TW201132297A - Methods for removing heavy metals from aqueous extracts of tobacco - Google Patents

Methods for removing heavy metals from aqueous extracts of tobacco Download PDF

Info

Publication number
TW201132297A
TW201132297A TW099134130A TW99134130A TW201132297A TW 201132297 A TW201132297 A TW 201132297A TW 099134130 A TW099134130 A TW 099134130A TW 99134130 A TW99134130 A TW 99134130A TW 201132297 A TW201132297 A TW 201132297A
Authority
TW
Taiwan
Prior art keywords
tobacco
heavy metals
aqueous
substituted
plant extract
Prior art date
Application number
TW099134130A
Other languages
Chinese (zh)
Inventor
Zhaohua Luan
Donald Miser
Darin Colassaco
W Geoffrey Chan
Padmanabha Reddy Ettireddy
Sarojini Deevi
Marc Krauss
Original Assignee
Philip Morris Prod
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philip Morris Prod filed Critical Philip Morris Prod
Publication of TW201132297A publication Critical patent/TW201132297A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/24Treatment of tobacco products or tobacco substitutes by extraction; Tobacco extracts
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/20Removal of unwanted matter, e.g. deodorisation or detoxification
    • A23L5/27Removal of unwanted matter, e.g. deodorisation or detoxification by chemical treatment, by adsorption or by absorption
    • A23L5/273Removal of unwanted matter, e.g. deodorisation or detoxification by chemical treatment, by adsorption or by absorption using adsorption or absorption agents, resins, synthetic polymers, or ion exchangers

Abstract

Disclosed is a method for removing one or more heavy metals from an aqueous plant extract, comprising: contacting the aqueous plant extract with, and sorbing at least a portion of the one or more heavy metals on, at least one sorbent selected from the group consisting of: one or more surface activated titanium oxide particles, one or more chitosans, one or more calcium phosphates, one or more mercaptoalkyl-substituted silica gels, one or more mercaptoalkyl-substituted mesoporous molecular sieves, one or more finely ground γ -aluminas, one or more photocatalytic titanium dioxide particles, one or more Au-anatases, ceria, and combinations thereof, to form a mixture of sorbent and heavy metal-depleted aqueous plant extract; and separating the sorbent from the mixture to provide a heavy metal-depleted aqueous plant extract.

