TW201202351A - Multi-functional complex nanoparticle having luminescence and magnetism and method for preparing same - Google Patents

Multi-functional complex nanoparticle having luminescence and magnetism and method for preparing same Download PDF

Info

Publication number
TW201202351A
TW201202351A TW100116129A TW100116129A TW201202351A TW 201202351 A TW201202351 A TW 201202351A TW 100116129 A TW100116129 A TW 100116129A TW 100116129 A TW100116129 A TW 100116129A TW 201202351 A TW201202351 A TW 201202351A
Authority
TW
Taiwan
Prior art keywords
nanoparticle
multifunctional
stage
luminescent
magnetic
Prior art date
Application number
TW100116129A
Other languages
Chinese (zh)
Inventor
Jung-Hyun Kim
In-Woo Cheong
Sun-Jong Lee
Yeon-Jae Jung
Patakamuri Govindaiah
Sun-Young Kim
Byung-Uk Kim
Original Assignee
Dongjin Semichem Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongjin Semichem Co Ltd filed Critical Dongjin Semichem Co Ltd
Publication of TW201202351A publication Critical patent/TW201202351A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2446/00Magnetic particle immunoreagent carriers

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Nanotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polymerisation Methods In General (AREA)
  • Soft Magnetic Materials (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

The present invention relates to multifunctional composite nanoparticles having light-emitting properties and magnetic properties, and to a method for producing same. The multifunctional composite nanoparticles of the present invention can be easily produced without using an emulsifier that might otherwise cause a reduction in the intensity of light emission. The multifunctional composite nanoparticles of the present invention have both light-emitting properties and magnetic properties, and exhibit high blue-light-emitting efficiency and superior monodispersity. Therefore, the multifunctional composite nanoparticles of the present invention can be valuably used as electronic materials, optical materials, toner materials, ink materials and biomaterials.

