TW201114143A - Dynamically switchable parallel power supply system - Google Patents

Dynamically switchable parallel power supply system Download PDF

Info

Publication number
TW201114143A
TW201114143A TW98134700A TW98134700A TW201114143A TW 201114143 A TW201114143 A TW 201114143A TW 98134700 A TW98134700 A TW 98134700A TW 98134700 A TW98134700 A TW 98134700A TW 201114143 A TW201114143 A TW 201114143A
Authority
TW
Taiwan
Prior art keywords
power
supply system
load
power supply
parallel
Prior art date
Application number
TW98134700A
Other languages
Chinese (zh)
Inventor
Yue-Lin Wu
Chen-Kun Chou
Yu-Jen Chen
zong-ji Chen
Chi-Bin Wu
Original Assignee
Chung Hsin Elec & Mach Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Hsin Elec & Mach Mfg filed Critical Chung Hsin Elec & Mach Mfg
Priority to TW98134700A priority Critical patent/TW201114143A/en
Publication of TW201114143A publication Critical patent/TW201114143A/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

The present invention discloses a dynamically switchable parallel power supply system. The power supply system includes a power converter module, a detector unit for load power consumption and a controller. The power converter module includes a plurality of power converters, wherein each of the power converters is firstly serial connected to a switch and then parallel connected to each other. The detector unit of load power consumption is configured to read a dynamic information of the load power consumption and output a signal of load power consumption. The controller is configured to output a switch controlling signal to the switches to dynamically assign the activation status of each power convertor. With this configuration, the power supply system is able to determine the amount of the activated power converters. Furthermore, the convertor which is not activated will cause no standby power loss and therefore improve the power saving ability of the power supply system.