Description

201132297 六、發明說明: 【發明所屬之技術領域】 本發明揭示一種移除水性植物萃取物之一種或以上之 重金屬的方法。 【先前技術】 已知有自水性菸草萃取物移除各種化合物之方法。例 如美國專利US5,311,886揭示一種自水性菸草萃取物移除 多胜之方法,其包含下列步驟:(a)將溶液與選自由羥基磷 灰石、皂土及漂白土礦物所組成的族群中之至少一種之不 溶性吸收劑混合在一起;及(b)自吸收劑分離萃取物。 【發明內容】 本發明揭示一種移除水性植物萃取物之一種或以上之 重金屬的方法,其包含:以選自由一種或以上之表面活化 氧化鈦粒子、一種或以上之聚葡萄胺糖、一種或以上之磷 酸鈣、一種或以上之經锍烷基取代之矽膠、一種或以上之 經锍烷基取代之中孔分子篩、一種或以上之細磨r -氧化鋁 、一種或以上之光催化二氧化鈦粒子、一種或以上之Au-銳欽礦、氧化鈽、及其組合所組成的族群中之至少一種的 吸附劑接觸水性植物萃取物’且吸附一種或以上之重金屬 的至少一部分,以形成吸附劑與耗盡重金屬之水性植物萃 取物的混合物;及將吸附劑自混合物分離而提供耗盡重金 屬之水性植物萃取物。 在一個特定具體實例中,該方法特別適合處理菸草(作 201132297 爲植物材料),及移除一種或以上之可由菸草自土壤取得 之重金屬鎘、砷、鉛、鎳、或硒。所獲得耗盡重金屬之菸 草萃取物可作爲香料,或者組合其他材料形成耗盡重金屬 之菸草產物。在一個特定具體實例中可將耗盡重金屬之菸 草萃取物組合植物材料,特別是薛草。 在一個更特定具體實例中可將耗盡重金屬之菸草萃取 物組α原先由其侍到卒取物之一些或全部薛草,而提供一 種耗盡重金屬之菸草產物。該產物可被用於吸煙物品或無 煙菸草產物。 【實施方式】 在此使用的名詞「植物」或「植物材料」表示任何植 物或其衍生物’如全株植物、其—部分(如莖、葉、根、 及/或好)、切碎、捲絲、經硏磨、或經處理植物、重組植 物材料等。植物材料可爲固態形式、或漿液或萃取物之形 式。該名詞包括但不限於包含人類消耗植物帶(b〇Unical) 之植物材料,如菸草或青草材料。 在此使用的名詞「水性植物萃取物」表示一種藉由以 「水性萃取物」(在此用以表示包含水之萃取劑、或水溶 液或懸浮液,但是如果必要或希簞則其亦可含有其他液體) 接觸植物材料經一段時間’且在足以將植物材料之至少一 種成分的至少一部分移除至萃取劑中之條件下而得之液態 或固態材料。名詞「經萃取植物材料」表示在發生此水性 萃取後且已移除萃取劑而殘留之植物材料。 201132297 在此使用的名詞「吸附劑」表示一種可藉由「吸附 (sorption)」或「吸附(sorbing)」成分而移除液相之一種或 以上之成分的固態材料。名詞「吸附(sorpti〇n)」或「吸附 (sorbing)」表示不論是藉吸收(absorption)、吸附 (adsorption)、離子交換、或其他機構而取得成分。 在此使用的名詞「重金屬」表示一種原子量大於鈉之 金屬。其包括但不限於鎂、鋁、鈣、航、鈦、釩、鉻、錳、 鐵、鈷、鎳、銅、鋅、鎵、鍺、砷、硒、緦、釔、锆、鈮、 鉬、鐯、釕、铑、鈀、銀、鎘、銦、銻、錫、鋇、鑭、給、 鉬、鎢、銶、餓、銥、鉑、金、汞、碲、鉛、鉍、與釙。 特定言之,其包括此等金屬之二價與三價離子,特別是銅、 鋅、鎘、汞、砷、鉛、鎳、與硒。 在此使用的名詞「表面活化氧化鈦」表示已處理而含 有許多表面羥基部分之氧化鈦。此表面活化氧化鈦之非限 制實例爲 Metsorb HMRG® (得自 Graver Chemical)。在此 使用的名詞「表面活化氧化鈦」不包括光催化二氧化鈦或 Au-銳鈦礦,其在此分開揭述。 在此使用的名詞「聚葡萄胺糖」表示已知爲幾丁質之 一族或以上之脫醯葡萄胺多醣。 在此使用的名詞「磷酸鈣」包括任何形式之羥磷石灰。 非限制實例包括Macro-Prep®陶瓷羥磷石灰第I型、與羥磷 石灰 Bio -Gel® HTP 膠。 在此使用的名詞「經巯烷基取代之矽膠」表示已藉矽 201132297 酸鹽與锍烷基砂烷之反應修改而含有共價地鍵結之锍烷基 表面基的矽膠。此材料之非限制實例爲Silica^Vad®經锍丙 基修改之矽膠。在此使用的名詞「經锍烷基取代之矽膠」 不包括經疏院基取代之中孔分子舖,其在此分開揭述。 在此使用的名詞「經巯烷基取代之中孔分子篩」表示 一種已修改而含有共價地鍵結之锍烷基表面基的分子篩材 料。其較佳爲具有範圍爲約2至約50奈米,更特別是約5.5 奈米之實質上均勻孔度,及約5 00平方米/克之平均表面積 的砂酸鹽分子舖。特佳爲以範圍爲約1 %至約20%,更特別 是約4 %至約1 6 %間之負載含有共價地鍵結中孔矽酸鹽之锍 丙基部分的吸附劑。例如在本發明方法之特定具體實例 中,吸附劑可包含一種或以上之經锍烷基取代之中孔分子 篩,且該一種或以上之經锍烷基取代之中孔分子篩可包含 锍丙基負載爲至少4 % ’至少8 %,或至少1 6 %之經毓丙基 取代之中孔分子篩。在此使用的名詞「經毓烷基取代之中 孔分子篩」不包括經巯烷基取代之矽膠,其在此分開揭述。 在此使用的名詞「細磨」表示平均粒度爲約0.125或 更小。 在此使用的名詞「r-氧化鋁」表示無水氧化鋁。 在此使用的名詞「光催化二氧化鈦」表示在uv光下 可形成電子-電洞對之二氧化鈦,通常爲銳鈦礦之形式。此 材料之非限制實例爲Hombikat (Sachtleben)。在此使用的名 詞「光催化二氧化鈦」不包括表面活化氧化鈦或A u -銳鈦 201132297 礦,其在此分開揭述。 在此使用的名詞「Au-銳鈦礦」表示一種藉 爲水解劑使用原處沉澱將約2重量%之Au沉澱 (如Hombikat之光催化二氧化鈦)上而製備之 使用的名詞「Au-銳鈦礦」不包括光催化二氧化 化氧化鈦,其在此分開揭述。 在此使用的名詞「耗盡重金屬」表示一種 重金屬之方法,結果重金屬含量低於經歷該方 屬含量的材料。 在此使用的名詞「約」在結合所述數値($ 使用時表示如熟悉此技藝者所了解,即稍微超 於所述値,至多所述値之± 1 0 %變動。 在此所述之具體實例提供移除植物材料水 特定目標化合物(如重金屬),使得如果以後 物與經萃取植物材料重組,或使用,則其耗盡 的方法。 此方法之一種可行應用爲移除自植物收 鎘、汞、砷、硒、及其他重金屬。此等金屬一 三價’且可因種植植物而自土壤取得。一個特 爲此方法移除菸草之此金屬的應用。 在此具體實例中可首先以水性萃取劑(例 溶液或懸浮液)藉由在適合將植物材料之至少 取至水性萃取劑中之條件下接觸植物材料,而 由以尿素作 在二氧化鈦 材料。在此 鈦或表面活 已經歷移除 法前之重金 口量或範圍) 過或稍微低 性萃取物之 將水性萃取 目標化合物 成之材料的 般爲二價或 佳具體實例 如水、或水 一些組分萃 萃取菸草或 201132297 其他之植物材料形成水性植物萃取物。將所獲得之水性萃 取物自經卒取植物材料分離,及以吸附劑處理以移除至少 一些可能存在於水性萃取物之一種或以上之重金屬。然後 可將所獲得耗盡重金屬之水性植物萃取物有利地作爲香 料’與經卒取植物材料重組,及用於吸煙材料、無煙產品 之一部分,或其他用途。 在一個特定具體實例中,植物材料爲菸草或菸草取代 品。合適型式之菸草材料的實例可包括但不限於火烤菸 草、Burley菸草、Maryland菸草、Oriental菸草、稀有菸草、 特殊菸草、重組菸草、黏聚菸草粉、其摻合物等。較佳爲 將菸草或菸草取代品殺菌。其可將一些或全部之菸草材料 發酵。 此外’其可以任何合適之形式使用菸草或菸草取代 品’其包括片菸碎片、片菸顆粒、加工菸草材料(如增積 或蓬鬆煙草、或硏磨菸草)、加工菸梗(如梗絲或梗屑)、 重組菸草材料、其摻合物等。亦可使用一般改質菸草。 在此揭示之吸附劑係相當便宜地製造或得到,且避免 複雜及昂貴合成聚合吸附劑附帶之困難。 植物萃取物趨於爲無機與有機材料之錯合混合物,其 中一些爲水溶性,及一些爲不溶性但如懸浮液或乳液而存 在。爲了得到經濟上合適之吸附劑,其通常希望吸附劑對 目標重金屬具充分之選擇性,使得吸附劑位置不被非目標 組分佔據而降低吸附劑對目標組分之負載。因而移除植物 201132297 材料水性萃取物之重金屬存在異於僅純化工業廢水、或其 他移除較簡單、較可預測水溶液之重金屬方法所出現之挑 戰’且通常無法預測有效地移除較簡單水溶液之重金屬的 特定吸附劑是否有效地及有效率地移除植物萃取物之重金 屬。 類似於此,使用吸附劑移除氣體或氣相之目標成分無 法預測此等吸附劑移除液相或水溶液之相同目標成分的能 力。其乃部分地由於氣相與液相系統之不同動力學所造 成’及部分地由於存在於水性萃取物之可與目標組分競爭 吸附劑位置的另外組分所造成。 在一個具體實例中提供一種移除水性植物萃取物之一 種或以上之重金屬的方法,其包含以選自由一種或以上之 表面活化氧化鈦粒子、一種或以上之聚葡萄胺糖、一種或 以上之磷酸鈣、一種或以上之經锍烷基取代矽膠、一種或 以上之經锍烷基取代中孔分子篩、一種或以上之r -氧化鋁 (較佳爲細磨r -氧化鋁)、一種或以上之光催化二氧化鈦 粒子、一種或以上之a u -銳鈦礦、氧化鈽、及其組合所組 成的族群中之至少一種的吸附劑接觸水性植物萃取物。 在一個較佳具體實例中’吸附劑係選自由經锍烷基取 代之中孔分子篩、光催化二氧化鈦粒子、A U -銳鈦礦 '與細 磨r -氧化鋁所組成的群組中之至少一種。 在另一個較佳具體實例中’吸附劑係選自由氧化铈與 經锍烷基取代之中孔分子篩所組成的群組。在一個特佳具 -10- 201132297 體實例中,吸附劑爲氧化铈。在另一個特佳具體實例中, 吸附劑爲光催化二氧化鈦粒子。在另一個特佳具體實例 中,吸附劑爲細磨r -氧化鋁。在另一個特佳具體實例中, 吸附劑爲Au-銳鈦礦。在另一個特佳具體實例中,吸附劑 爲表面活化氧化鈦粒子。在另一個特佳具體實例中,吸附 劑爲磷酸鈣。 特佳形式之表面活化氧化鈦粒子包括氧化鈦/氫氧化 鈦粒子,如以商標名Metsorb HMRG®銷售者。特佳形式之 磷酸鈣爲商標名Macro-Prep®陶瓷羥磷石灰第I型或第II 型之羥磷石灰、與羥磷石灰Bio-Gel® HTP膠。特佳形式之 經锍烷基取代之矽膠爲經锍丙基取代矽膠,更特別是以商 標名Silica凡^以⑧銷售者。特佳形式之細磨r -氧化鋁爲得 自Alfa Aesar之直徑0.125片。特佳形式之二氧化鈦粒子爲 TiCh Hombikat ( 100%銳鈦礦)及/或其上已沉積金粒子,視 情況地使用尿素作爲水解劑原處沉澱2% Au而製備之ΤΊ〇2 (金 Hombikat)。特佳形式之氧化鈽爲得自 Arris International 之 Ce02。 另一個具體實例提供一種製造耗盡金屬之水性菸草萃 取物的方法,其包含: (a) 以水性萃取劑接觸菸草植物材料而形成包 含水性萃取劑與菸草植物材料之第一混合 物; (b) 將水性菸草萃取物自第一混合物分離而留 -11 - 201132297 下經萃取菸草植物材料; (C) 以選自由一種或以上之表面活化氧化纟太粒201132297 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention discloses a method of removing one or more heavy metals of an aqueous plant extract. [Prior Art] A method of removing various compounds from an aqueous tobacco extract is known. For example, U.S. Patent No. 5,311,886 discloses a method for the removal of a multi-win from aqueous tobacco extract comprising the steps of: (a) treating a solution with a population selected from the group consisting of hydroxyapatite, bentonite and bleaching earth minerals. At least one of the insoluble absorbents are mixed together; and (b) the extract is separated from the absorbent. SUMMARY OF THE INVENTION The present invention discloses a method of removing one or more heavy metals of an aqueous plant extract, comprising: a surface selected from one or more surface activated titanium oxide particles, one or more polyglucosamines, one or The above calcium phosphate, one or more decyl-substituted phthalocyanine, one or more fluorenyl-substituted mesoporous molecular sieves, one or more finely ground r-alumina, one or more photocatalytic titanium dioxide particles And an adsorbent of at least one of the group consisting of one or more of Au-Ruiqin, yttrium oxide, and combinations thereof is in contact with the aqueous plant extract' and adsorbs at least a portion of one or more heavy metals to form an adsorbent and Depleting a mixture of heavy metal aqueous plant extracts; and separating the adsorbent from the mixture to provide an aqueous plant extract that depletes heavy metals. In a particular embodiment, the method is particularly suitable for treating tobacco (for plant material 201132297) and for removing one or more of the heavy metals cadmium, arsenic, lead, nickel, or selenium that can be obtained from soil by tobacco. The tobacco extract obtained by depleting heavy metals can be used as a fragrance, or a combination of other materials to form a tobacco product that depletes heavy metals. In a particular embodiment, the heavy metal-depleted tobacco extract can be combined with plant material, particularly Xuecao. In a more specific embodiment, the heavy metal-depleted tobacco extract group a may be originally served to some or all of the Xuecao, thereby providing a heavy metal-depleted tobacco product. This product can be used in smoking articles or as smokeless tobacco products. [Embodiment] The term "plant" or "plant material" as used herein means any plant or its derivative 'such as a whole plant, its parts (such as stems, leaves, roots, and/or good), chopped, Coiled, honed, or treated plants, recombinant plant material, and the like. The plant material can be in solid form, or in the form of a slurry or extract. The term includes, but is not limited to, plant material comprising a human consumable plant belt (b〇Unical), such as tobacco or grass material. The term "aqueous plant extract" as used herein means by using an "aqueous extract" (herein used to mean an extractant, or an aqueous solution or suspension containing water, but it may also contain if necessary or desired) Other liquid) a liquid or solid material that is contacted with the plant material over a period of time and under conditions sufficient to remove at least a portion of at least one component of the plant material into the extractant. The term "extracted plant material" means a plant material which remains after the aqueous extraction has occurred and the extractant has been removed. 201132297 The term "adsorbent" as used herein refers to a solid material that removes one or more of the liquid phases by "sorption" or "sorbing" components. The term "sorpti〇n" or "sorbing" means that a component is obtained by absorption, adsorption, ion exchange, or other mechanism. The term "heavy metal" as used herein means a metal having a higher atomic weight than sodium. These include, but are not limited to, magnesium, aluminum, calcium, aerospace, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, antimony, arsenic, selenium, tellurium, antimony, zirconium, hafnium, molybdenum, niobium , bismuth, antimony, palladium, silver, cadmium, indium, antimony, tin, antimony, antimony, give, molybdenum, tungsten, antimony, hungry, antimony, platinum, gold, mercury, antimony, lead, antimony, and antimony. In particular, it includes divalent and trivalent ions of such metals, particularly copper, zinc, cadmium, mercury, arsenic, lead, nickel, and selenium. The term "surface-activated titanium oxide" as used herein means titanium oxide which has been treated to contain a plurality of surface hydroxyl groups. A non-limiting example of such surface activated titanium oxide is Metsorb HMRG® (available from Graver Chemical). The term "surface activated titanium oxide" as used herein does not include photocatalytic titanium dioxide or Au-anatase, which is separately disclosed herein. The term "polyglucosamine" as used herein means a de-glucosamine polysaccharide known to be a group or a plurality of chitin. The term "calcium phosphate" as used herein includes any form of hydroxyphosphorus lime. Non-limiting examples include Macro-Prep® ceramic hydroxyphosphorus lime type I, and hydroxyphosphorus lime Bio-Gel® HTP gel. The term "sulfonyl-substituted silicone" as