Description

201202351 六、發明說明: t發明戶斤屬之技術領域:! 發明領域 本發明係有關於一種儘管同時具有發光性及磁性’但 顯示高藍光發光效率及單分散性之多功能複合奈米粒子、 及不使用乳化劑之前述複合奈米粒子的製造方法。 t先前技術】 發明背景 通常,發光共聚物係能夠藉由使用懸浮(suspension)聚 合、晶種聚合、分散聚合等各式各樣的方法將發光染料與 單體共聚合來製造。例如Rembaum係藉由使用作為發光染 料之榮光異硫氰酸鹽(fluorescein isothiocyanate)且完成階 段聚合及懸浮聚合而製造微型發光共聚物(參照下述專利 文獻1) ; Kumaceheva係藉由使用作為發光染料之4-胺基-7-硝基苯并-2-氧雜-1,3二唑標記甲基丙烯酸甲酯 (4-amino-7-nitrobenzo-2-oxa-l,3 diazol-labeled methyl me thacrylate)且完成自由基聚合及晶種聚合而製造發光共聚 物(參照下述專利文獻1)。 但是,原有已被製造之發光共聚物,係粒子大小的均 勻度低且由於製造時使用乳化劑,致使發光效率及在應用 方面受到許多限制。又,獲得發射藍色發光的高分子係非 常困難的。特別疋因為經共輛(conjUgated)的高分子之中的 藍色發光商分子係共輛(conjugation)的長度必須較短的緣 故,實用化多半是困難的,而且為了增大能帶隙(bandgap) 201202351 亦減短共軛長度,但是通過製造發光效率不佳等的傳導性 高分子來調節發光及螢光色多半是困難的。 最近,Eastman Kodak公司的S. Zheng揭示一種藍色發 光能力優良且開啟電壓(Turn-on Voltage)亦為比較低的 5.5V之物質(參照以下非專利文獻1),但是依照該方法,不 僅是無法實現奈米構造的製造,而且用以商業應用化,係 存在有不充分之問題點。 儘管如此,因為在實用化方面,高分子的發光體係具 有許多優點,所以對此踏實地進行研究。 先前技術文獻 專利文獻 [專利文獻1]美國專利第4,267,235號 [專利文獻2]美國專利第5,952,131號 非專利文獻 [非專利文獻 1] Chem. Mater. 2000、12、1814 【發明内容】 發明概要 發明欲解決之課題 因此,為了解決前述的問題點,本發明之目的係提供 一種儘管同時具有發光性及磁性,但顯示高發光效率及單 分散性之多功能複合奈米粒子。 本發明之其他目的,係提供一種不使用有引起發光強 度減少的可能性之乳化劑而能夠容易地製造前述多功能複 合奈米粒子之方法。 201202351 用以欲解決課題之手段 為了達成前述目的’本發明係提供一種多功能複合奈 米粒子,其係包含發光共聚物奈米粒子及磁性奈米粒子, 該發光共聚物奈米粒子係作為發光染料之曱基丙稀酸2_萘 酯;曱基丙烯酸;及選自由笨乙烯、曱基丙烯酸曱醋、乙 烯、丙烯、乙酸乙烯酯、及該等的混合物所組成群組之單 體共聚合而形成,而s亥磁性奈米粒子係黏附在前述發光共 聚物奈米粒子的表面且包圍奈米粒子的周邊。 又,本發明係提供一種多功能複合奈米粒子之製造方 法,其包含: (1) 使乙酿丙_鐵(丨1*〇11 acetylacetonate)與還原劑在氣氣 環境下反應而製造磁性奈米粒子之階段; (2) 將作為發光染料之甲基丙烯酸2_萘酯;甲基丙烯 酸;及選自由苯乙烯、甲基丙烯酸甲酯、乙烯、丙烯、乙 酸乙烯酯、及該等的混合物所組成群組之單體在氮氣環境 下於溶劑中混合之後,在此,添加過硫酸銨而得到乳液, 並且使該乳液進行自由基聚合反應而製造發光共聚物奈米 粒子之階段;及 (3) 在前述階段⑵所製造之含有發光絲物奈米粒子 的乳液添加前述階段⑴所製造之磁性奈米粒子而將磁性夺 米粒子細在發光«物奈綠子的表面之階段。 發明效果 依照本發明之多功能複合奈米粒子,係不僅是即便不 使用有引起發光強度減少的可能性之乳化劑亦能夠容易地 201202351 2造^且藉由儘管㈣具有發光性及磁性,但顯示高藍 =率及單分散性,能夠有用地使用作為電子材料、 =學材料、調色劑、油墨、及生醫材料。又,藉由使用甲 :丙婦酸2-萘酯而能夠自由基聚合,能夠以簡單的方法製 =顯示藍色發光及高發光效率之多功能奈米粒子。又,藉 在合成時添加磁性奈絲子,能夠得到含有磁性奈米粒 2㈣之多功能奈米粒子,且由於形態的特性而磁性特 良,特別是在雷射印表機的調色劑用及生 用係容易的。 圖式簡單說明 第1圖係在本發明的實施例所製造之多功能複合奈米 =子的掃描型電子顯微鏡(SEM)照片(相當於⑷)及透射型 顯微鏡(TEM)照片(相當於(b)) β 第2圖係觀察本發明的實施例所製造之多功能複合奈 ^子的藍色發光特性之結果,(a)係照獅細驟光線 刚之照片’(b)係照射1;乂光線後之照片。 第3圖係觀察本發明的實施例所製造之多功能複合奈米 粒子的磁性熟之結果,_在發核子_雜粒子前之 照片’⑼及⑷係在發光粒子黏附磁性粒子後之照片特別是 (c)係確認黏附後將磁石靠近而粒子被㈣過來之照片。 C實施方式;I 用以實施發明之形態 本發明之多功能複合奈米粒子係由⑴將作為發光染料 之甲基丙烯酸2·蔡酷;甲基丙稀酸,·及選自由苯乙稀、甲 201202351 基丙烯酸曱酯、乙烯、丙烯、乙酸乙烯酯、及該等的混合 物所組成群組之單體共聚合而形成之發光共聚物奈米粒 子’以及(ii)以包圍共聚物奈米粒子的周圍之方式黏附在上 述發光共聚物奈米粒子的表面之磁性奈米粒子所構成之複 合構造的粒子,其單分散性比先前提升,且同時具有磁性 及發光性。 此時’前述複合奈米粒子的粒徑係iO^UOOnm,以 50~500nm為佳。 本發明之多功能複合奈米粒子係通過下列階段而製造, (1) 使乙醯丙酮鐵(iron acetylacet〇nate)與還原劑在氮氣 環境下反應而製造磁性奈米粒子之階段; (2) 將作為發光染料之甲基丙烯酸2萘酯;甲基丙烯 酸’及選自由笨乙稀、甲基丙稀酸甲圈旨、乙稀、丙稀、乙 酸乙稀S旨、及該等的混合物所組成群組之單體在氮氣環境 下於浴劑中混纟之後,在此,添加過硫酸錄而得到乳液, 並且使該乳液進行自由基聚合反應而製造發光共聚物奈米 粒子之階段;及 ⑶在前㈣段(2)所製造之含有發光料物奈米粒子 的乳液添加前述階段⑴難造^性奈綠子,而將磁性 奈米粒子黏附在發光共聚物奈米粒子的表面之階段。 各階段地詳述本發明之多功能複合奈米粒子之製造方 法時,係如以下。 階段(1) P皆&⑴係在氮氣環境下且例如於18Gt使乙酿丙銅鐵 201202351 與還原劑反應而製造磁性奈米粒子之階段。 在本發明所使用的還原劑係用以對所製造的礙性奈米 粒子賦予正電荷者,以在水等的溶劑被良好地分散,同時 在以後之發光共聚物奈米粒子的表面被良好地固定者為 佳。較佳是前述還原劑係以吡略啶酮為佳。 乙醯丙酮鐵係以在階段(2)之發光共聚物奈米粒子的製 造時所使用之曱基丙烯酸的重量的0.1倍〜1倍之量使用,還 原劑係能夠以甲基丙稀酸的重量的20倍~40倍之量使用。 階段(2) 除了階段(1)之外,階段(2)係將作為發光染料之甲基丙 烯酸2-萘酯;甲基丙烯酸;及選自由苯乙烯、甲基丙稀酸 甲酯、乙烯、丙烯、乙酸乙烯酯、及該等的混合物所組成 群組之單體在氮氣環境下於溶劑中混合之後,在此,添加 過硫酸銨而得到乳液,並且使該乳液進行自由基聚合反應 而製造發光共聚物奈米粒子之階段。 選自由苯乙稀、甲基丙浠酸曱酯、乙稀、丙歸、乙酸 乙烯酯、及該等的混合物所組成群組而使用於本發明之單 體,係能與發光染料之曱基丙烯酸2_萘酯及陰離子性而對 安定性造成影響之甲基丙烯酸反應者,較佳者能夠使用苯 乙烯。 在本發明所使用之溶劑係經使用氮之沖洗(purging)而 除去氧者為佳,更佳是能夠在將如乙酸之弱酸;如曱醇、 乙醇之醇類;經脫離子之蒸餾水(dei〇nizeddistilledwater、 DDI) '或戎等的混合物通過氮沖洗而消除氧之後使用。201202351 VI. Description of the invention: The technical field of the invention of the family: FIELD OF THE INVENTION The present invention relates to a method for producing a composite nanoparticle which exhibits high blue light emission efficiency and monodispersity despite luminescence and magnetic properties, and a composite nanoparticle which does not use an emulsifier. BACKGROUND OF THE INVENTION Generally, a luminescent copolymer can be produced by copolymerizing a luminescent dye with a monomer by various methods such as suspension polymerization, seed polymerization, and dispersion polymerization. For example, Rembaum is produced by using fluorescein isothiocyanate as a luminescent dye and completing stage polymerization and suspension polymerization (see Patent Document 1 below); Kumaceheva is used as a luminescent dye. 4-Amino-7-nitrobenzo-2-oxo-1,3 diazole labeled methyl methacrylate (4-amino-7-nitrobenzo-2-oxa-l, 3 diazol-labeled methyl me Further, radical polymerization and seed polymerization are carried out to produce a luminescent copolymer (see Patent Document 1 below). However, the luminescent copolymer which has been produced in the prior art has a low uniformity of particle size and has many limitations in terms of luminous efficiency and application due to the use of an