TW201129253A - Dimmable lighting system - Google Patents

Dimmable lighting system Download PDF

Info

Publication number
TW201129253A
TW201129253A TW099134165A TW99134165A TW201129253A TW 201129253 A TW201129253 A TW 201129253A TW 099134165 A TW099134165 A TW 099134165A TW 99134165 A TW99134165 A TW 99134165A TW 201129253 A TW201129253 A TW 201129253A
Authority
TW
Taiwan
Prior art keywords
dimmer
value
circuit
set point
current
Prior art date
Application number
TW099134165A
Other languages
Chinese (zh)
Inventor
Andro Veltman
Original Assignee
Lemnis Lighting Patent Holding B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US24948309P priority Critical
Application filed by Lemnis Lighting Patent Holding B V filed Critical Lemnis Lighting Patent Holding B V
Publication of TW201129253A publication Critical patent/TW201129253A/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B39/00Circuit arrangements or apparatus for operating incandescent light sources
    • H05B39/04Controlling
    • H05B39/041Controlling the light-intensity of the source
    • H05B39/044Controlling the light-intensity of the source continuously
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light emitting diodes [LEDs]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light emitting diodes [LEDs]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/38Switched mode power supply [SMPS] using boost topology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Abstract

A lighting system for operation with a dimmer circuit(1) comprising a triac(TR1) connected to a load. The load comprises a driver circuit for supplying current to a light source comprising one or more LEDs(LED 1-4), the current being determined at least in part by an adjusted setpoint value. The system further comprises a setpoint filter circuit(20) for obtaining a dimmer setpoint value(21) determined at least in part by a setting of the dimmer circuit(1), and for generating an adjusted setpoint value(24). The sensitivity of the adjusted setpoint value to changes in the dimmer setpoint value is low at low values of the dimmer setpoint value.