used herein means a silicone which has been modified by the reaction of the 201132297 acid salt with a mercaptoalkyl sand to contain a covalently bonded alkyl group surface group. A non-limiting example of this material is Silica^Vad® 锍 修改 modified silicone. The term "tank-substituted silicone" as used herein does not include a mesoporous molecularly substituted mesoporous molecular shop, which is separately disclosed herein. The term "transalkylated mesoporous molecular sieve" as used herein means a molecular sieve material which has been modified to contain a covalently bonded fluorenyl surface group. It is preferably a sour molecular sieve having a substantially uniform pore size ranging from about 2 to about 50 nanometers, more particularly about 5.5 nanometers, and an average surface area of about 500 square meters per gram. Particularly preferred is an adsorbent comprising a propylene moiety covalently bonded to the mesoporous ruthenate in a loading ranging from about 1% to about 20%, more particularly from about 4% to about 16%. For example, in a particular embodiment of the method of the invention, the adsorbent may comprise one or more transalkyl substituted mesoporous molecular sieves, and the one or more transalkyl substituted mesoporous molecular sieves may comprise a propyl propyl loading The mesoporous molecular sieve is substituted with at least 4% 'at least 8%, or at least 16% of the propyl group. The term "transalkylated mesoporous molecular sieve" as used herein does not include a terpene alkyl substituted silicone which is separately disclosed herein. The term "fine grinding" as used herein means an average particle size of about 0.125 or less. The term "r-alumina" as used herein means anhydrous alumina. The term "photocatalytic titanium dioxide" as used herein means that an electron-hole pair of titanium dioxide can be formed under uv light, usually in the form of anatase. A non-limiting example of this material is Hombikat (Sachtleben). The term "photocatalytic titanium dioxide" as used herein does not include surface activated titanium oxide or A u - anatase 201132297 ore, which is separately disclosed herein. The term "Au-anatase" as used herein refers to a term "Au-anatase" prepared by using a hydrolyzing agent to precipitate about 2% by weight of Au precipitated (such as Hombikat's photocatalytic titanium dioxide). "Mineral" does not include photocatalytic titanium oxide, which is separately disclosed herein. The term "depleted heavy metal" as used herein means a method of heavy metals, and as a result, the heavy metal content is lower than the material subjected to the content of the genus. The term "about" as used herein is used in conjunction with the recited number ($ when used, as understood by those skilled in the art, that is, slightly more than the enthalpy, at most ± 10% of the enthalpy of the enthalpy. Specific examples provide a method of removing plant material water specific target compounds (such as heavy metals) such that if the material is recombined with the extracted plant material, or used, the method of depletion. One possible application of this method is removal of the plant. Cadmium, mercury, arsenic, selenium, and other heavy metals. These metals are trivalent and can be obtained from the soil by planting plants. One application for removing this metal from tobacco is to be used in this method. Taking an aqueous extractant (such as a solution or suspension) by contacting the plant material under conditions suitable for at least taking the plant material into the aqueous extractant, and using urea as the titanium dioxide material. The titanium or surface has been experienced The amount or range of the heavy gold before the removal of the method) The excessive or slightly lower extract of the material is a bivalent or better example of a material obtained by aqueous extraction of the target compound such as water or water. Some components are extracted from tobacco or 201132297 other plant materials to form aqueous plant extracts. The aqueous extract obtained is separated from the graduated plant material and treated with an adsorbent to remove at least some of the heavy metals that may be present in one or more of the aqueous extract. The resulting dehydrated heavy metal based aqueous plant extract can then advantageously be reconstituted as a fragrance' with the graduated plant material, and used as a smoking material, as part of a smokeless product, or for other uses. In a particular embodiment, the plant material is a tobacco or tobacco substitute. Examples of suitable types of tobacco materials can include, but are not limited to, fire-cured tobacco, Burley tobacco, Maryland tobacco, Oriental tobacco, rare tobacco, specialty tobacco, recombinant tobacco, cohesive tobacco flour, blends thereof, and the like. Preferably, the tobacco or tobacco substitute is sterilized. It can ferment some or all of the tobacco material. Furthermore, it may be used in any suitable form, including tobacco or tobacco substitutes, which include flakes of flakes, flakes of tobacco, processed tobacco materials (such as accumulating or fluffy tobacco, or honed tobacco), processed stems (such as stems or Debris), recombinant tobacco material, blends thereof, and the like. General modified tobacco can also be used. The adsorbents disclosed herein are relatively inexpensive to manufacture or obtain, and avoid the attendant difficulties associated with complex and expensive synthetic polymeric adsorbents. Plant extracts tend to be a mixture of inorganic and organic materials, some of which are water soluble and some are insoluble but such as suspensions or emulsions. In order to obtain an economically suitable adsorbent, it is generally desirable that the adsorbent be sufficiently selective for the target heavy metal such that the adsorbent position is not occupied by the non-target component and the loading of the adsorbent on the target component is reduced. Thus the removal of heavy metals from the aqueous extract of plant 201132297 material is different from the challenge of purifying only industrial wastewater, or other heavy metal methods that remove simpler, more predictable aqueous solutions' and is often unpredictable for effective removal of simpler aqueous solutions. Whether a particular adsorbent of heavy metals effectively and efficiently removes heavy metals from plant extracts. Similarly, the use of adsorbents to remove gas or gas phase target components does not predict the ability of such adsorbents to remove the same target component of the liquid or aqueous solution. This is due, in part, to the different kinetics of the gas phase and liquid phase systems and partly due to the additional components present in the aqueous extract that compete with the target component for the position of the adsorbent. In one embodiment, there is provided a method of removing one or more heavy metals of an aqueous plant extract comprising one or more selected from the group consisting of one or more surface activated titanium oxide particles, one or more polyglucosamines, one or more Calcium phosphate, one or more decyl-substituted phthalocyanines, one or more fluorenyl-substituted mesoporous molecular sieves, one or more of r-alumina (preferably finely ground r-alumina), one or more The adsorbent of at least one of the photocatalytic titanium dioxide particles, one or more of the groups consisting of au-anatase, cerium oxide, and combinations thereof is contacted with the aqueous plant extract. In a preferred embodiment, the adsorbent is selected from at least one of the group consisting of a meroporous alkyl-substituted mesoporous molecular sieve, a photocatalytic titanium dioxide particle, an AU-anatase, and a finely ground r-alumina. . In another preferred embodiment, the adsorbent is selected from the group consisting of cerium oxide and a fluorenyl substituted mesoporous molecular sieve. In a particularly good example, the sorbent is cerium oxide. In another particularly preferred embodiment, the adsorbent is a photocatalytic titanium dioxide particle. In another particularly preferred embodiment, the adsorbent is finely ground r-alumina. In another particularly preferred embodiment, the adsorbent is Au-anatase. In another particularly preferred embodiment, the adsorbent is a surface activated titanium oxide particle. In another particularly preferred embodiment, the adsorbent is calcium phosphate. Particularly preferred forms of surface activated titanium oxide particles include titanium oxide/titanium hydroxide particles, such as those sold under the trade name Metsorb HMRG®. A particularly good form of calcium phosphate is the brand name Macro-Prep® ceramic hydroxyphosphorus lime type I or type II hydroxyphosphorus lime, and hydroxyphosphorus lime Bio-Gel® HTP glue. A particularly preferred form of the decyl-substituted phthalocyanine is a fluorenyl-substituted phthalocyanine, more particularly a commercial under the trade name Silica. A particularly good form of finely ground r-alumina is 0.125 pieces from Alfa Aesar. A particularly good form of titanium dioxide particles is TiCh Hombikat (100% anatase) and/or gold particles deposited thereon, optionally using urea as a hydrolyzing agent to precipitate 2% Au in situ 2 (Gold Hombikat) . A particularly good form of cerium oxide is Ce02 from Arris International. Another embodiment provides a method of making a metal-depleted aqueous tobacco extract comprising: (a) contacting an aqueous extractant with a tobacco plant material to form a first mixture comprising an aqueous extractant and a tobacco plant material; The aqueous tobacco extract is separated from the first mixture to leave the extracted tobacco plant material under -11 - 201132297; (C) is selected from one or more surface activated cerium oxide particles

