TW201104247A - Gas detecting device and gas monitoring device - Google Patents

Gas detecting device and gas monitoring device Download PDF

Info

Publication number
TW201104247A
TW201104247A TW98125361A TW98125361A TW201104247A TW 201104247 A TW201104247 A TW 201104247A TW 98125361 A TW98125361 A TW 98125361A TW 98125361 A TW98125361 A TW 98125361A TW 201104247 A TW201104247 A TW 201104247A
Authority
TW
Taiwan
Prior art keywords
gas
value
detection
unit
probability
Prior art date
Application number
TW98125361A
Other languages
Chinese (zh)
Other versions
TWI414786B (en
Inventor
ren-quan Luo
Kuo-Lan Su
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW98125361A priority Critical patent/TWI414786B/en
Publication of TW201104247A publication Critical patent/TW201104247A/en
Application granted granted Critical
Publication of TWI414786B publication Critical patent/TWI414786B/en

Links

Abstract

A gas detecting device comprising a gas sensing module and a monitoring module. The gas sensing module includes a plurality of gas sensing units which can sense N(N > 2) kinds of gases and a main controller. Each gas sensing unit outputs a sensing signal to the main controller for the sensed gas, and the main controller generates a respective sensing value according to each sensing signal. The monitoring module includes a micro-processing unit and a display unit. The micro-processing unit calculates the probabilities of the N kinds gases according to the maximum values which each gas sensing unit can generate for the N kinds gases and the said sensing values, and determines which gas has the maximum probability according to the probabilities of the N kinds gases and then outputs the determining result to the display unit.