Description

201129253 六、發明說明: 【發明所屬之技術領域】 本發明關於—種用於低負載應用(舉例來說,以LED為 基礎的光源)的調光器觸發電路。本發明還進一步關於一種 包括此s周光器觸發電路的調光器系統。 【先前技術】 叙來況’相位控制調光器包括一用於交流電流的三 極體(triode) ’其會進一步被稱為交流三極體㈨“勻。一交流 一極體係一雙向切換器,其能夠在被觸發(也就是,被開啟) 之後於任一方向中導通電流。其可能會被施加至其閘極的 正電壓或負電壓(也就是,當有小電流被施加至其閘極時) 觸發。此電流僅需要被施加一段短時間週期,也就是,長 度為幾個微秒。換言之,該交流三極體必須被觸發(triggered) 或是「被擊發(fired)」。一旦被觸發之後,該裝置會持續地 導通’直到流過它的電流下降到特定的臨界數值以下為 止’例如’在父流電流(Alternating Current,AC)市電電源 供應的半循環結束時,其亦稱為零值跨越點 (zero-crossing)。因此,該交流三極體便會「關閉」。 β亥些3周光器非常適合調整會吸取很高電流的白熱燈泡 的明暗。當該些調光器用於較小負載時,例如,以發光二 極體(Light-Emitting Diode,LED)為基礎的光源,則會遭遇 到各種問題。這是於已經安裝一習知的交流三極體調光器 配合光燈泡使用的情況中以LED新型光燈泡取代標準白熱 燈泡便會發生的特殊問題。 ⑧ 201129253 一 led光源可能不會吸取足夠的電流讓該調光器中的 交流三極體於必要時開啟,從而無法調整光的明暗或者會 使得該調光器會有錯誤的操作。該調光器上的一小電阻性 負載可能會因該交流三極體之多次擊發而在該調光器輸出 處造成電壓的振盪,從而造成不正確的調光操作。在低調 光器設定值處,該LED驅動器電路可能會雙態觸變開啟與 關閉,從而導致來自該LED光源的光會短暫地閃爍。再者, 肉眼通常會根據對數曲線來感知光強度;相反地,LED卻 有幾乎線性的響應,所發出的光強度約略和流過該LED的 電流成正比。當配合習知的調光器來操作時,一 LED光源 便無法平順地調光而且被感知的光強度的變化相對於該調 光器的旋鈕位置不會有直覺性的關係^另外,供應器電壓 中的小變化可能還會導致該LED光源所發出的光出現看得 見的閃爍。 【發明内容】 本發明試圖根據各實施例解決各項此等問題。根據其 中一項觀點,本發明關於一種配合一調光器電路來操作的 照明系統,該調光器電路包括一被連接至一負載的交流三 極體。該負載包括—驅動器電路’用以供應電流給:二 ―或多個LED的光源,該電流至少部分取決於-已調整設 定點數值。該系統進-步包括—設定點濾波器電路,用以 取得-調光器設定點數值’其至少部分取決於該調光器電 路的-設定值’並且用以產生一已調整設定點數值。該已 調整設定點數值相對於該調光器設^點數值變化的靈敏度 201129253 在忒調光器設定點數值的低數值處是低的。 該設定點濾波器電路可能會被配置成用以在該調光器 設定點數值的低數值處以較低的速率來提高該已調整設定 點,並且在該調光器設定點數值的高數值處以較高的速率 來提高該已調整設定點。該已調整設定點數值回應於該調 光器設定點數值變化所產生的變動較佳的係近似於一指數 響應《該設定點濾波器電路較佳的係會在小於該調光器設 定點數值的整個範圍中產生該已調整設定點數值的整個範 圍,並且較佳的係會產生一最小數值大於零的已調整設定 點數值。 該設定點濾波器電路可能還會被配置成以下面方式來 產生S玄已調整設定點:在該調光器設定點數值的第一部分 範圍中具有第一實質不變的數值,在該調光器設定點數值 的第一部分範圍中以低速率提高,在該調光器設定點數值 的第二部分範圍中以高速率提高,以及在該調光器設定點 數值的第四部分範圍中具有第二實質不變的數值。 該設定點渡波器電路可能還包含一第二階或是更高階 低通濾波器,用以過濾該已接收的調光器設定點數值。該 S史疋點濾波器電路可能包含一用以產生一中間設定點數值 的差動放大器’其會控制一電晶體用以產生該已調整設定 點數值。 該驅動器電路可以利用一電壓控制電路以及一電流控 制電路來設計,其中,該電壓控制電路會根據一電壓設定 點來控制該驅動器電路之輸出處的電壓,而該電流控制電 201129253 路則會根據一電流設定點來修正該電壓設定點。該電流控 制電路可能會被設計成用以操作在—預設的範圍内,當該 電μ控制電路在其操作範圍的邊界處時,該電壓設定點便 會保持在一邊界數值處。 忒设定點濾波器電路可以從該調光器電路的一輸出終 端處的電壓處取得該調光器設定點數值。或者,該設定點 濾波器電路亦可以從該調光器交流三極體的擊發角度來導 出该調光器設定點數值,而且該調光器設定點數值可以從 一供應器電壓的零值跨越點及該零值跨越點之後該交流三 極體的第一觸發點之間的時間延遲處被導出。 該照明系統可能還包含一用以觸發該調光器交流三極 體的調光器觸發電路,而且該調光器設定點數值可能至少 部分取決於流經一調光器觸發電路的電流的一或多個上夕 緣及/或下降緣的出現時間,或是和該上升緣 六「丨辛緣有關 的電壓。因此,§亥調光’器設定點數值可能至少部八% I刀決友^ 流經一調光器觸發電路的電流的一上升緣與一 ; /、 P降緣之間 的時間延遲,或是和該上升緣與下降緣有關的電壓。s 明的照明系統可能會被設計成用以在該調光 本發 q罚父;^三極 為導通時當流經該調光器電路的電流在該調光 a 触 °父 '叫三極 體之保持電流(holding current )以下時進行操作。 該照明系統可能包含一用以觸發該調光疗 _ 。乂 W 二極 f 的調光器觸發電路’其中’該調光器觸發電路包括. 壓位準偵測器,用以偵測該調光器觸發電路的鈐χ 電 J輛入電壓异 否在一臨界數值之下·,以及一雙極電流源電路, & 用以在該 201129253 電麼位準偵測器所到的電壓在該臨界數值之下時提供 電μ,否則便會被取消。該照明系統可能會被設計成使得 流經忒调光器觸發電路的最大電流會在該調光器交流三極 體的保持電流以下’以及當該調光器交流三極體為導通時 或疋當戎調光器交流三極體為關閉時流經該調光器觸發電 路的電"IL會在该交流三極體的保持電流以下。該調光器觸 發電路可能會被設計成在操作中其消耗的平均功率小於 100mW。 於另一項觀點中,本發明還關於一種使用在一照明系 統之中的設定點濾波器電路,該照明系統包括一交流三極 體調光器電路、一包括一或多個LED的光源、以及—用於 供應電流給一或多個led的驅動器電路,其中,該電流至 少部分取決於一已調整設定點數值。該設定點濾波器電路 包括:一輸入電路,用以取得一至少部分取決於該調光器 電路的一設定值的調光器設定點數值;以及一調整電路, 用以產生一已調整設定點數值,其中,該已調整設定點數 值相對於該調光器設定點數值變化的靈敏度在該調光器設 定點數值的低數值處是低的。 s亥設定點濾波器電路可能會被設計成用以在該調光器 s史疋點數值的低數值處以較低的速率來提高該已調整設定 點,並且在s亥調光器設定點數值的高數值處以較高的速率 來提高該已調整設定點,而且該已調整設定點數值回應於 該調光器設定點數值變化所產生的變動可能會近似於一指 數響應。該調整電路可能會被配置成用以在小於該調光器 201129253 設定點數值的整個範圍中產生該已調整設定點數值的整個 範圍’並且可能會產生一最小數值大於零的已調整設定點 數值。該輸入電路可能包括一第二階或是更高階低通濾波 器’用以過渡該已接收的調光器設定點數值。該調整電路 可能包括一用以產生一中間設定點數值的差動放大器,其 會控制一電晶體用以產生該已調整設定點數值。 該設定點濾波器電路可能會從該調光器電路的一輸出 終端處的電壓處導出該調光器設定點數值。該調光器設定 點數值亦可以從該調光器交流三極體的擊發角度來導出, 而且這可以藉由從一供應器電壓的零值跨越點及該零值跨 越點之後該交流三極體的第一觸發點之間的時間延遲來導 出該調光器設定點數值而達成。 ,於另一項觀點中,本發明係關於一種配合一包括 一交流二極體的調光器電路來操作的照明系統,其中,該 系統包括:一光源’其包括-或多個LED;以及一負載, 其包括-調光器觸發電路,用以觸發該調光器交流三極 體’以及一驅動器電路,用以供應電流給該等一或多個 ㈣’其中’由該驅動器電路供應的電流會至少部分取決於 一調光器設定點數值,且其中,該調光器設定點數值係至 少部分從該調光哭交户_ 月疋。。又机二極體的一擊發角度處所導出。 該驅動器電路較佳&後 佳的係會從一供應器電壓的零值跨越 及“值%越點之後該交流三極體的第一觸發點之 時間輯來W光器設定點數值。該調光器設定點數 值可犯至^ #刀取決於流經_調光器觸發電路的電流的— 201129253 或多個上升緣及/或下降緣的出現時間,或是和該上 下降缘有關的電麗。今把杏。 ;、 °亥調“設定點數值可能至少部分取 决於…調光器觸發電路的電流的一上 之間的時間延遲,十θ j μ 、 下降緣 5疋D以上升緣與下降緣有關的電壓。 該驅動器電路可能 制雷路“ 電_電路以及-電流控 、、中’該電壓控制電路會板據-電壓設定點來控 制该驅動器電路之輸出處的電壓,而該電流控制電路則會 根據-電流設定點來修正_設定點。該電流控制電路 軏佳的係會操作在一預設的範圍…當該電流控制電路在 其才呆作範圍的邊界處時,該電壓設定點便會保持在一邊界 數值處。該照明系統可能會被配置成使得當該調光器交流 二極體為導通時流經該調光器電路的電流會在該交流三極 體的保持電流以下,而且流經該調光器觸發電路的最大電 流可能會在該調光器《流三極體的保持冑流以了。該照明 系統可能會被配置成’其中,當該調光器交流三極體為導 通時以及當該調光器交流三極體為關閉時流經該調光器觸 發電路的電流會在該交流三極體的保持電流以下。該照明 系統可能還包括-設定點遽波器電路,用以從該調光器設 定點數值處產生一已調整設定點數值,其中,該已調整設 定點數值相對於該調光器設定點數值變化的靈敏度在該調 光器設定點數值的低數值處是低的。 本發明的進一步觀點係關於一種配合一包括一交流三 極體的調光器電路來操作的照明系統,該系統包括:一光 源’其包括一或多個LED ;以及一負載,其包括一調光器 10 201129253 觸發電路,用以觸發該調光器交流三極體,以及一驅動器 電路,用以供應電流給該等一或多個led,該驅動器電路 包括一功率因子改正電路,其中’由該驅動器電路供應的 電流會至少部分取決於一調光器設定點數值,該調光器設 定點數值係至少部分從該調光器交流三極體的一擊發角度 處所導出。 【實施方式】 下面將僅藉由範例來說明本發明的特定實施例。圖1 概略地顯示被連接至一負載3的習知調光器1,該負載3通 常係一白熱光燈泡。該調光器1包括一交流三極體TR1,其 會並聯連接一可變電阻器R1並且串聯連接一電容器C 1。 在本說明中,電阻器R1與電容器C 1的組合會被稱為一 RC 電路或是計時器電路。除此之外,該調光器還包括一觸發 組件’也就是,一適合觸發該交流三極體TR1的組件。一 般來說’ 一交流二極體(Diode for Alternating Current,diac) 會被用來達到此目的。一交流二極體係一雙向觸發二極 體’其會在超過交流二極體臨界電壓(亦稱為交流二極體觸 發電壓)之後導通電流。當流過一交流二極體的電流保持在 一臨界電流之上時,該交流二極體便會保持導通。倘若該 電流下降至該臨界電流以下的話,該交流二極體便會切換 回到高阻值狀態。該些特徵會使得交流二極體非常適合當 作交流三極體的觸發切換器。 圖1的調光器1包括一交流二極體D1,該交流二極體 D1會在第一端處被連接在該可變電阻器R1與該電容器C1 201129253 之門並且θ在第一端處被連接至該交流三極體JR 1的閘 極。该s周光器1有兩個終端,也就是,終端T1與T2。該調 光器1及其負載3(光燈泡)會跨越一.AC電壓源被串聯連接。 如先前所提及,當流過該交流三極體TR1下降到它的 臨界數值以下時該交流三極體TR1便會關閉。一旦通過該 AC供應器電壓的零值跨越點時,該RC電路便會「看見」 實際的AC供應器電壓而且C1會進行充電。要注意的係, 此充電電流也會流過該白熱燈泡3。一旦跨越c丨的電壓抵 達該交流二極體D1的觸發電壓時,該交流二極體便會開始 導通並且會供應電流給TR1的閘極,同時會放電電容器 C1。因此’該交流三極體TR1會被觸發並且被開啟,而且 電流現在會開始流過該交流三極體TR1而且電容器C2會被 放電。 藉由調整R1的阻值(舉例來說,藉由調光器旋鈕或是 類似物來操作一分壓計(P〇tenti〇meter)),便可以設定抵達跨 越C1的交流二極體觸發電壓所需要的時間。電阻器R1的 數值越高,抵達C1上的交流二極體觸發電壓便需要較長的 時間’而且造成該交流三極體TR1有較短的導通時間區間。 要瞭解的係,藉由調整電流流過該交流三極體TR 1的時間, 便能夠調整被施加至該光燈泡3的功率,並且因而能夠古周 整它的照度。 多個組件可能會被加入至上述的基礎調光器電路,用 以過濾因交流三極體TR1的切換所產生的電磁干擾 (Electromagnetic Interference ’ EMI)。舉例來說,一雷办。。 12 201129253 C2可能會跨越該交流三極體TR丨及串聯交流三極體TR丨的 電感器L1被併入。雖然該些額外的組件有助於降低EMI ; 不過,跨越該交流三極體的電容器C2卻會增加流過該調光 器1(以及負載3)用以充電電容器〇1並且觸發該交流三極體 所需要的電流。這係因為此電流必須充電電容器Ci與C2 兩者。 圖2A所示的係跨越調光器i ’跨越終端τι至丁3,的 AC供應器電壓的波形關係圖;而圖2B# 2(:所示的係在該 點處跨越該負載3(終端 其假設有一電阻性負載 可變電阻器R1的不同調光器設定 T2至T3)的最終電壓的近似波形, 3 。亥AC供應器電壓會在一半循環的零值跨越點⑺處變成 零。在此點處,該交流三極體會停止導通而且跨越該負載3 的電|會變成接近零。跨越負載3的電壓並非確實為零, 因為仍然會有小電流繼續流過該等串聯連接的調光$ 1與 負載3,舉例來說,用以充電電容器ci與Q的電流 如圖2B中所示,在時間u處,電容器^已經被充分 充電,用以觸發交流二極體m,其接著會觸發交流三極體 TIU,而且跨越負載3的電壓會上升至約略該供應器電壓處 而且流過負載3的電流同樣會大幅地提高。當該負載非常 高的時候,在抵達下-個零值跨越點t〇之前該交流三極體 =直保持導通。因此,在每—個半循環的㈣A期間, 该父流三極體為關閉而且該電容器山係在進行充電。U 的充'速率以及週期A的時間長度會相依於該調光器設定 值’也就是’由該調光器旋紐所設定的可變電阻器ri的阻 13 201129253 值。在週期B期間,該交流三搞 —才1體為開啟而且該負載3會 被連接跨越該供應器電壓,而 而正㊉刼作電流則會流過該調 光器與該等負載。從圖2b的浊报由叮 7渡形中可以看出,在每一個半 循環期間的平均電壓會略料下 .丁 j电芏曰略U下降,從而會導致流過該電阻 I"生負載的電流小幅的下降,告·兮名也〆 ^ w 6亥負载係一光燈泡時會看到 猶微的變暗。 在圖2C中,該調光器設定值會改變以提高可變電阻器 R1的阻值’用以將光進—步調暗。在時間12處,該電容器 cm會被充分地充電’用以觸發交流二極體⑴與交流三極 體TR1 ’而且該父流三極體會一直保持開啟至下一個零值跨 越點tO為止。因此,在較長的週期c期間該交流三極體為 關閉’而在較短的週期D期間該交流三極體則為開啟。因 此,圖2C中的波形在每一個半循環期間會有一大幅下降的 平均電壓,從而會導致流過該負載的電流大幅的下降,當 該負載係一光燈泡時會看到明顯的變暗。可以看到的係。 該調光器藉由調整零值跨越點(在該零值跨越點之後該交流 二極體會被開啟,其亦稱為該交流三極體的擊發角度)之後 的延遲來實施相位控制。 圖1中的調光器(例如,調光器1)如果被用來調整一負 載(例如,一白熱光燈泡)之明暗的話會有正破的運作,該白 熱光燈泡在該交流三極體為關閉時會有很高的負載並且會 因而吸取大量電流用以正確地充電該電容器C 1。也就是, 在该供應器電壓的零值跨越點之後’流過該負載的電流必 須夠高’以便達到重新充電該RC電路中的電容器C1 (以及 14 201129253 C2)的目的。倘若沒有夠高的電流流過負 ▲ 二極體TRl便整個不會被觸發,或者僅在該,光:乂机 設為使…阻值非常低時才會被觸發。典調型^ ::光器1的調光功能沒有作用,也就是,無法的 有足夠功率的負載(例如,白熱光燈泡)會提供一條用以 充電°亥RC電路的電流路徑,前提係調光器1要正確的運 作。不過,時下卻有不會吸取足夠電流讓該調光器丨有正 確運作的低負載及不連續的應用(舉例來說,其具有—内建 机益與電容|| p也就是,在該供應器電壓的零值跨越點 後不會有足夠的電流流過該負載用以正確的充電該尺。 電路。 低負載應用的一種眾所熟知的範例係LED光源,其包 括一用以驅動需要DC電流之一或多個發光二極體(led、)的 電子電路。除了一或多個LED之外,LED電$ i 3通常還包 括一整流器以及一或多個平滑電容器,而且因而亦可能係 一不連續負載。於本說明中,將會配合一 LED電路來進一 步說明本發明的實施例。不過,必須瞭解的係,本發明的 實施例亦可配合其它低負載應用或不連續負載應用來使 用’也就是’無法為該調光器的RC計時器電路提供必要充 電電流以便讓調光器(例如,圖i中概略顯示的調光器丨)有 正確運作的應用。具有—平滑電容器之具有一整流器前端 的負載可以被視為係不連續負載應用。 圖3概略地顯示根據本發明一實施例的調光器系統 15 201129253 1 〇,其會被連接至一 LED電路1 3。該調光器系統包括跨越 一 AC供應器電壓串聯連接的一調光器1以及調光器觸發電 路(Dimmer Triggering Circuit ’ DTC)12。LED 電路 13 會串 聯連接調光器1並且會並聯連接DTC 12。DTC 12與一負載 (例如,LED電路13)的組合可被稱為一可調光的裝置。 圖4與5更詳細地顯示DTC 12。該DTC 12:包括一電 壓位準偵測器15 ;以及一雙極電流源電路1 8,其包括一電 流源電路1 7與一整流器丨9。該電壓位準偵測器丨5會被連 接至s亥電流源電路1 7 ’而且該電壓位準偵測器丨5與該電流 源電路1 7皆會被連接至整流器1 9的、DC終端。 忒電壓位準偵測器1 5會被排列成用以偵測終端τ2與 Τ3(也就是,整流器19的輸出)之間的電壓差的絕對數值是 否在一臨界數值以下,該雙極電流源電路18會被排列成用 以在該電壓位準偵測器丨5所偵測到的電壓保持在該臨界數 值以下的話會被啟動,否則便會被取消。所以,該DTC 12 中的雙極電流源電路18係—電壓相依電流源,*且該dtc 12整體會被視為作用如同一雙極電壓相依電流源。下文將 會更詳細的解釋,此DTC 12可能會被設計成消耗的平均功 率J、於1 OOmW。於具有妥適尺寸的的實施例中,該π。12 消耗的平均功率可能為1〇至5〇mW。較佳的係,DTC以的 :肖耗約為3 0 m W。大部分的習知調光器皆預期能夠配合此消 耗功率來操作。 。。。玄電壓位準偵測器15可能包括一微處理器。該微處理 _會被排列成用以細亥調光器觸發電路㈣輸入電 16 201129253 壓的絕對數值是否在一臨界數值以下。倘若該調光器觸發 電路12的輸入電壓的絕對數值在該臨界數值以下的話,該 微處理器便可能會提供—訊號用以指示該雙極電.流源電路 1 8提供一電流。於某些實施例中,如參考圖5B的更詳細解 釋’该微處理器可能會指示該雙極電流源電路1 8在該輸入 電壓的零值跨越點之後提供該電流。 S亥電壓位準偵測器1 5可能包括一比較器,用以偵測該 已整流的輸入電壓是否在該臨界數值以下。如圖5中概略 顯不,3亥比較器包括兩個輸入以及單一個輸出。一第一輸 入會被連接至一參考電位,也就是,等於該臨界數值的電 位’在本|&例中為3〇v。一第二輸入會被排列成用以接收該 調光器觸發電路的輸入電壓。倘若該比較器的第二輸入處 的該調光器觸發電路12的輸人電壓在該比較器的第—輸入 處的該臨界數值以下的話,該比較器的輸出便可能會如上 討論般地讓該雙極電流源電路18提供一電流。熟習本技術 的人士便會瞭解,τ以使用一運算放大器或是電壓比較器 來施行該比較器。 整流器19具有一AC側(也就是,分別被連接至終端 T2與T3的終端)以及—DC側(也就是,被連接至一參考電 位以及該DTC 12中其它組件(如電廢位準偵測器15)以及雙 極電抓源電路1 8中的電流源電路J 7的終端)。電壓位準偵 測器15與電流源電路17會構成一單極電路。整流器^會 被排列成用以讓由該雷、;3¾、:馬f 1,& + , 承田4电汲,原電路1 7所產生的電流以單極電 流的方式被供應至該調光器。 17 201129253 DTC 12會讓該調光器1的運作如同具有-正常白熱燈 泡負載。倘若該AC供應器電壓夠低的話,.也就是,在前述 的臨界數值以下’那麼’該DTC 12便會被啟動並且會讓足 夠的電流流入該調光器i的RC電路之中。當該ac供應器 電壓夠向時,也就疋,在该臨界數值之上,該12便會 被取消並且不會吸取任何大量的電流,因此會將被浪費的 功率降至最小。要注意的係’該電壓位準偵測器丨5係位於 該整流器19的DC側,僅需要一絕對臨界數值。這意謂著 倘若該臨界數值為30V的話,該DTC 12會在-30V至+30V 的範圍中被啟動》 於DTC 12的某些實施例中,當配合5〇Hz,230V的市 電系統來使用時,該臨界數值會落在3V與50V之間。於 DTC 12的其它實施例中,最小臨界數值為1〇v。倘若該DTC 12被連接至60Hz,120V的市電系統的話,舉例來說,如 美國所使用的市電,那麼’該臨界數值便可能會落在3 V與 25V之間。 DTC 12所提供的電流會保持跨越該負載的電壓實際上 為零直到該調光器中的交流三極體被觸發為止,舉例來 說,如圖1中被交流二極體D1觸發的交流三極體TR1概略 所示。當該交流三極體切換開啟之後.,終端T2處的電壓會 立刻大額提高。因此,DTC 1 2中的電流源電路17會被取消。 所以,理想上,該DTC僅會在T2處的電壓超過一臨 界數值時才會導通電流,否則該DTC的行為便如同一開路 電路。不過,即使被取消,實際上仍會有特定電流流過 18 201129253 DTC。較佳的係’當取消時,由dtc 1 2中的電流源電路1 7 所提供的電流係微量而可忽略。倘若電流的數量小於Dtc 12的電流源電路丨7能夠提供的最大電流的至少兩倍的話, 電流便可被視為微量而可忽略。舉例來說,倘若DTC 1 2中 的電流源電路17要提供的最大電流為1 5 m A的話,那麼, 倘若電流的數值保持在i 〇〇 # A以下的話,其便可被視為微 量而可忽略。 在零值跨越點之後,倘若僅有一不連續的負載存在的 話(也就是,吸取不連續電流而使得在該電壓.循環的特定部 分中的電流為零的負載),DTC丨2的作用便會互補於該調光 器中的交流三極體的狀態。也就是,倘若該DTC為開啟的 話’該調光器中的交流三極體便會關閉;反之亦然。在輸 出處具有一電容器的橋式整流器便是不連續負載的其中一 個範例。 相反地’倘若除了不連續負載還有另外一個負載存在 的話’那麼,在通過零值跨越點之後,該DTC 12與該調光 器中的交流三極體便可能會同時開啟’直到該DTC 1 2的輸 入電壓超過先前所述之臨界數值時該DTC 12關機為止。於 此情況中’該DTC 12與該調光器中的交流三極體的作用不 會整個互補。在幾分之一個微秒中會有功率消耗,而該dtc 與交流三極體兩者都會開啟。不過’此消耗功率將是微量 而可忽略。舉例來說,在臨界數值為3〇V而且電流源電路 1 7被排列成用以提供20mA的電流中,尖峰功率通常不合 超過0.6W(不過,此尖峰功率僅會出現在非常小的區間中) 19 201129253 而且平均功率不會超過3 0m W。 一般來說,當通過該零值跨越點時,該交流三極體會 關閉(假設其先前為開啟)而該DTC 12會保持開啟。當該交 流三極體開啟時,該DTC 1 2則會關閉。因此,該DTC 12 會被排列成用以在T2處的絕對電壓在一臨界數值以下時供 應電流。此電流僅需要足以達到重新充電該調光器的RC電 路中的電容器即可而與所探討的調光器的交流三極體的保 持電流(holding current)或本質電流(hypostatic current)或 最小負載無關。當該DTC被啟動(當該:交流三極體為關閉時) 以及當該DTC被取消(當該交流三極體為啟動時),流過該 DTC 1 2的電流可能會在該調光器交流三極體的保持電流以 下。這提供的好處係’該DTC 12亦能夠結合一保持電流大 於要由該DTC 1 2所提供之最大電流的交流三極體來使用。 因此,舉例來說,即使該DTC 12能夠提供20mA的最大電 流,仍可以使用包括一保持電流大於i2〇mA(舉例來說, 100mA)之交流三極體的調光器來達到調整低負載應用之明 暗的目的。 為達到一照明系統中的DTC 12有正確功能的目的,舉 例來說’當如圖2中所示般被耦合至一 led電路π時,熟 習本技術的人士便會瞭解,整流器19的AC側的電容較佳 的係要被最小化。較佳的係,沒有任何額外的電容存在於 終端T2與T3之間。 因此,該DTC 12可以被用來在一交流電路中提供一種 用於觸發一調光器的方法。此方法包括偵測該DTC之輸入 20 201129253 電壓的 測到的 來提供 到的電 的電流 數值之 生該輸 適合偵 可以受 鬥而厂/丨Ί只 電流源電路 倘若所偵測 量而可忽略 輸入電壓的 流電壓來產 會被轉換成 供的電流便 絕對數值是否在一臨界數值以下。接著 電壓在該臨界數值以下的話,便藉由— 電流’該電流會流過該DTC與調光器。 壓不在該臨界數值以下的話,便僅有微 會流過該DTC與調光器。在偵測該DTc 别,可能會先藉由整流該交流電流的交 入電壓。接著,或者,該輸入電壓可能 測的電壓。最後,由該電流源電路所提 到限制。 圖6所不的係一 DTC的一實施例的簡化電路圖,例如 圖3與4中所示的DTC 12。應該瞭解的係,此實施例係本 發明的其中一種可能施行方式的範例。熟練的人士便會知 道,可能還有許多施行方式。舉例來說,可以使用其它切 換器來取代雙極NPN電晶體,例如,雙極pNp電晶體、整 合閘雙極電晶體(lntegrated Gate Bip〇lar Transist〇r, 【GBT)、或是金屬氧化物半導體場效電晶體201129253 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a dimmer trigger circuit for a low load application (for example, an LED based light source). The invention still further relates to a dimmer system including the s-perimeter trigger circuit. [Prior Art] The phase control dimmer includes a triode for alternating current 'which will be further referred to as an alternating current triode (nine). "uniform. one alternating current one pole system one bidirectional switcher , which can conduct current in either direction after being triggered (ie, turned on). It may be applied to its gate with a positive or negative voltage (ie, when a small current is applied to its gate) Trigger. This current only needs to be applied for a short period of time, that is, a few microseconds in length. In other words, the AC triode must be triggered or "fired". Once triggered, the device will continue to conduct 'until the current flowing through it drops below a certain critical value'. For example, at the end of the half cycle of the mains supply (AC) power supply, It is called zero-crossing. Therefore, the AC triode will be "closed". The β Hai 3 3 illuminator is ideal for adjusting the brightness of white hot bulbs that draw high currents. When these dimmers are used for a small load, for example, a light source based on a Light-Emitting Diode (LED), various problems are encountered. This is a special problem that can occur when a conventional LED light bulb is replaced with a new LED light bulb in the case where a conventional AC triode dimmer has been installed in conjunction with a light bulb. 8 201129253 A led light source may not draw enough current to allow the AC triode in the dimmer to be turned on when necessary, so that the light and darkness of the light cannot be adjusted or the dimmer may be operated incorrectly. A small resistive load on the dimmer may cause voltage oscillations at the dimmer output due to multiple firings of the AC triode, resulting in an incorrect dimming operation. At low dimmer settings, the LED driver circuit may be toggled on and off, causing light from the LED source to flash briefly. Furthermore, the naked eye typically perceives light intensity based on a logarithmic curve; conversely, the LED has an almost linear response, and the intensity of the emitted light is approximately proportional to the current flowing through the LED. When operated with a conventional dimmer, an LED light source cannot be smoothly dimmed and the perceived change in light intensity does not have an intuitive relationship with respect to the position of the knob of the dimmer. In addition, the supply Small changes in voltage can also cause visible flicker in the light emitted by the LED source. SUMMARY OF THE INVENTION The present invention seeks to address various such problems in accordance with various embodiments. According to one of its aspects, the present invention is directed to an illumination system that operates in conjunction with a dimmer circuit that includes an AC triode that is coupled to a load. The load includes a -drive circuit for supplying current to: a source of two or more LEDs, the current being dependent at least in part on the adjusted set point value. The system further includes a set point filter circuit for obtaining a - dimmer set point value 'which depends, at least in part, on the set value of the dimmer circuit' and for generating an adjusted set point value. The sensitivity of the adjusted setpoint value relative to the value of the dimmer setting point 201129253 is low at the low value of the dimmer dimmer setpoint value. The set point filter circuit may be configured to increase the adjusted set point at a lower rate at a lower value of the dimmer set point value and at a high value of the dimmer set point value A higher rate to increase the adjusted set point. Preferably, the adjusted setpoint value is responsive to a change in the value of the dimmer setpoint value, which is preferably approximate to an exponential response. "The preferred setting of the setpoint filter circuit is less than the dimmer setpoint value. The entire range of adjusted setpoint values is generated over the entire range, and preferably an adjusted setpoint value having a minimum value greater than zero is generated. The setpoint filter circuit may also be configured to generate a S-point adjusted set point in a manner that has a first substantially constant value in the first portion of the dimmer setpoint value, at which the dimming Increased at a low rate in the first portion of the setpoint value, at a high rate in the second portion of the dimmer setpoint value, and in the fourth portion of the dimmer setpoint value Two substantially unchanged values. The setpoint waver circuit may also include a second or higher order low pass filter for filtering the received dimmer set point value. The S-point filter circuit may include a differential amplifier ' for generating an intermediate set point value' which controls a transistor to generate the adjusted set point value. The driver circuit can be designed by using a voltage control circuit and a current control circuit, wherein the voltage control circuit controls the voltage at the output of the driver circuit according to a voltage set point, and the current control circuit 201129253 is based on A current set point is used to correct the voltage set point. The current control circuit may be designed to operate within a predetermined range that is maintained at a boundary value when the electrical μ control circuit is at the boundary of its operating range. The setpoint filter circuit can take the dimmer setpoint value from the voltage at an output terminal of the dimmer circuit. Alternatively, the set point filter circuit can also derive the dimmer set point value from the firing angle of the dimmer AC triode, and the dimmer set point value can be crossed from a zero value of a supply voltage. The time delay between the point and the first trigger point of the AC triode after the zero crossing point is derived. The illumination system may further include a dimmer trigger circuit for triggering the dimmer of the dimmer, and the dimmer setpoint value may depend at least in part on a current flowing through a dimmer trigger circuit Or the occurrence time of multiple celestial edges and/or falling edges, or the voltage associated with the rising edge of the hexagram. Therefore, the value of the setting point of the §海调光器 may be at least 8%. ^ A rising edge of the current flowing through a dimmer trigger circuit and a time delay between the /, P falling edge, or the voltage associated with the rising edge and the falling edge. The illumination system may be Designed to be used in the dimming of the dimming parent; when the three are extremely conductive, when the current flowing through the dimmer circuit is below the holding current of the dimming The illumination system may include a dimmer trigger circuit for triggering the dimming therapy _. 二W dipole f, wherein the dimmer trigger circuit includes a pressure level detector for detecting Measure the voltage of the dimmer trigger circuit Whether it is below a critical value, and a bipolar current source circuit, & is used to provide an electrical μ when the voltage reached by the 201129253 electrical level detector is below the critical value, otherwise it will be Cancel. The illumination system may be designed such that the maximum current flowing through the 忒 dimmer trigger circuit will be below the holding current of the dimmer's AC triode' and when the dimmer AC triode is conducting Or when the dimmer dimmer is turned off, the electric current flowing through the dimmer trigger circuit is below the holding current of the AC triode. The dimmer trigger circuit may be designed to be The average power consumed in operation is less than 100 mW. In another aspect, the present invention is also directed to a set point filter circuit for use in an illumination system, the illumination system including an AC triode dimmer circuit, a light source comprising one or more LEDs, and a driver circuit for supplying current to one or more LEDs, wherein the current is dependent at least in part on an adjusted set point value. The method includes: an input circuit for obtaining a dimmer setpoint value at least partially depending on a set value of the dimmer circuit; and an adjustment circuit for generating an adjusted set point value, wherein the The sensitivity of the adjustment setpoint value relative to the dimmer setpoint value change is low at the low value of the dimmer setpoint value. The shai setpoint filter circuit may be designed to be used in the dimming The lower value of the s-point value increases the adjusted set point at a lower rate and raises the adjusted set point at a higher rate at a higher value of the shai dimmer set point value, and The adjusted setpoint value may be approximated to an exponential response in response to a change in the dimmer setpoint value change. The adjustment circuit may be configured to be less than the entire range of the dimmer 201129253 setpoint value The entire range of the adjusted setpoint value is generated and may result in an adjusted setpoint value with a minimum value greater than zero. The input circuit may include a second or higher order low pass filter 'for transitioning the received dimmer set point value. The adjustment circuit may include a differential amplifier for generating an intermediate set point value that controls a transistor to generate the adjusted set point value. The set point filter circuit may derive the dimmer set point value from a voltage at an output terminal of the dimmer circuit. The dimmer setpoint value can also be derived from the firing angle of the dimmer AC triode, and this can be achieved by crossing the point from a zero value of a supply voltage and the zero crossing point after the crossing point The time delay between the first trigger points of the body is derived by deriving the dimmer setpoint value. In another aspect, the present invention is directed to an illumination system that operates in conjunction with a dimmer circuit including an AC diode, wherein the system includes: a light source 'which includes - or a plurality of LEDs; a load comprising a dimmer trigger circuit for triggering the dimmer AC triode and a driver circuit for supplying current to the one or more (four) 'where' supplied by the driver circuit The current will depend, at least in part, on a dimmer setpoint value, and wherein the dimmer setpoint value is at least partially from the dimming crying _ 疋 疋. . The angle of the firing point of the machine diode is derived. Preferably, the driver circuit will traverse