emulsifier at the time of manufacture. Further, it is very difficult to obtain a polymer which emits blue light. In particular, since the length of the blue illuminant molecule in the conjUgated polymer must be short, practical use is often difficult, and in order to increase the bandgap (bandgap) 201202351 The conjugate length is also shortened. However, it is difficult to adjust the luminescence and fluorescent color by manufacturing a conductive polymer such as poor luminous efficiency. Recently, S. Zheng of Eastman Kodak Company disclosed a substance having a blue light-emitting ability and a Turn-on Voltage of a relatively low 5.5 V (refer to Non-Patent Document 1 below), but according to the method, not only The inability to realize the manufacture of nanostructures, and the commercial application, there are insufficient problems. Despite this, since the polymer light-emitting system has many advantages in terms of practical use, it has been studied steadily. [Patent Document 1] US Patent No. 4,267,235 [Patent Document 2] US Patent No. 5,952,131 Non-Patent Document [Non-Patent Document 1] Chem. Mater. 2000, 12, 1814 [Invention] SUMMARY OF THE INVENTION Problems to be Solved by the Invention Therefore, in order to solve the above problems, an object of the present invention is to provide a multifunctional composite nanoparticle exhibiting high luminous efficiency and monodispersity despite having both luminescence and magnetic properties. Another object of the present invention is to provide a method capable of easily producing the above-mentioned multifunctional composite nanoparticle without using an emulsifier which has a possibility of causing a decrease in luminous intensity. 201202351 Means for Solving the Problem In order to achieve the above object, the present invention provides a multifunctional composite nanoparticle comprising a light-emitting copolymer nanoparticle and a magnetic nanoparticle, and the light-emitting copolymer nanoparticle is used as a light-emitting a dye-based mercapto-acrylic acid 2-naphthyl ester; mercaptoacrylic acid; and a monomer copolymerization selected from the group consisting of stupid ethylene, decyl acrylate vinegar, ethylene, propylene, vinyl acetate, and mixtures thereof On the other hand, the magnetic nanoparticles are adhered to the surface of the luminescent copolymer nanoparticle and surround the periphery of the nanoparticle. Moreover, the present invention provides a method for producing a multifunctional composite nanoparticle, which comprises: (1) reacting a propylene-iron (丨1*〇11 acetylacetonate) with a reducing agent in an air atmosphere to produce a magnetic nano a stage of rice particles; (2) 2_naphthyl methacrylate; methacrylic acid; and styrene, methyl methacrylate, ethylene, propylene, vinyl acetate, and mixtures thereof After the monomers of the group are mixed in a solvent under a nitrogen atmosphere, an ammonium sulfate is added thereto to obtain an emulsion, and the emulsion is subjected to radical polymerization to produce a phase of the luminescent copolymer nanoparticle; 3) The magnetic nanoparticle produced in the above stage (1) is added to the emulsion containing the luminescent filament nanoparticle produced in the above stage (2), and the magnetic smectite particle is finely fused to the surface of the luminescent body. Advantageous Effects of Invention The multifunctional composite nanoparticle according to the present invention can be easily formed not only by using an emulsifier which has a possibility of causing a decrease in luminous intensity but also by (4) having luminescence and magnetic properties. It shows high blue=rate and monodispersity, and can be usefully used as an electronic material, a material, a toner, an ink, and a biomedical material. Further, by using a methyl 2-naphthoate, a radical polymerization can be carried out, and a multifunctional nanoparticle exhibiting blue light emission and high light-emitting efficiency can be produced by a simple method. Moreover, by adding magnetic nano-spins during synthesis, it is possible to obtain multifunctional nano-particles containing magnetic nanoparticles 2 (4), and magnetic properties are excellent due to the morphological characteristics, particularly in toners for laser printers. The use of the system is easy. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a scanning electron microscope (SEM) photograph (equivalent to (4)) and a transmission microscope (TEM) photograph of a multifunctional composite nanometer manufactured in an embodiment of the present invention (equivalent to ( b)) β Fig. 2 is a view showing the result of observing the blue light-emitting characteristics of the multifunctional composite nanoparticle produced by the embodiment of the present invention, and (a) is a photograph of the lion's fine-ray light just-(b) irradiation 1 ; photos after the light. Fig. 3 is a view showing the results of magnetic ripening of the multifunctional composite nanoparticle produced by the embodiment of the present invention, _ in the photo before the nucleus-heteroparticles (9) and (4) are photographs after the luminescent particles adhere to the magnetic particles. (c) is a photograph confirming that the magnet is brought close to the particle and the particle is taken (four). C embodiment; I for carrying out the invention. The multifunctional nano-particle of the present invention is composed of (1) methacrylic acid as a luminescent dye, 2, Cai Cool; methyl acrylate, and selected from styrene, A luminescent polymer nanoparticle formed by the copolymerization of a monomer composed of a group consisting of decyl acrylate, ethylene, propylene, vinyl acetate, and a mixture thereof, and (ii) surrounding the copolymer nanoparticle The particles of the composite structure composed of the magnetic nanoparticles adhered to the surface of the above-mentioned light-emitting copolymer nanoparticle in a manner of uniformity have a monodispersity as compared with the prior art, and have magnetic properties and luminosity at the same time. In this case, the particle diameter of the composite nanoparticle is iO^UOOnm, preferably 50 to 500 nm. The multifunctional composite nanoparticle of the present invention is produced by the following stages: (1) a stage of producing magnetic nanoparticles by reacting iron acetylacetacetate with a reducing agent under a nitrogen atmosphere; 2 naphthyl methacrylate; methacrylic acid as a luminescent dye; and a mixture selected from the group consisting of stupid ethylene, methyl methacrylate, ethylene, propylene, ethyl acetate, and the like After the monomer of the group is mixed in a bath under a nitrogen atmosphere, a step of adding a persulfuric acid to obtain an emulsion, and subjecting the emulsion to radical polymerization to produce a luminescent copolymer nanoparticle; (3) Adding the aforementioned stage (1) difficult-to-make green pigment to the emulsion containing the luminescent material nanoparticle produced in the preceding paragraph (4) (2), and adhering the magnetic nanoparticle to the surface of the luminescent copolymer nanoparticle . When the method for producing the multifunctional nanoparticle of the present invention is described in detail at each stage, the following is as follows. Stage (1) P All & (1) is a stage in which a magnetic nanoparticle is produced by reacting ethylene ferrocene 201202351 with a reducing agent under a nitrogen atmosphere, for example, at 18 Gt. The reducing agent used in the present invention is used to impart a positive charge to the produced nanoparticle to be well dispersed in a solvent such as water, and at the same time, the surface of the luminescent copolymer nanoparticle is good. The ground fixer is better. Preferably, the aforementioned reducing agent is pirolitainone. The acetonitrile iron is used in an amount of 0.1 to 1 times the weight of the thiol acrylic acid used in the production of the luminescent copolymer nanoparticle of the stage (2), and the reducing agent can be methacrylic acid. Use 20 to 40 times the weight. Stage (2) In addition to stage (1), stage (2) will be used as a luminescent dye 2-naphthyl methacrylate; methacrylic acid; and selected from styrene, methyl methacrylate, ethylene, After the monomers of the group consisting of propylene, vinyl acetate, and the like are mixed in a solvent under a nitrogen atmosphere, ammonium persulfate is added thereto to obtain an emulsion, and the emulsion is subjected to radical polymerization to produce The stage of the luminescent copolymer nanoparticle. The monomer used in the present invention is selected from the group consisting of styrene, decyl methacrylate, ethene, propylene, vinyl acetate, and the like, and is capable of reacting with a luminescent dye. A methacrylic acid acrylate having a 2-n-naphthyl acrylate and an anionic property which affects the stability may preferably be styrene. The solvent used in the present invention is preferably removed by purging with nitrogen, and more preferably is a weak acid such as acetic acid; an alcohol such as decyl alcohol or ethanol; distilled water by deionization (dei 〇nizeddistilledwater, DDI) 'or a mixture of sputum and the like is used after nitrogen is flushed to eliminate oxygen.