Description

201104247 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種氣體偵測裝置,特別是指—種可判 別多種氣體之氣體偵測裝置。 【先前技術】 由於近代工業迅速發展,以及環境保護遭到漠視,使得 越來越多的工業污染源,例如线污染以及水f污染已 人們的生活環境及健康產生前所未有的威為了維護· 的生存環境,近年來人們_認知_自然環境共存的重要 性,環保意識逐漸受到人們的重視。因此如何得知污染源並 加以控制,成為環保的重要議題。 此外,除了室外污染源的監控外,室内環境中的危險氣 體監測,也是人們生命及健康保全重要的一環。 以監測室外空氣污染或室内有毒氣體(或特定氣體)為 例,習知的做法是使用氣體偵測設備偵測空氣中的氣體濃度 並轉換成電子訊號後進行判斷,然而由於氣體種類很多,為 了提供正確的監測資訊,如何對測得的氣體進行分析,以準 確地判斷測得的氣體,將會是氣體監測設備最重要的技術。 【發明内容】 因此,本發明之目的’即在提供一種可以正確地判斷 出所僧測的氣體種類之氣體谓測裝置及氣體監控裝置。 為了實現上述目的,本發明的氣體偵測裝置,包括一 氣體偵測模組及一監控模組。 氣體偵測模組包含多個氣體偵測單元及一主控制器, 201104247 , 該等氣體偵測單元可以偵測N(N>2)種氣體,並各別針對所 測得的氣體輸出一偵測訊號給該主控制器,該主控制器根 據該偵測訊號產生一偵測值。 且較佳地,該氣體偵測模組還包含一用以顯示該等谓 測值的顯示器。 該監控模組與該氣體偵測模組耦接,並包含一微處理 單元及一顯示單元,該微處理單元中預存有各該氣體偵測 單元對所能測得之氣體的最大偵測值,且該微處理單元根 • 據該等氣體偵測單元針對該N種氣體的最大偵測值及該等 偵測值,求得該>!種氣體的機率值,並根據該^^個氣體機 率值判斷何種氣體的機率最大,並由該顯示單元輸出 結果。 辦 其中該微處理單元係根據該等氣體偵測單元針對同一 種氣體的最大偵測值,求得各該偵測值的一權重值後,以^ 減去該等權重值相乘後的值,以求得該種氣體的機率值, 且該微處理單元重覆上述計算步驟,分別根據該等氣體偵 • 測單元所能測得之不同氣體的最大偵測值,求得該N種氣 體的機率值。 該微處理單元計算各種氣體的機率值公式為:氣體機 率值=1-[(1-Vsi/Vsimax) x (1_Vs2/Vs2_) X … (1 - vSN/vSNmax)],其中vSN是指各個氣體偵測單元偵測某一 種氣體所對應產生之谓測值,V B Tt 、 一 丨只州值VSN㈣X疋指各個氣體偵測單 疋針對該種氣體所對應產生的最大偵測值。 較佳地,該氣體镇測裝置更包括一有線傳輸介面及兩 201104247 個無線通訊單元,該有料輸介面包含㈣傳輸介面,其 分別设於該氣體偵測模組端及該監控模組端用r。 該氣體侦測模組之主控制器與該監控模組之微處 傳輸該等_值,該二無線通訊單元㈣與該氣體侦測模 組之主控制器及該監控模組之微處理單元_ 傳輸該等偵測值。 ”,、、银 較佳地,該有線傳輸介面更包含一設在該二串列傳輸 介面之間介面轉換單元,用以將該主控制器之串列傳輸介 面輸出的偵測值轉換成該微處理單元之傳輸介面可以接受 的型態。 & 再者,本發明實現上述目的之另—種氣體偵測裝置, 包括多個氣體偵測單元一主控制器及—顯示器。該等氣 體债測單元可則貞測N(N>2)種氣體,並各別針對所測得的 ,體輸出-制訊號。該主控制器中預存有各該氣體偵測 單凡對應所㈣得之氣體的最大彳貞測值,該主控制器根據 該债測訊號產生-偵測值,並根據該等氣體侧單元針對 該N種氣體的最大偵測值及該等偵測值,求得該^^種氣體 的機率值,以根據該N個氣體機率值判斷何種氣體的機率 最大後,輸出上述判斷結果至該顯示器。 其中該主控制器根據該等氣體偵測器針對某一種氣體 的最大偵測值,求得各該偵測值的一權重值後,以丨減去 該等權重值相乘後的值,以求得該種氣體的機率值,且該 主控制器重覆上述計算步驟,分別代入該等氣體偵測單元 所能測得之不同氣體的最大偵測值,以求得該N種氣體的 201104247 機率值。 且該主控制器計算各種氣體的機率值公式為:氣體機 率值=HU-vsl/vslmax) x (1_Vs2/Vs2max) x . (i-vSN/vSNmax)],其中Vsn是指各個氣體偵測單元偵測某— 種氣體所對應產生之偵測值,VsNmax是指各個氣體偵測單 元針對該種氣體的最大偵測值。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在以 下配合參考圖式之兩個較佳實施例的詳細說明中,將可清楚 的呈現。 參閱圖1’是本發明氣體偵測裝置的第一較佳實施例之 電路方塊示意圖,其主要包括相互耦接的一氣體偵測模組 100及一監控模組200。 參閱圖2所示’是氣體偵測模組1〇〇的外觀架構側視示 意圖。氣體偵測模組1 〇〇具有一概呈矩形之殼體丨〇丨,殼體 101的相反兩端開口分別設有一空氣過濾片1〇2及一固定板 103,固定板1〇3的相反兩端設有固定孔1〇4用以將殼體ι〇1 固定在一壁面30上,且固定板104上設有出風口 1〇5,固 定板104朝向殼體ιοί的内侧面上設有一抽風裝置1〇6,用 以將風從殼體1 〇 1外吸入經過空氣過濾片1 〇2進到殼體1 〇〇 中再由固定板103的出風口 105送出。 氣體偵測模組1〇〇還包括設在殼體1〇1内,位於空氣過 濾片102與固定板1 〇4之間依序設置一偵測電路板丨丨〇、一 第一驅動電路板120、一第二驅動電路板13〇、一主機及通 201104247 訊板140及一電源及輸出板15〇0 偵測電路板110上設有多個氣體感測器(本實施例以7 個氣體感測器為例),這些感測器包括半導體式、光電式、 電化學式、紅外線或其他量測方式之氣體偵測元件,且每一 種氣體感測器可以是單一氣體偵測或可同時偵測多種不同 之氣體,如圖3所示範例,但並不以此為限。 第一驅動電路板120與偵測電路板u〇電連接,並設有 4個不同氣體感測器的驅動電路、校正電路和取樣電路。 第二驅動電路板130與偵測電路板11()電連接,並設有 另外3個不同氣體感測器的驅動電路、校正電路和取樣電 路。且配合圖4氣體感測模組之電路方塊圖所示,上述每一 氣體偵測器和所對應的驅動電路、校正電路及取樣電路構成 如圖4的七個氣體偵測單元UI〜U7。 主機及通訊板140與第一及第二驅動電路板12〇、13〇 電連接,如圖1所示,其中並設有一主控制器141、一有線 傳輸單元142及一無線通訊單元143。主控制器mi中包含 一類比/數位轉換器,其用以從各個氣體偵測單元111〜117 之取樣電路分別取得一偵測訊號,並將其轉換成數位化的偵 測值。有線傳輸單元142包含設於該主控制器141之訊號輸 出%的一傳輸介面144及一介面轉換單元145。