from a zero value of a supply voltage and "the value of the W setpoint is compiled from the time after the value % is exceeded by the first trigger point of the AC triode." The dimmer setpoint value can be committed to ^ #刀 depending on the current flowing through the _ dimmer trigger circuit - 201129253 or the occurrence time of multiple rising edges and / or falling edges, or related to the upper falling edge The current set point value may depend at least in part on the time delay between the current of the dimmer trigger circuit, ten θ j μ , and the falling edge 5疋D rises. The voltage associated with the falling edge. The driver circuit may make a lightning circuit "electric_circuit and - current control, medium", the voltage control circuit will control the voltage at the output of the driver circuit according to the voltage set point, and the current control circuit will be based on - The current set point is used to correct the _ set point. The current control circuit will operate in a preset range... When the current control circuit is at the boundary of the range, the voltage set point will remain at a boundary value. The illumination system may be configured such that when the dimmer AC diode is conducting, current flowing through the dimmer circuit will be below the holding current of the AC triode, and through the The maximum current of the dimmer trigger circuit may be in the dimmer "the flow of the triode remains turbulent. The illumination system may be configured to be 'where the dimmer is turned on when the dipole is turned on And the current flowing through the dimmer trigger circuit when the dimmer AC triode is off may be below the holding current of the AC triode. The illumination system may also include a set point chopper And generating an adjusted set point value from the dimmer setpoint value, wherein the adjusted setpoint value is relative to the dimmer setpoint value change sensitivity at the dimmer setpoint value is low The numerical value is low. A further aspect of the present invention is directed to an illumination system that operates in conjunction with a dimmer circuit including an AC triode, the system comprising: a light source comprising one or more LEDs; The load includes a dimmer 10 201129253 trigger circuit for triggering the dimmer AC triode, and a driver circuit for supplying current to the one or more LEDs, the driver circuit including a power factor Correcting the circuit, wherein 'the current supplied by the driver circuit is dependent at least in part on a dimmer setpoint value derived from at least one firing angle of the dimmer AC triode [Embodiment] Hereinafter, a specific embodiment of the present invention will be described by way of example only. Fig. 1 schematically shows a conventional dimmer 1 connected to a load 3. The load 3 is usually a white hot light bulb. The dimmer 1 includes an alternating current transistor TR1 which is connected in parallel with a variable resistor R1 and is connected in series with a capacitor C 1. In the present description, the resistor R1 and The combination of capacitor C 1 will be referred to as an RC circuit or a timer circuit. In addition, the dimmer includes a triggering component 'that is, a component suitable for triggering the AC triode TR1. Say 'Diode for Alternating Current (diac) will be used for this purpose. An AC dipole system - a bidirectional trigger diode 'will exceed the AC diode threshold voltage (also known as AC The diode triggers the voltage and then turns on the current. When the current flowing through an AC diode remains above a critical current, the AC diode remains conductive. If the current drops below the critical current, the AC diode switches back to a high resistance state. These features make the AC diode very suitable as a trigger switch for AC triodes. The dimmer 1 of Fig. 1 includes an alternating current diode D1 which is connected at the first end to the variable resistor R1 and the gate of the capacitor C1 201129253 and θ at the first end Connected to the gate of the AC triode JR 1 . The s-perimeter 1 has two terminals, that is, terminals T1 and T2. The dimmer 1 and its load 3 (light bulb) are connected in series across an .AC voltage source. As mentioned previously, the AC triode TR1 is turned off when the AC triode TR1 falls below its critical value. Once the zero crossing of the AC supply voltage crosses the point, the RC circuit "sees" the actual AC supply voltage and C1 charges. It should be noted that this charging current also flows through the incandescent bulb 3. Once the voltage across c丨 reaches the trigger voltage of the AC diode D1, the AC diode begins to conduct and supplies current to the gate of TR1, which simultaneously discharges capacitor C1. Therefore, the AC triode TR1 is triggered and turned on, and current will now flow through the AC triode TR1 and the capacitor C2 will be discharged. By adjusting the resistance of R1 (for example, by operating a potentiometer with a dimmer knob or the like), the AC diode trigger voltage across C1 can be set. The time required. The higher the value of the resistor R1, the longer the time required to reach the AC diode trigger voltage on C1 and the shorter short-on time interval of the AC triode TR1. It is to be understood that by adjusting the time during which the current flows through the AC triode TR 1, the power applied to the light bulb 3 can be adjusted, and thus its illuminance can be corrected. A plurality of components may be added to the above-described basic dimmer circuit for filtering electromagnetic interference (EMI) generated by switching of the AC triode TR1. For example, a mine. . 12 201129253 C2 may be incorporated across the AC triode TR丨 and the series AC triode TR丨 inductor L1. Although these additional components help to reduce EMI; however, capacitor C2 across the AC triode will increase flow through the dimmer 1 (and load 3) to charge the capacitor 〇1 and trigger the AC three-pole The current required by the body. This is because this current must charge both capacitors Ci and C2. Figure 2A shows a waveform diagram of the AC supply voltage across the dimmers ' across the terminals τι to D3; and Figure 2B# 2 (: shows the system across the load 3 at this point (terminal) It assumes that the different dimmers of a resistive load variable resistor R1 set the approximate waveform of the final voltage of T2 to T3), 3. The Hai AC supply voltage will become zero at the zero crossing point (7) of the half cycle. At this point, the AC triode will stop conducting and the electricity across the load 3 will become near zero. The voltage across the load 3 is not really zero because there will still be small currents continuing to flow through the series connected dimming $1 and load 3, for example, the current used to charge capacitors ci and Q is as shown in Figure 2B. At time u, capacitor ^ has been fully charged to trigger AC diode m, which will then Triggering the AC triode TIU, and the voltage across the load 3 will rise to approximately the supply voltage and the current flowing through the load 3 will also increase substantially. When the load is very high, the next zero value is reached. The AC triode before the point t〇 = Keep it conductive. Therefore, during each (four) A cycle, the parent triode is turned off and the capacitor mountain is charging. The charge rate of U and the length of period A will depend on the tone. The illuminator set value 'is also the value of the resistance of the variable resistor ri 13 201129253 set by the dimmer knob. During the period B, the ac is engaged and the body 3 is turned on and the load 3 is The connection crosses the supply voltage, and a positive current flows through the dimmer and the load. As can be seen from the turbulence of Fig. 2b, it can be seen during each half cycle. The average voltage will be slightly lower. The d-throttle will drop slightly U, which will cause the current flowing through the resistor I" the load to drop slightly, and the name will also be w ^ w 6 Hai load is a light bulb Seeing the darkening of the subtle. In Figure 2C, the dimmer setting will change to increase the resistance of the variable resistor R1 to dim the light. At time 12, the capacitor cm will be Fully charged 'to trigger the AC diode (1) and the AC triode TR1 'and The parent triode will remain open until the next zero crossing point tO. Therefore, the AC triode is off during a longer period c and the AC triode is during a shorter period D Therefore, the waveform in Figure 2C will have a sharply decreasing average voltage during each half cycle, which will cause a large drop in the current flowing through the load, and will see a significant change when the load is a light bulb. Dark. The system that can be seen. The dimmer is adjusted by adjusting the zero value crossing point (the AC diode will be turned on after the zero crossing point, which is also called the firing angle of the AC triode). Delaying to implement phase control. The dimmer in Figure 1 (for example, dimmer 1) will have a broken operation if it is used to adjust the brightness of a load (for example, a white hot light bulb), the white hot light bulb When the AC triode is turned off, there is a high load and thus a large amount of current is drawn to properly charge the capacitor C1. That is, the current flowing through the load must be high enough after the zero crossing of the supply voltage to achieve the purpose of recharging capacitor C1 (and 14 201129253 C2) in the RC circuit. If there is not enough high current flowing through the negative ▲ diode TR1 will not be triggered, or only if the light: the machine is set to make the ... very low resistance will be triggered. Modulation type ^: The dimming function of the optical device 1 has no effect, that is, a load with insufficient power (for example, a white hot light bulb) provides a current path for charging the RC circuit, provided that The light device 1 must operate correctly. However, there are now low-load and discontinuous applications that do not draw enough current for the dimmer to function properly (for example, it has built-in benefits and capacitance || p, that is, After the zero crossing of the supply voltage, there is not enough current flowing through the load to properly charge the ruler. Circuitry A well-known example of low-load applications is an LED light source that includes a drive for Electronic circuit of one or more LEDs of LED current. In addition to one or more LEDs, LED power $ i 3 typically includes a rectifier and one or more smoothing capacitors, and thus may also A discontinuous load is used. In the present description, an LED circuit will be used to further illustrate embodiments of the present invention. However, it must be understood that embodiments of the present invention may also be used in conjunction with other low load applications or discontinuous load applications. To use the 'that is' cannot provide the necessary charging current for the RC timer circuit of the dimmer to allow the dimmer (for example, the dimmer shown schematically in Figure i) to function properly. - The load of the smoothing capacitor with a rectifier front end can be considered as a discontinuous load application. Figure 3 shows diagrammatically a dimmer system 15 201129253 1 〇, which will be connected to an LED circuit 1 in accordance with an embodiment of the present invention. 3. The dimmer system includes a dimmer 1 connected in series across an AC supply voltage and a Dimmer Triggering Circuit 'DTC' 12. The LED circuit 13 is connected in series to the dimmer 1 and is connected in parallel The DTC 12 is connected. The combination of the DTC 12 and a load (e.g., LED circuit 13) can be referred to as a dimmable device. Figures 4 and 5 show the DTC 12 in more detail. The DTC 12: includes a voltage level detection a detector 15; and a bipolar current source circuit 18, which includes a current source circuit 17 and a rectifier 丨 9. The voltage level detector 丨5 is connected to the s current source circuit 17' The voltage level detector 丨5 and the current source circuit 17 are both connected to the DC terminal of the rectifier 19. The 忒 voltage level detector 15 is arranged to detect the terminals τ2 and Τ3. The voltage difference between the output of the rectifier 19 (that is, the output of the rectifier 19) Whether the absolute value is below a critical value, the bipolar current source circuit 18 is arranged to be activated when the voltage detected by the voltage level detector 丨5 remains below the critical value, otherwise Therefore, the bipolar current source circuit 18 in the DTC 12 is a voltage dependent current source, and the dtc 12 as a whole is considered to function as the same bipolar voltage dependent current source. As an explanation, the DTC 12 may be designed to consume an average power J of 1000 volts. In embodiments with proper size, the average power consumed by the π.12 may be 1 〇 to 5 〇 mW. Preferably, the DTC has a power consumption of about 30 mW. Most conventional dimmers are expected to operate with this power consumption. . . . The threshold voltage level detector 15 may include a microprocessor. The microprocessor _ will be arranged to use the dimmer dimmer trigger circuit (4) input power 16 201129253 whether the absolute value of the pressure is below a critical value. If the absolute value of the input voltage of the dimmer trigger circuit 12 is below the critical value, the microprocessor may provide a signal to indicate that the bipolar current source circuit 18 provides a current. In some embodiments, as explained in more detail with reference to Figure 5B, the microprocessor may instruct the bipolar current source circuit 18 to provide the current after the zero crossing point of the input voltage. The S-Hui voltage level detector 1 5 may include a comparator for detecting whether the rectified input voltage is below the critical value. As shown schematically in Figure 5, the 3H comparator includes two inputs and a single output. A first input is connected to a reference potential, i.e., the potential 'equal to the critical value' is 3 〇 v in the case of this | & A second input is arranged to receive an input voltage of the dimmer trigger circuit. If the input voltage of the dimmer trigger circuit 12 at the second input of the comparator is below the critical value at the first input of the comparator, the output of the comparator may be as discussed above. The bipolar current source circuit 18 provides a current. Those skilled in the art will appreciate that τ uses an operational amplifier or voltage comparator to perform the comparator. The rectifier 19 has an AC side (i.e., a terminal connected to the terminals T2 and T3, respectively) and a - DC side (i.e., connected to a reference potential and other components of the DTC 12 (e.g., electrical waste level detection) The terminal 15) and the terminal of the current source circuit J 7 in the bipolar electric source circuit 18. The voltage level detector 15 and the current source circuit 17 form a unipolar circuit. The rectifiers ^ are arranged to allow the current generated by the original circuit 17 to be supplied to the tuning by the thyristor, the electric current generated by the original circuit 17 Light. 17 201129253 DTC 12 will make the dimmer 1 operate as if it had a normal white heat bulb load. If the AC supply voltage is low enough, that is, below the aforementioned critical value 'then' the DTC 12 will be activated and will allow sufficient current to flow into the RC circuit of the dimmer i. When the ac supply voltage is sufficient, that is, above the critical value, the 12 will be cancelled and no significant current will be drawn, thus minimizing wasted power. It is to be noted that the voltage level detector 丨5 is located on the DC side of the rectifier 19 and requires only an absolute critical value. This means that if the critical value is 30V, the DTC 12 will be activated in the range of -30V to +30V. In some embodiments of the DTC 12, when used with a 5 Hz, 230V utility system The critical value will fall between 3V and 50V. In other embodiments of the DTC 12, the minimum critical value is 1 〇 v. If the DTC 12 is connected to a 60 Hz, 120 volt utility system, such as the utility power used in the United States, then the threshold may fall between 3 V and 25 volts. The current provided by the DTC 12 will maintain the voltage across the load virtually zero until the AC triode in the dimmer is triggered, for example, AC 3 triggered by the AC diode D1 in Figure 1. The polar body TR1 is roughly shown. When the AC triode is switched on, the voltage at terminal T2 will increase immediately. Therefore, the current source circuit 17 in the DTC 12 will be cancelled. Therefore, ideally, the DTC will only conduct current when the voltage at T2 exceeds a critical value, otherwise the DTC behaves like an open circuit. However, even if it is cancelled, there will actually be a specific current flowing through 18 201129253 DTC. Preferably, when canceled, the current supplied by the current source circuit 17 in dtc 1 2 is negligible. If the amount of current is less than at least twice the maximum current that the current source circuit 丨7 of Dtc 12 can provide, the current can be considered as traceable and negligible. For example, if the current source circuit 17 in the DTC 12 is to provide a maximum current of 15 m A, then if the value of the current remains below i 〇〇 # A, it can be regarded as a trace amount. Ignorable. After the zero-crossing point, if only a discontinuous load is present (that is, a load that draws a discontinuous current such that the current in a particular portion of the voltage. cycle is zero), the effect of DTC丨2 will Complementary to the state of the AC triode in the dimmer. That is, if the DTC is on, the AC triode in the dimmer will be turned off; vice versa. A bridge rectifier with a capacitor at the output is one example of a discontinuous load. Conversely, 'if there is another load other than the discontinuous load', then after passing the zero crossing point, the DTC 12 and the AC triode in the dimmer may be turned on simultaneously until the DTC 1 When the input voltage of 2 exceeds the critical value previously described, the DTC 12 is turned off. In this case, the action of the DTC 12 and the AC triode in the dimmer is not entirely complementary. There is power consumption in a fraction of a microsecond, and both the dtc and the AC triode are turned on. However, this power consumption will be small and negligible. For example, in a current with a critical value of 3 〇V and the current source circuit 17 is arranged to provide 20 mA, the peak power typically does not exceed 0.6 W (however, this spike power only occurs in very small intervals). ) 19 201129253 and the average power will not exceed 30 m W. In general, when crossing the point by the zero value, the AC triode will turn off (assuming it was previously turned on) and the DTC 12 will remain on. When the AC triode is turned on, the DTC 1 2 is turned off. Therefore, the DTC 12 will be arranged to supply current when the absolute voltage at T2 is below a critical value. This current only needs to be sufficient to achieve the capacitor in the RC circuit of the dimmer and the holding current or the hypostatic current or minimum load of the AC triode of the dimmer under discussion. Nothing. When the DTC is activated (when: the AC triode is off) and when the DTC is cancelled (when the AC triode is activated), the current flowing through the DTC 1 2 may be in the dimmer The AC current is below the holding current. This provides the benefit that the DTC 12 can also be used in conjunction with an AC triode that maintains a current greater than the maximum current to be provided by the DTC 12. Thus, for example, even if the DTC 12 is capable of providing a maximum current of 20 mA, a dimmer including an AC triode that holds current greater than i2 mA (for example, 100 mA) can be used to achieve low load applications. The purpose of light and dark. In order to achieve the correct function of the DTC 12 in an illumination system, for example, when coupled to a LED circuit π as shown in FIG. 2, those skilled in the art will appreciate that the AC side of the rectifier 19 The preferred capacitance is to be minimized. Preferably, no additional capacitance is present between terminals T2 and T3. Thus, the DTC 12 can be used to provide a method for triggering a dimmer in an AC circuit. The method includes detecting the input current of the DTC 20 201129253 voltage to provide the current value of the electric current. The input is suitable for the detection and the current/source current circuit can be ignored if the detected quantity is detected. The current voltage of the input voltage is converted into the current supplied, and the absolute value is below a critical value. Then, if the voltage is below the critical value, the current flows through the DTC and the dimmer by the current. If the pressure is not below the critical value, only the DTC and the dimmer will flow through. When detecting the DTc, it may first rectify the AC voltage of the AC current. Then, alternatively, the voltage at which the input voltage is likely to be measured. Finally, limitations are imposed by the current source circuit. Figure 6 is a simplified circuit diagram of an embodiment of a DTC, such as the DTC 12 shown in Figures 3 and 4. It should be understood that this embodiment is an example of one of the possible modes of implementation of the present invention. Skilled people will know that there may be many ways of doing things. For example, other switches can be used in place of bipolar NPN transistors, such as bipolar pNp transistors, integrated gate bipolar transistors (GBT), or metal oxides. Semiconductor field effect transistor

