TW201144131A - Brake lever for bicycle and kinetic energy regeneration braking control device for bicycle using the same - Google Patents

Brake lever for bicycle and kinetic energy regeneration braking control device for bicycle using the same Download PDF

Info

Publication number
TW201144131A
TW201144131A TW100109357A TW100109357A TW201144131A TW 201144131 A TW201144131 A TW 201144131A TW 100109357 A TW100109357 A TW 100109357A TW 100109357 A TW100109357 A TW 100109357A TW 201144131 A TW201144131 A TW 201144131A
Authority
TW
Taiwan
Prior art keywords
initial position
kinetic energy
brake
energy recovery
unit
Prior art date
Application number
TW100109357A
Other languages
Chinese (zh)
Other versions
TWI432360B (en
Inventor
Yusuke Nishikawa
Original Assignee
Shimano Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimano Kk filed Critical Shimano Kk
Publication of TW201144131A publication Critical patent/TW201144131A/en
Application granted granted Critical
Publication of TWI432360B publication Critical patent/TWI432360B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/58Combined or convertible systems
    • B60T13/585Combined or convertible systems comprising friction brakes and retarders
    • B60T13/586Combined or convertible systems comprising friction brakes and retarders the retarders being of the electric type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18181Propulsion control with common controlling member for different functions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K23/00Rider-operated controls specially adapted for cycles, i.e. means for initiating control operations, e.g. levers, grips
    • B62K23/02Rider-operated controls specially adapted for cycles, i.e. means for initiating control operations, e.g. levers, grips hand actuated
    • B62K23/06Levers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62LBRAKES SPECIALLY ADAPTED FOR CYCLES
    • B62L3/00Brake-actuating mechanisms; Arrangements thereof
    • B62L3/02Brake-actuating mechanisms; Arrangements thereof for control by a hand lever
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/36Cycles; Motorcycles; Scooters

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Braking Elements And Transmission Devices (AREA)
  • Steering Devices For Bicycles And Motorcycles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The subject of this invention is to precisely perform control of kinetic energy recycling braking even the initial position of the brake lever varies. An assisting control device controls (13) the kinetic energy regeneration braking of a motor (10) corresponding to an operation of a front brake lever (16f) capable being installed on an assisted bicycle. The assisting control device (13) comprises a maximum adjustment position memory part (37), an initial position memory part (38), an initial position rewrite part (64), and a kinetic energy regeneration control part (66), wherein the maximum adjustment position memory part (37) is to memorize the maximum adjustment position (MA) of a initial position adjustment part (50); the initial position memory part (38) is to memorize the initial position (IM); and the initial position rewrite part (64) is to memorize the detected movement amount (M) as the initial position (IM) into the initial position memory part (38) and rewrite the initial position (IM) if the detected movement amount (M) is less than the memorized maximum adjustment position (MA); and the kinetic energy regeneration control part (66) is to control the kinetic energy regeneration braking of the motor (10) corresponding to the movement amount from the initial position (IM) memorized in the initial position memory part (38).