主控制器141 經由該傳輸介面144輸出該等偵測值,介面轉換單元145 電連接該傳輸介面144及該監測模組200,用以將該等偵測 值轉成該監測模組200可以接受的訊號格式後輸出給監控 模組200。在本實施例中,傳輸介面144是以I2C介面為例’ 201104247 且介面轉換單元145是以-沉轉RS232橋接器為例,但 並不以此為限。 如圖1所示,無線通訊單元143與主控制器電連 接’用以將主控制H 141輸出之侧值透過無線方式傳送給 監控模組200,並接收由監控模组2〇〇傳來的其它訊號。在 本實施例中,無線通訊單元143是一雙工通訊介面,其可以 應用U如紅外線、無線電(射頻)、電磁感應(線圈)等習知無 線通訊電路其中之一來達成。 • 酉己口圖1所示’電源及輸出板15〇包括一電源供應器 151及一顯不器152,電源供應器i5i用以將由外部輸入之 父流電AC110V轉換成氣體偵測模組1〇〇所需之電源,以供 應上述各種電路使用。顯示器152是一液晶顯示器,其與主 控制器14!電連接,用以顯示該等氣體感測單& u、卜'ιΐ7 之感測值。 再參見圖1所示,監控模組200包括一無線通訊單元 210、一微處理單元220及一顯示單元23〇。無線通訊單元 • 210與氣體债測模組10〇之無線通訊單幻43採用相同的無 線通訊協定,用以與氣體偵測模組1〇〇之無線通訊單元143 進行無線通訊,以接收該等氣體感測單元之感測值。 微處理單元220藉由一 RS232介面221與氣體偵測模 、、且100之I2C轉RS232橋接器145電連接,以透過有線方 式從主控制器141接收該等氣體感測單元lu〜117之感測 值。 由上述說明可知’監控模組200可以透過有線或無線方 201104247 式與氣體偵測模組100通訊,當監控模組200是靠近氣體偵 測模組100設置時,監控模組200與氣體偵測模組1 〇〇可以 透過I2C轉RS23 2橋接器145之有線連接來進行通訊;而 當監控模組200是設在一遠端時,監控模組2〇〇與氣體彳貞測 模組100則可透過無線通訊單元143、210來進行通訊。因 此監控模組200的設置位置將不會因為與氣體偵測模組1〇〇 之間的距離而受限,可達到與氣體偵測模組! 〇〇彈性且機動 通訊的功能。 此外’為了判斷氣體偵測單元111〜117所測得的氣體為 何,微處理單元220中還預存有一如圖3所示的各種氣體感 測單元111〜117所能感測的氣體種類,以及每一種氣體偵測 單元111〜117針對感測不同氣體所能輪出的最大感測值(這 裡的感測值是指主控制器141針對不同氣體偵測單元 111〜117輸出之感測訊號所能轉換輸出的最大偵測值),例 如HS130A酒精感測器可以感測氫(最大偵測值5)、丁烷(最 大偵測值3)及酒精(最大偵測值4)三種氣體,hs 135空氣污 染感測器可以感測丁烧(最大備測值5)、煙霧(最大備測值 4)、二氧化碳(最大偵測值3)及酒精(最大偵測值4)四種氣 體。圖3中舉例之數值只為說明之用,並非實際應用之數值。 再者,微處理單元220是根據該等氣體偵測單元 111〜117針對同一種氣體的最大偵測值及該等偵測值,求得 各種氣體的機率值,再根據該等氣體的機率值判斷何種氣體 的機率最大,為了達到上述目的,微處理單元220執行一求 得各種氣體機率值的公式如下: 10 201104247 氣體機率值=w(1_Vsi/Vsimax) x (1_Vs2/Vs2max) χ … U_vSN/vSNmax)]................................ ⑴ 其中,vSN是指各個氣體偵測單元i丨丨〜丨17偵測氣體所 對應產生之偵測值,VsNmax是指各個氣體偵測單元^丨〜ιΐ7 針對同一種氣體的最大偵測值。且微處理單元22〇會重覆上 4 A式(1 )’並分別代入該等氣體彳貞測單元1 1 1〜1 1 7所能測 得之不同氣體的最大彳貞測值’以求得各種氣體的機率值。以 下將舉例說明之。 再參見圖2及圖3所示,當一種待測氣體經由抽風裝置 的吸入而進入氣體偵測模組1〇〇之殼體ι〇ι内時,有些 氣體偵測單元會對該待測氣體有反應,但有些則沒有反應。 而對該待測氣體有反應的某個或某些氣體偵測單元會感測 到該待測氣體並輸出一感測訊號,在本實施例中,假設有反 應的氣體偵測單元為圖3中的酒精偵測器丨丨丨、氨氣偵測器 u2、空氣污染偵測器113和液化石油氣偵測器ιΐ5,且其 輸出的感測訊號經過主控制器141數位化後的偵測值分別 為2·5、1.8、1.6及〇·9,這些偵測值被輸出至顯示器in 顯示並同時透過無線通訊單元143、21〇或I2C轉尺5232橋 接器145傳送給監控模組200的微處理單元22〇。 微處理單元220將收到的這些偵測值暫存,然後由圖3 中查到酒精偵測器m、氨氣偵測器112、空氣污染偵測器 U3和液化石油氣偵測器115分別對氫、液化石油氣、天 然氣、丁烷、煙霧 '二氧化碳、氨氣和酒精有反應,因此接 著根據氣體偵測單元i丨i、112、113及115對這些氣體的最 11 201104247 大偵測值及實際偵測值,套用上述公式(1)分別計算得到這 些氣體(即氫、液化石油氣、天然氣、丁烷、煙霧、二氧化 碳、氨氣和酒精)的機率值如下: 機率(氫)=1-[(1-2.5/5)χ(1-1·8/4)]=0.725 機率(液化石油氣)=1-[(1-〇·9/5)]=〇·18 機率(天然氣)=1-[(1-0·9/4)]=0.225 機率(丁烷)=1-[(1-2.5/3)χ(1-1.8/3)χ(1-1·6/5)]=〇.9548 機率(煙霧)=1-[(Μ.6/4)χ(1-0·9/3)]=0·58 機率(二氧化碳)=1_[(1_16/3)]=〇.53 機率(氨氣)=1-[(1-1.6/3)]=0.53 機率(酒精)=1-[(1·2_5/5) X (1-1.8/4) X (Μ 6/5) χ (1-0.9/5)]=0.846 且由於氣體偵測單元111、U2、113及U5對甲烧及— 氧化碳沒有反應,所以甲烷及一氧化碳的機率為零。 因此,根據上述計算結果,微處理單元22〇可以判斷待 測氣體為丁烷的機率最大,並將上述各氣體的機率值及判斷 結果輸出至顯示單元230(液晶顯示器)顯示出來。