撞或以上 之磷酸鈣、一種或以上之經锍烷基取π 2 0 膠、一種或以上之經锍烷基取代之ώ π Λ 7 卞扎分子 篩、一種或以上之細磨 r-氧化銘、— '一種现 以上之光催化二氧化鈦粒子、一種或& ± $ A u -銳鈦礦、氧化铈、及其組合所組成的族 群中之至少一種的吸附劑接觸水性&胃_ 取物,而形成吸附劑與水性菸草萃取% $ ^ 合物;及 (d) 將吸附劑自混合物分離而形成耗盡金屬之 水性菸草萃取物。 另一個具體實例提供一種製造耗盡金屬之菸草產物的 方法,其包含: U) 以水性萃取劑接觸菸草植物材料而形成包 含水性萃取劑與菸草植物材料之第一混合 物; (b) 將水性菸草萃取物自第一混合物分離而留 下經萃取菸草植物材料; (C) 以選自由一種或以上之表面活化氧化欽粒 子、〜種或以上之聚葡萄胺糖、一種或以上 之磷酸耗、一種或以上之經锍院基取代石夕 -12- 201132297 膠、一種或以上之經锍烷基取代中孔分子 篩、·一種或以上之細磨 r -氧化鋁、一種或 以上之光催化二氧化鈦粒子、一種或以上之 A u -銳欽礦、氧化姉、及其組合所組成的族 群中之至少一種的吸附劑接觸水性薛草;g 取物,而形成吸附劑與水性菸草萃取物之、混 合物; (d) 將吸附劑自混合物分離而形成耗盡重金屬 之水性菸草萃取物;及 (e) 重組耗盡金屬之水性菸草萃取物與經萃取 菸草植物材料而形成耗盡重金屬之菸草產 物。 得自此方法之耗盡重金屬之菸草產物可用於取代一些 或全部一般用於吸煙物品及/或無煙菸草產物之菸草。在用 於吸煙物品時,耗盡重金屬之菸草產物可形成用於香菸、 雪茄、小雪茄、及其他可吸煙菸草產品之一些或全部菸草。 香菸可爲傳統香菸、電熱香菸、或在菸支中具有燃料 元件之香菸。傳統香菸通常具有實質上圓柱棒形結構,其 一般包括以捲紙圍繞之可吸煙材料(如碎菸草)之捲或管。 許多型式之香菸可具有與菸支以端對端關係排列之圓柱形 過濾部分。過濾部分可包含一個或以上之由乙酸纖維素屑 (以已知爲「捲紙」之紙材料包圍)形成之塞,因而形成 「濾塞」。一般而言,過濾部分係使用已知爲「接裝紙」 -13- 201132297 之包圍用包裝材料附著菸支之—端。 電吸煙系統用香菸係如共同讓渡之美國專利第 6,026,820; 5,988,176; 5,915,387; 5,692,526; 5,692,525; 5,666,976;與5,4 99,63 6號所述。其他之非傳統香菸包括在 薛支中具有燃料元件者,如美國專利第4,966,171號所述。 在此揭述之方法可參考以下之非限制實施例而更明確 地了解。 〔實施例1〕 將去離子水在70 °C維持1小時。將360克之DBC亮面 菸草以該去離子水萃取且將所獲得之萃取物分成30毫升 等分部分。將分別之等分部分各以不同吸附劑之1克樣品 接觸1小時,以1等分部分作爲未處理對照。藉離心移除 等分部分中之吸附劑,及使用感應耦合電漿質譜儀(ICP-MS) 分析經處理等分部分中是否存在鎘及其他重金屬》將結果 示於以下表1。鎘之LSQ爲1.33微克/公升。 表1 樣品說明 ICP-MS之鎘(微克/公升) 減少% 未處理對照 27.5 0 Divergan®HM (聚乙烯基咪唑,BASF) <1.33 >95 Metsorb™ HMRG <1.33 >95 聚葡萄胺糖 1.5 95 Macro-Prep陶瓷羥磷石灰第I型 <1.33 >95 羥磷石灰Bio-Gel http膠 <1.33 >95 -14- 201132297 〔實施例2〕 將去離子水在70°C維持1小時。將360克之DBC亮面 薛草以該去離子水萃取而產生7.6毫升/克之水性萃取物對 0草比例ί。將分別3〇毫升等分部分之此萃取物以下示吸附 劑之一接觸1小時而處理。然後移除吸附劑且藉ICP_MS分 析經處理萃取物之鎘及其他重金屬。將結果示於以下表2。 表2 樣品說明 ICP-MS之鎘(微克/公升) 減少% 未處理對照 144.00 0 Metsorb HMRG 11.10 92 聚葡萄胺糖 12.00 92 Macro-Prep陶瓷羥磷石灰第I型 7.29 95 Si-Thiol MTP 矽膠 13.30 91 MTP-SBA-15 ( 4.0% MTP 負載) 9.00 94 MTP-SBA-15 (8.0% MTP 負載) 2.20 98 MTP-SBA-15 (16.0% MTP 負載) 1.66 99 MTP-SBA-15爲孔度爲55埃,及MTP負載爲4.0%、8.0% 或16.0%之經锍丙基取代之中孔分子篩,如表2所示。其更 詳細地揭述於2006年6月22曰公告之美國專利申請案公 告第2006/0130855號,其全部內容在此倂入作爲參考。相 較於未處理對照萃取物,測試之吸附劑均顯示鎘減少至少 90%。在MTP負載爲8.0%或16.0 %時,鎘減少達98 %或更 高。另外,相較於未處理對照,Metsorb HMRG'聚葡萄胺 •15- 201132297 糖、與Macro-Prep陶瓷羥磷石灰第I型各提供至少67 %之 鉛減少。 〔實施例3〕 將去離子水在70 °C維持1小時,然後用以萃取360克 之DBC亮面菸草。將所獲得之水性萃取物分成體積相同之 5等分部分。將具40克/公升之萃取物的各等分部分以吸附 劑:Metsorb HMRG、Silica F/ad、Macro-Prep 陶瓷羥磷石灰 第I型、及MTP-SBA-15 ( 16.0% MTP負載)處理。與萃取 物接觸1小時後,藉離心將吸附劑自萃取物移除,及將經 處理萃取物冷凍乾燥,如同未處理對照。將經萃之取菸草 材料在通風空間中風乾成約5 % 0V,及分成5等分。將各 冷凍乾燥材料分別地溶於兩倍量(v/w)之去離子水,及將所 獲得之溶液噴灑在乾燥之經萃取菸草材料而形成重組菸 草。將經噴灑之植物材料手工製成香菸,吸煙,及藉ICP-MS 分析主煙流中之鎘量。 〔實施例4〕 藉由將5 00毫克之乾燥菸草萃取物溶於100毫升之去 離子水,而製備100毫升之DBC菸草摻合物捲絲萃取物溶 液。在室溫攪拌而將2克表3所述之各吸附劑懸浮於此溶 液。按表3所示之時間間隔(即攪拌1 5分鐘、1小時、及 24小時後)收集樣品(各15毫升),充塡25毫米GDX可 棄式濾嘴,及使用原子吸收光譜術/感應耦合電漿質譜儀 (八八5/仄?-1^)分析。將結果提供於表3。肘1^1(表示微晶高a calcium phosphate colliding with or above, one or more ruthenium alkyl groups of π 2 0, one or more ruthenium alkyl substituted ώ π Λ 7 卞 molecular sieves, one or more finely ground r-oxidized, — 'A sorbent that is at least one of the above-mentioned photocatalytic titanium dioxide particles, one or a group of & ± $ A u - anatase, cerium oxide, and combinations thereof, is in contact with water & stomach _ extract, And forming an adsorbent and an aqueous tobacco extract %; and (d) separating the adsorbent from the mixture to form a metal-depleted aqueous tobacco extract. Another embodiment provides a method of making a metal-depleted tobacco product, comprising: U) contacting an aqueous extractant with a tobacco plant material to form a first mixture comprising an aqueous extractant and a tobacco plant material; (b) water-based tobacco The extract is separated from the first mixture to leave the extracted tobacco plant material; (C) is selected from the group consisting of one or more surface-activated oxidized granules, one or more kinds of polyglucosamine, one or more phosphates, one Or the above-mentioned brothel base replaces Shi Xi-12-201132297, one or more transalkyl substituted mesoporous molecular sieves, one or more finely ground r-alumina, one or more photocatalytic titanium dioxide particles, One or more adsorbents of at least one of the group consisting of A u - sharpin, cerium oxide, and combinations thereof are contacted with aqueous sage; g to form a mixture of the adsorbent and the aqueous tobacco extract; (d) separating the adsorbent from the mixture to form an aqueous tobacco extract depleted of heavy metals; and (e) reconstituting the depleted metal aqueous tobacco extract and extracting Grass plant material to form heavy metals depleted tobacco product. Tobacco products depleted of heavy metals from this process can be used to replace some or all of the tobacco typically used in smoking articles and/or smokeless tobacco products. When used in smoking articles, heavy metal-depleted tobacco products can form some or all of the tobacco used in cigarettes, cigars, cigarillos, and other smoking tobacco products. The cigarette may be a conventional cigarette, an electric cigarette, or a cigarette having a fuel element in the cigarette. Conventional cigarettes typically have a substantially cylindrical rod-like configuration that generally includes a roll or tube of smokable material (e.g., shredded tobacco) surrounded by a roll of paper. Many types of cigarettes may have a cylindrical filter portion arranged in end-to-end relationship with the cigarette. The filter portion may comprise one or more plugs formed from cellulose acetate chips (surrounded by a paper material known as "roll paper"), thereby forming a "filter plug". In general, the filter portion is attached to the end of the cigarette using a wrapping material known as "tipping paper" -13-201132297. Cigarettes for electric smoking systems are described in U.S. Patent Nos. 6,026,820; 5,988,176; 5,915,387; 5,692,526; 5,692,525; 5,666,976; Other non-conventional cigarettes include those having a fuel element in Xuezhi, as described in U.S. Patent No. 4,966,171. The methods disclosed herein may be more clearly understood by reference to the following non-limiting embodiments. [Example 1] Deionized water was maintained at 70 ° C for 1 hour. 360 grams of DBC glossy noodles were extracted with the deionized water and the obtained extract was divided into 30 ml aliquots. The aliquots were each exposed to 1 gram of the different adsorbents for 1 hour with 1 aliquot as the untreated control. The adsorbent in the aliquot was removed by centrifugation, and the presence of cadmium and other heavy metals in the treated aliquots was determined by inductively coupled plasma mass spectrometry (ICP-MS). The results are shown in Table 1 below. The LSQ of cadmium is 1.33 μg/L. Table 1 Sample Description Cadmium (μg/L) in ICP-MS % reduction Untreated control 27.5 0 Divergan® HM (polyvinylimidazole, BASF) <1.33 > 95 MetsorbTM HMRG <1.33 > 95 Polyglucosamine Sugar 1.5 95 Macro-Prep ceramic hydroxyphosphorus lime type I <1.33 > 95 hydroxyphosphorus lime Bio-Gel http glue <1.33 > 95 -14- 201132297 [Example 2] Deionized water at 70 ° C Maintain for 1 hour. 360 grams of DBC glossy was extracted with this deionized water to yield a 7.6 ml/g aqueous extract to 0 grass scale. This extract of 3 cc aliquots of each of the extracts was treated with one of the adsorbents as described below for 1 hour. The adsorbent is then removed and the cadmium and other heavy metals of the treated extract are analyzed by ICP_MS. The results are shown in Table 2 below. Table 2 Sample Description ICP-MS cadmium (μg/L) Reduced % Untreated control 144.00 0 Metsorb HMRG 11.10 92 Polyglucosamine 12.00 92 Macro-Prep Ceramic Hydroxyapatite Type I 7.29 95 Si-Thiol MTP Silicone 13.30 91 MTP-SBA-15 (4.0% MTP load) 9.00 94 MTP-SBA-15 (8.0% MTP load) 2.20 98 MTP-SBA-15 (16.0% MTP load) 1.66 99 MTP-SBA-15 has a porosity of 55 angstroms And the MTP loading was 4.0%, 8.0% or 16.0% of the fluorenyl substituted mesoporous molecular sieve, as shown in Table 2. It is described in more detail in U.S. Patent Application Publication No. 2006/0130855, issued Jun. 22, 2006, the entire disclosure of which is incorporated herein by reference. The adsorbents tested showed a cadmium reduction of at least 90% compared to the untreated control extract. At an MTP loading of 8.0% or 16.0%, the cadmium is reduced by 98% or more. In addition, Metsorb HMRG' polyglucamine • 15-201132297 sugar, and Macro-Prep ceramic hydroxyphosphorus lime type I each provided at least 67% lead reduction compared to untreated controls. [Example 3] Deionized water was maintained at 70 ° C for 1 hour, and then used to extract 360 g of DBC glossy tobacco. The aqueous extract obtained was divided into 5 equal parts of the same volume. Each aliquot of the 40 g/liter extract was treated with adsorbent: Metsorb HMRG, Silica F/ad, Macro-Prep ceramic hydroxyphosphorus lime type I, and MTP-SBA-15 (16.0% MTP load) . After 1 hour of contact with the extract, the adsorbent was removed from the extract by centrifugation and the treated extract was lyophilized as an untreated control. The extracted tobacco material is air dried to about 5% 0V in a ventilated space and divided into 5 equal parts. Each of the freeze-dried materials was separately dissolved in twice the amount (v/w) of deionized water, and the obtained solution was sprayed onto the dried extracted tobacco material to form a recombinant tobacco. The sprayed plant material is hand-made into cigarettes, smoked, and analyzed by ICP-MS for the amount of cadmium in the main plume. [Example 4] A 100 ml DBC tobacco blend winding extract solution was prepared by dissolving 500 mg of the dried tobacco extract in 100 ml of deionized water. 2 g of each of the adsorbents described in Table 3 was suspended in the solution while stirring at room temperature. Collect samples (15 ml each) at the time intervals shown in Table 3 (ie, stirring for 15 minutes, 1 hour, and 24 hours), fill the 25 mm GDX disposable filter, and use atomic absorption spectroscopy/sensing Coupled plasma mass spectrometer (eight eight 5 / 仄? -1 ^) analysis. The results are provided in Table 3. Elbow 1^1 (representing microcrystalline height)