Description

201114143 六、發明說明: 【發明所屬之.技術領域】 本發明係為一種動態切換之並聯式電源供應系統,特別為 一種應用於因應負載之動態變化而調整節能之並聯式電源供 應系統。 【先前技術】 燃料電池可以被視為一個能量轉換器,只要持續供給燃料 與氧化劑等活性物質,即可使其不斷地將化學能轉換為電能。 除此之外,燃料電池具有發電效率高、噪音低及污染低之特 性,同時更可以使用多種不同之發電原料,因此具有非常大範 圍之用途。 然而由於燃料電池沒有能量儲存能力,且其輸出電壓容易 受到負戴之功率消耗變動及燃料電池之極化損失之影響,而造 成其輸出端電壓不穩定。為了能使輸出電壓穩定在某一給定的 範圍,因此需利用電力電子技術去提供系統能量分配及補償。 第1圖係為習知之燃料電池之電力調節模組示意圖。如第 1圖所示,燃料電池30與負載40之間串接了一個電源轉換器 11,其根據負載40之應用需求而可以是一 DC/DC或DC/AC 電源轉換器。控制器20可以讀取負載40之功率消耗資訊,以 對燃料電池30及電源轉換器11之運行參數進行控制調整,進 而達到穩定輸出之效果。 依照燃料電池輸出功率容量之規格,其大致可分成lk至 10kw之形式。在需要高功率之電力輸出時,雖然可以選擇使 201114143 用單一高功率轉換器單元,然而在此情況下功率元件將會遭遇 一較大之電流應力。此外,在元件選用上也相當困難,通常不 是沒有適合的零件就是價格太昂貴。因此若以高功率大容量輸 出之規格為考量,在電力電子轉換器技術方面,一般都會採用 單一轉換器模組之多級並聯模式。 第2圖係為習知之並聯式電源轉換模組10示意圖。如第2 圖所示,電源轉換模組10具有複數個彼此互相並聯之電源轉 換器11,藉此將欲輸出之一大功率分散處理,以降低各電源 轉換器11所需承受之電流應力。此種多級並聯設計的電源轉 換模組10具有模組化設計之優點,若是其中一電源轉換器11 失效時,亦不會致使整體電源轉換模組10完全失去供電能 力,並且可以方便更換各別電源轉換器11以達到快速修復之 目的。此外,電源轉換模組10更可以藉由增加並聯之電源轉 換器11的數目,而輕易地增加功率轉換能力。 一般而言,並聯電源轉換器11之技術可以分為負載電流 均流法及主僕式控制法。然而上述兩種控制方法,無論負載所 消耗功率大小,皆是使各電源轉換器11無時無刻保持在線。 在此情況下,即使負載消耗功率很小時,每一個並聯之電源轉 換器11都至少會有一等於或大於待機狀態時之電力損耗。此 電力損耗除了加速元件老化之外,更浪費了燃料電池產生之一 部分電力。 一般在電源轉換器11之設計當中,操作溫度是一項相當 重要之因素。若操作溫度過高,則不但會造成元件之誤動作、 燒毀,更可能會造成電磁干擾(EMI)效應。因此,在有過溫保 201114143 護設計之電源轉換模組10中,各電源轉換器11皆具有一溫度 偵測單元12,其係用以監測電源轉換器11之溫度,並且可將 一溫度資訊傳遞至控制器20。當控制器20判斷電源轉換器11 之溫度過高時,即會向電源轉換器11送出一停止運轉之訊號, 以使其停止運轉並處於待機狀態。 此外,電源轉換器11中都會安裝風扇來對元件所作散熱 之處理,並且使風扇隨著電源轉換器11在線而啟動。在實際 運用上,當負載之功率消耗減少而使電源轉換器11之輸出負 擔減輕時,電源轉換器11產生之廢熱亦會隨之降低。然而控 制器20之過溫保護設計,僅僅只對控制電源轉換器11運轉或 待機與否來設計,未能根據電源轉換器11之溫度而對風扇之 運轉速度做適時之調整,而使得風扇不斷固定運轉,進而又造 成進一步電力損失。 雖然燃料電池具有較高之能量儲存密度及能量轉換效 率,然而其製造成本仍居高不下。為了利用燃料電池來替代傳 統電池或汽車之内燃機,除了降低其製造成本及進一步提高其 轉換效率外,如何減少其電力模組造成之損耗亦為一亟待解決 的問題。 【發明内容】 本發明係為一種動態切換之並聯式電源供應系統,藉由偵 測負載功率消耗之動態資訊,以使得控制器可以動態分配並聯 式電源供應系統中各電源轉換器之啟動狀態,藉此達到省電節 能之功效。 201114143 本發明係為一種動態切換之並聯式電源供應系統,藉由在 各電源轉換器前分別串聯一開關,以使得控制器可以將選定之 電源轉換器完全離線而不造成待機損耗,藉此達到省電之功 效。 為達上述功效,本發明係提供一種動態切換之並聯式電源 供應系統,其包括:一電源轉換模組,具有複數電源轉換器, 每一電源轉換器係在其輸入端串聯一開關後再彼此相互並聯 連接;一負載功率偵測單元,用以讀取一負載功率消耗之動態 資訊,並輸出一負載功率消耗訊號;以及一控制器,用以依據 負載功率消耗訊號輸出一開關控制訊號至開關,以動態分配電 源轉換器之啟動狀態。 藉由本發明的實施,至少可達到下列進步功效: 一、 藉由偵測負載功率消耗之動態資訊,控制器可以依負載之 需求調整電源轉換器之啟動數量,進而達到省電之功效。 二、 藉由使用控制器以關閉串聯於電源轉換器前之開關,可以 使得不需要用到之電源轉換器可以完全離線,而完全離線 之電源轉換器將不會造成待機損耗,可以達到更佳之省電 功效。 為了使任何熟習相關技藝者了解本發明之技術内容並據 以實施,且根據本說明書所揭露之内容、申請專利範圍及圖 式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優 點,因此將在實施方式中詳細敘述本發明之詳細特徵以及優 201114143 【實施方式】 第3圖係為本發明之一種動態切換之並聯式電源供應系統 50之電路方塊實施例圖。 如第3圖所示,本實施例係為一種動態切換之並聯式電源 供應系統50,其包括一電源轉換模組60、一負載功率偵測單 元70以及一控制器80。 並聯式電源供應系統50係串聯於一燃料電池30及一負載 40之間,其係將燃料電池30所提供之電力藉由並聯式電源供 應系統50整流及穩壓後,再提供給負載40使用。 電源轉換模組60,其係連接至燃料電池30,並且具有複 數電源轉換器61,其中各電源轉換器61係在其輸入端串聯一 開關62後再彼此相互並聯連接。此外根據負載40之需求,各 電源轉換器61可以是一直流至直流電源轉換器,或是一直流 至交流電源轉換器。 負載功率偵測單元70用以讀取負載40之一負載功率消耗 之動態資訊,並輸出一負載功率消耗訊號。由於流向負載40 之負載電流值可以視為一負載功率消耗之動態資訊,因此本實 施例之負載功率偵測單元70可以為一電流偵測器,並且將其 串聯於電源轉換模組60及負載40之間。負載功率偵測單元70 在偵測到流向負載40之一負載電流值後,即將偵測到之負載 電流值作為負載功率消耗訊號傳送給控制器80。 控制器80,其係用以依據負載功率消耗訊號輸出一開關控 制訊號至各開關62,以動態分配各電源轉換器61之啟動狀 態。控制器80係用以根據所接收到負載功率消耗訊號(即負載 201114143 電流值),決疋亚聯式電源供應系統5G中所需啟動之電源轉換 器61數量。 控制器80可以是〆微控制器,其預設有複數電流數值以 形成複數開關控制區間,並且控制器8〇係用以讀取負載功率 消耗訊號並使其對應至〆開關控制區間,而根據被對應到之開 關控制區間以產生-開關控制訊號。最後,控制器8〇會將所 產生之開關控制訊號輸出至各開關62,以動態分配各電源轉換 器61之啟動狀態。 鲁 ώ於開_ 62皆串聯於各電源轉換器61之輸入端,因此若 控制器80使任一開關62開路,則將不會有任何電流流入與其 後串聯之電源轉換器61中。藉此,不需要使用的電源轉換器 61將完全離線並且不會造成任何待機損耗,進而降低並聯式電 源供應系統50之電力損耗而達到節能效果。 另外’各電源轉換器61皆具有一溫度偵測單元幻及複數 風扇64。溫度偵測單兀63用以偵測電源轉換器61之溫度,並 #將所伯測到之電源轉㈣61 <溫度資訊轉換為一溫度訊號 後,再傳送至控制器80。控制器8〇會根據所收到之溫度訊號 產生-轉速控制訊號,並將轉速控制訊號傳&至相應之風扇 64,以使風扇64依據收到之轉速控制訊號作動。 更佳的是’控制器80可根據不同之溫度訊號,產生不同 轉速之轉速控制訊號。舉例而言,當電源轉換器61處於一較 兩溫度時’控制器8G將產生高轉速之轉速控制訊號至風扇 64,使風扇64將具有α—較大風速以使電源轉換器61可以快速 散熱。而當電源轉換器61處於一較低溫度時,控制器8〇將產 201114143 生低轉速之轉速控制訊號至風扇64,使風扇64具有一較小風 速。藉此,並聯式電源供應系統50可以進一步節省風扇64所 消耗之電力。 綜上所述,本實施例之並聯式電源供應系統50,可以針對 不同負載程度而決定啟動之電源轉換器61數量,並使不需啟 動之電源轉換器61完全離線而不造成待機損耗,因此較傳統 之並聯式電源供應系統省電。此外,本實施例之並聯式電源供 應系統50更可以針對電源轉換器61之溫度而控制風扇64產 生不同風速,更進一步增加節能省電之效果。 惟上述各實施例係用以說明本發明之特點,其目的在使熟 習該技術者能瞭解本發明之内容並據以實施,而非限定本發明 之專利範圍,故凡其他未脫離本發明所揭示之精神而完成之等 效修飾或修改,仍應包含在以下所述之申請專利範圍中。 