Description

201144131 六、發明說明: 【發明所屬之技術領域】 本發明,是有關於可裝設於自行車的車手把的自行車 用剎車桿及使用其的自行車用動能回收制動控制裝置。 【先前技術】 自行車的刹車桿,是與制動裝置之間藉由拉索、連桿 及油壓配管等的連結構件被連結,將制動裝置制動操作。 剎車桿,通常具備:被裝設於車手把的安裝托架、及可擺 動地被裝設在安裝托架的操作桿構件。安裝托架,具有: 被裝設於車手把的裝設部、及與裝設部連結的托架部。裝 設部’是形成例如可挾持於車手把的筒狀。托架部,是將 操作桿構件可擺動自如地裝設用。操作桿構件,是例如與 制動拉索連結,朝制動解除方向被推迫。 在具有驅動補助用馬達的輔助自行車用刹車桿,習知 具有檢出操作桿構件的移動位置的量計(例如專利文獻1 參照)。在使用習知的刹車桿的自行車中,量計,是被配 置於操作桿構件的支點的位置。藉由量計檢出操作桿構件 的移動位置。且,對應操作桿構件的從初期位置的移動位 置使動能回收制動時間拉長的方式控制馬達。 另一方面’在自行車用刹車桿中,習知具有可依據人 的手的大小來調整操作桿構件的初期位置(擺動開始位置 )的初期位置調整部(例如專利文獻2參照)。初期位置 調整部’是例如在刹車桿的安裝托架具有可進退被螺入於 -5- 201144131 操作桿構件用的調整螺栓。將此調整螺栓旋轉的話,操作 桿構件的初期位置會對於車手把接近及遠離。 [先行技術文獻] [專利文獻] [專利文獻1]日本特開平9-25486 1號公報 [專利文獻2]日本特開昭5 7-902 7 7號公報 【發明內容】 (本發明所欲解決的課題) 在專利文獻1的構成中,雖由被配置於操作桿構件的 支點的量計檢出操作桿構件的行程。但是,對於操作桿構 件的擺動支點中的變位因爲很小,所以不易將操作桿構件 的移動位置高精度地檢出。 本發明的課題,是可以高精度地檢出自行車用剎車桿 的操作桿構件的移動位置。 對於專利文獻1的剎車桿組合專利文獻2的初期位置調 整部的話,若初期位置是變化的話,無法精度佳地檢出從 初期位置的移動位置。因此,無法對於移動位置精度佳地 進行動能回收制動的控制。 本發明的別的課題’是即使刹車桿的初期位置變化也 能精度佳地進行動能回收制動的控制。 (用以解決課題的手段) 發明1的自行車用剎車桿’是能與可裝設於自行車的 -6- 201144131 制動裝置連結的自行車用刹車桿。刹車桿,具備:安裝托 架、及操作桿構件、及移動位置檢出部、及初期位置調整 部。安裝托架,是可裝設於自行車的車手把。操作桿構件 ,是從初期位置可擺動地被裝設在安裝托架。移動位置檢 出部,是在遠離操作桿構件的擺動中心的位置被設在安裝 托架,供檢出操作桿構件的從初期位置的移動位置。初期 位置調整部,是可調整初期位置地被設在安裝托架。 在此自行車用刹車桿中,若操作桿構件從初期位置擺 動的話,其移動位置是藉由移動位置檢出部被檢出。在此 ,移動位置檢出部不是配置於擺動中心,而是配置於遠離 擺動中心的位置。因此,移動位置的變化會成爲比操作桿 構件的擺動大,可以高精度地檢出移動位置。 發明2的自行車用刹車桿,是如發明1的操作桿,移動 位置檢出部,是可將與相面對於移動位置檢出部地配置在 操作桿構件的磁鐵的距離作爲移動位置檢出,且具有被配 置於安裝托架的線性霍爾元件。在此情況下,將磁鐵安裝 在操作桿構件,並從被配置於安裝托架的線性霍爾元件與 磁鐵之間的距離來檢出移動位置。因此,由簡潔的構成就 可以高精度地檢出移動位置。 發明3的自行車用動能回收制動控制裝置,是對應可 裝設於藉由馬達補助人力驅動的電動自行車的如發明1或2 的刹車桿的操作,來控制馬達的動能回收制動用的裝置。 自行車用動能回收制動控制裝置,具備:最大調整位置記 憶部、及初期位置記憶部、及初期位置改寫部、及動能回 201144131 收控制部。最大調整位置記億部,是記憶初期位置調整部 的最大調整位置。初期位置記億部,是記憶初期位置。初 期位置改寫部,是若移動位置檢出部所檢出的移動位置比 被記億在最大調整位置記憶部的最大調整位置更小的話, 將檢出的移動位置作爲初期位置記憶在初期位置記憶部地 將初期位置改寫。動能回收控制部,是對應被記憶在初期 位置記憶部的從初期位置的移動位置來控制馬達的動能回 收制動。 在此動能回收制動控制裝置中,操作桿構件若移動的 話,比較最大調整位置及移動位置。此時的朝最大調整位 置記憶部的最大調整位置的記憶處理,是在購入自行車之 後由販售店或騎乘者進行也可以,在工場出貨時由該工場 進行也可以。且,藉由初期位置調整部使操作桿構件的初 期位置被調整,此時的移動位置是比被記憶在最大調整位 置記憶部的最大調整位置更小的話,將調整後的移動位置 作爲初期位置記憶在初期位置記億部使初期位置記億部的 初期位置被改寫。且,對於以後的動能回收制動控制,動 能回收控制部是依據被改寫的從初期位置的移動位置來控 制馬達的轉動制動。 在此,即使操作桿構件的初期位置是藉由初期位置調 整部被調整,調整後的初期位置也時常被記憶於初期位置 記憶部,因此,每次初期位置被調整的話,初期位置皆會 被改寫。因此,操作桿構件的初期位置即使變化也可精度 佳地進行動能回收制動的控制。 -8 - 201144131 發明4的自行車用動能回收制動控制裝置,是如發明3 的裝置,進一步具備調整位置寫入部,其是當操作桿構件 藉由初期位置調整部使初期位置被最大限度調整時將移動 位置檢出部所檢出的移動位置作爲最大調整位置寫入最大 調整位置記億部。在此情況下,將使初期位置被最大限度 調整時的移動位置記憶在最大調整位置記憶部。因此,即 使因刹車桿而使初期位置調整部的最大調整位置相異,也 可以正確地獲得最大調整位置,進一步可精度佳地進行動 能回收制動動作。 發明5的自行車用動能回收制動控制裝置,是如發明3 或4的裝置,初期位置改寫部,是當進行預定的操作時將 被檢出的移動位置作爲初期位置記憶在初期位置記億部。 在此情況下,因爲進行預定的操作時被檢出的移動位置是 作爲初期位置被記憶,所以可以簡單地將初期位置記憶在 初期位置記億部。 發明6的自行車用動能回收制動控制裝置,是如發明3 至5的其中任一的裝置,動能回收控制部,是從被記憶在 初期位置記憶部的初期位置直到制動裝置開始制動爲止之 間’對應被檢出的移動位置使動能回收制動力漸漸地變大 的方式控制馬達的動能回收制動。在此情況下,直到制動 裝置開始制動爲止,因爲是藉由動能回收制動使制動力漸 漸地變大’所以即使由制動裝置制動,也不易產生制動力 的急劇變化。 發明7的自行車用動能回收制動控制裝置,是如發明6 201144131 的裝置,動能回收控制部,是若制動裝置開始制動的話, 使成爲最大動能回收制動力的方式控制馬達的動能回收制 動。在此情況下,制動裝置開始制動的話,動能回收制動 力因爲是成爲最大,所以大的動能回收制動力是施加在制 動裝置的制動力。因此,制動裝置的制動力可較小,由輕 的制動器操作力就可以獲得強力的制動力。 發明8的自行車用動能回收制動控制裝置,是如發明7 的裝置,進一步具備操作桿速度檢出部,其是藉著由移動 位置檢出部所檢出的移動位置來檢出操作桿構件的移動速 度,動能回收控制部,是在比最大調整位置大的移動位置 ,若被檢出的移動速度是成爲預定速度以下的話,判斷爲 制動裝置開始制動。在此情況下,因爲將制動裝置的制動 開始藉由移動位置檢出部的移動速度即移動位置時間變化 檢出,所以即使在制動裝置側調整直到制動開始爲止的遊 隙也可以精度佳地檢出制動裝置的制動開始時間點。因此 ,可精度更佳地進行轉動制動控制。 [發明的效果] 依據本發明的自行車用刹車桿,移動位置檢出部不是 配置於擺動中心,而是配置於遠離擺動中心的位置。因此 ’移動位置的變化會成爲比操作桿構件的擺動大,可以高 精度地檢出移動位置。 依據本發明的自行車用動能回收制動控制裝置,即使 操作桿構件的初期位置是藉由初期位置調整部被調整,調 -10- 201144131 整後的初期位置也時常被記憶於初期位置記憶部,每次初 期位置被調整的話,初期位置皆被改寫。因此,操作桿構 件的初期位置即使變化也可精度佳地進行動能回收制動的 控制。 【實施方式】 在第1圖中,採用本發明的一實施例的自行車是藉由 馬達10補助人力驅動的電動輔助自行車。自行車,具備: 設有雙環路形的車架體102及前叉103的車架101、及手把 部1 04、及驅動部1 05、及前輪106f、及後輪1 〇6r、及前制 動裝置108 f及後制動裝置l〇8r、及頭燈116。前叉103,是 可繞傾斜的軸擺動自如地裝設於車架體1 02的前部。 在車架101中,安裝有包含鞍座111和手把部丨〇4的各 部。驅動部105’具有:設在車架體102的吊架部的左曲軸 118a及齒輪曲軸118b、及橫跨齒輪曲軸118b的鏈條119。 在前輪106f的中心中,裝設有前輪i〇6f的驅動補助用的馬 達10。在車架體102的吊架部的後部,裝設有搭載了檢出 騎乘者的踏力用的扭矩感測器的輔助裝置1 2。在車架體 102的坐墊管102a的後部,可裝卸地被搭載有··馬達10、 及輔助裝置1 2、及成爲頭燈丨丨6的電源的例如鎳氫電池和 鋰離子電池等的蓄電池14。 輔助裝置1 2 ’可控制馬達〗〇,使發生最大騎乘者的踏 力的2倍的輔助力。輔助裝置! 2,是在內部具有輔助控制 裝置1 3 (自行車用動能回收制動控制裝置的—例)。對於 -11 - 201144131 輔助控制裝置1 3是如後述。動作模式具有複數動能回收制 動模式及複數輔助模式。具體而言,輔助裝置12的輔助模 式,具有:由踏力的2倍的輔助力補助的手動輔助1模式、 由1.5倍的輔助力補助的手動輔助2模式、由等倍的輔助力 補助的手動輔助3模式、由0 · 5倍的輔助力補助的手動輔助 4模式的4個手動輔助模式、及對應踏力使輔助量變化的自 動輔助模式。且,動能回收制動模式,具有:由最大動能 回收制動力動能回收制動的手動動能回收制動1模式、及 由最大制動力的一半的制動力制動的手動動能回收制動2 模式的2個手動動能回收制動模式;及直到制動開始爲止 對應後述的右刹車桿1 6 f的移動位置使由動能回收制動所 產生的制動力變化,若制動開始的話由最大制動力進行動 能回收制動的自動動能回收制動模式的3個動能回收制動 模式。自動動能回收制動模式,是對應後述的右刹車桿 1 6 f的移動位置(後述的操作桿構件3 1的移動位置),控 制由作爲發電機功能的馬達1 0所產生的前輪1 〇 6 f的制動力 。動能回收制動模式,是將從馬達1 0發生的電力儲存在蓄 電池14同時將前輪106 f制動。 手把部104,具有:被固定於前叉1〇3的上部的車把立 管1 1 4、及被固定於車把立管11 4的桿手把型的車手把1 1 5 。在車手把115的兩端中,如將自行車的手把部丨〇4從上方 所見的第2圖所示,裝設有:右刹車桿1 6 f及左剎車桿1 6 r、 及握部17。在車手把的中央部的旁邊,固定有顯示裝置18 。顯示裝置18’具有液晶顯示器畫面18a。液晶顯示器畫 -12- 201144131 面18a’是例如可切換至:顯示輔助模式的畫面的輔助 面、及顯示動能回收制動模式的畫面的動能回收制動畫 。又’在此自行車的左右,通常是規定:將自行車從後 所見時的右側爲右,左側爲左。 <刹車桿的構成> 右剎車桿16f,是藉由前制動拉索25f與前制動裝 l〇8f連接。左剎車桿i6r,是藉由後制動拉索25r與後制 裝置108ι•連接。前制動拉索25 f及後制動拉索25r,是分 具有可移動自如地裝設於筒狀的外殼25a及外殼25a中的 拉索25b。 右刹車桿1 6f及左刹車桿1 6r,是別具備:可裝卸自 地裝設於車手把115的安裝托架30'及可繞擺動軸40擺 自如地裝設於安裝托架30的操作桿構件3 1。 <安裝托架的構成>。 安裝托架30,是如第2圖、第3圖及第4圖所示,具 :可裝設於在車手把115地被配置於第2圖上部的裝設部 、及與裝設部4 1連結的托架部42、及外卡止部43。裝設 4 1,如第3圖所示,是具有開縫4 1 a的筒狀的構件,藉由 緊與開縫41 a交叉配置的固定螺栓45就可以將安裝托架 固定在車手把1 15。 托架部42,是藉由擺動軸40將操作桿構件31可擺動 裝設,在其前面具有由例如平面所構成的裝設面42a。 畫 面 方 置 動 別 內 如 動 有 4 1 部 旋 30 地 在 -13- 201144131 右剎車桿1 6f的裝設面42a,複數操作開關中的燈開關44a '及畫面切換開關44b是呈左右並列配置。畫面切換開關 44b,是將顯示裝置18的液晶顯示器畫面18 a切換至輔助畫 面及動能回收制動畫面用的開關。燈開關44a及畫面切換 開關44b,在此實施例中’是大小2個菱形的按鈕開關。每 次按壓操作燈開關44a,頭燈1 1 6就會通斷(on/off )。 且,每次按壓操作畫面切換開關44b,顯示裝置18的液晶 顯示器畫面18a就會切換至輔助畫面及動能回收制動畫面 〇 在左刹車桿16ι•的裝設面42a,配置有:複數操作開關 中的第1模式切換開關44c、及第2模式切換開關44d、及電 源開關44e。與第1模式切換開關44c及第2模式切換開關 44d ’是大小2個菱形的按鈕開關,並呈左右並列配置。第 1模式切換開關44c ’是朝第1方向依序選擇複數動能回收 制動模式或複數輔助模式的開關。第2模式切換開關44d, 是朝與第1方向逆向的第2方向依序選擇複數動能回收制動 模式或複數輔助模式的開關。電源開關44e,是被配置於 第2模式切換開關44(1的下方的圓形的按鈕開關,將輔助裝 置12的電源通斷(ΟΝ/OFF)的開關。每次按壓第1模式切 換開關4 4 c ’就使選擇動能回收制動模式或輔助模式用的 .游標朝桌1方向依序移動。若移動停止的話該模式就會被 選擇。第2模式切換開關44d,是同樣地使游標朝第2方向 依序移動。電源開關44e ’是每次按壓操作,就使輔助裝 置12的電源通斷(on/OFF)。 -14- 201144131 燈開關44a、及第1模式切換開關44c是大致相同大小 。畫面切換開關44b、及第2模式切換開關44d是大致相同 大小’燈開關44a及第1模式切換開關44c爲相似形且稍小 。由此’即使不目視燈開關44a及畫面切換開關44b、及第 1模式切換開關44c及第2模式切換開關44d也容易識別。 燈開關44a、畫面切換開關44b、第1模式切換開關44c 及第2模式切換開關44d的外周部,是藉由比裝設面42 a更 突出且比各開關4心〜44d更凹陷形成的緣部42b所包圍。 由此,容易防止各開關44 a〜44d的誤操作。 接著,說明托架部42的內部的構造。又,右刹車桿 1 6 f及左刹車桿1 6r的內部構造,是鏡像關係的相同構造。 因此,在以下的說明中,只說明左剎車桿1 6r的構成,省 略說明右刹車桿16f的構成。 如第3圖所示,在托架部42的內部中,形成有將操作 桿構件3 1可擺動自如地裝設用的操作桿裝設空間42 c。操 作桿裝設空間42c,是形成使操作桿構件3 1從第3圖的實線 所示的初期位置至二點鎖線所示的最大擺動位置之間可擺 動的形狀。在此操作桿裝設空間42c的上部配置有擺動軸 40 〇 左刹車桿1 6r,進一步具備:被配置於托架部42的內 部的初期位置調整部5 0、及移動位置檢出部5 3。初期位置 調整部50,是調整操作桿構件3 1的初期位置用。初期位置 調整部50,具有:調整螺栓51、及形成於托架部42的螺栓 孔52。調整螺栓5 1,是例如圓頭螺栓。螺栓孔52,是在外 -15- 201144131 卡止部43的上方使與操作桿構件31可接觸地使托架部42從 外側面朝向操作桿裝設空間42c形成。藉由將調整螺栓5 1 朝螺拴旋緊方向螺入螺栓孔5 2 ’使操作桿構件3 1的初期位 置朝最大擺動位置側擺動。由此,即使手較小的騎乘者也 容易握持操作桿構件3 1。 移動位置檢出部5 3,是檢出操作桿構件3 1的從初期位 置的擺動行程。移動位置檢出部53,是被配置於托架部42 的初期位置調整部50的上方。與移動位置檢出部53相面對 的磁鐵54是被埋入操作桿構件31。移動位置檢出部53,是 例如,具有可輸出對應磁鐵54的磁場的大小的類比電流來 測量與磁鐵54的距離的線性霍爾元件55。因此,藉由來自 線性霍爾元件55的輸出就可以檢出與磁鐵54的距離,由此 可以檢出操作桿構件3 1的擺動行程。因此,即使藉由初期 位置調整部50使操作桿構件31的初期位置被調整,藉由來 自線性霍爾元件55的輸出來界定被調整的初期位置,就可 以確實地檢出從初期位置的行程。藉由此被檢出的操作桿 構件3 1的行程,使動能回收制動模式時的由馬達1 〇所產生 的制動力被控制》 在托架部42及裝設部4 1的交界部分中,被取出將各開 關44a〜44e及線性霍爾元件55及馬達10及輔助裝置12電連 接用的電氣配線60。 外卡止部4 3 ’是螺入形成於托架部4 2的操作桿構件3 1 的突出側相反側的端部的裝設螺栓部42d。外卡止部43 , 具有:螺入裝設螺栓部42d的卡止部本體47、及將卡止部 -16 - 201144131 本體47止轉的鎖定螺帽48。卡止部本體47,可卡止後制動 拉索25r的外殼25 a,且可變更其長度方向的卡止位置。藉 由此卡止位置的變更可以調整後制動裝置1 08r的遊隙。 <操作桿構件的構成> 操作桿構件3 1,是如前述從第3圖的實線所示的初期 位置至二點鎖線所示的最大擺動位置之間可擺動自如地裝 設於托架部42。操作桿構件3 1,具有:在一端裝設有擺動 軸40且在另一端裝設有內卡止部56的軸支部57、及從軸支 部5 7的另一端曲折彎曲地朝車手把1 1 5外方延伸的制動器 操作部5 8。在軸支部5 7的另一端,可將操作桿構件3 1的操 作桿比變更至2個値的操作桿比變更溝57a是形成L字狀。 在操作桿比變更溝57a中,埋入構件59是可裝卸自如地被 埋入,使卡止部不會移動地擺動至操作桿比變更溝5 7a的 兩端部的其中任一端內。內卡止部56,是可擺動自如地被 連結在軸支部57的另一端的操作桿比變更溝57a的其中任 —的端部。被固定在內拉索25b端部的鼓狀構件25c是被卡 止在內卡止部56。操作桿構件31,是藉由無圖示的推迫構 件朝初期位置側被推迫。 在如此構成的左刹車桿1 6r及右刹車桿1 6f中,複數操 作開關也就是各開關44 a〜44e是被配置於托架部42的裝設 面42a。因此,容易由握持操作桿構件3 1的手的食指和中 指操作各開關44a〜44e。 且因爲可以藉由移動位置檢出部53檢出操作桿構件31 -17- 201144131 的從初期位置的行程’所以動能回收制動模式時,制動控 制可以詳細地進行,就可抑制制動力的急速變化。 <輔助控制裝置的構成> 輔助控制裝置1 3,是如第5圖所示,具有使用例如微 電腦的裝置控制部32,微電腦是包含CPU、ROM、RAM、 及I/O介面。在裝置控制部32中,連接有:燈開關44a、及 畫面切換開關44b、及第1模式切換開關44c、及第2模式切 換開關44d、及電源開關44e。且,在裝置控制部32中,連 接有:設在輔助裝置12內的踏力檢出用的扭矩感測器33、 及設在右刹車桿16f及左剎車桿16r的2個線性霍爾元件55。 進一步’在裝置控制部32中,連接有:顯示裝置18、及頭 燈116、及馬達驅動部34、及動能回收驅動部35、及記憶 部3 6。又在第5圖中,被細線包圍的部位是構成輔助控制 裝置13,且被設在輔助裝置12內。 馬達驅動部34,是爲了使馬達10發生對應被選擇的輔 助模式的輔助力而將馬達10PWM (脈寬調變)驅動。動能 回收驅動部3 5,是爲了控制動能回收制動時的制動力而將 從馬達10發生的電力藉由開閉元件開閉。此時藉由PWM控 制來控制開閉元件的導通(ON )時間。記憶部3 6,是例 如,由EEPROM和快閃記憶體等的不揮發記憶體元件構成 ,在內部具有最大調整位置記憶部3 7、及初期位置記憶部 3 8。在最大調整位置記憶部3 7中,記憶有藉由初期位置調 整部50使最大限度初期位置被調整時的移動位置。此記憶 -18- 201144131 處理’是在工場出貨時進行也可以,由販售店和騎乘者進 行也可以。在初期位置記億部3 8中,當藉由後述的動能回 收制動模式處理使初期位置被變更的情況時,被變更的初 期位置會被記憶。又,將自行車購入後的最初的初期位置 ,是未被初期位置調整部5〇調整的例如移動位置「0」。 裝置控制部3 2,以功能區分的話,具有:進行輔助控 制的輔助控制部6 2、及進行動能回收制動控制的動能回收 制動控制部63 (動能回收控制部的一例)。輔助控制部62 ,是藉由第1模式切換開關44c及第2模式切換開關44d由被 選擇的5個輔助模式的其中任一個來控制馬達1 〇。動能回 收制動控制部63,是藉由第1模式切換開關44c及第2模式 切換開關4 4 d被選擇的3個動能回收制動模式的其中任一個 來控制馬達1 〇的動能回收制動。 且動能回收制動控制部6 3,以功能區分的話,具有: 初期位置改寫部6 4、及調整位置寫入部6 5、及動能回收控 制部66、及操作桿速度檢出部67。初期位置改寫部64,是 若藉由初期位置調整部50使初期位置被變更時,將初期位 置記憶部3 8的記憶內容改寫成調整後的移動位置。具體而 言,藉由線性霍爾元件5 5檢出比最大調整位置小的移動位 置的話’將該移動位置作爲初期位置記憶在初期位置記憶 部3 8,將初期位置改寫。調整位置寫入部65,是例如,由 初期位置調整部5 0調整最大限度初期位置時,藉由將各開 關4 4 a〜4 4 e的其中任一個進行例如2秒以上的長按操作和2 個以上的同時操作等的操作來將當時的移動位置作爲最大 ;5· -19- 201144131 調整位置記憶在最大調整位置記億部3 7。動能回收控制部 66,是對應被記憶在初期位置記憶部3 8的從初期位置的移 動位置來控制馬達1 〇的動能回收制動。操作桿速度檢出部 67,是從移動位置檢出部53所檢出的移動位置時間變化而 求得操作桿構件3 1的移動速度V。 <裝置控制部的控制動作> 接著,以第6圖及第7圖所示的控制流程圖爲例說明裝 置控制部3 2的控制動作。又,對於控制動作,第6圖及第7 圖所示的處理只是本發明的控制動作的一例,本發明不限 定於此。又,在之後的說明中,是說明藉由進行前輪1 06f 用前制動裝置1 08 f的制動操作的右刹車桿1 6f的移動位置來 進行動能回收制動的情況的例。 來自蓄電池1 4的電力被供給至裝置控制部3 2的話,裝 置控制部32開始進行控制動作。在第6圖的步驟S1中,進 行初期設定。在初期設定中,重設各種的變數和標記。在 步驟S2中,進行顯示裝置18的顯示處理。在此,對應畫面 切換開關44b的操作切換至第8圖所示的輔助畫面及第9圖 所示的動能回收制動畫面的其中任一畫面。且,進行各種 的顯示處理》在步驟S3中,進行開關輸入處理。開關輸入 處理是進行對應被操作的開關的處理。例如,在第8圖所 示的輔助畫面中,將第1模式切換開關44c操作的話,被顯 示在畫面右側的5個輔助模式的其中任一模式被顯示的游 標是每次按壓操作就朝下方逐一地移動。且,將第2模式 -20- 201144131 切換開關4 4 d操作的話’每次游標被按壓操作就朝上方逐 —地移動。在游標移動後預定時間(例如2秒至5秒)經過 的話,就設定被選擇的輔助模式。同樣地’在第9圖所示 的動能回收制動畫面中’將第1模式切換開關44c操作的話 ,被顯示在畫面右側的3個動能回收制動模式的其中任一 模式被顯示的游標是每次按壓操作就朝下方逐一地移動。 且,將第2模式切換開關44d操作的話’每次游標被按壓操 作就朝上方逐一地移動。在游標移動後經過預定時間(例 如2秒至5秒)的話’就設定被選擇的動能回收制動模式。 在步驟S5中,依據藉由開關輸入處理被選擇的輔助模 式進行輔助處理。即藉由馬達10補助由騎乘者的人力所產 生的驅動。在步驟S6中,實行第7圖所示的動能回收制動 模式處理,返回至步驟S2。 在第7圖的動能回收制動模式處理中’在步驟S11,判 斷是否已進行:藉由初期位置調整部5〇使操作桿構件3 1被 調整至最大調整位置’並將該最大調整位置寫入用的操作 。此判斷,是例如藉由燈開關44a及畫面切換開關44a的同 時操作判斷。此判斷是「YES」的情況時移行至步驟S 1 2 。在步驟S 1 2中,在最大調整位置記憶部3 7將當時的右刹 車桿16f的線性霍爾元件55所檢出的操作桿構件31的移動 位置Μ作爲最大調整位置MA寫入最大調整位置記憶部3 7 ’ 移行至步驟S13。在步驟S13中,判斷操作桿構件31是否移 動。未移動的情況時返回至第6圖所示的主例行程式。移 動的情況時,移行至步驟S 1 4。在步驟S 1 4中’從線性霍爾 -21 - 201144131 元件55取入移動位置Μ。在步驟S15中,從最大調整位置 記憶部3 7讀入最大調整位置Μ Α。在步驟S 1 6中’判斷:取 入的移動位置Μ是否比最大値調整位置MA小,即,是否爲 由初期位置調整部5 0所產生的初期位置的調整操作,或通 常的制動操作。 判斷爲移動位置Μ是比最大調整位置ΜΑ小,且爲初期 位置的調整操作的情況時,從步驟S 1 6移行至步驟S 1 7。在 步驟S 1 7中,判斷燈開關44a是否預定時間以上(例如2秒 以上)被長按操作。這是爲了將調整途中的移動位置取消 用的處理。直到燈開關44a被長按操作爲止,返回至主例 行程式,燈開關44a若被長按操作的話,移行至步驟S 1 8, 在那時將線性霍爾元件55所檢出的移動位置Μ作爲初期位 置ΙΜ記憶在初期位置記憶部3 8。由此,在動能回收制動中 ,操作桿構件3 1的初期位置被變更。 判斷爲移動位置Μ是比最大調整位置ΜΑ大,且爲通常 的制動操作的情況時,從步驟S 1 6移行至步驟S 2 1。在步驟 S 2 1中’判斷是否爲自動動能回收制動模式。判斷爲手動 動能回收控制模式的話,移行至步驟S22,由被選擇的手 動動能回收制動模式來控制馬達1 〇的動能回收制動,返回 至主例行程式。例如,在手動動能回收制動2模式中,由 5 0百分比負何工作來控制開閉元件,由一半的動能回收制 動力將前輪1 06f動能回收制動。 判斷爲自動動能回收制動模式的話,從步驟s 2丨移行 至步驟S23。在步驟S23中,爲了判斷操作桿構件31是否到 -22- 201144131 達制動開始位置’而算出移動速度V。在步驟S24中,判斷 所算出的移動速度V是否比預定速度VS慢。所算出的移動 速度V是比預定速度V S慢的話,判斷爲操作桿構件3〗的移 動幾乎停止並已到達制動開始位置。直到到達制動開始位 置爲止移行至步驟S 2 5 ’進行比例動能回收制動。具體而 言’將與從初期位置的操作桿構件3 1的移動位置成比例的 動能回收制動力賦予至前輪1 06f。具體而言將動能回收驅 動部3 5的開閉元件的負荷工作比對應移動位置漸漸地變大 地增加動能回收制動力。又,藉由速度變化就可知道制動 開始位置的移動位置的話,不需算出速度,而藉由移動位 置判斷是否到達制動開始位置也可以。但是,由速度變化 判斷的話,即使由制動裝置側調整直到制動開始爲止的遊 隙使操作桿構件3 1側的制動開始位置變化,也可以檢出制 動開始位置。 判斷爲所算出的移動速度V是比預定速度V S慢到達制 動開始位置的話,進行最大動能回收制動。在此,將開閉 元件1 〇 0百分比負荷工作地進行控制,將最大動能回收制 動力賦予至前輪1 0 6 f。 <特徵> (A )右刹車桿1 6f及左剎車桿1 6r,是各別能與可裝 設於自行車的前制動裝置108 f及後制動裝置l〇8i•連結的自 fT車用刹車桿。右刹車桿1 6 f及左刹車桿1 6 r,具備:安裝 托架3 0、及操作桿構件3 1、及移動位置檢出部5 3、及初期 -23- 201144131 位置調整部50。安裝托架30,是可裝設於自行車的車手把 1 1 5。操作桿構件3 1 ’是從初期位置可擺動地被裝設在安 裝托架30。移動位置檢出部53,是在遠離操作桿構件31的 擺動中心的位置被設在安裝托架3 〇,供檢出操作桿構件3 1 的從初期位置的移動位置Μ。初期位置調整部50,是可調 整初期位置ΙΜ地設在安裝托架30。 在此右剎車桿1 6 f及左刹車桿1 6 r中,操作桿構件3 1是 從初期位置擺動的話,該移動位置是藉由移動位置檢出部 53被檢出。在此,移動位置檢出部53不是配置於擺動中心 ,而是配置於遠離擺動中心的位置。因此,對於操作桿構 件31的擺動移動位置的變化變大,可以高精度地檢出移動 位置。 (B )在右刹車桿1 6f及左刹車桿1 6r中,移動位置檢 出部53,是可將與相面對於移動位置檢出部53地配置在操 作桿構件31的磁鐵54的距離作爲移動位置檢出,具有被配 置於安裝托架30的線性霍爾元件55。在此情況下,將磁鐵 54安裝在操作桿構件3 1並藉由被配置於安裝托架30的線性 霍爾元件55檢出與磁鐵54之間的距離的移動位置。因此, 由簡潔的構成就可以高精度地檢出移動位置。 (C)輔助控制裝置13,是對應可裝設於藉由馬達1〇 補助人力驅動的輔助自行車上的右剎車桿1 6 f及左剎車桿 1 6r的操作,來控制馬達1 0的動能回收制動的裝置。輔助 控制裝置1 3,具備:最大調整位置記憶部3 7、及初期位置 記憶部3 8、及初期位置改寫部64、及動能回收控制部66。 -24- 201144131 最大調整位置記憶部37,是記憶初期位置調整部50的最大 調整位置MA。初期位置記憶部3 8,是記億初期位置IM。 初期位置改寫部64,是若移動位置檢出部53所檢出的移動 位置Μ比被記憶在最大調整位置記憶部3 7的最大調整位置 Μ Α更小的話,將檢出的移動位置Μ作爲初期位置ΙΜ記憶 在初期位置|5憶部3 8地將初期位置IΜ改寫。動能回收控制 部6 6,是對應被記憶在初期位置記憶部3 8的從初期位置IΜ 的移動位置來控制馬達1 0的動能回收制動。 在此輔助控制裝置1 3中,操作桿構件3 1若移動的話, 比較最大調整位置ΜΑ及移動位置Μ。此時的朝最大調整位 置記憶部3 7的最大調整位置Μ Α的記憶處理,是在購入自 行車之後由販售店或騎乘者進行也可以,在工場出貨時由 該工場進行也可以。且,藉由初期位置調整部50使操作桿 構件31的初期位置IM被調整,若當時的移動位置Μ是比被 記憶在最大調整位置記憶部3 7的最大調整位置Μ Α小的話 ,將調整後的移動位置Μ作爲初期位置IM記憶在初期位置 記憶部38使初期位置記憶部38的初期位置被改寫。且,對 於以後的動能回收制動控制,動能回收控制部66是藉由被 改寫的從初期位置ΙΜ的移動位置Μ來控制馬達1 0的轉動制 動。 在此,即使操作桿構件3 1的初期位置ΙΜ是藉由初期位 置調整部50被調整,調整後的初期位置ΙΜ也時常被記憶於 初期位置記憶部3 8,因此,每次初期位置ΙΜ被調整的話, 初期位置ΙΜ皆會被改寫。因此,操作桿構件3 1的初期位置 -25- 201144131 IM即使變化,也可精度佳地進行動能回收制動控制。 (D)在輔助控制裝置13中,進一步具備調整位置寫 入部65,其是當操作桿構件31是藉由初期位置調整部50使 初期位置IM被最大限度調整時將移動位置檢出部53所檢出 的移動位置Μ作爲最大調整位置MA寫入最大調整位置記憶 部37 〇 在此情況下,將初期位置ΙΜ最大限度調整時的移動位 置Μ被記憶在最大調整位置記憶部3 7。因此,即使藉由刹 車桿初期位置調整部50的最大調整位置ΜΑ相異,也可以 正確地獲得最大調整位置ΜΑ,進一步可精度佳地進行動 能回收制動動作。 (Ε )在輔助控制裝置1 3中,初期位置改寫部64,是 將當進行將燈開關44a長按操作預定時間以上的預定的操 作時被檢出的移動位置作爲初期位置記億在初期位置記憶 部。在此情況下,因爲進行預定的操作時被檢出的移動位 置是作爲初期位置被記憶,所以可以簡單地將初期位置記 憶在初期位置記憶部5 0。 (F )在輔助控制裝置1 3中,動能回收控制部66,是 被記憶在初期位置記憶部3 8的從初期位置IM直到前制動裝 置108 f或後制動裝置108r開始制動爲止之間,對應被檢出 的移動位置Μ使動能回收制動力漸漸地變大的方式控制馬 達1 0的動能回收制動。在此情況下,直到前制動裝置1 08 f 或後制動裝置1 〇8r開始制動爲止,因爲是藉由動能回收制 動使制動力漸漸地變大,所以即使由前制動裝置1 0 8 f或後 -26- 201144131 制動裝置1 Ο 8 r制動,制動力的急劇變化也不易產生。 (G )在輔助控制裝置1 3中,動能回收控制部6 6,若 前制動裝置1 0 8 f或後制動裝置1 〇 8 r開始制動的話,使成爲 最大動能回收制動力的方式控制馬達的動能回收制動。在 此情況下,前制動裝置1 08 f或後制動裝置1 〇8r開始制動的 話’動能回收制動力因爲是成爲最大,所以大的動能回收 制動力會施加在前制動裝置1 0 8 f或後制動裝置1 0 8 r的制動 力。因此,前制動裝置108 f或後制動裝置108r的制動力可 較小,由輕的制動器操作力就可以獲得強力的制動力。 (H)在輔助控制裝置13中,進一步具備操作桿速度 檢出部67,其是藉著由移動位置檢出部53被檢出的移動位 置Μ來檢出操作桿構件3 1的移動速度V,動能回收控制部 66,是在比最大調整位置ΜΑ大的移動位置Μ中,若被檢出 的移動速度V是成爲預定速度VS以下的話,判斷爲前制動 裝置1 〇8f或後制動裝置1 〇8r已開始制動。在此情況下,因 爲將前制動裝置108f或後制動裝置l〇8r的制動開始藉由移 動位置檢出部53的移動速度V即移動位置Μ時間變化檢出 ’所以即使由前制動裝置1 08 f或後制動裝置1 〇8ι側調整制 動開始爲止的遊隙,也可以精度佳地檢出前制動裝置1 08 f 或後制動裝置1 〇8ι•的制動開始時間點。因此’可精度更佳 地進行轉動制動控制。 <其他的實施例> 以上,雖說明了本發明的一實施例’但是本發明不限 -27- 201144131 定於上述實施例,在不脫離發明的實質範圍內可進行各種 變更。 (a )在前述實施例中,雖以被裝設於桿手把的形態 的車手把11 5的刹車桿爲例說明本發明。但是,本發明不 限定於此,對於被裝設於下灣型把手桿型的車手把的刹車 桿也可以適用。 (b )在前述實施例中,雖爲了檢出操作桿構件3 1的 移動位置而使用線性霍爾元件,但是本發明不限定於此。 例如,藉由光電元件等的其他的距離檢出元件來檢出移動 位置也可以。 (c )在前述實施例中,雖藉由開關操作設定記憶最 大調整位置,但是本發明不限定於此。由刹車桿的製造工 場或自行車的製造工場或販售店設定記憶最大調整位置也 可以。