Semiconductor Field-Effect Transistor,MOSFET)。於此實Semiconductor Field-Effect Transistor, MOSFET). Here

施例中,忒雙極電流源電路丨8再次包括一電流源電路P 以及一整流器19。該整流器19包括一全波二極體橋式整流 器。該電流源電路17包括兩個電阻器R2、R3以及兩個NpN 電晶體Ql、Q2。該電壓位準偵測器15包括NpN電晶體Q3 以及兩個電阻器R4與R5。 於此實施例中,一 DC電壓源V丨會被連接至該電壓位 準偵測器1 5的電晶體Q3的集極。電阻器R6經過選擇,俾 21 201129253 使得當Q3為關閉時所希的基極電流可被施加至。該dc 電壓源VI可能係一外部電壓源。必須瞭解的係,為取得該 所希的基極電流,亦可以使用一電流源來取代一 電壓源 VI與電阻器R6。電阻器R4與R5會構成一分壓器(v〇itage divider),其會被設計成倘若T4處的電壓在該臨界數值以下 的話,Τ7處的電壓會使得q3為關閉。 於本實施例中,該電流源電路17的Q1的集極會被連 接至該整流二極體橋中如T4所示的終端。Qi的基極會被 連接至Q2的集極,並且也會被連接至電壓位準偵測器工5 中Q3的集極。當Τ4處的電壓在前述的臨界數值以下時, Q3為關閉,而R6現在則會提供電流給Q1的基極。因此, T6處的電壓會提高,俾使得該Q1會開啟。因此,會導 通電流且T4處的電壓會下降更多,端視該源極的阻抗而 定,這會導致T7處會有更低的電壓。結果,Q3的切換關 閉時間會受到限制。倘若流過Q丨的電流超過特定數值的 活,Q2的基極電壓便會超過它的切換開啟電壓,而且q2 會開始導通,從而會穩定丁6處的電位,並且從而會控制通 過Q1的集極電流。電阻器R2與r3係用來設計一具有合宜 特徵的電流源,也就是,倘若流過Q丨的射極電流超過特定 數值(舉例來說,從10至20mA範圍中的標稱電流)的話, 電晶體Q2便會開始導通。因此,電晶體Q2結合電阻器R2 與R3會提供一回授電路,其會有效地限制電晶體q丨的集 極電流。R3會將電流設定成約為〇 6/R3 ,而R2的功能則 係在該交流三極體擊發時保護q2。電晶體q 1、Q2以及電 ⑧ 22 201129253 阻器R2、R3的結合會在以比整流器19的負終端高 1V的電壓中形成一穩定的電流源電路。告 田上的電壓 降至約IV以下時,集極電流便會下降。可以加入—〇 的電阻器串聯Q1的集極,用以在低 卡慝限制電流斜 率’以便符合EMI要求。 當電壓位準偵測器15偵測到T4處的電壓變成低於— 預設的臨界數值時,該電流源電路17會被啟動;並且當Τ4 處的電壓再度上升至一預設的臨界數值之上時便會被取 消。 為達到被設計成在Τ2處的電壓介於-3〇ν與30ν之間 時用以供應15mA之電流的DTC 12,圖6中所示之組件的 典型數值如下:R2=4.7kD ; R3 = 27Q ; R4 = 6.6MQ(通常藉 由串聯具有數值3.3M Ω的兩個電阻器來建構);R5 = 1〇〇k Ω ; R6 = 47kQ ; Q1=FMMT458 ; Q2=BC817 ; Q3 = BC817 ; VI-10V。在啟動期間由圖6中所示之DTC 12所提供並且 利用具有前述數值的組件來提供的電流約為2〇mA ;而在取 消期間’理想上的電流僅約為49 μ A。加上流過電晶體q j 的漏電流可能會增加數個μ A。 圖7A概略地顯示以電壓vDTC(也就是,跨越DTC的電 壓)為函數的電流IDTC(也就是,流過DTC的電流)的行為的 計算關係圖。於此計算中使用的係圖6的DTC,其中,個 別的組件使用到前述的典型數值。因此,該DTC會被排列 成用以在跨越該DTC的電壓變成低於30V的臨界數值的話 會供應絕對數值為20mA的最大電流。由於該整流器的關 23 201129253 係’電流可以在相反的方向被供應給該調光器。 可以注意的係’當Vdtc接近零時,IDtc會等於零,而 且會在VDTC的特定數值處快速地上升到設計的電流處,於 本案例中’ IDTC不會超過20mA。零VDTC附近的低電流係因 為’在低電壓處’該電流源電路1 7僅會供應所需要的電流, 也就疋’該調光器1僅需要有限的電流來充電它的計時器 電路(直接在電網上期間,電流會比較高)。圖7 a中所示之 曲線的形狀(其和圖5中概略顯示的電流源電路1 7有關)係 電晶體Q1在低電壓處飽和的結果。 圖7B概略顯示圖4的調光器觸發電路的一實施例的終 端之間的電壓-電流行為關係圖,其包括一微處理器或方向 敏感組件。如圖7B中所示,在即將通過零值跨越點之前, DTC 12可能就會被切換開啟,而該調光器丨中的交流三極 體可能同時為開啟。因此,在短時間週期中(也就是,跨越 該DTC 12的電壓從該臨界數值變成零所需要的時間)會有 功率消耗。於包括一微處理器作為電壓位準偵測器15的— 實施例中,該微處理器可能會被程式化俾使得其只有在通 過忒零值跨越點之後才會允許該雙極電流源電路1 $有作 用。因此,該DTC 12的終端之間的電壓_電流行為會變成 概略如圖7B中所示。 」圖7B中很容易看出,Idtj現象係-種磁滯經驗。 也就是,在特定vDTC處的Idtc的數值會相依於的早 先數值。5亥關係目+ Idtc和Vdtc的先前數值無關的部分會 以灰色線來略示。該關係圖中‘和%的先前數值相: 24 201129253 的部分則會以黑色線來略示。箭頭表示Vdtc的改變方向。 設定點遽波器電路 如圖3中所示的照明系統通常會被排列成用以讓負載 13中的LED驅動器電路包括一電流控制器,用以供應 電流給該等LED ’而且該Dc電流與該供應器電壓無關而且 該等LED的光強度因而與該供應器電壓無關。一電流控制 器會在該系統的極限裡面控制該LED電流,俾使得ac供 應器電壓中的任何變化都不會產生LED電流的任何變化。 该LED電流會根據一設定點被控制’不同的設定點數值會 產生不同的電流位準。於本發明的某些實施例中,利用DTc 1 2的電壓位準偵測器丨5所測得的平均已整流電壓可以當作 該驅動器電路的一設定點。一設定點濾波器電路可以被用 來進步最佳化该負載的調光效果。此最佳化可能會造成 在和該調光器設定值不同的範圍中來調整該負載的明暗, 俾使得會在小於該調光器設定值(也就是,該調光器設定點 數值)的整個範圍中產生該已調整設定點的整個範圍。舉例 來說’該電路可能會藉由在對應於3〇至8〇0/〇調光器旋鈕設 定值的0至1 00%範圍卞產生一已調整設定點來改變該驅動 器電路設定點。 該最佳化的形式可能還包含在該已設定光強度範圍裡 面的低光強度區域中(也就是’ 1至丨0%)有較敏感的調光效 果,而在該已設定光強度範圍裡面的高光強度區域中(也就 是’ 10至100%)有較不敏感的調光效果。於該照明系統包 含一 LED光源的地方,該設定點濾波器電路會使用此點來 25 201129253 讓選定的光強度(也就是,由調光器旋鈕設定值所選擇的光 強度)更近似於被感知的強度。一典型的白熱燈泡會使用電 功率來加熱鎢絲、,俾使得其會發光,丨會將所消耗電能中 約10%轉換成可見光。白熱燈泡會呈現一漸進式的響應曲 線,來自該燈泡的光產出會與有效電壓約略成三次方正比 (立方響應)。要注意的係,當為相位彳空制電壓波形時,RMS 電壓和有效電壓會有非線性關係。 肉眼通常會根據對數曲線來感知光強度。因此,當藉 由調整調光器以線性方式來改變負載電流時,白熱光的^ 方響應便會相當匹配肉眼的對數響應而且被感知的光的調 光效果會比較線性與平滑。但是,LED呈現的卻係幾乎線 性的響應而非立方響應’其中,所發出的光強度會與流過 該LED的電流近乎正比。因此,當負載電流線性改變時, 被感知的光強度的變化便與調光器的旋鈕位置沒有任何直 覺性關係。 一設定點濾波器電路能夠被用來調整該驅動器電路所 使用的設定點,用以在該調光器設定值改變時產生一具有 近似於指數變化之漸進式響應的設定點。圖8所示的係一 設定點濾波器電路的一實施例的電路圖,其會在該設定點 改變時產生-指數變化的近似結果。t玄電路包含一低通濾 波器(Low-Pass Filter,LPF),其包括電阻器謂至Rn以 及電容器CIO。舉例來說,該lpf的輪入21可能係取自圖 6中所示的DTC 12的整流器的輸出,或者係取自方便提供 跨越該負載之已整流電壓的另一點。 ⑧ 26 201129253 =PF電路有兩㈣途,作為該高電壓輸人與該咖 之低電壓電路之間的㈣;以及作為一低通渡波 且在因主達mED電流控制器的一實質無漣波設定點並 為'假交流三極體擊發(其可能會出現在〇度與9〇度之 :@角度處)的關係所造成不穩定調光器效能期間消坪 光源的閃伴。—笛__ Kth T up Α 、 一 & PF較佳的係會被用來測量該已整 流的供應器電壓並且 ^ 1且决疋匕的平均電壓;不過,亦可以使 …-階濾波器,或是第三階甚至更高階濾波器。此濾波 益還會在突衝模式(hleeup m〇de)(當該驅動器電路開始在低 (太低的)輸人電壓處時,其會因為沒有供應器電流的關係而 再次切換關閉’當!亥Dc電容器重新充電時便再次切換開 .依此類推,重複進行直到有足夠的供應電流可取用為 止)d間提供某·^時間讓該已遽波的終端電壓保持在該磁滞 臨界值以下。 當忒5周光器被設定用以調整該負載的明暗時,該交流 一極體在根據该調光器設定值的相關相位延遲之前都應該 為關閉,舉例來說,在圖2C中的週期c期間。 當該交流三極體於一半循環期間在9〇度與丨7〇度之間 擊發時,该等交流三極體擊發通常既穩定且可預測。不過, Μ 6亥父%IL —極體擊發時’其會在非常短的時間中充電該等 DC鏈路電容器(在該驅動器電路之整流器的dc側的電容 器),於s亥段時間之後便不會有任何電流流動。該交流三極 體接著會關閉,因為電流會下降至該交流三極體的保持電 流以下(通常僅在觸發之後的數個1 〇〇微秒中)。沒有電流存 27 201129253 在’跨越該驅動器電路的電壓便會追隨該供應器電壓(舉例 來說’ T2處的電壓會追隨T1處的電廢)。 在〇度與9G度之間的擊發角度處,該交流三極體可能 會發生雙重(或多重)擊發或者某些擊發可能會被略m 調光器被連接至-具有下面特性的電阻性負載時便可能會 發生雙重擊發:太小而無法讓負載電流保持在該交流三極 體的保持電流之上,因而使得該交流三極體在擊發之後會 再次關閉;但是卻又夠大,《以吸取足夠的電流流過該調 光器電路,用以重新充電電容SC1並且導致該交流三極體 重新觸發目為β亥交流二極體在該Dc鏈路電壓低於該供應 器電壓之現有數值時可能僅會切換開啟,戶斤以,便可能會 發生被略過的擊發。倘若觸發器脈衝早到的話(靠近零值跨 越點),該交流三極體便會先被觸發,但卻不會擊發,因為 該輸入整流器衫允許負電^本實施例中的LpF的組件 的合宜數值如下:R10與RU為1〇ΜΩ ;R12與Ri3為3 Ω 乂及(:10為22//F。言亥LPF會被設計成第二階渡波器, 用以濾除該調光器交流三極體的假切換。 來自該LPF的輪出會被饋送至一積分運算放大器 — 而來自U1 〇的輸出23便係一代表粗略調光器旋鈕設 疋值的中間设定點數值。這會被用來驅動具有約2v之臨界 電壓的電晶體Q10的閘極並且應付該漸進式功能。⑽的 源極終端會被連接至一包括電阻器R18、R19、以及R2〇的 分壓哭 ' ^ 。,而汲極終端則會被連接至從一標準整合參考電壓 UU處所導出的參考電壓VrePQ 10的源極終端處的最終訊 ⑧ 28 201129253 號24接著便可以作為送往該LED驅動器電路之電流控制器 的輸入。 當該調光器設定值改變用以調整該負載的明暗時,跨 .越該負載的較低平均:電壓便會造成一較低的參考電壓 Vref。當ΙΠ0的輸出很低時,電晶體Q1〇會被關閉,而該 已調整設定點訊號24的數值則會取決於ul〇的輸出以及分 壓器R18/R19/R20。當U10的輸出充分地上升用以開啟電晶 體Q10時,該已調整設定點訊號24則會取決於Ul〇的輸出 以及電阻器R19與R20。於此範例中,Q1〇的閘極源極臨 界電壓會被用來實現一介於1〇至4〇mA之間(約略介於7〇v 與130V平均輸入之間:)的慢速修正範圍,在該範圍之後則 係一從40至305mA處(約略介於13〇v與175V之間)被啟 動的較快速區段,或是任何其它必要的最大數值。圖8之 電路的一實施例的合宜數值如下:R14=278kQ ; R15==68()k Ω ; R16=470kQ ; R17=39kQ ; R18=270kQ ; R19 = 33kQ ; R20 = 1.72kQ ; Cll = 100nF ; C12=l〇〇nF ; C13 = 10nF ;以及 C14-100nF。對 U10 來 s>t,可以使用來自 Texas Instruments 的LM3 5 8 ADR雙運算放大器;對q1〇來說,可以使用來自In the embodiment, the 忒 bipolar current source circuit 丨8 again includes a current source circuit P and a rectifier 19. The rectifier 19 includes a full wave diode bridge rectifier. The current source circuit 17 includes two resistors R2, R3 and two NpN transistors Q1, Q2. The voltage level detector 15 includes an NpN transistor Q3 and two resistors R4 and R5. In this embodiment, a DC voltage source V丨 is connected to the collector of the transistor Q3 of the voltage level detector 15. Resistor R6 is selected, 俾 21 201129253 so that the base current that is applied when Q3 is off can be applied. The dc voltage source VI may be an external voltage source. It must be understood that in order to obtain the base current, a current source can be used instead of a voltage source VI and a resistor R6. Resistors R4 and R5 form a voltage divider that will be designed such that if the voltage at T4 is below this critical value, the voltage at Τ7 will cause q3 to be off. In the present embodiment, the collector of Q1 of the current source circuit 17 is connected to the terminal of the rectifier diode bridge as indicated by T4. The base of Qi will be connected to the collector of Q2 and will also be connected to the collector of Q3 in Voltage Level Detector 5. When the voltage at Τ4 is below the aforementioned critical value, Q3 is off, and R6 now supplies current to the base of Q1. Therefore, the voltage at T6 will increase, and the Q1 will turn on. Therefore, the current will be turned on and the voltage at T4 will drop more depending on the impedance of the source, which will result in a lower voltage at T7. As a result, the switching time of Q3 is limited. If the current flowing through Q丨 exceeds a certain value, the base voltage of Q2 will exceed its switching turn-on voltage, and q2 will begin to conduct, thus stabilizing the potential at D6, and thus controlling the set through Q1. Extreme current. Resistors R2 and r3 are used to design a current source with suitable characteristics, that is, if the emitter current flowing through Q丨 exceeds a certain value (for example, a nominal current in the range of 10 to 20 mA), The transistor Q2 will begin to conduct. Therefore, transistor Q2 in combination with resistors R2 and R3 provides a feedback circuit that effectively limits the collector current of transistor q丨. R3 sets the current to approximately 〇 6/R3, while R2 functions to protect q2 when the AC triode is fired. The combination of transistors q1, Q2 and electricity 8 22 201129253 resistors R2, R3 will form a stable current source circuit at a voltage 1V higher than the negative terminal of rectifier 19. When the voltage on the field drops below about IV, the collector current will drop. A resistor of -〇 can be added in series with the collector of Q1 to limit the current ramp at low chirps to meet EMI requirements. When the voltage level detector 15 detects that the voltage at T4 becomes lower than a preset threshold value, the current source circuit 17 is activated; and when the voltage at the Τ4 rises again to a predetermined critical value It will be cancelled when it is above. To achieve a DTC 12 designed to supply a current of 15 mA when the voltage at Τ2 is between -3 〇ν and 30 ν, the typical values of the components shown in Figure 6 are as follows: R2 = 4.7 kD; R3 = 27Q ; R4 = 6.6MQ (usually constructed by connecting two resistors with a value of 3.3M Ω in series); R5 = 1〇〇k Ω; R6 = 47kQ; Q1=FMMT458; Q2=BC817; Q3 = BC817 ; -10V. The current supplied by the DTC 12 shown in Figure 6 during startup and using a component having the aforementioned values is about 2 mA; and during the cancellation period the ideal current is only about 49 μA. In addition, the leakage current flowing through the transistor q j may increase by several μ A . Figure 7A schematically shows a computational relationship diagram of the behavior of current IDTC (i.e., current flowing through the DTC) as a function of voltage vDTC (i.e., voltage across the DTC). The DTC of Figure 6 used in this calculation, wherein individual components use the typical values described above. Therefore, the DTC will be arranged to supply a maximum current of 20 mA absolute value when the voltage across the DTC becomes a critical value below 30V. Since the rectifier is turned off, the current can be supplied to the dimmer in the opposite direction. It can be noted that when Vdtc approaches zero, IDtc will be equal to zero and will rise rapidly to the current of the design at a specific value of VDTC, in this case 'IDTC will not exceed 20 mA. The low current near zero VDTC is because the current source circuit 17 will only supply the required current at 'at low voltage', that is, the dimmer 1 requires only a limited current to charge its timer circuit ( The current will be higher during the direct grid.) The shape of the curve shown in Fig. 7a (which is related to the current source circuit 17 schematically shown in Fig. 5) is the result of saturation of the transistor Q1 at a low voltage. Figure 7B is a schematic diagram showing the voltage-current behavior relationship between the terminals of an embodiment of the dimmer trigger circuit of Figure 4, including a microprocessor or direction sensitive component. As shown in Figure 7B, the DTC 12 may be switched on before the zero crossing point is reached, and the AC triode in the dimmer may be turned on at the same time. Therefore, there is power consumption in a short period of time (i.e., the time required for the voltage across the DTC 12 to change from the critical value to zero). In an embodiment including a microprocessor as the voltage level detector 15 , the microprocessor may be programmed such that it only allows the bipolar current source circuit after crossing the point through the zero value. 1 $ has a role. Therefore, the voltage_current behavior between the terminals of the DTC 12 becomes as schematically shown in Fig. 7B. It is easy to see in Figure 7B that the Idtj phenomenon is a kind of hysteresis experience. That is, the value of Idcc at a particular vDTC will depend on the previous value. The relationship between the 5th relationship and the previous values of Idtc and Vdtc is indicated by a gray line. In the diagram, the part of ‘and % of the previous value: 24 201129253 will be highlighted by a black line. The arrow indicates the direction in which Vdtc changes. The set point chopper circuit, as shown in Figure 3, is typically arranged such that the LED driver circuit in load 13 includes a current controller for supplying current to the LEDs 'and the DC current is The supply voltage is independent and the light intensity of the LEDs is thus independent of the supply voltage. A current controller controls the LED current within the limits of the system so that any change in the ac supply voltage does not produce any change in LED current. The LED current is controlled according to a set point. 'Different set point values will produce different current levels. In some embodiments of the invention, the average rectified voltage measured by the voltage level detector 丨5 of DTc 1 2 can be used as a set point for the driver circuit. A setpoint filter circuit can be used to improve the dimming effect of the load. This optimization may cause the brightness of the load to be adjusted in a different range from the dimmer setting, such that it is less than the dimmer setting (ie, the dimmer set point value). The entire range of the adjusted set point is generated throughout the range. For example, the circuit may change the driver circuit set point by generating an adjusted set point in the range of 0 to 100% corresponding to the 3〇 to 8〇0/〇 dimmer knob setting. The optimized form may also include a more sensitive dimming effect in the low light intensity region (ie, '1 to 丨0%) within the set light intensity range, and within the set light intensity range The high light intensity region (that is, '10 to 100%) has a less sensitive dimming effect. Where the illumination system includes an LED source, the setpoint filter circuit will use this point to 25 201129253 to approximate the selected light intensity (i.e., the light intensity selected by the dimmer knob setting) to The intensity of perception. A typical incandescent bulb uses electrical power to heat the tungsten filament, causing it to illuminate, and converts about 10% of the power consumed into visible light. The incandescent bulb will exhibit a progressive response curve, and the light output from the bulb will be approximately three times proportional to the effective voltage (cube response). It should be noted that when the phase is hollowed out, the RMS voltage and the effective voltage have a nonlinear relationship. The naked eye usually perceives light intensity based on a logarithmic curve. Therefore, when the dimmer is adjusted to change the load current in a linear manner, the response of the white hot light will match the logarithmic response of the naked eye and the dimming effect of the perceived light will be linear and smooth. However, LEDs exhibit an almost linear response rather than a cubic response, where the intensity of the light emitted is nearly proportional to the current flowing through the LED. Therefore, when the load current changes linearly, the perceived change in light intensity does not have any intuitive relationship with the knob position of the dimmer. A setpoint filter circuit can be used to adjust the set point used by the driver circuit to produce a set point having a progressive response that approximates an exponential change when the dimmer setting is changed. Figure 8 is a circuit diagram of an embodiment of a setpoint filter circuit that produces an approximate result of an exponential change as the set point changes. The t-circuit includes a Low-Pass Filter (LPF), which includes a resistor to Rn and a capacitor CIO. For example, the wheel 21 of the lpf may be taken from the output of the rectifier of the DTC 12 shown in Figure 6, or taken from another point that conveniently provides a rectified voltage across the load. 8 26 201129253 = PF circuit has two (four) way, as the high voltage input and the low voltage circuit of the coffee (4); and as a low pass wave and in the main mED current controller a substantial no ripple The set point is the flash companion of the erasing light source during the unstable dimmer performance caused by the relationship of the 'false AC triode firing (which may occur at the 〇 degree and 9 degrees: @ angle). - flute __ Kth T up Α, a & PF preferred system will be used to measure the rectified supply voltage and ^1 and the average voltage of the decision; however, can also make ...-order filter , or a third-order or even higher-order filter. This filter benefit will also be in the burst mode (when the driver circuit starts at the low (too low) input voltage, it will switch off again because there is no supply current relationship' when! When the Dc capacitor is recharged, it will switch back on again. And so on, repeat until there is enough supply current available.) Provide a certain time between d to keep the chopped terminal voltage below the hysteresis threshold. . When the 忒5 illuminator is set to adjust the brightness of the load, the ac diode should be turned off before the associated phase delay according to the dimmer setting, for example, during period c in Figure 2C. . When the AC triode is fired between 9 丨 and 丨 7 于 during half of the cycle, the AC triode firings are generally stable and predictable. However, Μ 6H father %IL—when the polar body fires, it will charge the DC link capacitors (capacitors on the dc side of the rectifier of the driver circuit) in a very short time, after shai time There will be no current flowing. The AC triode is then turned off because the current drops below the holding current of the AC triode (usually only in a few 1 microseconds after the trigger). No current is present. 27 201129253 The voltage across the driver circuit will follow the supply voltage (for example, the voltage at T2 will follow the electrical waste at T1). At the firing angle between the twist and 9G, the AC triode may have double (or multiple) shots or some shots may be connected to the slightly dimmer - a resistive load with the following characteristics A double shot may occur: too small to keep the load current above the holding current of the AC triode, thus causing the AC triode to turn off again after firing; but it is large enough, Sufficient current is drawn through the dimmer circuit to recharge the capacitor SC1 and cause the AC triode to re-trigger the current value of the voltage at the DC link lower than the supply voltage. At the same time, it may only switch on and on, and the number of shots may be skipped. If the trigger pulse arrives early (near the zero crossing point), the AC triode will be triggered first, but will not be fired, because the input rectifier shirt allows the negative power of the LpF component in this embodiment. The values are as follows: R10 and RU are 1〇ΜΩ; R12 and Ri3 are 3 Ω 乂 and (:10 is 22//F. Yanhai LPF will be designed as a second-order ferrite to filter the dimmer exchange A false switch of the triode. The turn from the LPF is fed to an integrating operational amplifier - and the output 23 from U1 系 is the intermediate setpoint value representing the value of the coarse dimmer knob setting. It is used to drive the gate of transistor Q10 having a threshold voltage of about 2v and to cope with this progressive function. The source terminal of (10) is connected to a voltage divider crying ^^ including resistors R18, R19, and R2〇. The bungee terminal is connected to the final terminal at the source terminal of the reference voltage VrePQ 10 derived from a standard integrated reference voltage UU. 8 28 201129253 No. 24 can then be used as current control for the LED driver circuit. Input of the device When the set value is changed to adjust the brightness of the load, the lower the average of the load: the voltage will cause a lower reference voltage Vref. When the output of ΙΠ0 is low, the transistor Q1〇 will be turned off. The value of the adjusted set point signal 24 depends on the output of the ul〇 and the voltage divider R18/R19/R20. When the output of the U10 is sufficiently raised to turn on the transistor Q10, the adjusted set point signal 24 It will depend on the output of Ul〇 and resistors R19 and R20. In this example, the threshold voltage of the gate source of Q1〇 will be used to achieve a range between 1〇 and 4〇mA (approximately between 7〇). The slow correction range between v and the average input of 130V :), after which is a faster segment that is activated from 40 to 305 mA (approximately between 13 〇v and 175 V), or any Other necessary maximum values. The preferred values for an embodiment of the circuit of Figure 8 are as follows: R14 = 278kQ; R15 = = 68() k Ω; R16 = 470kQ; R17 = 39kQ; R18 = 270kQ; R19 = 33kQ; R20 = 1.72kQ; Cll = 100nF; C12=l〇〇nF; C13 = 10nF; and C14-100nF. For U10, s>t, The LM3 5 8 ADR dual op amp from Texas Instruments can be used; for q1〇, it can be used from