S -16- 201132297 嶺石黏土 K10 (Aldrich Chemicals); NaY 表示鈉 Y -沸石 (Aldrich Chemicals); HY 表示質子化 NaY (由 NaY 之尿素 水解,繼而在5 50°C煅燒而製備);2% Au/Ti〇2表示使用尿 素作爲水解劑而製備之金Hombikat觸媒;及r-AhCh表示 直徑0.125片之形式的細磨伽瑪-氧化鋁粉(Alfa Aesar)。 表3 金屬濃度(微克/公升) 攪拌1小時 攪拌1日 ' 攪拌15分鐘 吸附劑 對照 MMK NaY HY 對照 MMK NaY HY 2% Au/Ti〇2 r -AhCh 金屬 As 2.09 14,7 2.93 3.44 2.67 23.0 4.21 2.30 0.77 1.10 Cd 5.69 2.2 2.94 0.89 5.93 0.76 1.93 1.05 0.41 0.45 Pb 3.66 11.3 5.34 5.21 4.89 17.3 4.90 10.3 111 0.16 Ni 24.3 20.6 20.9 34.0 20.4 37.0 23.4 42.6 11.9 13.9 Se 2.09 3.30 2.48 1.92 1.99 3.10 2.11 1.60 1.71 1.88 雖然評估之各吸附劑顯示吸附所測試重金屬中之至少 —種,僅2% Au/TiCh與 r -Al2〇3顯示吸附測試之各重金 屬。此外,相較於MMK、NaY與HY之吸附’ 2% Au/Ti〇2 顯示顯著較高之As、Cd與Ni吸附。相較於MMK、NaY與 H Y之吸附,r - A h 0 3顯示顯著較高之各測試重金屬吸附。 最後,其在遠比MMK、NaY與HY吸附短之時間內發生此 等吸附增加,表示2% Au/TiCh與r -Al2〇3之吸附速率高於 -17- 201132297 其他測試之吸附劑。此等結果顯示2% Au/Ti〇2與7 -Al2〇3 爲用於移除菸草摻合物萃取物之重金屬的良好吸附劑。 〔實施例5〕 使用以下表4所示之吸附劑’及使用15分鐘之攪拌時 間,重複以上實施例4所述之步驟。 ί. 金屬濃度(微克/公升) 攪拌1 5分鐘 吸附劑 對照 CeOa Ti〇2-Hombikat 7 -AI2O3 金屬 As 2.98 1.14 0.65 0.84 Cd 4.96 0.77 0.16 0.61 Pb 1.68 0.63 0.84 1.19 Se 2.47 2.12 —一 一 1 1.87 1.87 表4提供之結果顯示按減少百分比計,對 Ti〇2-Hombikat之選擇性次序爲 Cd>As>Pb>Se。對於 r-Ah〇3,選擇性次序相同。對於氧化鈽’選擇性次序爲S -16- 201132297 slate clay K10 (Aldrich Chemicals); NaY means sodium Y-zeolite (Aldrich Chemicals); HY means protonated NaY (hydrolyzed by urea of NaY, then calcined at 550 ° C); 2% Au/Ti〇2 represents a gold Hombikat catalyst prepared using urea as a hydrolyzing agent; and r-AhCh represents a finely ground gamma-alumina powder (Alfa Aesar) in the form of 0.125 sheets in diameter. Table 3 Metal concentration (μg/L) Stirring for 1 hour Stirring for 1 day' Stirring for 15 minutes Adsorbent control MMK NaY HY Control MMK NaY HY 2% Au/Ti〇2 r -AhCh Metal As 2.09 14,7 2.93 3.44 2.67 23.0 4.21 2.30 0.77 1.10 Cd 5.69 2.2 2.94 0.89 5.93 0.76 1.93 1.05 0.41 0.45 Pb 3.66 11.3 5.34 5.21 4.89 17.3 4.90 10.3 111 0.16 Ni 24.3 20.6 20.9 34.0 20.4 37.0 23.4 42.6 11.9 13.9 Se 2.09 3.30 2.48 1.92 1.99 3.10 2.11 1.60 1.71 1.88 Each adsorbent showed at least one of the heavy metals tested, and only 2% Au/TiCh and r-Al2〇3 showed heavy metals for the adsorption test. In addition, the adsorption of 2% Au/Ti〇2 compared to MMK, NaY and HY showed significantly higher adsorption of As, Cd and Ni. Compared to the adsorption of MMK, NaY and H Y , r - A h 0 3 showed significantly higher adsorption of heavy metals in each test. Finally, this increase in adsorption occurs much shorter than the adsorption of MMK, NaY and HY, indicating that the adsorption rate of 2% Au/TiCh and r-Al2〇3 is higher than that of other tested adsorbents. These results show that 2% Au/Ti〇2 and 7-Al2〇3 are good adsorbents for the removal of heavy metals from tobacco blend extracts. [Example 5] The procedure described in the above Example 4 was repeated using the adsorbent shown in Table 4 below and the stirring time of 15 minutes. ί. Metal Concentration (μg/L) Stirring for 15 minutes Adsorbent Control CeOa Ti〇2-Hombikat 7 -AI2O3 Metal As 2.98 1.14 0.65 0.84 Cd 4.96 0.77 0.16 0.61 Pb 1.68 0.63 0.84 1.19 Se 2.47 2.12 —11 1 1.87 1.87 The results provided in Table 4 show that the selective order for Ti〇2-Hombikat is Cd>As>Pb>Se in percentage reduction. For r-Ah〇3, the selectivity order is the same. For yttrium oxide, the selective order is