S 201202351 重量;==:::二::基㈣_ 醋、乙烯、丙稀、乙 乙烯基_酸甲 組之單體係以甲、及該等的混合物所址成群 劑係以甲基丙_的=的重量之5倍〜1G倍的量使用;溶 敍係以曱基㈣酸觸倍〜15G倍的量使用;過硫酸 _ 夂的重量之0.05倍〜0.5倍的量使用。 述1^又(2),原料物質的混合及自由 全部能夠在7g〜8g。 久應係 前述溫度範崎拌;;Γ由絲合錢絲夠藉由在 規件6〜24小時而完成。 階段(3)S 201202351 weight; ==::: two:: base (four) _ vinegar, ethylene, propylene, vinyl _ acid A group of single system with A, and the mixture of these sites are grouped with methyl propyl _ = the weight of 5 times ~ 1G times the amount used; the lysine is used in the amount of thiol (tetra) acid touch ~ 15G times; the amount of persulfate _ 夂 is 0.05 times ~ 0.5 times the amount of use. 1^(2), the mixing and freeness of the raw material can be 7g~8g. The long-term should be the temperature of the above-mentioned temperature Fanqi;; Γ by silk and money can be completed by 6 to 24 hours in the regulation. Stage (3)

Pdx⑶係藉由在前述階段(2)所製造之含有發光共聚 物不米粒子的錄添加前述階段⑴所製造之磁性奈米粒 子而將磁性奈米粒子黏附在發光共聚物奈米粒子的表 面來製w作為目標之多功能複合奈米粒子之階段。。 磁性奈米粒子係能夠以甲基丙烯酸的重量之0. 〇 1倍 〜0.1倍的量使用。 别述階段(3)係能夠藉由於20~30°c攪拌3~4小時而完成。 如此製得之本發明的多功能複合奈米粒子,因為係邊 同時具有發紐及磁性、邊顯示高藍色發級率及單分散 性,能夠有用地使用作為電子材料、光學材料、調色劑、 油墨、及生醫材料。 又’本發明係提供一種含有前述多功能複合奈米粒子 之製品,作為此種製品之具體例,可舉出電子材料(例如光 電壓電池、電容器、印刷電路基板(PCB)塗覆劑、抗靜電 201202351 劑)、光學材料(例如有機發光二極體、平面面板顯示器、有 機發光(EL)裂置、IT〇基板的孔穴喷射層或發光層)、調色 劑、油墨、及生醫材料(例如生物感測器、造影劑)。 為了幫助理解本發明而提示較佳實施例,但是下述的 實施例係不過是例示本發明,本發明的範圍係不被下述的 實施例限定。 [實施例] 使曱基丙烯酸的重量的0.7倍之乙醯丙酮鐵與甲基丙 烯酸的重量的20倍之吡咯啶酮,在氮氣環境下且於丨⑽它反 應而製得磁性奈米粒子。 另外’對甲基丙烯酸的重量的1〇〇倍之經脫離子的蒸條 水,完成氮沖洗而除去氧,且於70~80°c加熱之後,在此於 氮氣環丨兄下添加甲基丙稀酸的重量的〇 5倍之曱基丙稀酸2_ 萘酯、曱基丙烯酸及甲基丙烯酸的重量的85倍之苯乙烯且 混合。隨後,在此添加甲基丙烯酸的重量的01倍之過硫酸 銨而得到乳液。將該乳液於7〇〜80°C攪拌6~24小時使其自由 基聚合反應而製得發光共聚物奈米粒子。 在前述階段(2)所製造之含有發光共聚物奈米粒子的乳 液,藉由將前述階段(1)所製得之磁性奈米粒子,以曱基丙 烯酸的重量的0.01倍之量於20〜30。(:添加之後,搜拌3小時 來得到在發光共聚物奈米粒子的表面黏附有磁性奈米粒子 之作為目標的複合奈米粒子。 將所製得之複合奈米粒子的掃描型電子顯微鏡(SEM) 照片(相當於⑷)及透射型電子顯微鏡(TEM)照片(相當於⑻) 201202351 顯示在第1圖。從第1圖的照片能夠確認所製得之複合奈米 粒子的數量平均粒徑為約12〇nm。 又,觀察所製得之複合奈米粒子的藍色發光特性且顯 示在第2圖。(a)係照射365nm的UV光線前之照片,(b)係照 射UV光線後之照片。藉由比較第2圖的照片,能夠確認所 製得之複合奈米粒子係具有藍色發光特性。 而且,觀察所製得之複合奈米粒子的磁性特性且顯示 在第3圖。(a)係在發光粒子黏附磁性粒子前之照片,(⑴及(c) 係在發光粒子黏附磁性粒子後之照片,特別是(c)係確認黏 附後將磁石靠近而粒子被吸引過來之照片。從第3圖的照 片,得知所製得之複合奈米粒子係具有磁性特性。 【圖式簡單說明】 第1圖係在本發明的實施例所製造之多功能複合奈米 粒子的掃描型電子顯微鏡(SEM)照片(相當於(a))及透射型 電子顯微鏡(TEM)照片(相當於(b))。 第2圖係觀察本發明的實施例所製造之多功能複合奈 米粒子的藍色發光特性之結果,(a)係照射365nm&uv光線 前之照片,(b)係照射UV光線後之照片。 第3圖係觀察本發明的實施例所製造之多功能複合奈米 粒子的磁性特性之結果,(a)係在發光粒子黏附磁性粒子前之 照片’(b)及(c)係在發光粒子黏附磁性粒子後之照片,特別是 ⑹係確s忍黏附後將磁石靠近而粒子被吸引過來之照片。 【主要元件符號說明】 (無)Pdx(3) adheres the magnetic nanoparticles to the surface of the luminescent copolymer nanoparticle by the magnetic nanoparticle produced by the above stage (1) produced by the luminescent copolymer-free particles produced in the above stage (2). The stage of making multi-functional composite nanoparticles as the target. . The magnetic nanoparticle system can be used in an amount of from 0.1 to 0.001 times the weight of methacrylic acid. The other stage (3) can be completed by stirring at 20 to 30 ° C for 3 to 4 hours. The multifunctional composite nanoparticle of the present invention thus obtained can be usefully used as an electronic material, an optical material, and a color tone because it has both a button and a magnetic property, and exhibits a high blue level and monodispersity. Agents, inks, and biomedical materials. Further, the present invention provides a product comprising the above-mentioned multifunctional composite nanoparticle, and specific examples of such a product include electronic materials (for example, photovoltaic cells, capacitors, printed circuit board (PCB) coating agents, and anti- Electrostatic 201202351), optical materials (such as organic light-emitting diodes, flat panel displays, organic light-emitting (EL) cracking, hole spray layers or luminescent layers of IT 〇 substrates), toners, inks, and biomedical materials ( For example, biosensors, contrast agents). The preferred embodiments