此情況,將微電腦內的ROM作爲最大調整位置記憶 部預先寫入ROM也可以。 (d)在前述實施例中,雖只有依據將前制動裝置 1 08 f制動操作的右刹車桿1 6f的移動位置進行動能回收制動 控制,但是本發明不限定於此。只有依據左刹車桿1 6r的 移動位置進行動能回收制動控制也可以。且,考慮右刹車 桿1 6f及左刹車桿1 6r的行走的移動位置進行動能回收制動 控制也可以。此情況,依據較大者的移動位置進行動能回 收制動控制也可以。 (e )在前述實施例中,雖揭示進行制動操作的自行 車用刹車桿,但是本發明不限定於此。例如,具有變速操 -28 ~ 201144131 作部的剎車桿也可以適用本發明。 (f) 在前述實施例中,雖揭示藉由制動拉索與制動 裝置連結的自行車用剎車桿,但是本發明不限定於此。例 如,藉由油壓配管和連桿機構與制動裝置連結的刹車桿也 可以適用本發明。 (g) 在前述實施例中’雖例示在前輪106f具有馬達 的輔助自行車,但是在曲軸配置部分配置馬達的輔助自行 車和在後輪配置馬達的輔助自行車也可以適用本發明。在 曲軸配置部分配置馬達的輔助自行車的情況,例如只要取 消後輪輪轂的自由旋轉功能而使馬達也可以對應後輪的進 行方向的旋轉而旋轉即可。此情況,曲軸及曲軸之間設置 單向離合器也可以。 (h )在前述實施例中,雖將最大調整位置的記憶操 作’由燈開關44a畫面切換開關44b的同時操作進行,將初 期位置的改寫操作由燈開關44a的長按操作進行,但是本 發明不限定於此。由其中任一個的開關44a〜44e的長按操 作或是其中任二個開關4a〜44e的同時操作進行也可以。 且,在左刹車桿1 6r中,將最大調整位置及初期位置記億 時’也同樣由其中任一個開關44a〜44e的長按操作或是其 中任二個開關4a〜44e的同時操作進行也可以。但是,左 剎車桿1 6r的這些的記憶操作晕由被配置於左刹車桿1 6r的 開關44c〜44e進行較佳。進一步,輔助模式及動能回收制 動模式的決定也由這些開關44a〜44 e的其中任一個的長按 或是同時操作進行也可以。 -29- 201144131 【圖式簡單說明】 [第1圖]本發明的一實施例所採用的自行車的右側視圖 〇 [第2圖]從其上方所見的刹車桿的平面圖。 [第3圖]刹車桿的分解立體圖。 [第4圖]刹車桿的剖面圖。 [第5圖]輔助裝置的控制方塊圖。 [第7圖]顯示裝置控制部的控制動作的流程圖。 [第6圖]顯示裝置控制部的控制動作的流程圖。 [桌8圖]顯不液晶顯不器畫面的輔助竃面的顯示的一例 的圖。 [桌9圖]顯不液晶顯不器畫面的動能回收制動畫面的顯 示的一例的圖。 【主要元件符號說明】 1 0 :馬達 12 :輔助裝置 1 3 :輔助控制裝置 1 4 :蓄電池 16f :右刹車桿 16r :左刹車桿 1 7 ·握部 18 :顯示裝置 -30- 201144131 18a: 2 5a: 25b : 25c : 25f : 25r : 30 : 3 1 : 32 : 33 : 34 : 35 : 36 : 3 7 : 38 : 40 : 41 : 4 1a: 42 : 42a : 42b : 42c : 42d : 43 : 液晶顯示器畫面 外殼 內拉索 鼓狀構件 前制動拉索 後制動拉索 安裝托架 操作桿構件 裝置控制部 扭矩感測器 馬達驅動部 動能回收驅動部 記憶部 最大調整位置記憶部 初期位置記憶部 擺動軸 裝設部 開縫 托架部 裝設面 緣部 操作桿裝設空間 裝設螺栓部 外卡止部 -31 201144131 44a :燈開關 44b :畫面切換開關 44c :第1模式切換開關 44d :第2模式切換開關 44e :電源開關 4 5 :固定螺栓 47 :卡止部本體 48 :鎖定螺帽 50 =初期位置調整部 5 1 :調整螺栓 52 :螺栓孔 5 3 :移動位置檢出部 5 4 :磁鐵 5 5 :線性霍爾元件 5 6 :內卡止部 5 7 :軸支部 5 7 a :操作桿比變更溝 5 8 :制動器操作部 5 9 :埋入構件 60 :電氣配線 62 :輔助控制部 63 :動能回收制動控制部 64 :初期位置改寫部 65 :調整位置寫入部 -32- 201144131 6 6: 67 : 10 1: 102 : 1 02a 103 : 104 : 105: 1 06f 1 06r 1 08f 1 08r 111: 114: 115: 116: 118a 1 18b 119: 訪能回收控制部 喿作桿速度檢出部 車架 車架體 :坐墊管 前叉 手把部 驅動部 :前輪 =後輪 :前制動裝置 =後制動裝置 鞍座 車把立管 車手把 頭燈 :左曲軸 :齒輪曲軸 鏈條 -33[Technical Field] The present invention relates to a bicycle brake lever that can be mounted on a handlebar of a bicycle, and a bicycle kinetic energy recovery brake control device using the same. [Prior Art] The brake lever of the bicycle is coupled to the brake device by a connecting member such as a cable, a connecting rod, and a hydraulic pipe, and brakes the brake device. The brake lever usually includes a mounting bracket that is mounted on the handlebar and an operating lever member that is swingably mounted to the mounting bracket. The mounting bracket has a mounting portion that is mounted on the handlebar and a bracket portion that is coupled to the mounting portion. The mounting portion ' is formed in a tubular shape that can be held, for example, on a handlebar handle. The bracket portion is provided for swingably attaching the lever member. The lever member is, for example, coupled to the brake cable and urged in the brake release direction. In the brake lever for assisting bicycles having the motor for assisting the assist, it is known to have a gauge for detecting the movement position of the lever member (for example, refer to Patent Document 1). In a bicycle using a conventional brake lever, the gauge is placed at a fulcrum of the lever member. The moving position of the lever member is detected by the gauge. Further, the motor is controlled in such a manner that the kinetic energy recovery braking time is elongated in response to the movement position of the operating lever member from the initial position. On the other hand, in the bicycle brake lever, an initial position adjustment unit that adjusts the initial position (wobble start position) of the lever member in accordance with the size of the person's hand is known (for example, see Patent Document 2). The initial position adjustment unit 'is, for example, an adjustment bolt for the brake lever mounting bracket that is screwed into the -5-201144131 lever member. When this adjustment bolt is rotated, the initial position of the lever member will approach and move away from the driver's handle. [PRIOR ART DOCUMENT] [Patent Document 1] Japanese Laid-Open Patent Publication No. Hei 9-25486 (Patent Document 2) Problem In the configuration of Patent Document 1, the stroke of the lever member is detected by a gauge placed on the fulcrum of the lever member. However, since the displacement in the swinging fulcrum of the operating lever member is small, it is difficult to accurately detect the moving position of the operating lever member. An object of the present invention is to accurately detect the moving position of the lever member of the bicycle brake lever. When the initial position adjustment portion of the brake lever assembly patent document 2 of the patent document 1 is changed, the movement position from the initial position cannot be accurately detected if the initial position is changed. Therefore, the control of the kinetic energy recovery brake cannot be performed accurately for the movement position. Another problem of the present invention is that the kinetic energy recovery brake can be accurately controlled even if the initial position of the brake lever changes. (Means for Solving the Problem) The bicycle brake lever 'of the invention 1 is a bicycle brake lever that can be coupled to a bicycle-equipped -6-201144131 brake device. The brake lever includes a mounting bracket, an operating lever member, a moving position detecting portion, and an initial position adjusting portion. The mounting bracket is a handlebar that can be mounted on a bicycle. The lever member is swingably attached to the mounting bracket from the initial position. The moving position detecting portion is provided at the mounting bracket at a position away from the swing center of the operating lever member, and detects the moving position of the operating lever member from the initial position. The initial position adjustment unit is provided in the mounting bracket at an adjustable initial position. In the bicycle brake lever, when the lever member swings from the initial position, the moving position is detected by the moving position detecting portion. Here, the moving position detecting portion is disposed not at the swing center but at a position away from the swing center. Therefore, the change in the moving position becomes larger than the swing of the lever member, and the moving position can be detected with high precision. The bicycle brake lever according to the second aspect of the invention is the operation lever of the first aspect of the invention, and the movement position detecting portion detects the distance from the magnet disposed on the operation lever member to the movement position detecting portion as the movement position. And has a linear Hall element that is disposed on the mounting bracket. In this case, the magnet is attached to the operating lever member, and the moving position is detected from the distance between the linear Hall element disposed on the mounting bracket and the magnet. Therefore, the moving position can be detected with high precision by a simple configuration. The bicycle kinetic energy recovery brake control device according to the third aspect of the invention is a device for controlling the kinetic energy recovery braking of the motor in accordance with the operation of the brake lever of the invention 1 or 2 which can be mounted on an electric bicycle driven by a motor-assisted manpower. The kinetic energy recovery brake control device for bicycle includes a maximum adjustment position memory unit, an initial position memory unit, an initial position rewriting unit, and a kinetic energy back 201144131 control unit. The maximum adjustment position is 100 million, which is the maximum adjustment position of the initial position adjustment unit. The initial position is recorded in the billion section, which is the initial position of memory. The initial position rewriting unit stores the detected movement position as the initial position in the initial position memory if the movement position detected by the movement position detecting unit is smaller than the maximum adjustment position of the maximum adjustment position storage unit. The initial position was rewritten. The kinetic energy recovery control unit controls the kinetic energy recovery brake of the motor in accordance with the movement position from the initial position stored in the initial position memory unit. In this kinetic energy recovery brake control device, if the lever member is moved, the maximum adjustment position and the movement position are compared. The memory processing for the maximum adjustment position of the maximum adjustment position memory unit at this time may be performed by a vending shop or a rider after the bicycle is purchased, and may be carried out by the factory when the factory is shipped. Further, the initial position adjustment unit adjusts the initial position of the operation lever member, and when the movement position at this time is smaller than the maximum adjustment position stored in the maximum adjustment position storage unit, the adjusted movement position is taken as the initial position. In the initial position, I remember that the initial position of the 100 million department was rewritten. Further, for the subsequent kinetic energy recovery brake control, the kinetic energy recovery control unit controls the rotational braking of the motor in accordance with the rewritten moving position from the initial position. Here, even if the initial position of the lever member is adjusted by the initial position adjusting unit, the adjusted initial position is often memorized in the initial position memory unit. Therefore, each time the initial position is adjusted, the initial position is rewrite. Therefore, even if the initial position of the lever member changes, the control of the kinetic energy recovery brake can be performed with high precision. -8 - 201144131 The kinetic energy recovery brake control device for bicycle according to the invention of claim 4, further comprising an adjustment position writing unit that is configured to maximize the initial position when the operation lever member is adjusted by the initial position adjustment unit The movement position detected by the movement position detecting unit is written as the maximum adjustment position in the maximum adjustment position. In this case, the movement position when the initial position is maximized is stored in the maximum adjustment position memory. Therefore, even if the maximum adjustment position of the initial position adjusting portion is different by the brake lever, the maximum adjustment position can be accurately obtained, and the kinetic energy recovery braking operation can be performed with higher precision. According to a fifth aspect of the invention, in the kinetic energy recovery brake control device for bicycles, the initial position rewriting unit stores the detected movement position as an initial position in the initial position when the predetermined operation is performed. In this case, since the moved position detected when the predetermined operation is performed is stored as the initial position, the initial position can be easily memorized in the initial position. According to a sixth aspect of the invention, the kinetic energy recovery brake control device of the invention is the device of any one of the inventions 3 to 5, wherein the kinetic energy recovery control unit is stored between the initial position of the initial position memory unit and the braking device starting to brake. The kinetic energy recovery brake of the motor is controlled in such a manner that the detected kinetic energy recovery braking force gradually increases corresponding to the detected movement position. In this case, until the brake device starts to brake, the brake force is gradually increased by the kinetic energy recovery brake. Therefore, even if the brake device is braked, an abrupt change in the braking force is less likely to occur. According to a seventh aspect of the invention, the kinetic energy recovery brake control device of the invention is the kinetic energy recovery control unit that controls the kinetic energy recovery of the motor so as to obtain the maximum kinetic energy recovery braking force when the brake device starts braking. In this case, if the brake device starts to brake, the kinetic energy recovery braking force is maximized, so the large kinetic energy recovery braking force is the braking force applied to the brake device. Therefore, the braking force of the brake device can be small, and a strong braking force can be obtained by the light brake operating force. The kinetic energy recovery brake control device for bicycle according to the eighth aspect of the invention is the device of the seventh aspect, further comprising an operation lever speed detecting unit that detects the operation lever member by the movement position detected by the movement position detecting unit. The moving speed, the kinetic energy recovery control unit is a moving position larger than the maximum adjustment position, and if the detected moving speed is equal to or lower than the predetermined speed, it is determined that the braking device starts braking. In this case, since the brake start of the brake device is detected by the movement speed of the movement position detecting portion, that is, the movement position time change, the clearance can be accurately checked even if the brake device is adjusted until the brake starts. The braking start time point of the brake device is released. Therefore, the rotational brake control can be performed with higher precision. [Effects of the Invention] According to the bicycle brake lever of the present invention, the moving position detecting portion is disposed not at the swing center but at a position away from the swing center. Therefore, the change in the moving position becomes larger than the swing of the lever member, and the moving position can be detected with high precision. According to the kinetic energy recovery brake control device for a bicycle of the present invention, even if the initial position of the operation lever member is adjusted by the initial position adjustment unit, the initial position after adjustment -10-10444131 is often memorized in the initial position storage unit, When the initial position is adjusted, the initial position is rewritten. Therefore, even if the initial position of the operating lever member is changed, the control of the kinetic energy recovery brake can be performed with high precision. [Embodiment] In Fig. 1, a bicycle according to an embodiment of the present invention is a power-assisted bicycle that is driven by a motor 10 to assist human power. The bicycle includes: a frame 101 having a double loop shape and a frame 101 of the front fork 103, a handle portion 104, a driving portion 105, a front wheel 106f, a rear wheel 1 〇 6r, and a front brake. Device 108 f and rear brake device 10 8r, and headlight 116. The front fork 103 is swingably mounted on the front portion of the frame body 102 so as to be swingable about an inclined axis. In the frame 101, each portion including the saddle 111 and the handle portion 4 is attached. The drive unit 105' has a left crankshaft 118a and a gear crankshaft 118b provided in the hanger portion of the frame body 102, and a chain 119 that spans the gear crankshaft 118b. In the center of the front wheel 106f, a motor 10 for driving assistance of the front wheels i6f is mounted. In the rear portion of the hanger portion of the frame body 102, an auxiliary device 1 2 on which a torque sensor for detecting the pedaling force of the rider is mounted is mounted. In the rear portion of the cushion tube 102a of the frame body 102, a battery such as a nickel-hydrogen battery or a lithium ion battery that is detachably mounted with the motor 10, the auxiliary device 12, and the power source of the headlight unit 6 is detachably mounted. 