Cd>Pb>As>Se 。 〔實施例6〕 將50克之菸草以350毫升之70°C水處理’繼而過濾。 將所獲得之萃取物以以下表5所示量之r -Ah〇3 (如片) 處理。如實施例4及5而測量各經處理樣品與對照中之鎘 -18 - 201132297 濃度,及將結果提供於以下表5且圖示地示於第1圖。 表5 r-Al£b (克) Cd濃度(微克/公井、 相對對照之減少% Cdlu Cd"4 對照 5.678 5.702 0 10 5.098 5.101 10.5 20 5.075 5.100 10.6 30 4.198 4.215 26.1 40 3.769 3.780 33.7 在此所述之實施例及指定具體實例意圖提供較佳之了 解,且不限制在此及所附申請專利所述方法之範圍。 【圖式簡單說明】 第1圖爲顯示依照在此所述方法之一個具體實例移除 水性植物萃取物之鎘的結果之圖表。 【主要元件符號說明】 dot 無0 -19-Cd > Pb > As > Se. [Example 6] 50 g of tobacco was treated with 350 ml of water at 70 ° C, and then filtered. The obtained extract was treated with r-Ah〇3 (e.g., tablet) in the amounts shown in Table 5 below. The concentrations of cadmium -18 - 201132297 in each treated sample and control were measured as in Examples 4 and 5, and the results are shown in Table 5 below and graphically shown in Figure 1. Table 5 r-Al£b (g) Cd concentration (μg/male, % relative to control Cdlu Cd"4 Control 5.678 5.702 0 10 5.098 5.101 10.5 20 5.075 5.100 10.6 30 4.198 4.215 26.1 40 3.769 3.780 33.7 Here The embodiments and the specific examples are intended to provide a better understanding and not to limit the scope of the methods described herein and the accompanying claims. FIG. 1 is a diagram showing a specific method according to the method described herein. A graph showing the results of removing cadmium from aqueous plant extracts. [Main component symbol description] dot No 0 -19-

