 1B shows that EPO of renal and non-renal derived adipose stromal cells is comparable to primary kidney cells as determined by TaqMan qRT-PCR comparative analysis. Figure 2 shows the modulated expression of EPO (A.) and VEGF (B.) in rat visceral fat-derived cells as determined by TaqMan qRT-PCR analysis. Figure 3 shows the modulated expression of EPO in human kidney pedicle (A) and human renal pelvis (B) adipose stromal cells as determined by TaqMan qRT-PCR analysis, and human kidney pedigree as determined by TaqMan qRT-PCR analysis ( C) and human renal sputum (D) expression of VEGF regulation of adipose stromal cells. Figure 4A shows that EPO of human kidney and non-kidney derived adipose stromal cells is comparable to primary kidney cells, hepatocytes and keratinocytes. Figure 4B shows the performance of EPO in canine kidney-derived lipids 156850.doc -54·201211256 Adipose matrix (KiSAS) cells comparable to canine primary kidney cells. Figure 5 shows the results of EPO protein expression of adipose tissue analyzed by IEF. Figure 6A shows semi-quantitative RT-PCR analysis of WT1 splice variants (KTS+/KTS-) in human kidney and non-kidney derived adipose stromal cells. Figures 6B and C show FACs analysis of WT1+ cell distribution in renal sputum or kidney pedicle-associated adipose stromal cells. Figure 6D shows an immuno-camp analysis of the distribution of WT1+ cells in adipose tissue stromal cells and renal pedicled adipose stromal cells. 156850.doc -55-

Claims (1)