14. The auxiliary device 1 2 ' can control the motor 〇 so that the assisting force twice the pedaling force of the maximum rider occurs. assisting equipments! 2, there is an auxiliary control device 1 3 (an example of a kinetic energy recovery brake control device for bicycles). For -11 - 201144131, the auxiliary control device 1 3 will be described later. The action mode has a complex kinetic energy recovery brake mode and a complex assist mode. Specifically, the assist mode of the assisting device 12 includes a manual assist 1 mode in which the assisting force is doubled by the pedaling force, a manual assist 2 mode in which the assisting force is supplemented by 1.5 times, and a manual assisted by the assisting force equal to twice the assisting force. The auxiliary 3 mode, the 4 manual assist modes of the manual assist 4 mode supplemented by 0. 5 times the assist force, and the automatic assist mode in which the assist amount is changed in accordance with the pedaling force. In addition, the kinetic energy recovery braking mode has two manual kinetic energy recovery modes: a manual kinetic energy recovery brake 1 mode in which the braking force is recovered by the maximum kinetic energy recovery braking force, and a manual kinetic energy recovery braking mode 2 in which the braking force is braked by half of the maximum braking force. The braking mode; and the automatic kinetic energy recovery braking mode in which the braking force generated by the kinetic energy recovery braking is changed in response to the movement position of the right brake lever 16 6 f to be described later until the start of braking, and the kinetic energy recovery braking is performed by the maximum braking force when the braking is started The 3 kinetic energy recovery brake modes. The automatic kinetic energy recovery braking mode is a front wheel 1 〇 6 f generated by a motor 10 that functions as a generator in response to a movement position of a right brake lever 16 f (a movement position of an operation lever member 3 1 to be described later). Braking force. The kinetic energy recovery brake mode is to store the electric power generated from the motor 10 in the battery 14 while braking the front wheel 106 f. The handle portion 104 has a handlebar riser 1 1 4 fixed to the upper portion of the front fork 1〇3, and a handlebar type handlebar 1 1 5 fixed to the handlebar riser 11 4 . In the two ends of the handlebar 115, as shown in Fig. 2, which is seen from above, the handlebar handle 4 of the bicycle is provided with: a right brake lever 1 6 f and a left brake lever 16 6 r, and a grip portion 17. A display device 18 is fixed beside the central portion of the handlebar. The display device 18' has a liquid crystal display screen 18a. Liquid crystal display -12- 201144131 The surface 18a' is, for example, a kinetic energy recovery brake picture that can be switched to the auxiliary surface of the screen for displaying the assist mode and the screen for displaying the kinetic energy recovery brake mode. Also, on the left and right sides of the bicycle, it is usually prescribed that the right side of the bicycle is seen from the rear to the right and the left side is the left. <Configuration of the brake lever> The right brake lever 16f is connected to the front brake device 8f by the front brake cable 25f. The left brake lever i6r is connected to the rear brake device 108i by the rear brake cable 25r. The front brake cable 25f and the rear brake cable 25r are detachable cables 25b that are movably mounted in the cylindrical casing 25a and the casing 25a. The right brake lever 16f and the left brake lever 16r are provided with: a mounting bracket 30' that is detachably attached to the handlebar 115 and an attachment bracket 30 that can be swingably mounted around the swing shaft 40 Rod member 31. <Configuration of mounting bracket>. As shown in FIG. 2, FIG. 3, and FIG. 4, the mounting bracket 30 is attached to the mounting portion disposed on the upper portion of the handlebar 115 in the second figure, and the mounting portion 4. 1 connected bracket portion 42 and outer locking portion 43. Mounting 4 1, as shown in Fig. 3, is a cylindrical member having a slit 4 1 a, and the mounting bracket can be fixed to the handlebar 1 by a fixing bolt 45 disposed closely to the slit 41a. 15. The bracket portion 42 is swingably mounted by the swing shaft 40, and has a mounting surface 42a formed of, for example, a flat surface on the front surface thereof. In the screen side, there is a 4 1 partial rotation 30 to the installation surface 42a of the right brake lever 16f in the -13-201144131, and the light switch 44a' and the screen changeover switch 44b in the plurality of operation switches are arranged side by side. . The screen change switch 44b is a switch for switching the liquid crystal display screen 18a of the display device 18 to the auxiliary screen and the kinetic energy recovery brake screen. The light switch 44a and the screen change switch 44b, in this embodiment, are button switches of two diamond sizes. Each time the light switch 44a is pressed, the headlight 1 16 is turned "on/off". Further, each time the operation screen changeover switch 44b is pressed, the liquid crystal display screen 18a of the display device 18 is switched to the auxiliary screen and the kinetic energy recovery brake screen, and the mounting surface 42a of the left brake lever 16i is disposed in the plurality of operation switches. The first mode changeover switch 44c, the second mode changeover switch 44d, and the power switch 44e. The first mode changeover switch 44c and the second mode changeover switch 44d' are button switches of two diamond sizes, and are arranged side by side. The first mode changeover switch 44c' is a switch that sequentially selects the complex kinetic energy recovery brake mode or the complex assist mode in the first direction. The second mode changeover switch 44d is a switch that sequentially selects the complex kinetic energy recovery brake mode or the complex assist mode in the second direction opposite to the first direction. The power switch 44e is a switch that is disposed in a circular push button switch below the second mode changeover switch 44 (1) to turn the power of the auxiliary device 12 on and off (ΟΝ/OFF). Each time the first mode changeover switch 4 is pressed 4 c 'This will select the kinetic energy recovery brake mode or the auxiliary mode. The cursor will move in the direction of the table 1. The mode will be selected if the movement stops. The second mode switch 44d is the same as the cursor. The two directions are sequentially moved. The power switch 44e' turns on/off the power of the auxiliary device 12 every time the pressing operation is performed. -14- 201144131 The light switch 44a and the first mode switching switch 44c are substantially the same size. The screen changeover switch 44b and the second mode changeover switch 44d are substantially the same size. The light switch 44a and the first mode changeover switch 44c are similarly shaped and slightly smaller. Thus, even if the light switch 44a and the screen changeover switch 44b are not visually observed, The first mode changeover switch 44c and the second mode changeover switch 44d are also easily identifiable. The outer peripheral portions of the light switch 44a, the screen changeover switch 44b, the first mode changeover switch 44c, and the second mode changeover switch 44d are mounted by comparison. The surface 42a is more protruded and surrounded by the edge portion 42b which is recessed from the center of each of the switches 4 to 44d. Thereby, it is easy to prevent erroneous operation of the switches 44a to 44d. Next, the structure of the inside of the bracket portion 42 will be described. The internal structure of the right brake lever 16f and the left brake lever 16r is the same structure as the mirror image. Therefore, in the following description, only the configuration of the left brake lever 16r will be described, and the configuration of the right brake lever 16f will be omitted. As shown in Fig. 3, an operation lever mounting space 42c for arranging the operation lever member 31 in a swingable manner is formed in the interior of the bracket portion 42. The operation lever mounting space 42c is formed. A shape in which the operation lever member 31 is swingable from an initial position indicated by a solid line in Fig. 3 to a maximum swing position indicated by a two-point lock line. An oscillation shaft 40 is disposed on an upper portion of the operation lever mounting space 42c. The left brake lever 16r further includes an initial position adjustment unit 50 that is disposed inside the bracket portion 42, and a movement position detecting unit 53. The initial position adjustment unit 50 adjusts the operation lever member 31. The initial position adjustment unit 50 has The adjusting bolt 51 and the bolt hole 52 formed in the bracket portion 42. The adjusting bolt 51 is, for example, a ball stud. The bolt hole 52 is provided above the outer -15-201144131 locking portion 43 with the lever member 31. The bracket portion 42 is contactably formed from the outer side surface toward the operating lever mounting space 42c. The initial position of the operating lever member 31 is made by screwing the adjusting bolt 5 1 into the bolt hole 5 2 ' toward the screw tightening direction. The maximum swing position side is swung. Thereby, even if the rider with a small hand is easy to grip the lever member 31. The moving position detecting unit 53 detects the swinging stroke of the operating lever member 31 from the initial position. The moving position detecting unit 53 is disposed above the initial position adjusting unit 50 of the bracket unit 42. The magnet 54 facing the moving position detecting portion 53 is embedded in the operating lever member 31. The moving position detecting unit 53 is, for example, a linear Hall element 55 having an analog current that can output a magnitude of a magnetic field corresponding to the magnet 54 to measure the distance from the magnet 54. Therefore, the distance from the magnet 54 can be detected by the output from the linear Hall element 55, whereby the swinging stroke of the lever member 31 can be detected. Therefore, even if the initial position of the operation lever member 31 is adjusted by the initial position adjustment unit 50, the adjusted initial position is defined by the output from the linear Hall element 55, and the stroke from the initial position can be reliably detected. . By the stroke of the operation lever member 31 thus detected, the braking force generated by the motor 1 时 in the kinetic energy recovery braking mode is controlled" in the boundary portion between the bracket portion 42 and the mounting portion 41, The electric wires 60 for electrically connecting the switches 44a to 44e and the linear Hall element 55, the motor 10, and the auxiliary device 12 are taken out. The outer locking portion 4 3 ' is a mounting bolt portion 42d that is screwed into an end portion of the bracket portion 42 that is opposite to the protruding side of the lever member 31. The outer locking portion 43 has a locking portion main body 47 that is screwed into the mounting bolt portion 42d, and a locking nut 48 that stops the locking portion -16 - 201144131 main body 47. The locking portion body 47 can lock the outer casing 25a of the rear brake cable 25r and change the locking position in the longitudinal direction. The play of the rear brake device 108r can be adjusted by changing the position of the lock. <Configuration of the lever member> The lever member 3 1 is swingably mounted between the initial position shown by the solid line in Fig. 3 and the maximum swing position indicated by the two-point lock line. Frame portion 42. The lever member 31 has a shaft portion 57 having an swing shaft 40 at one end and an inner locking portion 56 at the other end, and a bent portion toward the handlebar 1 1 from the other end of the shaft portion 57. 