【圖式簡單說明】201114143 VI. Description of the Invention: [Technical Field] The present invention is a dynamic switching parallel power supply system, in particular, a parallel power supply system for adjusting energy saving in response to dynamic changes in load. [Prior Art] A fuel cell can be regarded as an energy converter, and as long as it continuously supplies an active substance such as a fuel and an oxidant, it can continuously convert chemical energy into electric energy. In addition, fuel cells have the characteristics of high power generation efficiency, low noise and low pollution, and they can use a variety of different power generation materials, so they have a very wide range of applications. However, since the fuel cell has no energy storage capacity, and its output voltage is easily affected by fluctuations in power consumption of the negative electrode and polarization loss of the fuel cell, the voltage at the output terminal is unstable. In order to stabilize the output voltage within a given range, power electronics technology is needed to provide system energy distribution and compensation. Figure 1 is a schematic diagram of a conventional power conditioning module for a fuel cell. As shown in Fig. 1, a power converter 11 is connected in series between the fuel cell 30 and the load 40, which may be a DC/DC or DC/AC power converter depending on the application requirements of the load 40. The controller 20 can read the power consumption information of the load 40 to control and adjust the operating parameters of the fuel cell 30 and the power converter 11, thereby achieving the effect of stabilizing the output. According to the specification of the fuel cell output power capacity, it can be roughly divided into a form of lk to 10 kw. When a high power output is required, although a single high power converter unit can be selected for 201114143, in this case the power component will experience a large current stress. In addition, it is quite difficult to select components, usually not unsuitable parts or too expensive. Therefore, in consideration of the specifications of high-power and large-capacity output, in the power electronic converter technology, a multi-stage parallel mode of a single converter module is generally adopted. Figure 2 is a schematic diagram of a conventional parallel power conversion module 10. As shown in Fig. 2, the power conversion module 10 has a plurality of power converters 11 connected in parallel with each other, whereby one of the power to be output is distributed to reduce the current stress required for each of the power converters 11. The power conversion module 10 of the multi-stage parallel design has the advantages of modular design. If one of the power converters 11 fails, the overall power conversion module 10 will not completely lose power supply capability, and each of the power conversion modules 10 can be easily replaced. Don't power converter 11 for quick repair. In addition, the power conversion module 10 can easily increase the power conversion capability by increasing the number of power converters 11 connected in parallel. In general, the technique of the parallel power converter 11 can be divided into a load current sharing method and a master servant control method. However, the above two control methods, regardless of the power consumption of the load, enable the power converters 11 to remain online all the time. In this case, even if the load consumes a small amount of power, each of the parallel power converters 11 has at least one power loss equal to or greater than that in the standby state. In addition to aging components, this power loss wastes some of the power generated by the fuel cell. Generally, in the design of the power converter 11, the operating temperature is a very important factor. If the operating temperature is too high, it will not only cause malfunction or burnt of the components, but may also cause electromagnetic interference (EMI) effects. Therefore, in the power conversion module 10 having the design of the temperature protection 201114143, each of the power converters 11 has a temperature detecting unit 12 for monitoring the temperature of the power converter 11, and can set a temperature information. Passed to controller 20. When the controller 20 determines that the temperature of the power converter 11 is too high, a signal for stopping the operation is sent to the power converter 11 to stop it and be in a standby state. In addition, a fan is installed in the power converter 11 to dissipate heat from the components, and the fan is activated as the power converter 11 