201211256 七、申請專利範圍: 1. 一種分離的脂肪細胞群體,該細胞群體表現紅血球生成素 (EPO)。 2. 如申請專利範圍第1項所述的細胞群體,該細胞群體衍生自腎 、 脂肪組織。 3. 如申請專利範圍第1項所述的細胞群體,該細胞群體衍生自選 自以下組成的組的脂肪組織:心臟脂肪、肝臟脂肪、皮下脂肪、 內臟脂肪、白色脂肪、棕色脂肪。 4. 如申請專利範圍第2項所述的細胞群體,該細胞群體衍生自腎 蒂脂肪組織。 5. 如申請專利範圍第2項所述的細胞群體,該細胞群體衍生自腎 盞脂肪組織。 6. 如申請專利範圍第1-5項中任一項所述的細胞群體,該細胞群 體衍生自脂肪基質血管成分(SVF)。 7. 如申請專利範圍第1-5項中任一項所述的細胞群體,該細胞群 體更表現血管內皮生長因子(VEGF)。 / 8.如申請專利範圍第1-5項中任一項所述的細胞群體,其中EPO 表現是低氧調節的表現。 9. 如申請專利範圍第1-5項中任一項所述的細胞群體,其中VEGF 表現是低氧調節的表現。 10. 如申請專利範圍第1-5項中任一項所述的細胞群體,其中表現 了 EPO轉錄本。 156850.doc 201211256 11. 如申請專利範圍第1-5項中任一項所述的細胞群體,其中表現 了 VEGF轉錄本。 12. 如申請專利範圍第1-5項中任一項所述的細胞群體,其中表現 了 EPO多肽。 13. 如申請專利範圍第1-5項任一項所述的細胞群體,其中表現了 EPO轉錄本和EPO多肽。 14. 如申請專利範圍第1或2項所述的細胞群體,該細胞群體表現 包含不同於非脂肪細胞群體的轉譯後修飾的EPO多肽。 15. 如申請專利範圍第14項所述的細胞群體,其中該非脂肪細胞 群體選自以下組成的組:角質細胞、肝細胞和原代腎細胞。 16. 如申請專利範圍第2項所述的細胞群體,該細胞群體表現包含 不同於非腎脂肪細胞群體的轉譯後修飾的EPO多肽。 Π.如申請專利範圍第16項所述的細胞群體,其中該非腎脂肪細 胞群體選自以下組成的組:角質細胞、肝細胞、內臟脂肪基質細 胞和原代腎細胞。 18. 如申請專利範圍第2、4和5項中任一項所述的細胞群體,該 細胞群體差異表現與腎臟再生相關的生物標記。 19. 如申請專利範圍第18項所述的細胞群體,其中該差異表現是 增加的表現。 20. 如申請專利範圍第18項所述的細胞群體,其中該生物標記是 WT-1 ° 21. 如申請專利範圍第20項所述的細胞群體,其中表現了 WT-1 156850.doc 201211256 轉錄本。 22. 如申請專利範圍第21項所述的細胞群體,其中該WT-1轉錄 本是 WT-1 KTS+。 23. 如申請專利範圍第21項所述的細胞群體,其中該\\^-1轉錄 本是 WT-1 KTS· 〇 _ 24.如申請專利範圍第21項所述的細胞群體,其中該WT-1轉錄 本是 WT-1 KTS+和 WT-1 KTS、 25. 如申請專利範圍第18項所述的細胞群體,其中該生物標記是 WT-1多肽。 26. —種製備表現紅血球生成素(EPO)的脂肪基質細胞群體的方 法,該方法包括 a) 消化脂肪組織;並 b) 消耗被消化的脂肪細胞組織以提供基質血管成分(SVF),其中 該SVF包括所述表現EPO的脂肪基質細胞群體。 27. 如申請專利範圍第26項所述的方法,其中所述表現EPO的脂 肪基質細胞群體是如申請專利範圍第1至25項任一項所述的細胞 , 群體。 , 28. —種向需要的受治療者提供改進的腎功能的可植入建構物,該 可植入建構物包含: a) 生物相容性基質;和 b) 沉積到該基質表面上或包埋到該基質表面中的表現紅血 球生成素(EPO)的脂肪細胞群體。 156850.doc 201211256 29. 如申請專利範圍第28項所述的可植入建構物,其中該脂肪細 胞群體是如申請專利範圍第1至25項任一項所述的細胞群體。 30. —種組合物用於製備治療腎病的醫藥品之用途,其中該組合物 包含表現紅血球生成素(EPO)的脂肪細胞群體。 31. 如申請專利範圍第30項所述的用途,其中該脂肪細胞群體是 如申請專利範圍第1至25項中任一項所述的細胞群體。 32. —種可植入建構物用於製備治療腎病的醫藥品之用途,其中該 可植入建構物包含: a) 生物相容性基質’·和 b) 沉積到該基質表面上或包埋到該基質表面中的表現紅血 球生成素(EPO)的脂肪細胞群體。 33. 如申請專利範圍第32項所述的用途,其中該脂肪細胞群體是 如申請專利範圍第1至25項中任一項所述的細胞群體。 156850.doc201211256 VII. Scope of Application: 1. An isolated population of fat cells that exhibits erythropoietin (EPO). 2. The cell population of claim 1, wherein the cell population is derived from kidney and adipose tissue. 3. The cell population of claim 1, wherein the cell population is derived from adipose tissue selected from the group consisting of heart fat, liver fat, subcutaneous fat, visceral fat, white fat, brown fat. 4. The cell population of claim 2, wherein the cell population is derived from a renal adipose tissue. 5. The cell population of claim 2, wherein the cell population is derived from a renal adipose tissue. 6. The cell population of any of claims 1-5, which is derived from a fatty matrix vascular component (SVF). 7. The cell population of any one of claims 1-5, which further exhibits vascular endothelial growth factor (VEGF). The cell population of any one of claims 1-5, wherein the EPO expression is a manifestation of hypoxia regulation. 9. The cell population of any of claims 1-5, wherein the VEGF manifestation is a manifestation of hypoxia regulation. 10. The cell population of any of claims 1-5, wherein the EPO transcript is expressed. The cell population of any one of claims 1-5, wherein the VEGF transcript is expressed. 12. The cell population of any of claims 1-5, wherein the EPO polypeptide is expressed. 13. The cell population of any of claims 1-5, wherein the EPO transcript and the EPO polypeptide are expressed. 14. The cell population of claim 1 or 2, wherein the population of cells comprises a post-translationally modified EPO polypeptide that is different from the non-fat cell population. 15. The cell population of claim 14, wherein the non-fat cell population is selected from the group consisting of keratinocytes, hepatocytes, and primary kidney cells. 