5 Brake operating portion 58 that extends outward. At the other end of the shaft support portion 57, the operating lever member of the operating lever member 31 can be changed to an operating lever of two turns so that the changing groove 57a is formed in an L shape. In the operation lever ratio changing groove 57a, the embedding member 59 is detachably slidable, and the locking portion is swung without swinging to either end of the operation lever than the both ends of the change groove 57a. The inner locking portion 56 is an end portion of the operating lever that is swingably coupled to the other end of the shaft portion 57 than the change groove 57a. The drum-shaped member 25c fixed to the end of the inner cable 25b is locked to the inner locking portion 56. The lever member 31 is urged toward the initial position side by a pressing member (not shown). In the left brake lever 16r and the right brake lever 16f thus configured, the plurality of operation switches, i.e., the switches 44a to 44e, are disposed on the mounting surface 42a of the bracket portion 42. Therefore, it is easy to operate the respective switches 44a to 44e by the index finger and the middle finger of the hand holding the lever member 31. Further, since the movement position recovery portion of the operation lever member 31 -17- 201144131 can be detected by the movement position detecting portion 53 so that the kinetic energy recovery brake mode can be performed in detail, the brake control can be performed in detail, and the rapid change of the braking force can be suppressed. . <Configuration of Auxiliary Control Device> As shown in Fig. 5, the auxiliary control device 13 has a device control unit 32 using, for example, a microcomputer including a CPU, a ROM, a RAM, and an I/O interface. The device control unit 32 is connected to a light switch 44a, a screen change switch 44b, a first mode changeover switch 44c, a second mode changeover switch 44d, and a power switch 44e. Further, the device control unit 32 is connected to a torque sensor 33 for detecting the pedaling force provided in the assisting device 12, and two linear Hall elements 55 provided on the right brake lever 16f and the left brake lever 16r. . Further, the device control unit 32 is connected to the display device 18, the headlights 116, the motor drive unit 34, the kinetic energy recovery drive unit 35, and the memory unit 36. Further, in Fig. 5, the portion surrounded by the thin line constitutes the auxiliary control device 13, and is provided in the auxiliary device 12. The motor drive unit 34 drives the motor 10PWM (pulse width modulation) in order to cause the motor 10 to generate an assist force corresponding to the selected auxiliary mode. The kinetic energy recovery drive unit 35 opens and closes the electric power generated from the motor 10 by the opening and closing element in order to control the braking force at the time of kinetic energy recovery braking. At this time, the ON (ON) time of the switching element is controlled by PWM control. The memory unit 3 6 is composed of, for example, a non-volatile memory element such as an EEPROM or a flash memory, and has a maximum adjustment position storage unit 37 and an initial position storage unit 38 therein. In the maximum adjustment position storage unit 37, the movement position when the initial position is maximized by the initial position adjustment unit 50 is stored. This memory -18- 201144131 Processing is also possible at the time of shipment from the factory, and can also be carried out by vendors and riders. In the initial position, the initial position is changed when the initial position is changed by the kinetic energy recovery brake mode processing to be described later. Further, the first initial position after the bicycle is purchased is, for example, the movement position "0" which is not adjusted by the initial position adjustment unit 5A. The device control unit 32 has an auxiliary control unit 6 that performs auxiliary control and a kinetic energy recovery brake control unit 63 (an example of a kinetic energy recovery control unit) that performs kinetic energy recovery brake control. The assist control unit 62 controls the motor 1 由 by one of the selected five assist modes by the first mode changeover switch 44c and the second mode changeover switch 44d. The kinetic energy recovery brake control unit 63 controls the kinetic energy recovery brake of the motor 1 藉 by any one of the three kinetic energy recovery brake modes selected by the first mode changeover switch 44c and the second mode changeover switch 44 d. Further, the kinetic energy recovery brake control unit 163 is provided with an initial position rewriting unit 64, an adjustment position writing unit 658, a kinetic energy recovery control unit 66, and an operation lever speed detecting unit 67. When the initial position is changed by the initial position adjustment unit 50, the initial position rewriting unit 64 rewrites the memory content of the initial position storage unit 38 to the adjusted movement position. Specifically, when the linear Hall element 5 5 detects a moving position smaller than the maximum adjustment position, the moving position is stored as the initial position in the initial position memory unit 3, and the initial position is rewritten. In the adjustment position writing unit 65, for example, when the initial position adjustment unit 50 adjusts the maximum initial position, the long-press operation of each of the switches 4 4 a to 4 4 e is performed for, for example, 2 seconds or longer. Two or more simultaneous operations, etc., to maximize the current moving position; 5· -19- 201144131 Adjust the position memory at the maximum adjustment position. The kinetic energy recovery control unit 66 controls the kinetic energy recovery braking of the motor 1 对应 in accordance with the moving position from the initial position stored in the initial position storage unit 38. The operating lever speed detecting unit 67 obtains the moving speed V of the operating lever member 31 from the change in the moving position detected by the moving position detecting unit 53. <Control Operation of Device Control Unit> Next, the control operation of the device control unit 32 will be described using the control flowcharts shown in Figs. 6 and 7 as an example. Further, the control operation shown in Figs. 6 and 7 is only an example of the control operation of the present invention, and the present invention is not limited thereto. In the following description, an example will be described in which the kinetic energy recovery braking is performed by performing the movement position of the right brake lever 16f of the front wheel 106f with the brake operation of the front brake device 108f. When the electric power from the battery 14 is supplied to the device control unit 32, the device control unit 32 starts the control operation. In the step S1 of Fig. 6, the initial setting is performed. In the initial settings, various variables and flags are reset. In step S2, the display processing of the display device 18 is performed. Here, the operation of the corresponding screen changeover switch 44b is switched to one of the auxiliary screen shown in Fig. 8 and the kinetic energy recovery brake screen shown in Fig. 9. Further, various display processing is performed. In step S3, the switch input processing is performed. The switch input processing is processing corresponding to the operated switch. For example, in the auxiliary screen shown in Fig. 8, when the first mode changeover switch 44c is operated, the cursor displayed in any of the five auxiliary modes displayed on the right side of the screen is downwardly pressed for each pressing operation. Move one by one. When the second mode -20- 201144131 switch 4 4 d is operated, 'every time the cursor is pressed, the cursor moves upwards. The selected assist mode is set after a predetermined time (for example, 2 seconds to 5 seconds) elapses after the cursor is moved. Similarly, when the first mode changeover switch 44c is operated in the kinetic energy recovery brake screen shown in FIG. 9, the cursor displayed in any of the three kinetic energy recovery brake modes displayed on the right side of the screen is displayed each time. The pressing operation moves one by one downward. Further, when the second mode changeover switch 44d is operated, 'every time the cursor is pressed, the movement is performed one by one upward. When the predetermined time (e.g., 2 seconds to 5 seconds) elapses after the movement of the cursor, the selected kinetic energy recovery brake mode is set. In step S5, the auxiliary processing is performed in accordance with the auxiliary mode selected by the switch input processing. That is, the motor 10 is used to supplement the drive generated by the rider's manpower. In step S6, the kinetic energy recovery braking mode process shown in Fig. 7 is executed, and the process returns to step S2. In the kinetic energy recovery brake mode processing of Fig. 7, in step S11, it is judged whether or not the operation has been performed: the operation lever member 31 is adjusted to the maximum adjustment position by the initial position adjustment unit 5 and the maximum adjustment position is written. The operation used. This determination is judged by, for example, simultaneous operation of the light switch 44a and the screen change switch 44a. If the determination is "YES", the process proceeds to step S1 2 . In step S12, the maximum adjustment position storage unit 37 writes the movement position Μ of the operation lever member 31 detected by the linear Hall element 55 of the right right brake lever 16f as the maximum adjustment position MA into the maximum adjustment position. The memory unit 3 7 ' moves to step S13. In step S13, it is judged whether or not the lever member 31 is moved. If it is not moving, return to the main routine shown in Figure 6. In the case of moving, the process proceeds to step S14. In step S14, the moving position 取 is taken in from the linear Hall-21 - 201144131 element 55. In step S15, the maximum adjustment position Μ 读 is read from the maximum adjustment position storage unit 37. In step S16, it is judged whether or not the taken-in movement position Μ is smaller than the maximum 値 adjustment position MA, that is, whether it is the adjustment operation of the initial position generated by the initial position adjustment unit 50 or the normal brake operation. When it is determined that the movement position Μ is smaller than the maximum adjustment position and is the adjustment operation of the initial position, the flow proceeds from step S16 to step S17. In step S17, it is judged whether or not the light switch 44a is pressed for a predetermined time or longer (for example, 2 seconds or longer). This is a process for canceling the movement position during the adjustment. Until the light switch 44a is long pressed, returning to the main routine stroke mode, if the light switch 44a is long pressed, the operation proceeds to step S1, and the movement position detected by the linear Hall element 55 is then Μ The initial position is stored in the initial position memory unit 38. Thereby, in the kinetic energy recovery braking, the initial position of the lever member 31 is changed. When it is determined that the movement position Μ is larger than the maximum adjustment position and is the normal brake operation, the flow proceeds from step S16 to step S2 1. It is judged in step S 2 1 whether or not it is the automatic kinetic energy recovery braking mode. When it is determined that the manual kinetic energy recovery control mode is reached, the process proceeds to step S22, and the kinetic energy recovery brake of the motor 1 控制 is controlled by the selected manual kinetic energy recovery brake mode, and the process returns to the main routine. For example, in the manual kinetic energy recovery brake 2 mode, the 50% duty is used to control the opening and closing components, and half of the kinetic energy recovery braking power recovers the braking force of the front wheel 106f. When it is determined that the automatic kinetic energy recovery brake mode is reached, the flow proceeds from step s 2 to step S23. In step S23, the moving speed V is calculated in order to determine whether or not the lever member 31 has reached the brake start position ' at -22- 201144131. In step S24, it is judged whether or not the calculated moving speed V is slower than the predetermined speed VS. When the calculated moving speed V is slower than the predetermined speed V S , it is determined that the movement of the lever member 3 is almost stopped and the braking start position has been reached. Until the brake start position is reached, the process proceeds to step S 2 5 ' for proportional kinetic energy recovery braking. Specifically, the kinetic energy recovery braking force proportional to the moving position of the lever member 31 from the initial position is given to the front wheel 106f. Specifically, the load operation of the opening and closing element of the kinetic energy recovery drive unit 35 is gradually increased larger than the corresponding movement position to increase the kinetic energy recovery braking force. Further, if the movement position of the brake start position is known by the speed change, it is not necessary to calculate the speed, and it is also possible to determine whether or not the brake start position is reached by the movement position. However, if it is judged by the change in the speed, the brake start position can be detected even if the brake is adjusted from the brake device side until the brake starts to change the brake start position on the lever member 31 side. When it is determined that the calculated moving speed V is slower than the predetermined speed V S to reach the braking start position, the maximum kinetic energy recovery braking is performed. Here, the opening and closing element 1 〇 0 percentage load operation is controlled, and the maximum kinetic energy recovery braking power is given to the front wheel 1 0 6 f. <Characteristics> (A) The right brake lever 1 6f and the left brake lever 16 6r are separate from the front brake device 108 f and the rear brake device 10 8i that can be attached to the bicycle. Brake lever. The right brake lever 1 6 f and the left brake lever 16 6r include a mounting bracket 30, an operating lever member 31, a moving position detecting portion 53, and an initial -23-201144131 position adjusting portion 50. The mounting bracket 30 is a handlebar 1 1 5 that can be mounted on a bicycle. The lever member 3 1 ' is swingably mounted to the mounting bracket 30 from the initial position. The moving position detecting portion 53 is provided at the mounting bracket 3 at a position away from the swing center of the lever member 31, and detects the moving position Μ from the initial position of the operating lever member 31. The initial position adjustment unit 50 is provided in the mounting bracket 30 at an adjustable initial position. In the right brake lever 1 6 f and the left brake lever 16r, when the operation lever member 31 is swung from the initial position, the movement position is detected by the movement position detecting portion 53. Here, the moving position detecting unit 53 is disposed not at the swing center but at a position away from the swing center. Therefore, the