Fairchild Semiconductor的2N7002 N通道增強模式場效電 晶體’以及對Ul 1來說’可以使用來自zetex Semiconductors 或Texas Instruments的可調整精密分流調節器。 該設定點濾波器的輸出24會被當作該LED電流控制器 的一基準’用以近似使用者的平滑調光效果。因為肉眼對 党度具有對數感知’所以,得施行一「低速(low-gear)」與 29 201129253 「高速(high-gear)J設定點塑形器。該設定點濾波器電路會 產生一具有兩個斜率的已調整設定點變化,如圖9Α的範例 中所示。在圖9 Α中所示的範例中,實際的調光器設定值sp i 會被繪製在水平軸線上,而由該設定點濾波器所輸出的已 調整設定點SP2則會被繪製在垂直軸線上。從圖中可以看 出,在該調光器設定值之範圍的第一部分中(本範例中的〇 至20%) ’該已調整設定點在轉折點之前會保持在非常低的 數值34處,在該範圍的第二部分中(本範例中的2〇至5〇%) 會以低速率31上升,在該範圍的第三部分中(本範例中的 50至80%)會以高速率32上升,而在該範圍的第四部分中 (本範例中的80至100%)則會保持在高數值35(本範例中為 100%的未經調光的數值)處。因此,該設定點濾波器會產生 一具有「兩段變速(two gear)」漸進式響應的已調整調光器 設定點,其會近似一指數響應。當該’調光器設定值線性提 高時,該已調整設定點的此漸進式行為會在從該LED光源 發出的光強度中產生一對應的漸進式響應,從而會因為肉 眼的對數響應的關係而造成被感知亮度的平滑變化。 此漸進式響應會在低光设定值處大幅地降低對於調光 器擊發角度變化(也就是,在零值跨越點之後的交流三極體 開啟延遲變化)的靈敏度。舉例來說,該等調光器擊發角度 變化會因為6亥AC供應器電壓有變化的關係而發生。該此變 化可能會導致該被調光的光源出現可見的閃爍,尤其是在 低光調光器設定值處。圖9A中所示之由該設定點濾波器電 路所產生的已調整設定點在低調光器設定值處具有平坦部 30 201129253 分3 4以及一淺斜率3 1,從而會降低該照明系統對於該些變 化的靈敏度並且減少甚至消除閃爍。 圖9A中所示之雙斜率已調整設定點曲線為如圖9B中 所示之理想指數響應的近似結果。使用熟習本技術的人士 已知的技術,可以施行具有三個、四個、甚至更多個斜率 的已調整設定點曲線,以便更近似該指數曲線。亦可以使 用一微處理器來產生追隨該理想指數響應的一已調整設定 由該設定點濾波器電路所產生的已調整設定點會作為 一電流控制器的設定點輸入,用以驅動該等LED。圖1 〇所 示的係一 LED驅動器電路的變壓器T10的二次側的簡化電 路圖。如上面所述,圖8的設定點濾波器電路會以積分放 大器U12的輸出為函數以片段線性的方式來產生跨越R2〇 的已調整設定點電壓24。該已調整設定點24會經由電阻器 R21被輸入至運算放大器ul2,其係一當跨越二次分流電阻 器R24的電壓等於跨越R2〇的電壓時會平衡的積分電路。 分流電阻器R24會與串聯連接的LED 1至4進行串聯連 接。結合R20至24以及C15的放大器U12會構成一電流控 制器電路2 7。 U12的輸出會透過電阻器 κζζ μ及分壓器R25與R26 提:一回授訊號給分流調節g un以及光搞合器叫。光 搞合盗U13會提供_回授訊號給在m的―次側的一反驰 式控制器。該電路的此部分會構成-電壓控制器電路26。 U12的輸出會破視為以⑴i為中心的電壓控制器的參考數 31 201129253 值。倘右流經R24的電流太低的話,來自u 1 2的電壓回授 會造成一較尚的電壓控制設定點。這會降低流經光耦合器 U1 3的電流’以便發訊通知該反馳式控制器用以提高它的功 率流’俾使得會取得該受控的參考電壓並且實現必要的led 電流。倘若流經R24的電流太高的話,該回授訊號則會造 成一較低的電壓設定點。該反馳式控制器會據以降低流至 二次側的功率流,以便降低LED電流。 圖1 0之電路的一實施例的合宜數值如下:〇= 1 72k Q . R21=4.7kQ ; R22 = 8.2kQ ; R23 = 2.7kQ ; R24-39Q ; R25 = 12kQ ; R26 = 2.49kQ ; R27 = 2.7kQ ; C15 = lnF;以及 C16 = 3"F。對U12來說,可以使用來自Texas⑽加咖跑 的LM358ADR雙運算放大器;而對U13來說,可以使用來 自NEC的PS2801C-1光耦合器。對PWM控制器來說,可 以使用來自Texas Instruments的UCC28600,其會被配置成 用以操作在不變的輸出電壓受控模式之中。 以時間為基礎的設定點控制 上面所述的照明糸統可被視為一種用於驅動該等led 的功率訊號以及用於設定該等led之強度的資訊訊號兩者 皆被具現在相同訊號(跨越該負載的平均電壓)之中的系 統。此種排列通常會依賴於和該調光器之旋鈕設定值相依 的跨越該負載的電壓。當情況並非如此時,尤其是因為具 有低負載或是不連續負載的調光器的操作的關係,該負載 的5周光效果便未必會匹配該調光器的設定值。 如上文的討論,本文所述的照明系統可以操作在該調 32 201129253 光器交流三極體之保持電流以下的負載處。上面所述的 DTC會吸取足夠的電流以確保觸發該交流三極體。—旦被 觸發之後,該DTC將會取消並且僅吸取微量而可忽略的電 流。當該負載很小而且倘若有一整流器加上DC鏈路電容器 負載的話,流過該調光器的電流將會下降至該調光器交流 三極體的保持電流以下。當該負載/驅動器電路具有—主動 功率因子改正前端時,該負載的行為會更像是一個電阻 益,並且有可能會導致該調光器電路重複的重新充電與重 新擊發,如圖1 1 B中所示。 圖1 1 A所不的係當調光器設定值會導致在每一個半循 環的零值跨越點t0之後的時間u處擊發該交流三極體時, 而且當該交流三極體經由該調光器交流三極體快閃充電該 (等)DC鏈路電容器之後藉由該負載與dtc所吸取的組合電 抓為零時,跨越该負載(舉例來說,跨越圖3之電路的終端 T2至T3)的電壓的波形關係圖。 士圖11B所不的係當該調光器被連接至一小電阻性負載 時在相同調光器設定值處的電壓波形的範例,該小電阻性 負載太j 無法讓負載電流保持在該交流三極體的保持電 流之上。此類型的小電阻性負載可能會出現在具有一用於 驅動低功率 路之中。Fairchild Semiconductor's 2N7002 N-Channel Enhanced Mode Field Effect ‘and for Ul 1' can use adjustable precision shunt regulators from zetex Semiconductors or Texas Instruments. The output 24 of the set point filter is used as a reference to the LED current controller to approximate the user's smooth dimming effect. Because the naked eye has a logarithmic perception of the party's degree, it is necessary to implement a "low-gear" and 29 201129253 "high-gear J set point shaper. The set point filter circuit will produce one with two The adjusted set point change of the slope is shown in the example in Figure 9. In the example shown in Figure 9 ,, the actual dimmer setting value sp i will be plotted on the horizontal axis, and by this setting The adjusted set point SP2 output by the point filter is plotted on the vertical axis. As can be seen from the figure, in the first part of the range of the dimmer setting (〇 to 20% in this example) 'The adjusted set point will remain at a very low value 34 before the turning point, and in the second part of the range (2〇 to 5〇% in this example) will rise at a low rate 31, in that range The third part (50 to 80% in this example) will rise at a high rate of 32, while in the fourth part of the range (80 to 100% in this example) it will remain at a high value of 35 (this example) Medium is 100% undimmed value). Therefore, the set point filter will produce Having a "two-stage transmission (two gear)" progressive response dimmer adjusted setpoint, which would approximate an exponential response. When the 'dimmer setting' linearly increases, this progressive behavior of the adjusted set point produces a corresponding progressive response in the intensity of the light emitted from the LED source, which may be due to the logarithmic response of the naked eye. It causes a smooth change in perceived brightness. This progressive response greatly reduces the sensitivity of the dimmer firing angle change (i.e., the change in the AC triode turn-on delay after the zero crossing point) at the low light setting. For example, the change in firing angle of the dimmers can occur due to a change in the voltage of the 6-Heil AC supply. This change may cause visible flickering of the dimmed light source, especially at low light dimmer settings. The adjusted set point generated by the setpoint filter circuit shown in FIG. 9A has a flat portion 30 201129253 minutes 3 4 and a shallow slope 3 1 at the low dimmer setting value, thereby reducing the illumination system for the The sensitivity of these changes and reduces or even eliminates flicker. The double slope adjusted set point curve shown in Figure 9A is an approximation of the ideal exponential response as shown in Figure 9B. An adjusted setpoint curve having three, four, or even more slopes can be performed using techniques known to those skilled in the art to more closely approximate the exponential curve. A microprocessor can also be used to generate an adjusted setting that follows the ideal index response. The adjusted set point generated by the set point filter circuit acts as a set point input to a current controller for driving the LEDs. . Figure 1 is a simplified circuit diagram of the secondary side of transformer T10, which is an LED driver circuit. As described above, the setpoint filter circuit of Figure 8 produces an adjusted setpoint voltage 24 across R2〇 in a piecewise linear fashion as a function of the output of the integrator amplifier U12. The adjusted set point 24 is input to the operational amplifier ul2 via resistor R21, which is an integrating circuit that balances when the voltage across the secondary shunt resistor R24 is equal to the voltage across R2〇. The shunt resistor R24 is connected in series with the LEDs 1 to 4 connected in series. The amplifier U12 incorporating R20 to 24 and C15 constitutes a current controller circuit 27. The output of U12 is passed through resistor κζζ μ and voltage dividers R25 and R26: a feedback signal is given to the shunt regulator g un and the light combiner is called. The U13 will provide a _ feedback signal to a sub-controller on the secondary side of m. This portion of the circuit will constitute a voltage controller circuit 26. The output of U12 will be broken as the reference number of the voltage controller centered on (1)i 31 201129253. If the current flowing through R24 is too low, voltage feedback from u 1 2 will result in a better voltage control set point. This reduces the current flowing through the optocoupler U1 3 to signal the flyback controller to increase its power flow 俾 such that the controlled reference voltage is taken and the necessary LED current is achieved. If the current through R24 is too high, the feedback signal will result in a lower voltage set point. The flyback controller will reduce the power flow to the secondary side to reduce the LED current. A suitable value for an embodiment of the circuit of Figure 10 is as follows: 〇 = 1 72k Q . R21 = 4.7kQ ; R22 = 8.2kQ ; R23 = 2.7kQ ; R24-39Q ; R25 = 12kQ ; R26 = 2.49kQ ; R27 = 2.7kQ; C15 = lnF; and C16 = 3"F. For U12, the LM358ADR dual op amp from Texas (10) plus coffee can be used; for U13, the PS2801C-1 optocoupler from NEC can be used. For the PWM controller, the UCC28600 from Texas Instruments can be used, which is configured to operate in a constant output voltage controlled mode. Time-based set point control The illumination system described above can be considered as a power signal for driving the LEDs and an information signal for setting the strength of the LEDs to be the same signal ( A system that spans the average voltage of the load). Such an arrangement typically relies on a voltage across the load that is dependent on the knob setting of the dimmer. When this is not the case, especially because of the operation of a dimmer with low or discontinuous loads, the 5-week effect of the load does not necessarily match the dimmer setting. As discussed above, the illumination system described herein can operate at a load below the holding current of the illuminating triode of the 2011 29253 optoelectronic device. The DTC described above draws enough current to ensure that the AC triode is triggered. Once triggered, the DTC will cancel and draw only a small amount of negligible current. When the load is small and if there is a rectifier plus a DC link capacitor load, the current flowing through the dimmer will drop below the holding current of the dimmer's AC triode. When the load/driver circuit has an active power factor correction front end, the load behaves more like a resistor, and may cause repeated recharge and re-fire of the dimmer circuit, as shown in Figure 11. Shown in . Figure 1 1 A does not mean that when the dimmer set value will cause the AC triode to be fired at time u after the zero value of each half cycle crosses point t0, and when the AC triode passes the tune The optical AC triode flashes the DC link capacitor after the DC link capacitor is crossed by the load and the dtc is drawn across the load (for example, the terminal T2 across the circuit of FIG. 3) Waveform diagram of the voltage to T3). Figure 11B is an example of a voltage waveform at the same dimmer setting when the dimmer is connected to a small resistive load. The small resistive load is too large to keep the load current at the AC. The triode maintains current above it. This type of small resistive load may appear to have one for driving low power paths.