Claims (1)

201132297 七、申請專利範圍: 1. 一種自水性植物萃取物移除一種或以上之重金屬的方 法,其係包含: 以選自由: 一種或以上之表面活化氧化鈦粒子, 一種或以上之聚葡萄胺糖, 一種或以上之磷酸鈣, —種或以上之經锍烷基取代之矽膠, —種或以上之經锍烷基取代之中孔分子篩, 一種或以上之細磨7 ·氧化鋁, 一種或以上之光催化二氧化鈦粒子, 一種或以上之Au-銳鈦礦, 氧化铈, 及其組合所組成的族群中之至少一種的吸附劑接觸水 性植物萃取物,而且及付至少一種或以上之重金屬之至 少一部份,以形成吸附劑與耗盡重金屬之水性植物萃取 物的混合物;及 將吸附劑自混合物分離而提供耗盡重金屬之水性植物 萃取物。 2. 如申請專利範圍第1項之方法,其中吸附劑係包含一種 或以上之磷酸鈣,及該一種或以上之磷酸鈣包含一種或 以上之羥磷石灰。 3. 如申請專利範圍第1項之方法,其中吸附劑係包含一種 -20- 201132297 或以上之經巯烷基取代矽膠,及該一種或以上之經锍烷 基取代矽膠包含經毓丙基取代矽膠。 4 _如申請專利範圍第1項之方法,其中吸附劑係包含一種 或以上之經巯烷基取代中孔分子篩,及該一種或以上之 經疏院基取代之中孔分子篩包含共價地鍵結中孔砂酸鹽 之(3-锍丙基)矽烷。 5 .如申請專利範圍第4項之方法,其中中孔矽酸鹽係包含 約2奈米至約50奈米之均勻孔度、及約5 00平方米/克之 平均表面積。 6 ·如申請專利範圍第1項之方法,其中吸附劑係包含一種 或以上之經锍烷基取代之中孔分子篩,及該一種或以上 之經毓烷基取代之中孔分子篩包含锍丙基負載爲至少4 % 之經锍丙基取代中孔分子篩。 7. 如申請專利範圍第1項之方法,其中吸附劑係包含一種 或以上之經锍烷基取代中孔分子篩,及該一種或以上之 經锍烷基取代之中孔分子篩具有約5 .5奈米之平均孔度。 8. 如申請專利範圍第1項之方法,其進一步係包含: 以水性萃取劑接觸植物材料而形成包含水性植物萃取 劑與菸草植物材料之第一混合物; 將水性萃取物自第一混合物分離而留下經萃取植物材 料。 9. 如申請專利範圍第8項之方法,其進一步係包含: 組合耗盡重金屬之水性植物萃取物與經萃取植物材料 -21 - 201132297 而形成耗盡重金屬之植物材料產物。 10. 如申請專利範圍第1項之方法’其中水性植物萃取物係 包含水性菸草植物萃取物。 11. 如申請專利範圍第9項之方法’其中植物材料係包含未 火烤或火烤菸草。 12. —種耗盡重金屬之菸草植物萃取物’其係藉如申請專利 範圍第10項之方法製備。 1 3. —種耗盡重金屬之菸草產品’其係包含如申請專利範圍 第12項之耗盡重金屬之菸草植物萃取物。 1 4 . 一種吸煙物品,其係包含如申請專利範圍第1 3項之耗 盡重金屬之菸草產品。 1 5 .如申請專利範圍第1 4項之吸煙物品,其中吸煙物品爲 傳統香菸或電熱香菸。 1 6 . —種無菸產品’其係包含如申請專利範圍第1 3項之耗 盡重金屬之菸草產品。 -22-201132297 VII. Patent Application Range: 1. A method for removing one or more heavy metals from an aqueous plant extract, comprising: selected from: one or more surface activated titanium oxide particles, one or more polyglucosamine a sugar, one or more calcium phosphates, one or more sulfonium-substituted phthalocyanines, one or more sulfonium-substituted mesoporous molecular sieves, one or more finely grounds, a alumina, one or The above-mentioned photocatalytic titanium dioxide particles, one or more adsorbents of at least one of the group consisting of Au-anatase, cerium oxide, and combinations thereof are contacted with the aqueous plant extract, and at least one or more heavy metals are added. At least a portion to form a mixture of an adsorbent and an aqueous plant extract that depletes heavy metals; and to separate the adsorbent from the mixture to provide an aqueous plant extract that depletes heavy metals. 2. The method of claim 1, wherein the adsorbent comprises one or more calcium phosphates, and the one or more calcium phosphates comprise one or more of hydroxyphosphorus lime. 3. The method of claim 1, wherein the adsorbent comprises a fluorenyl-substituted phthalocyanine of -20-201132297 or above, and the one or more decyl-substituted phthalocyanines comprise a propyl-substituted propyl group. Silicone. The method of claim 1, wherein the adsorbent comprises one or more transalkyl substituted mesoporous molecular sieves, and the one or more transmembrane substituted mesoporous molecular sieves comprise covalently bonded bonds (3-Mercaptopropyl) decane in the middle of the hole. 5. The method of claim 4, wherein the mesoporous silicate comprises a uniform pore size of from about 2 nm to about 50 nm, and an average surface area of about 50,000 m 2 /g. 6. The method of claim 1, wherein the adsorbent comprises one or more transalkyl substituted mesoporous molecular sieves, and the one or more transalkyl substituted mesoporous molecular sieves comprise a fluorenylpropyl group The loading is at least 4% of the propyl substituted mesoporous molecular sieve. 7. The method of claim 1, wherein the adsorbent comprises one or more transalkyl substituted mesoporous molecular sieves, and the one or more transalkyl substituted mesoporous molecular sieves have about 5. 5 The average porosity of the nano. 8. The method of claim 1, further comprising: contacting the plant material with an aqueous extractant to form a first mixture comprising an aqueous plant extractant and a tobacco plant material; separating the aqueous extract from the first mixture Leave the extracted plant material. 9. The method of claim 8, further comprising: combining the dehydrated heavy metal aqueous plant extract with the extracted plant material -21 - 201132297 to form a plant material product depleted of heavy metals. 10. The method of claim 1, wherein the aqueous plant extract comprises an aqueous tobacco plant extract. 11. The method of claim 9, wherein the plant material comprises unfired or fire-cured tobacco. 12. A tobacco plant extract which is depleted of heavy metals' is prepared by the method of claim 10 of the scope of the patent application. 1 3. A tobacco product depleted of heavy metals, which comprises a tobacco plant extract which depletes heavy metals as in claim 12 of the patent application. 1 4. A smoking article comprising a tobacco product that is depleted of heavy metals as in claim 13 of the scope of the patent application. 1 5. The smoking article of claim 14 of the patent application, wherein the smoking article is a conventional cigarette or an electric cigarette. A smokeless product is a tobacco product that is depleted of heavy metals as in claim 13 of the scope of the patent application. -twenty two-
TW099134130A 2009-10-09 2010-10-07 Methods for removing heavy metals from aqueous extracts of tobacco TW201132297A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/576,996 US20110083684A1 (en) 2009-10-09 2009-10-09 Methods for removing heavy metals from aqueous extracts of tobacco

Publications (1)

Publication Number Publication Date
TW201132297A true TW201132297A (en) 2011-10-01

Family

ID=43480654

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099134130A TW201132297A (en) 2009-10-09 2010-10-07 Methods for removing heavy metals from aqueous extracts of tobacco

Country Status (4)

Country Link
US (1) US20110083684A1 (en)
AR (1) AR080341A1 (en)
TW (1) TW201132297A (en)
WO (1) WO2011042167A2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160345631A1 (en) 2005-07-19 2016-12-01 James Monsees Portable devices for generating an inhalable vapor
CN102960850B (en) * 2012-11-29 2015-12-23 广东中烟工业有限责任公司 The manufacture method of modification extract and the method for reducing tobacco sheets by paper making method heavy metal ion content
US10638792B2 (en) 2013-03-15 2020-05-05 Juul Labs, Inc. Securely attaching cartridges for vaporizer devices
US10279934B2 (en) 2013-03-15 2019-05-07 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
CN103497010B (en) * 2013-09-23 2016-05-11 丽水学院 Reduce the method for cadmium content in cadmium pollution bacterium bar spices massee fruiting bodies
US10159282B2 (en) 2013-12-23 2018-12-25 Juul Labs, Inc. Cartridge for use with a vaporizer device
USD842536S1 (en) 2016-07-28 2019-03-05 Juul Labs, Inc. Vaporizer cartridge
US10076139B2 (en) 2013-12-23 2018-09-18 Juul Labs, Inc. Vaporizer apparatus
US20160366947A1 (en) 2013-12-23 2016-12-22 James Monsees Vaporizer apparatus
KR102273502B1 (en) 2013-12-23 2021-07-07 쥴 랩스, 인크. Vaporization device systems and methods
US10058129B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Vaporization device systems and methods
USD825102S1 (en) 2016-07-28 2018-08-07 Juul Labs, Inc. Vaporizer device with cartridge
KR102627987B1 (en) 2014-12-05 2024-01-22 쥴 랩스, 인크. Calibrated dose control
WO2017139595A1 (en) 2016-02-11 2017-08-17 Pax Labs, Inc. Fillable vaporizer cartridge and method of filling
US10405582B2 (en) 2016-03-10 2019-09-10 Pax Labs, Inc. Vaporization device with lip sensing
CN105661627B (en) * 2016-03-25 2017-07-21 河南中烟工业有限责任公司 A kind of method for the raw material extraction rate for improving tobacco sheets by paper making method
USD849996S1 (en) 2016-06-16 2019-05-28 Pax Labs, Inc. Vaporizer cartridge
USD836541S1 (en) 2016-06-23 2018-12-25 Pax Labs, Inc. Charging device
USD848057S1 (en) 2016-06-23 2019-05-07 Pax Labs, Inc. Lid for a vaporizer
USD851830S1 (en) 2016-06-23 2019-06-18 Pax Labs, Inc. Combined vaporizer tamp and pick tool
USD887632S1 (en) 2017-09-14 2020-06-16 Pax Labs, Inc. Vaporizer cartridge
CN110208357B (en) * 2019-01-29 2022-05-31 广西大学 ICP-MS-based method for researching ionomics of selenium-enriched tobacco leaves
KR102309085B1 (en) * 2019-12-13 2021-10-08 한국프라임제약주식회사 Seaweeds extracts reducted As and Manufaring method thereof
CN112574047B (en) * 2020-12-25 2023-04-07 湖州展望药业有限公司 Production process of low-lead bulk drug esmolol hydrochloride