is online. In practical use, when the power consumption of the load is reduced and the output load of the power converter 11 is reduced, the waste heat generated by the power converter 11 is also reduced. However, the over-temperature protection design of the controller 20 is only designed to control the operation or standby of the power converter 11, and it is not possible to make timely adjustments to the operating speed of the fan according to the temperature of the power converter 11, so that the fan is constantly Fixed operation, which in turn causes further power loss. Although fuel cells have high energy storage densities and energy conversion efficiencies, their manufacturing costs remain high. In order to replace the traditional battery or the internal combustion engine of the automobile with a fuel cell, in addition to reducing its manufacturing cost and further improving its conversion efficiency, how to reduce the loss caused by its power module is also an urgent problem to be solved. SUMMARY OF THE INVENTION The present invention is a dynamic switching parallel power supply system, by detecting dynamic information of load power consumption, so that the controller can dynamically allocate the startup states of the power converters in the parallel power supply system. Thereby achieving the effect of saving electricity and energy. 201114143 The present invention is a dynamic switching parallel power supply system, by respectively connecting a switch in front of each power converter, so that the controller can completely remove the selected power converter without causing standby loss, thereby achieving The effect of saving electricity. In order to achieve the above effects, the present invention provides a dynamic switching parallel power supply system, comprising: a power conversion module having a plurality of power converters, each of which is connected in series with a switch at its input and then Connected to each other in parallel; a load power detecting unit for reading dynamic information of a load power consumption and outputting a load power consumption signal; and a controller for outputting a switch control signal to the switch according to the load power consumption signal To dynamically allocate the startup state of the power converter. By implementing the present invention, at least the following advancements can be achieved: 1. By detecting the dynamic information of the load power consumption, the controller can adjust the number of power converters to be activated according to the load demand, thereby achieving the power saving effect. Second, by using the controller to turn off the switch connected in front of the power converter, the power converter that is not needed can be completely offline, and the fully off-line power converter will not cause standby loss, which can be better. Power saving effect. In order to make those skilled in the art understand the technical content of the present invention and implement it, and according to the disclosure, the patent scope and the drawings, the related objects and advantages of the present invention can be easily understood by those skilled in the art. Therefore, detailed features of the present invention and preferred 201114143 will be described in detail in the embodiments. FIG. 3 is a circuit block diagram of a dynamic switching parallel power supply system 50 of the present invention. As shown in FIG. 3, the embodiment is a dynamic switching parallel power supply system 50, which includes a power conversion module 60, a load power detecting unit 70, and a controller 80. The parallel power supply system 50 is connected in series between a fuel cell 30 and a load 40. The power provided by the fuel cell 30 is rectified and regulated by the parallel power supply system 50, and then supplied to the load 40. . The power conversion module 60 is connected to the fuel cell 30 and has a plurality of power converters 61, wherein each of the power converters 61 is connected in series with each other in series with a switch 62 at its input. In addition, depending on the demand of the load 40, each of the power converters 61 can flow to the DC power converter or to the AC power converter. The load power detecting unit 70 is