are intended to aid the understanding of the invention, but the following examples are merely illustrative of the invention, and the scope of the invention is not limited by the embodiments described below. [Examples] Magnetic pyrrolidone having a ratio of 0.7 times the weight of mercaptoacrylic acid to 20 times the weight of methyl acrylic acid and pyrrolidone under a nitrogen atmosphere and reacted with hydrazine (10) to prepare magnetic nanoparticles. In addition, '1x times the weight of methacrylic acid, the deionized steamed water, nitrogen flushing to remove oxygen, and after heating at 70-80 ° C, add methyl under the nitrogen ring The weight of the acrylic acid is 〇5 times that of the fluorenyl 2, naphthyl ester, the mercaptoacrylic acid, and the methacrylic acid, and the styrene is mixed. Subsequently, 0.1 times of ammonium persulfate by weight of methacrylic acid was added thereto to obtain an emulsion. The emulsion was stirred at 7 to 80 ° C for 6 to 24 hours to carry out radical polymerization to obtain luminescent copolymer nanoparticle. The emulsion containing the luminescent copolymer nanoparticle produced in the above stage (2), by using the magnetic nanoparticle prepared in the above stage (1), is 0.01 times the weight of the thioglycolic acid in 20~ 30. (After the addition, the mixture was mixed for 3 hours to obtain a composite nanoparticle to which magnetic nanoparticles were adhered on the surface of the luminescent copolymer nanoparticle. The scanning electron microscope of the prepared composite nanoparticle ( SEM) Photograph (corresponding to (4)) and transmission electron microscope (TEM) photograph (equivalent to (8)) 201202351 is shown in Fig. 1. From the photograph of Fig. 1, the number average particle diameter of the prepared composite nanoparticle can be confirmed. It is about 12 〇 nm. Further, the blue light-emitting characteristics of the obtained composite nanoparticles are observed and shown in Fig. 2. (a) Photographs before irradiation of UV light at 365 nm, (b) After irradiation with UV rays The photograph of Fig. 2 shows that the obtained composite nanoparticle system has blue light-emitting characteristics. Further, the magnetic properties of the obtained composite nanoparticles are observed and shown in Fig. 3. (a) is a photograph before the luminescent particles adhere to the magnetic particles, ((1) and (c) are photographs after the luminescent particles adhere to the magnetic particles, and in particular, (c) is a photograph of the magnets being attracted and the particles are attracted after adhesion is confirmed. Photo from Figure 3 It is known that the obtained composite nanoparticle system has magnetic properties. [Schematic Description of the Drawing] Fig. 1 is a scanning electron microscope (SEM) photograph of the multifunctional composite nanoparticle produced in the examples of the present invention. (corresponding to (a)) and transmission electron microscope (TEM) photograph (corresponding to (b)). Fig. 2 is a result of observing the blue light-emitting characteristics of the multifunctional composite nanoparticle produced by the examples of the present invention. (a) is a photograph before irradiation of 365 nm & uv light, (b) is a photograph after irradiation with UV light. Fig. 3 is a result of observing magnetic properties of the multifunctional composite nanoparticle produced by the embodiment of the present invention, (a) Photographs before the luminescent particles adhere to the magnetic particles '(b) and (c) are photographs after the luminescent particles adhere to the magnetic particles, in particular, (6) is that the magnets are brought close to the particles and the particles are attracted. Photo. [Main component symbol description] (none)