change in the swinging movement position of the operating lever member 31 becomes large, and the moving position can be detected with high precision. (B) In the right brake lever 16f and the left brake lever 16r, the movement position detecting portion 53 is a distance at which the magnet 54 disposed on the operation lever member 31 with respect to the movement position detecting portion 53 can be used as a distance The moving position is detected and has a linear Hall element 55 disposed on the mounting bracket 30. In this case, the magnet 54 is attached to the operating lever member 31 and the moving position of the distance from the magnet 54 is detected by the linear Hall element 55 disposed in the mounting bracket 30. Therefore, the moving position can be detected with high precision by a simple configuration. (C) The auxiliary control device 13 controls the kinetic energy recovery of the motor 10 in response to the operation of the right brake lever 16 f and the left brake lever 16 6 that can be mounted on the auxiliary bicycle driven by the motor 1 Brake device. The auxiliary control device 13 includes a maximum adjustment position storage unit 37, an initial position storage unit 38, an initial position rewriting unit 64, and a kinetic energy recovery control unit 66. -24- 201144131 The maximum adjustment position storage unit 37 is the maximum adjustment position MA of the memory initial position adjustment unit 50. The initial position memory unit 3 8 is the initial position IM of the record. The initial position rewriting unit 64 uses the detected movement position Μ as the movement position 检 detected by the movement position detecting unit 53 is smaller than the maximum adjustment position Μ 记忆 stored in the maximum adjustment position storage unit 37. The initial position ΙΜ is remembered at the initial position | 5 I recalled the initial position I Μ. The kinetic energy recovery control unit 66 is a kinetic energy recovery brake that controls the motor 10 in response to the movement position from the initial position IΜ stored in the initial position storage unit 38. In the assist control device 13, the lever member 31 is compared with the maximum adjustment position ΜΑ and the movement position 若 if it is moved. The memory processing of the maximum adjustment position Μ 朝 of the maximum adjustment position storage unit 37 at this time may be performed by a vending shop or a rider after the purchase of the bicycle, and may be performed by the factory at the time of factory shipment. Further, the initial position adjustment unit 50 adjusts the initial position IM of the operation lever member 31, and if the current movement position Μ is smaller than the maximum adjustment position Μ 被 stored in the maximum adjustment position storage unit 37, the adjustment will be made. The subsequent movement position 记忆 is stored in the initial position memory unit 38 and the initial position of the initial position storage unit 38 is rewritten. Further, for the subsequent kinetic energy recovery brake control, the kinetic energy recovery control unit 66 controls the rotation of the motor 10 by the repositioned movement position 初期 from the initial position ΙΜ. Here, even if the initial position ΙΜ of the operation lever member 31 is adjusted by the initial position adjustment unit 50, the adjusted initial position ΙΜ is often memorized in the initial position storage unit 3, so that each initial position is If you adjust, the initial position will be rewritten. Therefore, even if the initial position of the operation lever member 31 is changed from -25 to 201144131, the kinetic energy recovery brake control can be performed with high precision. (D) The assist control device 13 further includes an adjustment position writing unit 65 that moves the position detecting unit 53 when the initial position adjusting unit 50 adjusts the initial position IM to the maximum extent by the initial position adjusting unit 50. The detected movement position 写入 is written as the maximum adjustment position MA in the maximum adjustment position storage unit 37. In this case, the movement position 时 when the initial position ΙΜ is maximized is stored in the maximum adjustment position storage unit 37. Therefore, even if the maximum adjustment position ΜΑ of the brake lever initial position adjusting unit 50 is different, the maximum adjustment position 正确 can be accurately obtained, and the kinetic energy recovery braking operation can be performed with higher precision. (Ε) In the assist control device 1, the initial position rewriting unit 64 sets the movement position detected when the light switch 44a is pressed for a predetermined time or longer, as the initial position. Memory department. In this case, since the moved position detected when the predetermined operation is performed is stored as the initial position, the initial position can be easily memorized in the initial position storage unit 50. (F) In the assist control device 1, the kinetic energy recovery control unit 66 is stored in the initial position memory unit 38 from the initial position IM until the front brake device 108 f or the rear brake device 108r starts braking. The kinetic energy recovery brake of the motor 10 is controlled such that the detected movement position causes the kinetic energy recovery braking force to gradually increase. In this case, until the front brake device 1 08 f or the rear brake device 1 〇 8r starts to brake, since the braking force is gradually increased by the kinetic energy recovery brake, even if the front brake device is 10 8 f or later -26- 201144131 Brake device 1 Ο 8 r brake, sudden changes in braking force are not easy to produce. (G) In the assist control device 13, the kinetic energy recovery control unit 66 controls the motor in such a manner that the maximum kinetic energy recovers the braking force if the front brake device 1 0 8 f or the rear brake device 1 〇 8 r starts braking. Kinetic energy recovery brakes. In this case, if the front brake device 1 08 f or the rear brake device 1 〇 8r starts to brake, the kinetic energy recovery braking force is maximized, so a large kinetic energy recovery braking force is applied to the front brake device 1 0 8 f or later. Braking force of braking device 1 0 8 r. Therefore, the braking force of the front brake device 108 f or the rear brake device 108r can be small, and a strong braking force can be obtained by the light brake operating force. (H) The assist control device 13 further includes an operation lever speed detecting unit 67 that detects the moving speed V of the operating lever member 31 by the moving position 检 detected by the moving position detecting unit 53. The kinetic energy recovery control unit 66 determines that the front brake device 1 〇 8 f or the rear brake device 1 is in the movement position ΜΑ that is larger than the maximum adjustment position, and if the detected movement speed V is equal to or lower than the predetermined speed VS. 〇8r has started to brake. In this case, since the braking of the front brake device 108f or the rear brake device 10r is started by the moving speed V of the moving position detecting portion 53, that is, the moving position Μ time change, even if the front brake device 1 08 f or the rear brake device 1 〇 8 ι side adjusts the play until the start of braking, and the brake start time point of the front brake device 1 08 f or the rear brake device 1 〇 8 ι can also be accurately detected. Therefore, the rotational brake control can be performed with higher precision. <Other Embodiments> The above is an embodiment of the present invention. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit and scope of the invention. (a) In the foregoing embodiment, the present invention will be described by taking the brake lever of the rider 11 5 mounted in the form of a lever handle as an example. However, the present invention is not limited to this, and it is also applicable to a brake lever that is mounted on a handlebar type of a lower bay type handlebar type. (b) In the foregoing embodiment, the linear Hall element is used to detect the moving position of the lever member 31, but the present invention is not limited thereto. For example, the moving position may be detected by another distance detecting element such as a photoelectric element. (c) In the foregoing embodiment, although the memory maximum adjustment position is set by the switch operation, the present invention is not limited thereto. It is also possible to set the maximum memory adjustment position by the brake lever manufacturing plant or the bicycle manufacturing workshop or the vending shop. In this case, the ROM in the microcomputer may be written in advance to the ROM as the maximum adjustment position memory. (d) In the foregoing embodiment, the kinetic energy recovery braking control is performed only on the moving position of the right brake lever 16f which brakes the front brake device 108b, but the present invention is not limited thereto. The kinetic energy recovery brake control may be performed only according to the moving position of the left brake lever 16r. Further, the kinetic energy recovery brake control may be performed in consideration of the moving position of the right brake lever 16f and the left brake lever 16r. In this case, the kinetic energy recovery brake control may be performed depending on the moving position of the larger one. (e) In the foregoing embodiment, the brake lever for a bicycle that performs the brake operation is disclosed, but the present invention is not limited thereto. For example, the present invention can also be applied to a brake lever having a shifting operation -28 to 201144131. (f) In the above embodiment, the brake lever for a bicycle connected to the brake device by the brake cable is disclosed, but the present invention is not limited thereto. For example, the present invention can also be applied to a brake lever that is coupled to a brake device by a hydraulic pipe and a link mechanism. (g) In the foregoing embodiment, although the auxiliary bicycle having the motor at the front wheel 106f is exemplified, the present invention can also be applied to the auxiliary bicycle in which the motor is disposed in the crank portion arrangement portion and the auxiliary bicycle in which the motor is disposed on the rear wheel. In the case where the auxiliary bicycle of the motor is disposed in the crankshaft arrangement portion, for example, the free rotation function of the rear wheel hub can be cancelled, and the motor can be rotated in accordance with the rotation of the rear wheel. In this case, a one-way clutch may be provided between the crankshaft and the crankshaft. (h) In the foregoing embodiment, although the memory operation of the maximum adjustment position is performed by the simultaneous operation of the light switch 44a screen change switch 44b, the rewriting operation of the initial position is performed by the long press operation of the light switch 44a, but the present invention It is not limited to this. The long-press operation of any one of the switches 44a to 44e or the simultaneous operation of any two of the switches 4a to 44e may be performed. Further, in the left brake lever 16r, the maximum adjustment position and the initial position are recorded in the same time, and the long-press operation of any one of the switches 44a to 44e or the simultaneous operation of any two of the switches 4a to 44e is also performed. can. However, these memory operation halos of the left brake lever 16r are preferably performed by the switches 44c to 44e disposed on the left brake lever 16r. Further, the determination of the assist mode and the kinetic energy recovery brake mode may be performed by long-pressing or simultaneous operation of any of the switches 44a to 44e. -29- 201144131 BRIEF DESCRIPTION OF THE DRAWINGS [Fig. 1] A right side view of a bicycle used in an embodiment of the present invention 〇 [Fig. 2] A plan view of a brake lever seen from above. [Fig. 3] An exploded perspective view of the brake lever. [Fig. 4] A cross-sectional view of the brake lever. [Fig. 5] Control block diagram of the auxiliary device. [Fig. 7] A flowchart of a control operation of the display device control unit. [Fig. 6] A flowchart of a control operation of the display device control unit. [Table 8] A diagram showing an example of display of the auxiliary screen of the liquid crystal display screen. [Table 9] A diagram showing an example of the display of the kinetic energy recovery brake screen of the liquid crystal display screen. [Main component symbol description] 1 0 : Motor 12 : Auxiliary device 1 3 : Auxiliary control device 1 4 : Battery 16f : Right brake lever 16r : Left brake lever 1 7 · Grip 18 : Display device -30- 201144131 18a: 2 5a: 25b : 25c : 25f : 25r : 30 : 3 1 : 32 : 33 : 34 : 35 : 36 : 3 7 : 38 : 40 : 41 : 4 1a : 42 : 42a : 42b : 42c : 42d : 43 : LCD Display screen housing inside cable drum member front brake cable rear brake cable mounting bracket operation lever member device control portion torque sensor motor drive unit kinetic energy recovery drive unit memory unit maximum adjustment position memory unit initial position memory unit swing axis Mounting section slotted bracket portion mounting surface edge operating lever mounting space mounting bolt portion outer locking portion - 31 201144131 44a : light switch 44b: screen changeover switch 44c: first mode changeover switch 44d: second mode Switch 44e: power switch 4 5 : fixing bolt 47 : locking portion body 48 : locking nut 50 = initial position adjusting portion 5 1 : adjusting bolt 52 : bolt hole 5 3 : moving position detecting portion 5 4 : magnet 5 5: Linear Hall element 5 6 : Internal locking 5 7 : shaft support portion 5 7 a : operation lever ratio change groove 5 8 : brake operation portion 5 9 : embedding member 60 : electric wiring 62 : auxiliary control portion 63 : kinetic energy recovery brake control portion 64 : initial position rewriting portion 65 : Adjustment position writing section-32- 201144131 6 6: 67 : 10 1:102 : 1 02a 103 : 104 : 105: 1 06f 1 06r 1 08f 1 08r 111: 114: 115: 116: 118a 1 18b 119: Interview Recycling control unit 杆 lever speed detection part frame frame body: seat tube front fork handle part drive part: front wheel = rear wheel: front brake device = rear brake device saddle handlebar handlebar handlebar headlight: left crankshaft : Gear Crankshaft Chain - 33