16. The cell population of claim 2, wherein the population of cells comprises a post-translationally modified EPO polypeptide that is different from the non-renal adipocyte population. The cell population of claim 16, wherein the non-renal cell population is selected from the group consisting of keratinocytes, hepatocytes, visceral fat stromal cells, and primary kidney cells. 18. The cell population of any one of claims 2, 4, and 5, wherein the cell population differentially exhibits a biomarker associated with kidney regeneration. 19. The cell population of claim 18, wherein the differential performance is an increased performance. 20. The cell population of claim 18, wherein the biomarker is WT-1 ° 21. The cell population as described in claim 20, wherein WT-1 156850.doc 201211256 transcription is expressed this. 22. The cell population of claim 21, wherein the WT-1 transcript is WT-1 KTS+. 23. The cell population of claim 21, wherein the \\^-1 transcript is WT-1 KTS. 24. 24. The cell population of claim 21, wherein the WT The -1 transcript is WT-1 KTS+ and WT-1 KTS, 25. The cell population as described in claim 18, wherein the biomarker is a WT-1 polypeptide. 26. A method of preparing a population of adipose stromal cells exhibiting erythropoietin (EPO), the method comprising: a) digesting adipose tissue; and b) consuming digested adipocyte tissue to provide a stromal vascular component (SVF), wherein The SVF includes the population of adipose stromal cells that exhibit EPO. 27. The method of claim 26, wherein the EPO-expressing cell of a stromal cell is a cell, population as described in any one of claims 1 to 25. 28. An implantable construct that provides improved renal function to a subject in need thereof, the implantable construct comprising: a) a biocompatible matrix; and b) deposited onto the surface of the substrate or packaged A population of adipocytes expressing erythropoietin (EPO) buried in the surface of the matrix. The implantable construct of claim 28, wherein the cell population is a cell population as described in any one of claims 1 to 25. 30. Use of a composition for the manufacture of a medicament for the treatment of kidney disease, wherein the composition comprises a population of adipocytes expressing erythropoietin (EPO). The use of the cell of claim 1, wherein the cell population is a cell population as described in any one of claims 1 to 25. 32. Use of an implantable construct for the manufacture of a medicament for treating kidney disease, wherein the implantable construct comprises: a) a biocompatible matrix 'and b) deposited onto the surface of the substrate or embedded A population of adipocytes expressing erythropoietin (EPO) into the surface of the matrix. 33. The use of claim 32, wherein the cell population is a cell population as described in any one of claims 1 to 25. 156850.doc
TW100120587A 2010-06-11 2011-06-13 Erythropoietin-expressing adipose cell populations TW201211256A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US35391910P 2010-06-11 2010-06-11
US44020511P 2011-02-07 2011-02-07

Publications (1)

Publication Number Publication Date
TW201211256A true TW201211256A (en) 2012-03-16

Family

ID=46764218

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100120587A TW201211256A (en) 2010-06-11 2011-06-13 Erythropoietin-expressing adipose cell populations

Country Status (1)

Country Link
TW (1) TW201211256A (en)

Similar Documents

Publication Publication Date Title
JP7062605B2 (en) Organoids containing isolated renal cells and their use
US20240108657A1 (en) Isolated renal cells and uses thereof
WO2011156642A1 (en) Erythropoietin-expressing adipose cell populations
CN114390925A (en) Treating nephropathy in a subject having renal and/or urinary tract abnormalities
TW201211256A (en) Erythropoietin-expressing adipose cell populations