configured to read dynamic information of load power consumption of one of the loads 40 and output a load power consumption signal. The load current detection unit 70 of the present embodiment can be a current detector and connected in series to the power conversion module 60 and the load. Between 40. After detecting the load current value flowing to the load 40, the load power detecting unit 70 transmits the detected load current value as a load power consumption signal to the controller 80. The controller 80 is configured to output a switch control signal to each switch 62 according to the load power consumption signal to dynamically allocate the startup state of each power converter 61. The controller 80 is configured to determine the number of power converters 61 to be activated in the sub-connected power supply system 5G based on the received load power consumption signal (i.e., the current value of the load 201114143). The controller 80 may be a 〆 microcontroller, which is pre-set with a complex current value to form a complex switch control interval, and the controller 8 is configured to read the load power consumption signal and corresponding it to the 〆 switch control interval, according to Corresponding to the switch control interval to generate a -switch control signal. Finally, the controller 8 outputs the generated switch control signals to the switches 62 to dynamically allocate the activation states of the respective power converters 61. Each of the switches _ 62 is connected in series with the input terminals of the respective power converters 61. Therefore, if the controller 80 opens any of the switches 62, no current will flow into the power converter 61 connected in series with it. Thereby, the power converter 61 that is not required to be used will be completely off-line and will not cause any standby loss, thereby reducing the power loss of the parallel power supply system 50 to achieve an energy saving effect. Further, each of the power converters 61 has a temperature detecting unit phantom and plural fan 64. The temperature detecting unit 63 is configured to detect the temperature of the power converter 61, and convert the detected power to (40) 61 < temperature information into a temperature signal, and then transmit to the controller 80. The controller 8 generates a speed control signal according to the received temperature signal, and transmits the speed control signal to the corresponding fan 64 to cause the fan 64 to act according to the received speed control signal. More preferably, the controller 80 can generate speed control signals of different speeds according to different temperature signals. For example, when the power converter 61 is at a temperature of two or more, the controller 8G will generate a high speed rotational speed control signal to the fan 64, so that the fan 64 will have a-large wind speed so that the power converter 61 can quickly dissipate heat. . When the power converter 61 is at a lower temperature, the controller 8 will generate a low speed control signal to the fan 64, so that the fan 64 has a small wind speed. Thereby, the parallel power supply system 50 can further save the power consumed by the fan 64. In summary, the parallel power supply system 50 of the present embodiment can determine the number of power converters 61 that are activated for different load levels, and the power converter 61 that does not need to be activated is completely offline without causing standby loss. More power than the traditional parallel power supply system. In addition, the parallel power supply system 50 of the present embodiment can control the fan 64 to generate different wind speeds for the temperature of the power converter 61, thereby further increasing the effect of energy saving. The embodiments are described to illustrate the features of the present invention, and the purpose of the present invention is to enable those skilled in the art to understand the present invention and to implement the present invention without limiting the scope of the present invention. Equivalent modifications or modifications made by the spirit of the disclosure should still be included in the scope of the claims described below. [Simple description of the map]