Claims (1)

201144131 七、申請專利範圍: 1. 一種自行車用剎車桿,是能與可裝設於自行車的 制動裝置連結,具備: 安裝托架’是可裝設於自行車的車手把;及 操作桿構件’是從初期位置可擺動地被裝設在前述安 裝托架;及 移動位置檢出部’是在前述操作桿構件的遠離擺動中 心的位置被設在前述安裝托架,供檢出前述操作桿構件的 從前述初期位置的移動位置;及 初期位置調整部,是可調整前述初期位置地設在前述 安裝托架。 2 ·如申請專利範圍第1項的自行車用剎車桿,其中, 前述移動位置檢出部,是可檢出與相面對於前述移動位置 檢出部地配置於前述操作桿構件的磁鐵的距離作爲前述移 動位置,且具有被配置於前述安裝托架的線性霍爾元件。 3. 一種自行車用動能回收制動控制裝置,是對應可 裝設於藉由馬達補助人力驅動的電動自行車的如申請專利 範圍第1或2項的自行車用剎車桿的操作,控制前述馬達的 動能回收制動,具備: 最大調整位置記憶部,是記憶前述初期位置調整部的 最大調整位置;及 初期位置記億部,是記憶前述初期位置;及 初期位置改寫部,是若前述移動位置檢出部所檢出的 移動位置是比被記憶在前述最大調整位置記憶部的前述最 •34- 201144131 大調整位置小的話,將前述檢出的移動位置作爲前述初期 位置記憶在前述初期位置記憶部地將前述初期位置改寫; 及 動能回收控制部,是對應被記億在前述初期位置記憶 部的從前述初期位置的移動位置來控制前述馬達的動能回 收制動。 4.如申請專利範圍第3項的自行車用動能回收制動控 制裝置,其中,進一步具備調整位置寫入部,是當前述操 作桿構件是藉由前述初期位置調整部使前述初期位置被最 大限度調整時,將前述移動位置檢出部所檢出的移動位置 作爲最大調整位置寫入前述最大調整位置記憶部。 5 .如申請專利範圍第3或4項的自行車用動能回收制 動控制裝置,其中,前述初期位置改寫部,是當進行預定 的操作時將前述檢出的移動位置作爲前述初期位置記憶在 前述初期位置記憶部。 6 .如申請專利範圍第3或4項的自行車用動能回收制 動控制裝置,其中,前述動能回收控制部,是在前述初期 位置記憶部被記億的從前述初期位置直到前述制動裝置開 始制動爲止之間,對應前述被檢出的移動位置使動能回收 制動力漸漸地變大的方式控制前述馬達的動能回收制動。 7-如申請專利範圍第6項的自行車用動能回收制動控 制裝置,其中,前述動能回收控制部,是若前述制動裝置 開始制動的話,使成爲最大動能回收制動力的方式控制前 述馬達的動能回收制動。 -35- 201144131 8 ·如申請專利範圍第7項的自行車用動能回收制動控 制裝置’其中’進一步具備操作桿速度檢出部,藉著由前 述移動位置檢出部被檢出的移動位置來檢出前述操作桿構 件的移動速度, 前述動能回收控制部,是在比前述最大調整位置更大 的移動位置,若前述被檢出的移動速度是成爲預定速度以 下的話,判斷爲前述制動裝置已開始制動。 -36-201144131 VII. Patent application scope: 1. A bicycle brake lever that can be coupled with a brake device that can be mounted on a bicycle, having: a mounting bracket 'is a handlebar that can be mounted on the bicycle; and the operating lever member' is The mounting bracket is swingably mounted from the initial position; and the moving position detecting portion is provided in the mounting bracket at a position away from the swing center of the operating lever member for detecting the operating lever member. The movement position from the initial position and the initial position adjustment unit are provided in the mounting bracket so that the initial position can be adjusted. (2) The bicycle brake lever according to the first aspect of the invention, wherein the moving position detecting portion is configured to detect a distance from a magnet disposed on the operating lever member with respect to the moving position detecting portion The aforementioned moving position has a linear Hall element disposed in the mounting bracket. 3. A kinetic energy recovery brake control device for a bicycle, which is an operation of a brake lever for a bicycle according to claim 1 or 2, which can be mounted on an electric bicycle driven by a motor-assisted manpower, and controls the kinetic energy recovery of the motor. The brake includes: a maximum adjustment position memory unit that stores the maximum adjustment position of the initial position adjustment unit; an initial position record unit that stores the initial position; and an initial position rewrite unit that is used by the movement position detection unit When the detected moving position is smaller than the maximum position of 34-201144131 stored in the maximum adjustment position storage unit, the detected moving position is stored in the initial position storage unit as the initial position. The kinetic energy recovery control unit and the kinetic energy recovery control unit control the kinetic energy recovery brake of the motor in response to the movement position of the initial position storage unit from the initial position. 4. The bicycle kinetic energy recovery brake control device according to claim 3, further comprising: an adjustment position writing unit that adjusts an initial position of the operation lever member by the initial position adjustment unit At this time, the movement position detected by the movement position detecting unit is written as the maximum adjustment position in the maximum adjustment position storage unit. The bicycle kinetic energy recovery brake control device according to claim 3, wherein the initial position rewriting unit stores the detected movement position as the initial position in the initial stage when a predetermined operation is performed. Position memory. 6. The bicycle kinetic energy recovery brake control device according to claim 3, wherein the kinetic energy recovery control unit is configured such that the initial position memory unit is stored from the initial position until the brake device starts braking. The kinetic energy recovery brake of the motor is controlled such that the kinetic energy recovery braking force gradually increases in accordance with the detected movement position. The kinetic energy recovery brake control device according to the sixth aspect of the invention, wherein the kinetic energy recovery control unit controls the kinetic energy recovery of the motor so as to obtain a maximum kinetic energy recovery braking force when the brake device starts braking. brake. -35- 201144131 8 - The bicycle kinetic energy recovery brake control device of the seventh aspect of the patent application is further characterized in that the operation lever speed detecting portion is further provided by the moving position detected by the moving position detecting portion The kinetic energy recovery control unit is a moving position that is larger than the maximum adjustment position, and if the detected moving speed is equal to or lower than a predetermined speed, it is determined that the brake device has started. brake. -36-
TW100109357A 2010-04-20 2011-03-18 Bicycle brake lever and the use of its bicycle with kinetic energy recovery brake control device TWI432360B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010096659A JP5566760B2 (en) 2010-04-20 2010-04-20 Bicycle brake lever and bicycle regenerative braking control device using the same