Dc電路的主動功率因子改正前端的驅動器電 在 日丰門 t 1 1^· 0 ’ s亥交流三極體會被觸發而且電壓會快速 地上升。不過,、、* 4 _ 机過该交k三極體的電流卻不足以讓該交 流三極體保持在導通狀態中,而且由於該負載的電阻性特 33 201129253 徵的關係,該交流三極體會再次關閉並且跨越該負載的電 壓會下降》因為跨越該調光器的電壓逐漸增加的關係,即 使該DTC沒有作用並且再次觸發該調光器交流三極體,該 調光器中的RC電路仍會重新充電。結果便係如圖丨丨B中所 示般地在每一個半循環期間會多重觸發該交流三極體。當 該以交流三極體為基礎的調光器被連接至一低功率的電阻 性負載時(例如,用於驅動一 DC鏈路或是直接驅動LED支 具有不連續切換的主動功率因子改正電路升壓轉換器),便 會造成該交流三極體出現此多重觸發。 此多重觸發會造成跨越該負載非常不穩定的電壓並且 造成較低的平均電壓,比較圖丨丨A與丨1B的每一個半循環 中的平均電壓便能夠看出。當使用此電壓來導出該設定點 用以控制該等LED的強度時’其會造成一振盪設定點。當 於此情況t使用平均電壓(或R M s電壓)來設定該L E D光源 的強度時,則將造成不穩定光輸出的不正確調光效果。 此問題的解決方式係使用時間資訊來控制LED光源強 度’而非使用電Μ位準資訊。可以使用從__零值跨越點至 該零值跨越點後面該交流三極體之第—次觸發㈣間延遲 來導出LED光源強度控制數值(也就是,亦稱為擊發角度 或是相位控制數值)。此時間延遲數值會相依於該調光器的 RC電路的充電時間(其會相依於該調光器旋紐的設定值)而 改變並且不會受到稍後可能發生在該半循環之中多重交流 三極體擊發的影響。 微處理$彳以被用來從該時間延遲數值處導出 34 ⑧ 201129253 LED強度设定點數值。施行此作法的其中_種方式係測量 流過該DTC的電流的上升緣與下降緣的出現時間,或是測 量和該些上升緣與下降緣有關的電壓。舉例來說,電流的 該些上升緣與下降緣如圖7B中所示,並且對應於該交流三 極體於零值跨越點處關閉而DTC被啟動時的時刻(上升緣) 以及該交流三極體被觸發而DTC取消時的時刻(下降緣)。 兩個上升緣之間的時間表示該供應器電壓的零值跨越點之 間的循環時間,而—上升緣與—下降緣之間的時間則表示 一零值跨越點與該第一次交流三極體擊發時間之間的時 間。從該些測量中能夠簡單地算出該交流三極體擊發角 度於圖3與6中所示的實施例中藉由測量T6(DTc a的 電/;IL源電路17的電晶體Q 1的基極)處的電壓的上升緣與下 ^緣便能夠合宜地完成此目W。於上面所述的實施例中、, 當该DTC及Q3開啟時,此電壓約為〇 5v•當該被取 消且Q3 ^關閉時,此電壓約為1.5V。 。相關上升緣/下降緣之間的時間能夠利用一開始於—訊 號緣被偵測到時並且結束於下一個相關訊號緣被偵測到時 、夺脈來測里。DTC電流的-上升緣與DTC電流的下一個 ^降緣之間的時間會被決定並⑽以兩個上升緣之間的時 、更決疋父流二極體關閉責任循環。而該交流三極 一開啟責任循環便係(1•關閉責任循環)。可以利用—漸進式 =料出該等led的電流設定點,而且此函數可能係會 、♦曰數必匕時脈與漸進式函數能夠利用熟習本技術的 人士便會瞭解的微處理器或是微控制器來施行。 35 201129253 此種解決方式還會讓該系統被設計成用於應用在具有 通用功率輸入(舉例來說,從90 V至240 V的AC供應器電 壓)的可調光應用中,以便使用在具有不同AC電壓的國家 中。因為光源強度控制數值係相依於時間延遲數值而非電 壓數值,所以,輸入電壓的數值以及所產生的平均負載電 壓將不會以該AC供應器電壓為函數來改變。這使得可以在 全世界使用單一設計’從而因較大規模經濟的關係而降低 製造成本。 磁滯與最小電流 ’又有關閉」開關的調光1§在設定於最小數值(也就是, 光源關閉)位置中時的行為如同一串聯電容器。Ac電流會流 過此「電容器」並且充電該led驅動器電路中的整流器的 DC側。這可能足以在短時間週期之後啟動該led驅動器電 路中的控制器晶片。這可能會導致該等LED短暫閃光,從 而放電§玄D C鏈路。接著便會谓測到一不足電壓,該控制器 會切換關閉’而且該循環會再度開始。為防止發生此不必 要的閃光’該電流控制電路可能會具備某種正回授,用以 創造磁滯。依此方式,該電流控制器將會接收一零設定點, 直到該平均輸入電壓超過一特定極限值為止。而後,電流 設定點便會被切換至一低數值(舉例來說,約3〇mA)。藉由 將調光器旋鈕轉回到較低設定值,LED電流接著便可能會 下降(舉例來說,下降至約10mA)。因此,於此低調光器設 定值處’ LED T能為開啟或關閉,端視先前的調光器設定 值而定。 36 ⑧ 201129253 較佳的係,會有最小電流流過該等LED,以避免在靠 近無負載(也就是,低調光器設定值)處因為調光器電路相互The active power factor of the Dc circuit corrects the driver of the front end. The R3 gate of the R1 circuit will be triggered and the voltage will rise rapidly. However, the current of the *4 _ machine passing through the k-transistor is insufficient to keep the AC triode in the conducting state, and due to the resistance of the load, the AC three-pole The experience is turned off again and the voltage across the load will drop. Because of the gradual increase in voltage across the dimmer, even if the DTC has no effect and triggers the dimmer AC triode again, the RC circuit in the dimmer Will still recharge. As a result, the AC triode is multi-triggered during each half cycle as shown in Figure B. When the AC triode based dimmer is connected to a low power resistive load (eg, for driving a DC link or directly driving the LED branch with active switching factor correction circuit) The boost converter) causes this multiple trigger to occur in the AC triode. This multiple trigger can cause a very unstable voltage across the load and result in a lower average voltage, as can be seen by comparing the average voltage in each half cycle of Figure 丨丨A and 丨1B. When this voltage is used to derive the set point to control the intensity of the LEDs, it will cause an oscillation set point. When the average voltage (or R M s voltage) is used to set the intensity of the L E D source in this case, an improper dimming effect of the unstable light output will result. The solution to this problem is to use time information to control the intensity of the LED light source instead of using the power level information. The LED source intensity control value (ie, also referred to as the firing angle or phase control value) can be derived using a delay from the __zero crossing point to the zero-threshold crossing of the alternating current triode. ). The time delay value will vary depending on the charging time of the RC circuit of the dimmer (which will depend on the set value of the dimmer knob) and will not be subject to multiple exchanges that may occur later in the half cycle. The effect of triode firing. Microprocessing $彳 is used to derive from this time delay value 34 8 201129253 LED intensity setpoint value. One of the ways in which this is done is to measure the time at which the rising and falling edges of the current flowing through the DTC occur, or to measure the voltage associated with the rising and falling edges. For example, the rising and falling edges of the current are as shown in FIG. 7B, and correspond to the time when the AC triode is turned off at the zero crossing point and the DTC is activated (rising edge) and the alternating current three The moment when the polar body is triggered and the DTC is canceled (falling edge). The time between the two rising edges represents the cycle time between the zero crossings of the supply voltage, and the time between the rising edge and the falling edge represents a zero crossing point and the first alternating current three The time between the polar body firing time. From these measurements, the AC triode firing angle can be simply calculated in the embodiment shown in FIGS. 3 and 6 by measuring T6 (the electrical basis of the circuit IO of the DTc a/IL source circuit 17) The rising edge and the lower edge of the voltage at the pole can properly accomplish this. In the embodiment described above, when the DTC and Q3 are turned on, the voltage is about v 5v • when the signal is canceled and Q3 ^ is turned off, the voltage is about 1.5V. . The time between the rising edge/falling edge can be measured by the start of the signal edge and when the next edge of the associated signal is detected. The time between the rising edge of the DTC current and the next falling edge of the DTC current is determined and (10) is the time between the two rising edges, and the duty cycle of the parent diode is turned off. The AC three-pole opens the responsibility cycle (1 • closes the duty cycle). You can use - progressive = to output the current setpoints of the LEDs, and this function may be, ♦ the number of clocks and progressive functions can be used by those skilled in the art to understand the microprocessor or The microcontroller is implemented. 35 201129253 This solution will also allow the system to be designed for use in dimmable applications with universal power inputs (for example, AC supply voltages from 90 V to 240 V) for use in In countries with different AC voltages. Since the source intensity control value is dependent on the time delay value rather than the voltage value, the value of the input voltage and the resulting average load voltage will not change as a function of the AC supply voltage. This makes it possible to use a single design throughout the world, thereby reducing manufacturing costs due to larger economies of scale. The hysteresis and minimum current 'closed' switch dimming 1 § acts as the same series capacitor when set to the minimum value (ie, the source is off). The Ac current flows through this "capacitor" and charges the DC side of the rectifier in the led driver circuit. This may be sufficient to activate the controller wafer in the led driver circuit after a short period of time. This may cause the LEDs to flash briefly, thus discharging the „玄D C link. Then it will be said that an insufficient voltage is detected, the controller will switch off and the cycle will start again. To prevent this unwanted flash, the current control circuit may have some kind of positive feedback to create hysteresis. In this manner, the current controller will receive a zero set point until the average input voltage exceeds a certain limit. The current set point is then switched to a low value (for example, about 3 mA). By turning the dimmer knob back to a lower set point, the LED current can then drop (for example, to about 10 mA). Therefore, at this low dimmer setting, the LED T can be turned on or off depending on the previous dimmer setting. 36 8 201129253 Preferably, there is a minimum current flowing through the LEDs to avoid near-no load (ie, low dimmer setting) because the dimmer circuits are mutually

作用二關係造成照明免度變化。在靠近無負載處,該LED 驅動器電路中的整流器的DC側的電壓會因為該調光器裡 面的LC丨慮波ϋ (舉例來說,圖丨的調光器電路中所包含的 電感器L1以及電容器C2)的關係而有提高的傾向。此電壓The role of the relationship causes the illumination to change. Near no load, the voltage on the DC side of the rectifier in the LED driver circuit is due to the LC ripple in the dimmer (for example, the inductor L1 included in the dimmer circuit of Figure 丨) As well as the relationship of the capacitor C2), there is a tendency to improve. This voltage

提高的結果會拉高所測得的平均負載電壓,其會導致[ED 電流上升。電流上升將會降低DC電壓而且LED電流會再 度下降。結果係,LED電流會產生振盘。藉由讓led電流 保持在-最小數值(通常至少5mA)處或之上,便能夠避免發 生此問題。當調光器交流三極體的擊發角度趨近18〇度時, 該電路將會停止運作並且會造成突衝模式。不過,因為磁 滞的關係,將不會產生任何的光’這與白熱光燈泡的作用 雷同。 在圖1〇中所示的實施例中藉由加入電阻器R30與R31 以及電容器C17便可以施行該磁滞與最小電流如圖a中 所示。1130與R23會創造—條以放大器υί2為中心的正回 授。當該等LED被控制時,U12的輸出約為2.5v;當該等 led為關閉時,U12的輸出約為8V。因此,在節點24處將 會出現約10mV的磁滞。最小電流則會取決於此磁滞以及將 參考點24從接地處向上拉起之跨越Ql〇(圖中並未顯勺的 電阻器。當s亥等LED為關閉且該參考點24往上攀升時, U! 2會在⑴2的-input上升至+input之上時立刻雙手態觸變,。 在雙態觸變之後,Ut會降至約1〇mV,從而會將該設定 37 201129253The increased result will increase the measured average load voltage, which will cause the [ED current to rise. A rise in current will lower the DC voltage and the LED current will drop again. As a result, the LED current produces a vibrating plate. This problem can be avoided by keeping the LED current at or above the minimum value (usually at least 5 mA). When the firing angle of the dimmer's AC triode approaches 18 degrees, the circuit will stop functioning and cause a burst mode. However, because of the hysteresis, no light will be produced. This is similar to the effect of a white hot light bulb. This hysteresis and minimum current can be performed by adding resistors R30 and R31 and capacitor C17 in the embodiment shown in Figure 1A as shown in Figure a. The 1130 and R23 will create a positive feedback centered on the amplifier υί2. When the LEDs are controlled, the output of U12 is approximately 2.5V; when the LEDs are off, the output of U12 is approximately 8V. Therefore, a hysteresis of about 10 mV will occur at node 24. The minimum current will depend on this hysteresis and the pull-up of the reference point 24 from the ground up across Ql〇 (the resistor not shown in the figure. When the LED is off and the reference point 24 goes up) When U! 2 will change the hands-on state of (1)2 when the -input rises above +input, after the two-state thixotropic, Ut will drop to about 1〇mV, which will set the setting 37 201129253

點提商約10mV/R24=30mA。合宜的數值如下:R3〇 = 1 2M Ω ’ R31=4.7kD,以及 Cl7 = l〇nF。 過電流與電流不足保護 LED驅動器的二次電路較佳的係會被設計成用以充當 僅介於特疋極限值之間(舉例來說,介於8 ·3 v與1 7.3 V之間) 的電流源,並且使用此範圍以外的電壓控制。當LED的電 流设定點為零時,該驅動器電路應該仍然有功能。為達成 此目的,該驅動器電路輸出因而會係電壓受控,以防止該 反驰式控制器晶片發生電壓不足鎖死 (under-v〇ltage-l〇ckout)。對於在電流控制極限值之上的電壓 來說,倘若該等LED中斷連接或是發生開路故障的話,該 驅動器電路還會進入電壓控制模式之中,以防止該電路中 發生過電壓(尤其是該驅動器電路的一次側的功率電晶 體)。該等電流控制極限值能夠藉由電阻器數值來設定並且 運用該參考電壓晶片達成非常低的公差。由於特定反馳式 控制器晶片中内建過電壓保護的公差太高的關係,較佳的 係不要使用。 因此,本文已經參考上文討論的特定實施例說明過本 發明。其中一實施例中的元件與組件皆可以配合其它實施 例來使用。雖然上面所述的實施例包含一 DTC ;不過,亦 可以省略。再者’要明白的係,在各種實施例内文中於上 面所述的驅動器電路或設定點濾波器電路的各項功能皆可 從該些實施例中被省略或者被併入其它實施例之中。 應該理解的係,本文所述的實施例容許有熟習本技術 38 201129253 的人士所熟知的各種修正及替代形式。舉例來說可以不 使用具有一全波整流器(如交流二極體整流器橋)的,取 而代之的係,可以使用具有—半波整流器的兩^ 。在 後面的情況中,其中一個DTC會用於該Ac電流的其中一 個方向中,而另一個DTC則會用在相反的方向中。本文所 述的電路可以利用雙極電晶體或是M〇SFET或是其它類型 7切換元件來設計。要注意的係,「基極」、「集極」與 「射極」以及「閘極」、「汲極J與「源極」應該被廣泛 解釋不僅/、和雙極電晶體或FET相關聯,亦和其它類型 電曰曰體有類似的關聯。再者,本文雖然已經針對一照明系 、先說明過本發明;不過,本發明亦可能和用於其它類型應 用的電路有關。 【圖式簡單說明】 圖1概略地顯示被連接至—白熱燈泡的習知調光器; 圖2A所不的係跨越一調光器電路的AC供應電壓的範 例波形關係圖; ^圖2B與2C所示的係在不同調光器設定點處跨越該調 光器負載的電壓的範例波形關係圖; 圖3所示的係根據本發明一實施例的照明系統的略示 圖其包3 一被連接至一 LED光源的調光器觸發電路; 圖4所示的係根據本發明一實施例使用在一照明系統 中的調光器觸發電路的額外細節的略示圖; 圖5所示的係一調光器觸發電路的另一實施例的略示 圖; 39 201129253 圖6所示的係一調光考縮恭册 Π尤盗觸發電路的一實施例的 路圖, 圖7A所示的係圖6的調光 壓-電流行為關係圖; 圖7B所丁的係包括一微處理器的調光器觸發電路的 實施例的終端之間的電壓·電流行為關係圖; 簡化電 器觸發電路的終端之間的電 圊8所不的係一設定點濾波 器電路的一實施例的簡化 電路圖; 圖9A所不的係有兩個斜率的已 例的關係圖; 圖9B所示的係近似一指數響 的範例的關係圖; 圖10所示的係一LED驅動 的簡化電路圖; 圖11A所示的係當調光器交流三極體電流在該交流三 極體的保持電流之上_ & $ I , <上時的凋先益輸出電壓的範例的關係 圖;以及 圖11B所不的係當調光器交流三極體電流為不連續或 疋在。亥交机一極體的保肖電流之下時的言周光器輸出電壓的 範例的關係圖。 【主要元件符號說明】 1 :調光器 3 :負載 10 :調光器系統 調整設定點之變化的範 應的已調整設定點之變化 器電路的一實施例的二次側 ⑧ 40 201129253 1 2 :調光器觸發電路 13 : LED電路 15 :電壓位準偵測器 1 7、1 8 :電流源電路 1 9 :整流器 20 :設定點濾波器電路 2 1 :調光器設定點數值 22 :低通濾波器 2 3 :中間之設定點數值 24 :經調整之設定,點數值 25 : LED驅動器電路 2 6 :電壓控制器電路 27 :電流控制器電路 3 1 :低爬升率範圍部分 32 :高爬升率範圍部分 34 :低設定點數值範圍部分 3 5 :高設定點數值範圍部分 36 :指數響應The point is about 10mV/R24=30mA. The appropriate values are as follows: R3 〇 = 1 2M Ω ′ R31 = 4.7kD, and Cl7 = l〇nF. The secondary circuit that protects the LED driver from overcurrent and undercurrent is preferably designed to act only between the characteristic limits (for example, between 8 · 3 v and 1 7.3 V) Current source and use voltage control outside this range. When the current set point of the LED is zero, the driver circuit should still be functional. To achieve this, the driver circuit output is thus voltage controlled to prevent under-v〇ltage-l〇ckout of the flyback controller chip. For voltages above the current control limit, if the LEDs are disconnected or an open circuit fault occurs, the driver circuit also enters a voltage control mode to prevent overvoltages in the circuit (especially The power transistor of the primary side of the driver circuit). These current control limits can be set by resistor values and the reference voltage chip is used to achieve very low tolerances. Since the tolerance of the built-in overvoltage protection in the specific flyback controller chip is too high, it is better not to use it. Thus, the invention has been described herein with reference to the specific embodiments discussed above. The components and components of one of the embodiments can be used in conjunction with other embodiments. Although the embodiment described above includes a DTC; however, it may be omitted. Furthermore, it is to be understood that various functions of the driver circuit or setpoint filter circuit described above in various embodiments may be omitted from these embodiments or incorporated into other embodiments. . It should be understood that the embodiments described herein allow for various modifications and alternative forms that are well known to those skilled in the art. For example, instead of using a full-wave rectifier (such as an AC diode rectifier bridge), a two-wave rectifier with a half-wave rectifier can be used instead. In the latter case, one of the DTCs will be used in one of the Ac currents and the other DTC will be used in the opposite direction. The circuits described herein can be designed using bipolar transistors or M〇SFETs or other types of switching elements. It should be noted that "base", "collector" and "emitter" and "gate", "bungee J and "source" should be widely interpreted not only / and bipolar transistors or FETs are associated It also has a similar relationship with other types of electric carcasses. Furthermore, although the invention has been described herein with respect to a lighting system; however, the invention may also be related to circuits for other types of applications. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 schematically shows a conventional dimmer connected to an incandescent bulb; FIG. 2A is an exemplary waveform diagram of an AC supply voltage across a dimmer circuit; FIG. 2B and FIG. 2C is an exemplary waveform diagram of voltages across the dimmer load at different dimmer setting points; FIG. 3 is a schematic illustration of an illumination system in accordance with an embodiment of the present invention. A dimmer trigger circuit connected to an LED light source; FIG. 4 is a schematic illustration of additional details of a dimmer trigger circuit used in an illumination system in accordance with an embodiment of the present invention; A schematic diagram of another embodiment of a dimmer trigger circuit; 39 201129253 FIG. 6 is a road diagram of an embodiment of a dimming test, the thief trigger circuit, shown in FIG. 7A Figure 6 is a diagram showing the relationship between the voltage and current behavior of the terminal of the embodiment of the dimmer trigger circuit of a microprocessor; Setpoint filtering is not performed between the terminals A simplified circuit diagram of an embodiment of the circuit; FIG. 9A is a diagram showing a relationship of two slopes; FIG. 9B is a diagram showing an example of an approximate index; FIG. Simplified circuit diagram of the driving; Figure 11A shows an example of the output voltage of the dimmer when the dimmer current of the dimmer is above the holding current of the alternating current body _ & $ I , < The relationship diagram; and Figure 11B is not when the dimmer AC triode current is discontinuous or squatting. A diagram showing an example of the output voltage of the illuminator when the head of the hoist is under the shield current. [Description of main component symbols] 1 : Dimmer 3: Load 10: The secondary side of an embodiment of the variator circuit of the adjusted set point of the dimming system adjustment setpoint change 8 40 201129253 1 2 : Dimmer trigger circuit 13 : LED circuit 15 : Voltage level detector 1 7 , 1 8 : Current source circuit 1 9 : Rectifier 20 : Set point filter circuit 2 1 : Dimmer set point value 22 : Low Pass filter 2 3 : intermediate set point value 24 : adjusted setting, point value 25 : LED driver circuit 2 6 : voltage controller circuit 27 : current controller circuit 3 1 : low climb rate range part 32 : high climb Rate Range Section 34: Low Setpoint Value Range Section 3 5: High Setpoint Value Range Section 36: Exponential Response