第1圖係為習知之燃料電池之電力調節模址示音。 第2圖係為習知之並聯式電源轉換模組示意圖~ 第3圖係為本發明之-種動態切換之並聯^電源供應系統電路 之電路方塊實施例圖。 【主要元件符號說明】 10 ................電源轉換模組 11 ................電源轉換器 12 ................溫度偵測單元 201114143 20................控制器 30................燃料電池 40................負載 50................並聯式電源供應糸統 60 ................電源轉換模組 61 ................電源轉換器 62 ................開關 63 ................溫度偵測單元 ® 64................風扇 70................負載功率偵測單元 80................控制器Figure 1 shows the power adjustment mode address of a conventional fuel cell. Figure 2 is a schematic diagram of a conventional parallel power conversion module of the present invention. Figure 3 is a circuit block diagram of a parallel power supply system circuit of the present invention. [Main component symbol description] 10 ................Power conversion module 11 ........... Power converter 12 .. ..............temperature detection unit 201114143 20................controller 30........... ..... Fuel cell 40................Load 50................ Parallel power supply system 60. ...............Power Conversion Module 61 ................Power Converter 62 .......... ......Switch 63 ................Temperature Detection Unit® 64................Fan 70.. ..............Load power detection unit 80................controller

1111

Claims (1)

201114143 七、申請專利範圍: 1. 一種動態切換之並聯式電源供應系統,其包括: 一電源轉換模組,具有複數電源轉換器,每一該電源轉換 器係在其輸入端串聯一開關後再彼此相互並聯連接; 一負載功率偵測單元,用以讀取一負載功率消耗之動態資 訊,並輸出一負載功率消耗訊號;以及 一控制器,用以依據該負載功率消耗訊號輸出一開關控制 訊號至該些開關,以動態分配該些電源轉換器之啟動狀 態。 2. 如申請專利範圍第1項所述之並聯式電源供應系統,其中 該控制器係為一微控制器,並且用以執行下列步驟: 預設複數電流數值,以形成複數開關控制區間; 讀取該負載功率消耗訊號;以及 輸出該開關控制訊號以動態分配該些電源轉換器之啟 動狀態,其_該開關控制訊號係依據該負載功率消耗訊號 所對應之該些開關控制區間所產生。 3. 如申請專利範圍第1項所述之並聯式電源供應系統,其中 該負載功率偵測單元係為一電流偵測器。 4. 如申請專利範圍第1項所述之並聯式電源供應系統,其中 每一該電源轉換器進一步包括: 一溫度偵測單元,用以偵測一溫度資訊並且輸出一溫度訊 號至該控制器,以使該控制器產生不同轉速之一轉速控 制訊號;以及 至少一風扇,用以依據該轉速控制訊號作動。 12 201114143 5. 如申請專利範圍第1項所述之並聯式電源供應系統,其中 該些電源轉換器係為直流至直流電源轉換器。 6. 如申請專利範圍第1項所述之並聯式電源供應系統,其中 該些電源轉換器係為直流至交流電源轉換器。201114143 VII. Patent application scope: 1. A dynamic switching parallel power supply system, comprising: a power conversion module having a plurality of power converters, each of which is connected in series with a switch at its input end Connected to each other in parallel; a load power detecting unit for reading dynamic information of a load power consumption and outputting a load power consumption signal; and a controller for outputting a switch control signal according to the load power consumption signal To the switches to dynamically allocate the startup states of the power converters. 2. The parallel power supply system of claim 1, wherein the controller is a microcontroller and is configured to perform the following steps: preset a plurality of current values to form a plurality of switch control intervals; Taking the load power consumption signal; and outputting the switch control signal to dynamically allocate the start states of the power converters, wherein the switch control signals are generated according to the switch control intervals corresponding to the load power consumption signals. 3. The parallel power supply system of claim 1, wherein the load power detecting unit is a current detector. 4. The parallel power supply system of claim 1, wherein each of the power converters further comprises: a temperature detecting unit for detecting a temperature information and outputting a temperature signal to the controller So that the controller generates a speed control signal of one of different speeds; and at least one fan for controlling the signal according to the speed. 12 201114143 5. The parallel power supply system of claim 1, wherein the power converters are DC to DC power converters. 6. The parallel power supply system of claim 1, wherein the power converters are DC to AC power converters. 1313
TW98134700A 2009-10-14 2009-10-14 Dynamically switchable parallel power supply system TW201114143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98134700A TW201114143A (en) 2009-10-14 2009-10-14 Dynamically switchable parallel power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98134700A TW201114143A (en) 2009-10-14 2009-10-14 Dynamically switchable parallel power supply system