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102385A (en) * 1979-01-30 1980-08-05 Japan Tobacco & Salt Public Tobacco product with filter impregnated by solid flavor
IN158943B (en) * 1981-12-07 1987-02-21 Mueller Adam
US4966171A (en) * 1988-07-22 1990-10-30 Philip Morris Incorporated Smoking article
JPH02164716A (en) * 1988-12-19 1990-06-25 Shin Etsu Chem Co Ltd Separation of heavy metal ion
US5133871A (en) * 1990-06-12 1992-07-28 Ehud Levy Water filter
US5311886A (en) * 1991-12-31 1994-05-17 Imasco Limited Tobacco extract treatment with insoluble adsorbent
US5692525A (en) * 1992-09-11 1997-12-02 Philip Morris Incorporated Cigarette for electrical smoking system
US5499636A (en) * 1992-09-11 1996-03-19 Philip Morris Incorporated Cigarette for electrical smoking system
US5666976A (en) * 1992-09-11 1997-09-16 Philip Morris Incorporated Cigarette and method of manufacturing cigarette for electrical smoking system
US5692526A (en) 1992-09-11 1997-12-02 Philip Morris Incorporated Cigarette for electrical smoking system
US5810020A (en) * 1993-09-07 1998-09-22 Osmotek, Inc. Process for removing nitrogen-containing anions and tobacco-specific nitrosamines from tobacco products
US5683526A (en) * 1995-01-30 1997-11-04 Foamseal, Inc. Method and apparatus for holding wall panel against adhesive
US5695882A (en) * 1995-08-17 1997-12-09 The University Of Montana System for extracting soluble heavy metals from liquid solutions
JP4166365B2 (en) * 1999-04-09 2008-10-15 秀希 青木 Cigarettes and cigarettes
US6592294B1 (en) * 2000-03-01 2003-07-15 Sandia Corporation Situ formation of apatite for sequestering radionuclides and heavy metals
US6508254B1 (en) * 2000-07-07 2003-01-21 Brown & Williamson Tobacco Corporation Reduced protein reconstituted tobacco and method of making same
US20020043496A1 (en) * 2000-08-01 2002-04-18 Boddu Veera M. Composite biosorbent for treatment of waste aqueous system(s) containing heavy metals
EP1322191B2 (en) * 2000-10-05 2018-08-01 Schweitzer-Mauduit International, Inc. Reduction of nitrosamines in tobacco and tobacco products
US6919029B2 (en) * 2002-02-14 2005-07-19 Trustees Of Stevens Institute Of Technology Methods of preparing a surface-activated titanium oxide product and of using same in water treatment processes
EP1527326B1 (en) * 2002-05-15 2019-05-01 Aarhus Universitet Sampling device and method for measuring fluid flow and solute mass transport
US7610920B2 (en) * 2003-12-22 2009-11-03 Philip Morris Usa Inc. Thiol-functionalized sorbent for smoking articles and filters for the removal of heavy metals from mainstream smoke
US7581543B2 (en) * 2004-04-14 2009-09-01 Philip Morris Usa Inc. Reduction of phenolic compound precursors in tobacco
CN100455346C (en) * 2004-06-04 2009-01-28 天津大学 Adsorbent for deeply purifying trace quantity arsenic in plant extract and preparation method thereof
US20060144793A1 (en) * 2004-07-13 2006-07-06 Mazakhir Dadachov Novel adsorbents and process of making and using same
US20060130855A1 (en) * 2004-09-28 2006-06-22 Philip Morris Usa Inc. Smoking article with mercaptopropyl functionalized sorbent and method
US7201885B1 (en) * 2005-11-17 2007-04-10 J.M. Huber Corporation Method of removing heavy metals from silicate sources during silicate manufacturing
US9049886B2 (en) * 2007-01-26 2015-06-09 Philip Morris Usa Inc. Methods and apparatus for the selective removal of constituents from aqueous tobacco extracts

Also Published As

Publication number Publication date
WO2011042167A3 (en) 2011-07-21
AR080341A1 (en) 2012-04-04
US20110083684A1 (en) 2011-04-14
WO2011042167A2 (en) 2011-04-14

Similar Documents

Publication Publication Date Title
TW201132297A (en) Methods for removing heavy metals from aqueous extracts of tobacco
Sharma et al. Azadirachta indica (Neem) leaf powder as a biosorbent for removal of Cd (II) from aqueous medium
Chiban et al. Equilibrium and thermodynamic studies for the removal of As (V) ions from aqueous solution using dried plants as adsorbents
Campisi et al. Tailoring the structural and morphological properties of hydroxyapatite materials to enhance the capture efficiency towards copper (II) and lead (II) ions
Ramakul et al. Biosorption of palladium (II) and platinum (IV) from aqueous solution using tannin from Indian almond (Terminalia catappa L.) leaf biomass: Kinetic and equilibrium studies
CN107349907B (en) Bactericide, photocatalytic composite material, adsorbent and purifying agent
Wasewar et al. Batch adsorption of zinc on tea factory waste
Zheng et al. Adsorption of Cd (II) and Cu (II) from aqueous solution by carbonate hydroxylapatite derived from eggshell waste
JP4970252B2 (en) Smoking goods and materials
JP4423645B2 (en) Hydroxyapatite silica composite porous material adsorbent and method for producing the same
US20070295347A1 (en) Surface-modified porous substrates
Sudiono et al. The Role of Carboxyl and Hydroxyl Groups of Humic Acid in Removing AuCl 4-from Aqueous Solution
KR20150028305A (en) Activated carbon for noble metal adsorption, noble metal adsorption filter, and method for recovering noble metals
JP2010120939A (en) Method for producing fucoxanthin-containing extract
Samra et al. Biosorption of Pb2+ from natural water using date pits: a green chemistry approach
El Ass Adsorption of cadmium and copper onto natural clay: Isotherm, kinetic and thermodynamic studies
Amorim et al. Characterization of Pequi (Caryocar brasiliense) shells and evaluation of their potential for the adsorption of Pb II ions in aqueous systems
Ghebremichael et al. Performance of Moringa oliefera as a biosorbent for chromium removal
JP4540938B2 (en) Heavy metal remover in tap water
Rathnayake et al. Essence of hydroxyapatite in defluoridation of drinking water: A review
Mashentseva et al. Adsorption isotherms and kinetics for Pb (ii) ion removal from aqueous solutions with biogenic metal oxide nanoparticles
CN109174004A (en) A kind of active carbon that improves is to the method and application of essence sustained release performance
KR20170067840A (en) Production of water-soluble hydrolyzed clinoptilolite fragments and nutraceutical products based on water-soluble hydrolyzed clinoptilolite fragments
Gupta et al. Chemically modified jackfruit leaves as a low-cost agro-waste adsorbent for Pb (II) removal from synthetic wastewater
Zulaicha Modification of activated carbon from Elaeis Guineensis Jacq shell with magnetite (Fe3O4) particles and study adsorption-desorption on Ni (II) ions in solution