Publications (2)

Publication Number Publication Date
TW201144131A true TW201144131A (en) 2011-12-16
TWI432360B TWI432360B (en) 2014-04-01

Family

ID=44859829

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100109357A TWI432360B (en) 2010-04-20 2011-03-18 Bicycle brake lever and the use of its bicycle with kinetic energy recovery brake control device

Country Status (4)

Country Link
JP (1) JP5566760B2 (en)
CN (1) CN102233932B (en)
DE (1) DE102011002075B4 (en)
TW (1) TWI432360B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2982577B1 (en) * 2011-11-14 2014-01-17 Franck Jean Savard BRAKE CONTROL FOR BIKE, WHOSE CABLE OUTPUT IS TANGENTIAL OF HANDLEBAR
US8622181B2 (en) * 2012-03-01 2014-01-07 Tektro Technology Corporation Brake operating device of electric bicycle with sensor
JP2015037896A (en) * 2012-07-31 2015-02-26 石川 昭一 Assist rotation force transmission device of bicycle
JP6454063B2 (en) * 2013-03-25 2019-01-16 ヤマハ発動機株式会社 Electric bicycle
JP5940491B2 (en) * 2013-05-31 2016-06-29 ブリヂストンサイクル株式会社 Bicycle with electric motor
JP6068286B2 (en) 2013-07-30 2017-01-25 株式会社シマノ Bicycle control device
JP5931024B2 (en) * 2013-08-23 2016-06-08 ブリヂストンサイクル株式会社 Bicycle with electric motor
JP5931025B2 (en) * 2013-08-23 2016-06-08 ブリヂストンサイクル株式会社 Bicycle with electric motor
JP6002120B2 (en) * 2013-12-11 2016-10-05 ブリヂストンサイクル株式会社 Bicycle with electric motor
DE102014207760A1 (en) * 2014-04-24 2015-10-29 Continental Teves Ag & Co. Ohg Brake request recording on a bicycle with a donor box
DE102014211089A1 (en) * 2014-06-11 2015-12-17 Robert Bosch Gmbh Lighting system and method for operating a rechargeable battery of a propulsion means drivable by muscle power
TWI555668B (en) * 2014-08-27 2016-11-01 國立中興大學 Automatic electronic auxiliary brake via torque for electrical bicycles
CN104648135A (en) * 2015-01-09 2015-05-27 欧阳亮 Vehicle kinetic energy recycling and re-releasing device and control method thereof
WO2017032836A1 (en) * 2015-08-25 2017-03-02 Biketec Ag Remote control unit and electric bicycle
JP6903754B2 (en) * 2017-08-16 2021-07-14 ヤマハ発動機株式会社 Electric auxiliary bicycle
JP6849075B2 (en) 2017-08-24 2021-03-24 株式会社Ihi Remote control device
JP6968742B2 (en) * 2018-03-30 2021-11-17 株式会社シマノ Control and component systems
US11286017B2 (en) * 2018-12-27 2022-03-29 Msns, Llc Adjustable brake lever sensor system
CN114144351B (en) * 2019-07-31 2023-09-01 日立安斯泰莫株式会社 Operation amount detecting device for vehicle with control handle
DE102020111419A1 (en) 2020-04-27 2021-10-28 Schaeffler Technologies AG & Co. KG Electric vehicle with a braking device and method for braking the electric vehicle

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2434300A1 (en) * 1974-07-17 1976-01-29 Weinmann & Co Kg Adjustable brake lever for pedal cycles - has adjuster screw to determine distance between lever and handle bar grip
JPS5790277A (en) * 1980-11-28 1982-06-04 Yamaha Motor Co Ltd Regulator for handle lever of autobicycle
IT1219256B (en) * 1988-05-02 1990-05-03 Campagnolo Spa ADJUSTABLE SUPPORT FOR CONTROL LEVERS TO BE MOUNTED ON A HANDLEBAR OF A MOTORCYCLE OR SIMILAR CYCLE
JPH09254861A (en) * 1996-03-26 1997-09-30 Yazaki Corp Electric power-assisted bicycle
JP3080222B2 (en) * 1997-06-24 2000-08-21 株式会社シマノ Bicycle flat cable connector
US6161448A (en) * 1999-08-31 2000-12-19 Wang; Chin-Feng Brake cable adjusting device for a bicycle
DE20018705U1 (en) * 2000-11-02 2000-12-28 Gustav Magenwirth GmbH & Co, 72574 Bad Urach Control valve for actuating the brake or clutch of a vehicle with a handlebar
JP3882993B2 (en) * 2001-11-02 2007-02-21 本田技研工業株式会社 Regenerative control device for electric vehicle
DE10317313A1 (en) * 2003-04-14 2004-10-28 Reiner Schnell Electrical brake signal transmitter for bicycles, comprises a switch for opening/closing a hall sensor and a permanent magnet which actuates the hall sensor in non-contact manner
US7793565B2 (en) * 2007-03-01 2010-09-14 Sram, Llc Reach adjustment for a handlebar-mounted lever assembly
JP5279390B2 (en) * 2008-07-31 2013-09-04 パナソニック株式会社 Electric bicycle
AT507309A1 (en) 2008-10-03 2010-04-15 Kraemmer Bernd Ing BRAKE

Also Published As

Publication number Publication date
DE102011002075B4 (en) 2020-06-25
TWI432360B (en) 2014-04-01
CN102233932A (en) 2011-11-09
CN102233932B (en) 2014-04-23
DE102011002075A1 (en) 2011-11-17
JP2011225093A (en) 2011-11-10
JP5566760B2 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
TW201144131A (en) Brake lever for bicycle and kinetic energy regeneration braking control device for bicycle using the same
JP5247863B2 (en) Bicycle control device
US9809276B2 (en) Electric bicycle derailleur control system
JP5237421B2 (en) Bicycle control device
US8620551B2 (en) Bicycle regenerative brake control device
US8749181B2 (en) Bicycle regenerative brake control device
US8958935B2 (en) Bicycle drive apparatus
US10000195B2 (en) Bicycle control apparatus
JP5146879B2 (en) Vehicle with assist power
TW201637933A (en) Bicycle motor control system
JP6385021B2 (en) Vehicle driving force control device
JPH04358988A (en) Motorbike
US11840310B2 (en) Control device for human-powered vehicle
TW202222639A (en) Control device
JP6559939B2 (en) Electric assist bicycle
JP2002087370A (en) Power-assisted bicycle, and travel control method therefor
JP2011025876A (en) Bicycle
JP3160645U (en) Brake lever for electric bicycle
JP7285452B2 (en) Electric assist bicycle control method, electric assist bicycle control device, and electric assist bicycle
JP2008168881A (en) Drive structure of electric bicycle
JP2019155962A (en) Electric bicycle and method for controlling electric bicycle
JP7349639B2 (en) Electric bicycles and electric bicycle control devices
JP7386439B2 (en) Electric bicycle control device and electric bicycle
JPH08175470A (en) Auxiliary driving force controller for power assist vehicle
WO2022172424A1 (en) Electrically powered bicycle control method, electrically powered bicycle control device, and electrically powered bicycle