Publications (1)

Publication Number Publication Date
TW201114143A true TW201114143A (en) 2011-04-16

Family

ID=44909924

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98134700A TW201114143A (en) 2009-10-14 2009-10-14 Dynamically switchable parallel power supply system

Country Status (1)

Country Link
TW (1) TW201114143A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103683976A (en) * 2012-09-06 2014-03-26 康舒科技股份有限公司 Universal power supply system
US9735692B1 (en) 2016-08-01 2017-08-15 Chicony Power Technology Co., Ltd. Adapter with low standby loss and electronic system with low standby loss
TWI601369B (en) * 2016-06-16 2017-10-01 群光電能科技股份有限公司 Adapter with low standby loss and electronic system with low standby loss
TWI633743B (en) * 2017-12-20 2018-08-21 台達電子工業股份有限公司 Power bypass apparatus with current-sharing function and method of controlling the same
CN113612389A (en) * 2021-06-29 2021-11-05 苏州浪潮智能科技有限公司 Current-sharing control system and method, multi-power-supply power supply system and integrated circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103683976A (en) * 2012-09-06 2014-03-26 康舒科技股份有限公司 Universal power supply system
TWI601369B (en) * 2016-06-16 2017-10-01 群光電能科技股份有限公司 Adapter with low standby loss and electronic system with low standby loss
US9735692B1 (en) 2016-08-01 2017-08-15 Chicony Power Technology Co., Ltd. Adapter with low standby loss and electronic system with low standby loss
TWI633743B (en) * 2017-12-20 2018-08-21 台達電子工業股份有限公司 Power bypass apparatus with current-sharing function and method of controlling the same
CN113612389A (en) * 2021-06-29 2021-11-05 苏州浪潮智能科技有限公司 Current-sharing control system and method, multi-power-supply power supply system and integrated circuit

Similar Documents

Publication Publication Date Title
CN103441566B (en) The collaborative electric power system of a kind of civil power, photovoltaic cell and energy-storage battery and method
US20110160928A1 (en) Random controlled fuel cell power module
TW201114143A (en) Dynamically switchable parallel power supply system
CN105515167A (en) Uninterruptible power supply UPS device and power supply method thereof
US7808129B2 (en) Fuel-cell based power generating system having power conditioning apparatus
TW200945724A (en) Method of hybrid power management and system using the same
Vural et al. Parallel combination of FC and UC for vehicular power systems using a multi-input converter-based power interface
JP2014050199A (en) Power control unit, junction box, power regulator, power generating system, and power control method
CN206050040U (en) Based on the new forms of energy ship circuit propulsion plant for improving Z-source inverter
CN104682533A (en) Double-bus direct current ultra-micro grid system suitable for sustainable building
CN104508886A (en) Solid oxide fuel cell system
CN203433058U (en) Frequency converter common DC bus load test system
WO2024131045A1 (en) Photovoltaic apparatus and method for increasing photovoltaic utilization rate of photovoltaic apparatus
CN108418245A (en) A kind of direct-current grid interconnection constant-power control method of simplification
TWI429121B (en) A fuel cell hybrid power system without power converters
CN107845824B (en) Control method and system for realizing optimal efficiency interval of fuel cell array
Tao et al. Research on super-capacitor and battery hybrid energy storage system applied in micro-grid
Li et al. Energy management strategy for renewable backup supply
TWI416788B (en) Fuel cell system
Zhu et al. Fuel cell high efficiency power converter for suppressing low frequency current ripple
Elamathy et al. Multiport DC-DC interleaved boost converter supplemented by hybrid system of different capacities PV and battery power system
WO2022000248A1 (en) Inverter, and inversion system and method
CN111786416A (en) Micro-grid coordinated control device based on particle swarm self-optimization PID droop control
CN219833778U (en) Wind-solar-energy-storage combined energy supply system and power system
Cervantes et al. Hybrid control technique applied in a fc-sc electric vehicle platform