Claims (1)

201202351 七、申請專利範圍: 1· 一種多功能複合奈米粒子,其係包含發光共聚物奈米粒 子及磁性奈米粒子,該發光共聚物奈米粒子係作為發光 染料之甲基丙烯酸2-萘酯;曱基丙烯酸;及選自由苯乙 烯 '曱基丙烯酸曱酯、乙烯、丙烯、乙酸乙烯酯、及該 等的混合物所組成群組之單體共聚合而形成;而該磁性 奈米粒子係黏附在前述發光共聚物奈米粒子的表面且 包圍奈米粒子的周邊。 2. 如申請專利範圍第1項之多功能複合奈米粒子,其中前 述複合奈米粒子係具有lO—LOOOnm的粒徑。 3. 如申請專利範圍第2項之多功能複合奈米粒子,其中前 述複合奈米粒子係具有5〇~500nm的粒徑。 4. 一種多功能複合奈米粒子之製造方法,其包含: ⑴使乙醯丙酮鐵(iron acetylacetonate)與還原劑在 氣氣環境下反應而製造磁性奈米粒子之階段; (2) 將作為發光染料之甲基丙烯酸2_萘酯;曱基丙烯 酸,及選自由苯乙烯、曱基丙烯酸甲酯、乙烯、丙烯、 乙酸乙烯酯、及該等的混合物所組成群組之單體在氮氣 環境下於溶劑中混合之後,在此,添加過硫酸銨而得到 乳液,並且使該乳液進行自由基聚合反應而製造發光共 聚物奈米粒子之階段;及 (3) 在前述階段(2)所製造之含有發光共聚物奈米粒 子的乳液添加前述階段⑴所製造之磁性奈米粒子而將磁 性奈米粒子黏附在發光共聚物奈米极子的表面之階段。 S 12 201202351 5.如申請專利範圍第4項之多功能複合奈米粒子之製造方 法’其中在前述階段(1)所使用之還原劑係吡咯啶酮。 6. 如申請專利範圍第4項之多功能複合奈米粒子之製造方 法’其中在前述階段(1)乙醯丙酮鐵及還原劑係各自以甲 基丙烯酸的重量的(^倍〜丨倍及20倍〜40倍之量使用。 7. 如申請專利範圍第4項之泛用性複合奈米粒子之製造方 法,其中在前述階段(2)所使用之溶劑係選自由乙酸、甲 醇、乙醇、經脫離子之蒸餾水及該等的混合物所組成群 組且經使用氮之沖洗(purging)而除去氧者。 8·如申請專利範圍第4項之多功能複合奈米粒子之製造方 法,其中在前述階段(2)係將甲基丙烯酸2_萘酯;選自由 苯乙烯、甲基丙烯酸甲酯、乙烯、丙烯、乙酸乙烯酯、 及該等的混合物所組成群組之單體;溶劑;及過硫酸敍 各自以甲基丙烯酸的重量的αι倍]倍、5倍〜腑、1〇〇 倍~150倍、及〇.05倍〜〇5倍之量使用。 9.如申請專利範’4項之多功能複合奈米粒子之製造方 法,其中前述階段(2)係於70~8(TC完成。 H).如申請專利範圍第4項之多功能複合奈米粒子之製造方 法,其中前述階段⑶係將磁性奈米板子以甲基丙稀酸的 重量的0.01倍〜0.1倍之量使用。 U.如申請專利範圍第4項之多功能複合奈米粒子之製造方 法,其中前述階段(3)係於20〜3(TC完成。 12.—種製品,其係含有如申 甲凊專利範圍第1項之多功能複 13 201202351 13.如申請專利範圍第12項之製品,其中該製品係電子材 料、光學材料、調色劑(toner)、油墨、及生醫材料 (biomaterials)。 S 14201202351 VII. Patent application scope: 1. A multifunctional composite nanoparticle comprising luminescent copolymer nanoparticle and magnetic nanoparticle, the luminescent copolymer nanoparticle as a luminescent dye methacrylic acid 2-naphthalene An ester; a mercaptoacrylic acid; and a monomer selected from the group consisting of styrene's decyl decyl acrylate, ethylene, propylene, vinyl acetate, and mixtures thereof; and the magnetic nanoparticle system Adhered to the surface of the aforementioned luminescent copolymer nanoparticle and surrounds the periphery of the nanoparticle. 2. The multifunctional nanoparticle according to claim 1, wherein the composite nanoparticle has a particle size of 10 - LOOOnm. 3. The multifunctional nanoparticle according to claim 2, wherein the composite nanoparticle has a particle diameter of 5 Å to 500 nm. A method for producing a multifunctional composite nanoparticle, comprising: (1) a stage of producing a magnetic nanoparticle by reacting an iron acetylacetonate with a reducing agent in an air atmosphere; (2) as a luminescence 2-N-naphthyl methacrylate of dye; methacrylic acid, and monomer selected from the group consisting of styrene, methyl methacrylate, ethylene, propylene, vinyl acetate, and mixtures thereof in a nitrogen atmosphere After mixing in a solvent, here, ammonium persulfate is added to obtain an emulsion, and the emulsion is subjected to radical polymerization to produce a phase of the luminescent copolymer nanoparticle; and (3) is produced in the above stage (2). The emulsion containing the luminescent copolymer nanoparticle is added to the magnetic nanoparticle produced in the above stage (1) to adhere the magnetic nanoparticle to the surface of the surface of the luminescent copolymer nanopole. S 12 201202351 5. Method for producing multifunctional nano-particles as claimed in claim 4 wherein the reducing agent used in the aforementioned stage (1) is pyrrolidone. 6. The method for producing multifunctional nano-particles as claimed in claim 4, wherein in the above stage (1) the weight of methacrylic acid and the reducing agent are respectively (^ times to 丨 times and 7. The method for producing a general-purpose composite nanoparticle according to the fourth aspect of the invention, wherein the solvent used in the above stage (2) is selected from the group consisting of acetic acid, methanol, ethanol, The method of manufacturing a multifunctional composite nanoparticle according to the fourth aspect of the patent application, wherein the deionized distilled water and the mixture of the mixture are combined and the oxygen is removed by purging with nitrogen. The above stage (2) is a 2-naphthyl methacrylate; a monomer selected from the group consisting of styrene, methyl methacrylate, ethylene, propylene, vinyl acetate, and mixtures thereof; a solvent; Each of the persulfate is used in an amount of 3% by times, 5 times to 腑, 1 〇〇 to 150 times, and 〇.05 times to 〇 5 times the weight of methacrylic acid. The method for producing multifunctional multi-functional nano particles, wherein the aforementioned The stage (2) is at 70~8 (TC is completed. H). The method for manufacturing the multifunctional composite nanoparticle according to claim 4, wherein the aforementioned stage (3) is to use a magnetic nanoplate as a methyl acrylate The method of manufacturing the multifunctional composite nanoparticle of claim 4, wherein the aforementioned stage (3) is performed at 20 to 3 (TC is completed. 12.- a product comprising a multi-functional product of the first aspect of the patent scope of the patent application No. 13 201202351. 13. The article of claim 12, wherein the product is an electronic material, an optical material, a toner, Inks, and biomaterials. S 14
TW100116129A 2010-05-10 2011-05-09 Multi-functional complex nanoparticle having luminescence and magnetism and method for preparing same TW201202351A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20100043364A KR20110123893A (en) 2010-05-10 2010-05-10 Multifunctional composite nanoparticles having luminescence and magnetism and a method of manufacturing the same