Cl,C2 :電容 C10〜C17 電容 D 1,D 1 0 :交流二極體 L1 :電感Cl, C2: Capacitor C10~C17 Capacitor D 1, D 1 0 : AC diode L1 : Inductance

LED1 〜4 : LED Q1〜Q3 : NPN電晶體 41 201129253 Q10 :電晶體 R1〜R5 :電阻 R10〜R26 :電阻 R28, R30, R31 :電阻 SP1 :實際之調光器設定 SP2 :調整之調光器設定 Τ1~Τ7 :終端 Τ1 0 :變壓器 TR1 :交流三極體 U10 :差分放大器 U11 :並聯穩壓器 U12 :放大器 U13 :光耦合器 V1 :直流電壓源 Vref ··參考電壓 42LED1~4: LED Q1~Q3: NPN transistor 41 201129253 Q10: transistor R1~R5: resistor R10~R26: resistor R28, R30, R31: resistor SP1: actual dimmer setting SP2: adjusted dimmer Setting Τ1~Τ7: Terminal Τ1 0: Transformer TR1: AC triode U10: Differential amplifier U11: Shunt regulator U12: Amplifier U13: Optocoupler V1: DC voltage source Vref · Reference voltage 42

Claims (1)

201129253 七、申請專利範圍: i 種配合一調光器電路(1)來操作的照明系統,該調 光器电路(1)包括一被連接至一負載的交流三極體(TR1),該 負載包括—用以供應電流給一包括一或多個LED(LED 1至 4)的光源之驅動器電路,該電流係至少部分取決於一已調整 °又定點數值,該系統進一步包括一設定點濾波器電路(20), 用以取得—至少部分取決於該調光器電路(1)的一設定之調 光益設定點數值(21),並且用以產生一已調整設定點數值 (24)其中该已調整設定點數值相對於該調光器設定點數值 變化的靈敏度在該調光器設定點數值的低數值處是低的。 2.如申請專利範圍第1項的照明系統,其中該設定點濾 波益電路係配置以在該調光器設定點數值的低數值處以較 低速率(3 1)提〶②已調整設定點’並且在該調光器設定點數 值的南數值處以較高速率(32)提高該已調整設定點。 3 ·如申請專利範圍第2頊的照明系統,其中該已調整設 定點數值回應該調光器設定點數值變化所產生的變動係近 似一指數響應(36)。 4’如申請專利範圍第1至3項中任-項的照明系統,其 中d »又定點;慮波器電路係在小於該調光器設定點數值的整 個範圍中產生s亥已調整設定點數值的整個範圍。 5’士申。月專利範圍第1至3項中任一項的照明系統,其 中d »又疋點濾波器電路係產生一具有最小數值大於零 的已調整設定點數值。 6·如申°月專利範圍第1至3項中任-項的照明系統,其 43 201129253 中該設定點濾波器電路係 罢 电叫係配置成以下面方式來產生該已調 t β又,點.在3玄e周光态設定點數值的一第一部分範圍中具 有第實負不邊的數值(34),在該調光器設定點數值的- 第- β刀範圍中以-低速率(3 i)提高,在該調光器設定點數 值的帛二部分圍中以_高速率(32)提高,以及在該調光 器設定點數值的一第四部分範圍中具有一第二實質不變的 數值(35)。 7. 如申明專利範圍第i至3項中任一項的照明系統,其 中該設定點遽波器電路(2〇)係包含一第二階或是更高階用 以過濾該已接收的調光器設定點數值(21)之低通濾波器 (22)。 8. 如申清專利範圍第!至3項中任一項的照明系統,其 中該設定點濾波器電路(20)係包括一產生一中間設定點數 值(23)的差動放大器(υι〇),其係控制一電晶體(Ql〇)以產生 該已調整設定點數值(24)。 9. 如申請專利範圍第{項的照明系統,其中該驅動器電 路包括一電壓控制電路(26)以及一電流控制電路(27),其中 該電塵控制電路係根據一電壓設定點來控制在該驅動器電 路之一輸出處的該電壓,且該電流控制電路係根據一電流 設定點來修正該電壓設定點。 I 〇.如申請專利範圍第9項的照明系統,其令該電流控 制電路係操作在一預設的範圍内’當該電流控制電路處於 其操作範圍的一邊界時’該電壓設定點係保持在一邊界值。 II ·如申請專利範圍第1至3項中任一項的照明系統, 201129253 ::二;::又點濾波器電路係從該調光器電路(1)的-輸出終 而()處的-電壓取得該調光器設定點數值。 ,㈣。」申3 “利範圍帛1項的照明系統,其中該設定點 濾波益電路係從号r 士 〇 周先益交流三極體(TRi)的一擊發角度導 出忒凋光器設定點數值。 一 13·如申請專利範圍第12項的照明系統,其進一步包括 -用以觸發該調光器交流三極體(TR1)的調光器觸發電路 (12)。且其中该調光器設定點數值係至少部分取決於流經— 调光器觸發雷技沾_ , 一 ^ 電&amp;的一或多個上升緣及/或下降緣的 出見時間’或是-和該上升緣與下降緣有關的電壓。 一 申吻專利範圍第1 3項的照明系統,其中該調光器 -X疋點數值係至少部分取決於一介於流經一調光器觸發電 路的電&quot;IL的一上升緣與一下降緣之間的時間延遲,或是 一和該上升緣與下降緣有關的電壓。 I5.如申請專利範圍第12項的照明系統,其中該設定點 慮波益電路係從—介於—供應器電壓的—零值跨越點及在 該零值跨越點之後該交流三極體的一第一觸發點之間的時 間延遲來導出該調光器設定點數值。 16. 如申請專利範圍第15項的照明系統,其進一步包括 一用於觸發該調光器交流三極體(TR1)的調光器觸發電路 ()且’、中°亥5周光器设定點數值係至少部分取決於流經一 。周光器觸發電路的一電流的一或多個上升緣及/或下降緣的 一出現時間,或是一和該上升緣與下降緣有關的電壓。 17. 如申請專利範圍第16項的照明系統,其中該調光 45 201129253 調光器觸發 間延遲,或 器設定點數值係至少部分取決於—介於流經— 電路的-電流的一上升緣與一下降緣之間的時 是一和該上升緣與下降緣有關的電壓。 18. 如申請專利範圍第丨至3 月丫饮項的照明系統, 其中在該調光器交流三極體(丁R ' J局導通時该流經該調光器 电路⑴的電流係低於該調光器交流三極體的—保持電“ 19. 如申請專利範圍第i項的照明系統,其進—步:括 -用以觸發該調光器交流三極體(TR1)的調光器觸‘電路 ⑴),該調光器觸發電路係包括:一用以積測該調光器觸發 電路的-輸人電虔是否低於—臨界數值之電壓位準福測器 05),;以及一用以在該電壓位準偵測器所偵測到的該電壓 低於該臨界數值時提m,否則係禁能之雙極電流源 電路(17)。 20.如申請專利範圍第19項的照明系統其中,該流經 該調光器觸發電路(12)的最大電流係低於該調光器交流三 極體(TR1)的一保持電流。 2 1 ·如申π專利範圍第丨9項的照明系統,其中當該調光 器又训·一極體(TR1)為導通時,該流經該調光器觸發電路(丨2) 的電流係低於該交流三極體的一保持電流。 22·如申請專利範圍第1 9項的照明系統,其中當該調光 器交流二極體(TR1)為關閉時,該流經該調光器觸發電路(12) 的電流係低於該交流三極體的一保持電流。 23.如申請專利範圍第19項的照明系統,其中該調光器 觸發電路在操作中消耗的平均功率小於1〇〇mW。 46 201129253 24· —種使用在一照明系統之中的設定點濾波器電路 (20),該照明系統包括一交流三極體調光器電路(丨)、一包括 一或多個LED的光源及一用於供應電流給一或多個 LED(LED 1至4)的驅動器電路,該電流係至少部分取決於 一已調整设疋點數值,..該設定點遽波器電路包括: 一輸入電路,用以取得一至少部分取決於該調光器電 路(1)的一設定值的調光器設定點數值(21);以及 一調整電路,用以產生一已調整設定點數值(24),其中 該已調整設定點數值相對於該調光器設定點數值變化的靈 敏度在該調光器設定點數值的低數值處是低的。 25·如申請專利範圍第24項的設定點濾波器電路,其 中,該已調整設定點數值回應該調光器設定點數值變化所 產生的變動係近似一指數響應(35)。 26. 如申請專利範圍第24項的設定點濾波器電路,其 中,忒已s周整設定點在該調光器設定點數值的低數值處係 以較低速率(3 1)提高,而在該調光器設定點數值的高數值處 係以較高速率(32)提高。 27. 如申3月專利範圍第26項的設定點遽波器電路,其 中,其中,該已調整設定點數值回應該調光器設定點數值 隻化所產生的變動係近似於一指數響應(35)。 28. 如申睛專利範圍第24至27項中任一項的設定點濾 波器電路,其中該調整電路係在小於該調光器設定點數值 的整個範圍中產生該已調整設定點數值的整個範圍。 29. 如申請專利範圍第24至27項中任一項的設定點濾 47 201129253 ;皮盗電路,其中該調整電路係產生一具有一最小數值⑽ 大於零的已調整設定點數值。 抑3〇.如申請專利範圍第24至27項中任一項的設定點濾 ;皮器電路’其中該輸入電路包括一第二階或是更高階用以 過濾该已接收的調光器設定點數值(2丨)之低通濾波器(22)。 3 1.如申請專利範圍第24至27項中任一項的設定點濾 波器電路,其中該調整電路係包括一用以產生一中間設定 點數值(23)的差動放大器(ul〇),其係控制一電晶體(Q1〇)以 產生该已調整設定點數值(24)。 32. 如申請專利範圍第24至27項中任一項的設定點濾 波盗電路’其中該調光器設定點數值係從該調光器電路(1) 的一輸出終端(T2)處的一電壓中導出。 33. 如申請專利範圍第24項的設定點濾波器電路,其中 该调光器設定點數值係從該調光器交流三極體的一擊 發角度導出。 3 4 ·如申請專利範圍第3 3項的設定點濾波器電路,其中 該调光器設定點數值係從一介於一供應器電壓的一零值跨 越點及在該零值跨越點之後該交流三極體的一第一觸發點 之間的時間延遲所導出。 35. —種配合一包括一交流三極體(TR1)的調光器電路 (1)來操作的照明系統,該系統包括一包含一或多個led之 光源、一包括一用以觸發該調光器交流三極體的調光器觸 發電路(12)之負載以及一用以供應一電流給該一或多個 LED(LED 1至4)之驅動器電路,其中由該驅動器電路供應 48 201129253 兮:電系至;部分取決於一調光器設定點數值,且立中 該調光器設定點數值# /、 -擊發角度處所導出部分從該調光器交流三極體的 設定:·: : f:利範圍第3 5項的照明系統,其中該調光器 •'‘ 少、部分取決於流經一調光器觸發電路的-電 川L的一或多個上井 升緣及/或下降緣的一出現時間,或是一和 該上升緣與下降緣有關的電壓。 3 7.如申請專利範圍第3 6項的照明系統,其 設定點數值至少邮八&amp; 4 /、甲忒凋九态 的一雷、出的一 〇刀、於一介於流經—調光器觸發電路 …机、一上升緣與—下降緣之間的時 和該上升緣與下降緣有關的電壓。 遲或疋 電路::申:專利範圍第35項的照明系統,其中該驅動器 = 於—供應器電壓的-零值跨越點及在該零值 =之後該交流三極體的一第一觸發點之間的時間延遲 處來導出該調光器設定點數值。 —39.如申請專利範圍第38項的照明系統,其中該調光器 :又疋點數值係至少部分取決於流經一調光器觸發電路的一 '或夕個上升緣及/或下降緣的一出現時間,或是一 和該上升緣與下降緣有關的電壓。 〜40.如申請專利範圍第39項的照明系統,其中,該調光 :。又疋點數值係至少部分取決於一介於流經一調光器觸發 g的電&quot;IL的一上升緣與一下降緣之間的時間延遲,或 疋和$上升緣與下降緣有關的電壓。 &amp;如申請專利範_35項的照明系統,其中該驅動器 49 201129253 電路包括一電屡控制電路(26)以及一電流控制電路(27),其 中s亥電壓控制電路係根據一電壓設定點來控制該驅動器電 路之一輸出處的電壓’且該電流控制電路係根據一電流設 定點來修正該電壓設定點。 42. 如申請專利範圍第41項的照明系統,其中該電流控 制電路係操作在一預設的範圍内,當該電流控制電路處於 其操作範圍的一邊界時,該電壓設定點係保持在一邊界值。 43. 如申請專利範圍第35至40項中任一項的照明系 統,其中當該調光器交流三極體(TR1)為導通時,該流經該 調光器電路(1)的電流係低於該調光器交流三極體的一保持 電流。 44·如申請專利範圍第35至40項中任一項的照明系 統’其中該調光器觸發電路包括:一用以偵測該調光器觸 發電路的一輸入電壓是否低於一臨界數值之電壓位準偵測 器(15);以及一用以在該電壓位準偵測器所偵測到的電壓低 於該臨界數值時提供一電流,否則係禁能之雙極電流源電 路(17)。 4 5.如申§青專利範圍第3 5至4 0項中任一項的照明系 統’其中該流經該調光器觸發電路(丨2)的最大電流係低於該 調光器交流三極體(TR1)的一保持電流。 46.如申§青專利範圍第35至40項中任一項的照明系 統’其中當該調光器交流三極體(TR1)為導通時,該流經該 調光器觸發電路(12)的電流係低於該交流三極體的一保持 電流。 50 201129253 47.如申請專利範圍第35至40項 你―項的昭Β日么 統’其中當該調光器交流三極體(1111)為關閉時 …、月糸 調光器觸發電路(12)的電流係低於該交、a _ 、,该流經該 n 乂机二極體的—保持 48.如申請專利範圍第35至40項Φ紅 系 於 1壬—項的照明 統’其中該調光器觸發電路在操作中消耗 J十均功率小 100mW。 49. 如申請專利範圍第35項的照明系統,其進一步包括 一用以從該調光器.設定點數值(21)處產生一 =^ 匕調整设定點 數值(24)之設定點濾波器電路(2〇),其中該已調整設定點數 值相對於該調光器設定點數值變化的靈敏度在該調光器設 定點數值的低數值處是低的。 50. 如申請專利範圍第49項的照明系統,其中該已調整 設定點數值回應該調光器設定點數值變化所產生的變動係 近似一指數響應(36)。 5 1.如申β青專利範圍第4 9項的照明系統,其中該設定點 遽波器電路係配置以在該調光器設定點數值的低數值處以 較低速率(3 1)提高該已調整設定點,並且在該調光器設定點 數值的高數值處以較高速率(32)提高該已調整設定點。 52.如申請專利範圍第5 1項的照明系統,其中該已調整 §史定點數值回應該調光器設定點數值變化所產生的變動係 近似一指數響應(36)。 53.如申請專利範圍第49至52項中任一項的照明系 統’其中該設定點濾波器電路係在小於該調光器設定點數 51 201129253 值的整個範圍中產生該已調整設定點數值的整個範圍。 54·如申响專利範圍第49至52項中任一項的照明系 統,其中該設定點濾波器電路係產生一具有一最小數值(34) 大於零的已調整設定點數值。 5 5 ·如申叫專利範圍第4 9至5 2項中任一項的照明系 統,其中該設定點濾波器電路係配置成以下列方式來產生 邊已調整設定點:在該調光器設定點數值的一第一部分範 圍中具有—卜實質不變的數值⑽,在該調光器設定點數 值的一第二部分範圍中以低速率(31)提高,在該調光器設定 點,值的-第三部分範圍中以高速率(32)提高,以及在該調 光器設定點數值的-第四部分範圍中具有_第:實質不變 的數值(35)。 6.種配。包括—交流三極體之調光器電路 ⑴來操作的照明系統,該系統包括:―包括—或多個咖 之先源及-包括—用以觸發該調光器交流三 觸發電路(12)之負载,以及一 71九盗 LED(LED U4)之驅動 ^電亥—或多個 %勖态電路,該驅動器電路包括一 因子改正電路,苴由士〜刀千 /、中由垓驅動器電路供應的該電 =r:調光器設定點數值,該調光器設定點= 乂刀心》周“父流三極體的—擊發角度所導出。 八、圖式: (如次頁) 52201129253 VII. Patent application scope: i is an illumination system operated by a dimmer circuit (1), the dimmer circuit (1) comprising an AC triode (TR1) connected to a load, the load Included - a driver circuit for supplying current to a light source comprising one or more LEDs (LEDs 1 to 4), the current system being at least partially dependent on an adjusted and fixed point value, the system further comprising a set point filter a circuit (20) for obtaining - at least in part dependent on a set dimming set point value (21) of the dimmer circuit (1), and for generating an adjusted set point value (24) wherein The sensitivity of the adjusted setpoint value relative to the dimmer setpoint value change is low at the low value of the dimmer setpoint value. 2. The illumination system of claim 1, wherein the set point filter circuit is configured to provide a 2 set adjusted point at a lower rate (3 1) at a lower value of the dimmer set point value. And the adjusted set point is increased at a higher rate (32) at the south value of the dimmer setpoint value. 3 • The illumination system of claim 2, wherein the adjusted set point value corresponds to a change in the value of the dimmer set point value that is approximately an exponential response (36). 4 'A lighting system as claimed in any of claims 1 to 3, wherein d » is again fixed; the filter circuit produces an adjusted set point over the entire range of values less than the dimmer set point value The entire range of values. 5' Shishen. The illumination system of any of clauses 1 to 3, wherein the d»and the point filter circuit produces an adjusted set point value having a minimum value greater than zero. 6. The illumination system of any one of items 1 to 3 of the patent scope of the invention, wherein the set point filter circuit is configured to generate the adjusted t β in the following manner. Point. In the first part of the value of the set point value of the 3 Xuan e, there is a value of the real negative side (34), at the low rate of the - β knife range of the value of the set value of the dimmer (3 i) increasing, increasing at a high rate (32) in the second portion of the dimmer setting point value, and having a second substance in a fourth portion of the dimmer setting point value Constant value (35). 7. The illumination system of any of clauses ii to 3, wherein the set point chopper circuit (2〇) comprises a second order or higher order to filter the received dimming Set the low-pass filter (22) for the point value (21). 8. If the scope of patents is clear! The illumination system of any of the preceding claims, wherein the setpoint filter circuit (20) comprises a differential amplifier (υι〇) that produces an intermediate setpoint value (23) that controls a transistor (Ql) 〇) to generate the adjusted set point value (24). 9. The illumination system of claim 5, wherein the driver circuit comprises a voltage control circuit (26) and a current control circuit (27), wherein the dust control circuit is controlled according to a voltage set point The voltage at one of the output of the driver circuit, and the current control circuit corrects the voltage set point based on a current set point. I. The illumination system of claim 9, wherein the current control circuit is operated within a predetermined range 'when the current control circuit is at a boundary of its operating range', the voltage set point is maintained At a boundary value. II. Illumination system according to any one of claims 1 to 3, 201129253::2;:: a point-and-point filter circuit from the output of the dimmer circuit (1) - The voltage takes the dimmer setpoint value. (4). Shen 3 “The lighting system with a range of 帛1, in which the set point filter benefit circuit derives the value of the 忒 hammer set point from a firing angle of the number r 〇 Zhou Xianyi AC triode (TRi). The illumination system of claim 12, further comprising: a dimmer trigger circuit (12) for triggering the dimmer AC triode (TR1), and wherein the dimmer set point value is at least Depending in part on the flow - the dimmer triggers the lightning strike, the output time of one or more rising and/or falling edges of the electric &amp; and / and the voltage associated with the rising and falling edges A lighting system of the third aspect of the patent, wherein the value of the dimmer-X疋 point depends at least in part on a rising edge of the electric &quot;IL flowing through a dimmer trigger circuit a time delay between the falling edges, or a voltage associated with the rising edge and the falling edge. I5. The lighting system of claim 12, wherein the set point wave benefit circuit is from-to-supply Voltage-zero crossing point and across the zero value The time delay between a first trigger point of the AC triode to derive the dimmer setpoint value. 16. The illumination system of claim 15 further comprising a trigger for the adjustment The dimmer trigger circuit () of the optical AC triode (TR1) and the value of the ', ° ° 5 illuminator set point is dependent at least in part on the flow through one. One or more rises in a current of the cyclotron trigger circuit An occurrence time of the edge and/or the falling edge, or a voltage associated with the rising edge and the falling edge. 17. The illumination system of claim 16, wherein the dimming 45 201129253 dimmer trigger delay The value of the or set point is at least partially dependent on the voltage between the rising edge and the falling edge of the current flowing through the circuit and the voltage associated with the rising edge and the falling edge. The illumination system of the sip item from the third to the third month of the patent, wherein the current flowing through the dimmer circuit (1) is lower than the dimmer when the dimmer is turned on. AC triode - keep electricity 19. The illumination system of claim i, wherein the illumination step comprises: a dimmer contact 'circuit (1)) for triggering the dimmer alternating current transistor (TR1), the dimmer trigger circuit The system includes: a voltage level detector 05 for accumulating the trigger circuit of the dimmer, whether the input power is lower than a threshold value, and a method for detecting the voltage level in the voltage level detector When the detected voltage is lower than the critical value, m is raised, otherwise the disabled bipolar current source circuit (17) is disabled. 20. The illumination system of claim 19, wherein the maximum current flowing through the dimmer trigger circuit (12) is lower than a holding current of the dimmer AC triode (TR1). 2 1 · The lighting system of the ninth patent of the π patent scope, wherein the current flowing through the dimmer trigger circuit (丨2) when the dimmer is controlled to be turned on (TR1) It is a holding current lower than the AC triode. 22. The illumination system of claim 19, wherein when the dimmer AC (TR1) is off, the current flowing through the dimmer trigger circuit (12) is lower than the AC A holding current of the triode. 23. The illumination system of claim 19, wherein the dimmer trigger circuit consumes less than 1 〇〇mW of average power during operation. 46 201129253 24 - a set point filter circuit (20) used in an illumination system, the illumination system comprising an AC triode dimmer circuit (丨), a light source comprising one or more LEDs a driver circuit for supplying current to one or more LEDs (LEDs 1 to 4), the current being dependent at least in part on an adjusted setpoint value, the setpoint chopper circuit comprising: an input circuit a dimmer setpoint value (21) at least partially dependent on a set value of the dimmer circuit (1); and an adjustment circuit for generating an adjusted set point value (24), The sensitivity of the adjusted setpoint value relative to the value of the dimmer setpoint value is low at a low value of the dimmer setpoint value. 25. The set point filter circuit of claim 24, wherein the adjusted set point value is a change in the dimmer setting point value resulting in a change that approximates an exponential response (35). 26. The setpoint filter circuit of claim 24, wherein the 设定round set point is increased at a lower rate (3 1) at a lower value of the dimmer set point value, and The high value of the dimmer setpoint value is increased at a higher rate (32). 27. The set point chopper circuit of claim 26, wherein the adjusted set point value is returned to the dimmer set point value only to produce a variation that approximates an exponential response ( 35). 28. The setpoint filter circuit of any one of clauses 24 to 27, wherein the adjustment circuit produces the entire adjusted setpoint value over a range of values less than the dimmer setpoint value. range. 29. A setpoint filter according to any one of claims 24 to 27, wherein the adjustment circuit generates an adjusted setpoint value having a minimum value (10) greater than zero. 3. The set point filter of any one of claims 24 to 27; wherein the input circuit includes a second order or higher to filter the received dimmer setting A low-pass filter (22) with a point value (2 丨). 3. The set point filter circuit of any one of claims 24 to 27, wherein the adjustment circuit comprises a differential amplifier (ul) for generating an intermediate set point value (23), It controls a transistor (Q1〇) to produce the adjusted set point value (24). 32. The set point filter pirate circuit of any one of claims 24 to 27 wherein the dimmer setpoint value is from an output terminal (T2) of the dimmer circuit (1) Exported in voltage. 33. The setpoint filter circuit of claim 24, wherein the dimmer setpoint value is derived from a firing angle of the dimmer AC triode. 3 4 · The set point filter circuit of claim 3, wherein the dimmer set point value is from a zero crossing point between a supply voltage and after the zero crossing point The time delay between a first trigger point of the triode is derived. 35. An illumination system for operation with a dimmer circuit (1) comprising an alternating current triode (TR1), the system comprising a light source comprising one or more LEDs, one comprising a trigger for the adjustment The load of the dimmer trigger circuit (12) of the optical AC triode and a driver circuit for supplying a current to the one or more LEDs (LEDs 1 to 4), wherein the driver circuit is supplied 48 201129253 兮:Electrical system to; partly depends on a dimmer setpoint value, and the dimmer setpoint value # /, - the portion of the output from the firing angle is set from the dimmer AC triode: ·: : f: illumination system of item 35, wherein the dimmer is less, in part dependent on one or more upper wells rising and/or falling through the dimmer trigger circuit The time of occurrence of the edge, or a voltage associated with the rising edge and the falling edge. 3 7. For the illumination system of the patent application No. 36, the set point value is at least 8 &amp; 4 /, a smashing of a scorpion, a slashing knife, and a flow through - dimming The trigger circuit is a voltage between the rising edge and the falling edge and the rising edge and the falling edge. Late or 疋 circuit:: The illumination system of claim 35, wherein the driver = the - zero crossing point of the supplier voltage and a first trigger point of the alternating current body after the zero value = The time delay between the two is used to derive the dimmer setpoint value. 39. The illumination system of claim 38, wherein the dimmer value is further dependent at least in part on a 'or rising edge and/or falling edge of a dimmer trigger circuit. An occurrence time, or a voltage associated with the rising edge and the falling edge. ~40. For example, the illumination system of claim 39, wherein the dimming:. The value of the defect is at least partially dependent on a time delay between a rising edge and a falling edge of the electric current flowing through a dimmer triggering g, or a voltage associated with the rising edge and the falling edge of the rising edge. . &amp; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> <RTIgt; Controlling the voltage at the output of one of the driver circuits' and the current control circuit corrects the voltage set point based on a current set point. 42. The illumination system of claim 41, wherein the current control circuit is operated within a predetermined range, and when the current control circuit is at a boundary of its operating range, the voltage set point is maintained at a Boundary value. 43. The illumination system of any one of claims 35 to 40, wherein the current system flowing through the dimmer circuit (1) when the dimmer AC triode (TR1) is conducting Below a holding current of the dimmer of the dimmer. The illumination system of any one of claims 35 to 40, wherein the dimmer trigger circuit comprises: a detecting whether an input voltage of the dimmer trigger circuit is lower than a critical value a voltage level detector (15); and a bipolar current source circuit for disabling the current when the voltage detected by the voltage level detector is lower than the threshold value (17) ). 4 5. The illumination system of any one of claims 35 to 40 of the claim § wherein the maximum current flowing through the dimmer trigger circuit (丨2) is lower than the dimmer of the dimmer A holding current of the polar body (TR1). 46. The illumination system of any one of claims 35 to 40 wherein the dimmer triode (TR1) is turned on, the dimmer trigger circuit (12) The current is lower than a holding current of the AC triode. 50 201129253 47. If you apply for patent scopes 35 to 40, you will be able to use the dimmer (1111) when the dimmer is turned off..., the moonlight dimmer trigger circuit (12 The current system is lower than the intersection, a _ , and the flow through the n-turner diode - maintain 48. As claimed in the scope of claims 35 to 40 Φ red is in the 1 壬 - item of the lighting system The dimmer trigger circuit consumes J average power of 100 mW in operation. 49. The illumination system of claim 35, further comprising a setpoint filter for generating a =^ 匕 adjustment setpoint value (24) from the dimmer. setpoint value (21) Circuit (2〇), wherein the sensitivity of the adjusted setpoint value relative to the value of the dimmer setpoint value is low at a low value of the dimmer setpoint value. 50. The lighting system of claim 49, wherein the adjusted set point value corresponds to a change in the value of the dimmer set point value that approximates an exponential response (36). 5 1. The illumination system of claim 49, wherein the set point chopper circuit is configured to increase the low rate (3 1) at a low value of the dimmer set point value. The set point is adjusted and the adjusted set point is raised at a higher rate (32) at the high value of the dimmer set point value. 52. The illumination system of claim 51, wherein the adjusted § history value corresponds to a change in the value of the dimmer set point value that approximates an exponential response (36). 53. The illumination system of any one of clauses 49 to 52 wherein the setpoint filter circuit produces the adjusted setpoint value over a range that is less than the dimmer setpoint number 51 201129253 value. The entire range. The illumination system of any one of clauses 49 to 52, wherein the setpoint filter circuit produces an adjusted setpoint value having a minimum value (34) greater than zero. 5 5 5. The illumination system of any of claims 4-9 to 5, wherein the setpoint filter circuit is configured to generate an edge adjusted set point in the following manner: in the dimmer setting A value (10) having a substantially constant value in a first partial range of the point value is increased at a low rate (31) in a second portion of the dimmer setpoint value at the dimmer set point, the value The third part of the range is increased at a high rate (32) and has a _th: substantially constant value (35) in the -fourth part of the dimmer setpoint value. 6. Seeding. An illumination system comprising a dimmer circuit (1) for operating an AC triode, the system comprising: - including - or a plurality of coffee sources and - comprising - for triggering the dimmer AC tri-trigger circuit (12) The load, and the driving of a 71-stolen LED (LED U4) ^ electric hai - or a plurality of % 电路 state circuit, the driver circuit includes a factor correction circuit, which is supplied by the 〜 刀 knife / /, 中 垓 driver circuit The electric=r: dimmer setpoint value, the dimmer setpoint = 乂刀心周" parent flow triode - the firing angle is derived. Eight, schema: (such as the next page) 52
TW099134165A 2009-10-07 2010-10-07 Dimmable lighting system TW201129253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US24948309P true 2009-10-07 2009-10-07