Publications (1)

Publication Number Publication Date
TW201202351A true TW201202351A (en) 2012-01-16

Family

ID=44914795

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100116129A TW201202351A (en) 2010-05-10 2011-05-09 Multi-functional complex nanoparticle having luminescence and magnetism and method for preparing same

Country Status (3)

Country Link
KR (1) KR20110123893A (en)
TW (1) TW201202351A (en)
WO (1) WO2011142551A2 (en)

Also Published As

Publication number Publication date
KR20110123893A (en) 2011-11-16
WO2011142551A9 (en) 2012-01-05
WO2011142551A2 (en) 2011-11-17
WO2011142551A3 (en) 2012-05-03

Similar Documents

Publication Publication Date Title
CN101451262B (en) Methods and devices for electrophoretic deposition of a uniform carbon nanotube composite film
CN106905497B (en) Quantum dot composite, intermediate, preparation method and application thereof
Yoon et al. Fabrication of highly transparent and luminescent quantum dot/polymer nanocomposite for light emitting diode using amphiphilic polymer-modified quantum dots
JP2017021322A (en) Quantum dot dispersion and self-luminous photosensitive resin composition comprising the same, and color filter and image display device manufactured using the composition
CN109935714B (en) Electron transport material, preparation method thereof and light emitting diode
JP2017504078A (en) Compensation film and organic dot for compensation film
JP2020084117A (en) Composite particles, aqueous coating composition and method for producing the same and coating film
JP2007317666A (en) Manufacturing method of field emission emitter electrode using alignment of carbon nanotubes
KR101107488B1 (en) Dispersion method of nanoparticles
JP2010514667A (en) Carbon nanotube dispersant, carbon nanotube composition, carbon nanotube film, and method for producing carbon nanotube film
CN107446577A (en) The method for preparing the illuminating complex system of photoresist graphene quantum dot
JP2017532430A (en) Composition comprising silver nanowires and dispersed polymer beads for the production of a conductive transparent layer
Weng et al. Fabrication and color conversion of patterned InP/ZnS quantum dots photoresist film via a laser-assisted route
CN103992789B (en) A kind of preparation method of inorganic-organic hybrid fluorescent microsphere
TW201202351A (en) Multi-functional complex nanoparticle having luminescence and magnetism and method for preparing same
Kim et al. Enhancing performance of quantum dot-based light emitting diodes by using poly (methyl methacrylate)@ quantum dot hybrid particles
JP2010500719A (en) Method of manufacturing field emission emitter electrode using nanowire alignment
CN102786931B (en) Method for synthesizing PAM-coated rare earth fluoride nanomaterials by in-situ polymerization
CN107338042A (en) Full color emission copper cluster assembly fluorescent material, preparation method and its application in white light LED part of solvent regulation and control
CN102492137B (en) Preparation method of photosensitive conductive polyaniline nanoparticles
JP2021128339A (en) Quantum dot dispersion and curable composition containing the same
DE102008001526B4 (en) Luminescent nanoscale particles with hydrophobic surface finish, process for their preparation and their use
Zhou et al. Quantum dots electrostatically adsorbed on the surface of SiO2 nanoparticle-decorated phosphor particles for white light-emitting diodes with a stable optical performance
JP7247399B2 (en) High density and high stability CNT film coating substrate using click reaction and its manufacturing method
JP2005041934A (en) Organic nanoparticle dispersion, coating and nanocomposite using the same, and method for producing organic nanoparticle dispersion