Publications (1)

Publication Number Publication Date
TW201129253A true TW201129253A (en) 2011-08-16

Family

ID=43304213

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099134165A TW201129253A (en) 2009-10-07 2010-10-07 Dimmable lighting system

Country Status (7)

Country Link
EP (1) EP2486776A2 (en)
JP (3) JP5935063B2 (en)
KR (1) KR20120082912A (en)
CN (1) CN102648664B (en)
GB (1) GB2475127A (en)
TW (1) TW201129253A (en)
WO (1) WO2011042510A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104052953A (en) * 2014-06-16 2014-09-17 苏州佳世达电通有限公司 Display and control method thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8179058B1 (en) * 2011-05-13 2012-05-15 Lumenpulse Lighting, Inc. Determine a setting of a TRIAC dimmer through induced relaxation oscillation
CN104115560B (en) 2012-02-01 2017-12-26 飞利浦照明控股有限公司 Actuator device and the driving method for driving the especially load of LED unit
EP3716734B1 (en) * 2012-05-18 2022-01-26 Silergy Semiconductor (Hong Kong) Limited A control circuit for a phase-cut dimmer
JP2013243069A (en) * 2012-05-22 2013-12-05 Shihen Tech Corp Dc power supply device for illumination, and illumination fixture
KR101433160B1 (en) * 2012-10-10 2014-08-26 세영정보통신(주) Block type LED module
EP2741587B1 (en) * 2012-12-04 2017-07-19 Hager Controls SAS Device for varying the intensity of the light in luminous charges
DE112013005846T5 (en) * 2012-12-07 2015-08-20 Panasonic Intellectual Property Management Co., Ltd. Drive circuit, illumination source and illumination assembly
WO2014159456A1 (en) * 2013-03-12 2014-10-02 Power Integrations, Inc. Integrated current controller for maintaining holding current of a dimmer circuit
US9089012B2 (en) 2013-05-24 2015-07-21 Terralux, Inc. Secondary-side sensing of phase-dimming signal
US9648676B2 (en) 2013-11-19 2017-05-09 Power Integrations, Inc. Bleeder circuit emulator for a power converter
JP2020526878A (en) 2017-07-07 2020-08-31 シグニファイ ホールディング ビー ヴィSignify Holding B.V. Lighting driver, lighting circuit, and driving method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0646162B2 (en) * 1986-01-23 1994-06-15 矢崎総業株式会社 Vehicle electronic meter dimming control device
JPH1145785A (en) * 1997-07-28 1999-02-16 Matsushita Electric Works Ltd Dimmer
CN100546418C (en) * 2004-05-19 2009-09-30 高肯集团有限公司 Be used for the light adjusting circuit of LED lighting apparatus and the device that keeps the TRIAC conducting
US7102902B1 (en) * 2005-02-17 2006-09-05 Ledtronics, Inc. Dimmer circuit for LED
JP4744966B2 (en) * 2005-07-26 2011-08-10 パナソニック電工株式会社 DC power supply device for light emitting diode and lighting apparatus using the same
EP1920638B1 (en) * 2005-09-03 2011-08-10 Holdip Limited Improvements to lighting systems
JP2007095635A (en) * 2005-09-30 2007-04-12 Yamaguchi Univ Method and apparatus for performing light control of lighting apparatus in indication display
CN101001497B (en) * 2006-01-12 2011-07-27 普诚科技股份有限公司 Light regulating system, control device and method of fluorescent lamp
US7902769B2 (en) * 2006-01-20 2011-03-08 Exclara, Inc. Current regulator for modulating brightness levels of solid state lighting
DE102006028670B4 (en) * 2006-06-22 2018-10-25 Tridonic Gmbh & Co Kg Dimmable control gear with internal dimming characteristic, method for compensating tolerances of operating diodes controlled by a control gear and method for configuring a control gear for bulbs
CN200976693Y (en) * 2006-11-14 2007-11-14 叶道福 Rotary light modulator
US7633779B2 (en) * 2007-01-31 2009-12-15 Lighting Science Group Corporation Method and apparatus for operating a light emitting diode with a dimmer
US7667408B2 (en) * 2007-03-12 2010-02-23 Cirrus Logic, Inc. Lighting system with lighting dimmer output mapping
CN101184353B (en) * 2007-10-24 2011-05-11 李舒 Radio remote address programmable two-way communication digital light control system
JP4687735B2 (en) * 2008-03-24 2011-05-25 東芝ライテック株式会社 Power supply device and lighting fixture
US8212494B2 (en) * 2008-04-04 2012-07-03 Lemnis Lighting Patents Holding B.V. Dimmer triggering circuit, dimmer system and dimmable device
EP2443910B1 (en) * 2009-06-18 2013-10-09 Koninklijke Philips N.V. Power interface with leds for a triac dimmer
US8264165B2 (en) * 2009-06-30 2012-09-11 Linear Technology Corporation Method and system for dimming an offline LED driver

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104052953A (en) * 2014-06-16 2014-09-17 苏州佳世达电通有限公司 Display and control method thereof

Also Published As

Publication number Publication date
JP5935063B2 (en) 2016-06-15
JP6541606B2 (en) 2019-07-10
KR20120082912A (en) 2012-07-24
GB2475127A (en) 2011-05-11
JP2016146358A (en) 2016-08-12
JP2019091727A (en) 2019-06-13
CN102648664B (en) 2015-04-22
GB201016908D0 (en) 2010-11-24
CN102648664A (en) 2012-08-22
JP2013507729A (en) 2013-03-04
WO2011042510A3 (en) 2012-02-02
EP2486776A2 (en) 2012-08-15
WO2011042510A2 (en) 2011-04-14
JP6921138B2 (en) 2021-08-18

Similar Documents

Publication Publication Date Title
JP6921138B2 (en) Dimmable lighting system
US10165643B2 (en) Two-level LED security light with motion sensor
US8829812B2 (en) Dimmable lighting system
JP5584919B2 (en) Dimmer trigger circuit, dimming system and dimmable device
JP2013507729A5 (en)
US20140375223A1 (en) Led light source
KR102136773B1 (en) Dim-to-Warm Controller for LEDs
GB2482946A (en) Dimmer output emulation
KR101002600B1 (en) Led lighting controller
KR20150041227A (en) A dimmable ac driven led luminescent apparutus
EP3183941A1 (en) Ballast circuit
CN102202451A (en) Desk lamp capable of automatically controlling illumination
CN104041188B (en) Two-wire system dimmer switch
ES2424938T3 (en) Excitation circuit and procedure for feeding an LED as well as lighting medium
CN201944665U (en) Desk lamp capable of automatically controlling illumination
KR102274342B1 (en) Dim to warm controller for leds
WO2015105760A1 (en) Two-wire load control device for low-power loads
CN102548164A (en) Light control desk lamp
US9648690B1 (en) Dimmable instant-start ballast
CN202385369U (en) Light-operated desk lamp
TW201408126A (en) Light emitting diode dimming apparatus
TWI555438B (en) Adaptive current regulation for solid state lighting
KR20160031126A (en) Dimmable led lghiting device
CN107426878B (en) A kind of driving circuit for selecting LED to export electric current by jack
TWI482532B (en) Photo control electrical switch circuit