或者,監201104247 VI. Description of the Invention: [Technical Field] The present invention relates to a gas detecting device, and more particularly to a gas detecting device capable of discriminating a plurality of gases. [Prior Art] Due to the rapid development of modern industry and the indifference of environmental protection, more and more industrial pollution sources, such as line pollution and water pollution, have produced an unprecedented environment for people's living environment and health. In recent years, people's awareness of the coexistence of the natural environment, environmental awareness has gradually received attention. Therefore, how to know the source of pollution and control it becomes an important issue in environmental protection. In addition, in addition to the monitoring of outdoor pollution sources, hazardous gas monitoring in indoor environments is also an important part of people's lives and health preservation. For example, to monitor outdoor air pollution or indoor toxic gases (or specific gases), it is customary to use gas detection equipment to detect the concentration of air in the air and convert it into electronic signals for judgment. However, due to the variety of gases, Providing correct monitoring information, how to analyze the measured gas to accurately determine the measured gas will be the most important technology for gas monitoring equipment. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a gas pre-measuring device and a gas monitoring device that can accurately determine the type of gas to be measured. In order to achieve the above object, the gas detecting device of the present invention comprises a gas detecting module and a monitoring module. The gas detection module includes a plurality of gas detecting units and a main controller, 201104247, the gas detecting unit can detect N (N > 2) kinds of gases, and separately detect the measured gas output The test signal is sent to the main controller, and the main controller generates a detection value according to the detection signal. Preferably, the gas detection module further includes a display for displaying the predicted values. The monitoring module is coupled to the gas detecting module and includes a micro processing unit and a display unit. The micro processing unit prestores a maximum detection value of the gas that can be measured by each of the gas detecting units. And the micro-processing unit root obtains the probability value of the gas of the gas of the N gas according to the maximum detection value of the gas detection unit and the detection values, and according to the ^^ The gas probability value determines which gas has the highest probability, and the display unit outputs the result. The micro processing unit determines a weight value of each detected value according to the maximum detection value of the gas detection unit for the same gas, and subtracts the value obtained by multiplying the weight values by ^ In order to obtain the probability value of the gas, and the micro processing unit repeats the above calculation steps, and obtain the N kinds of gases according to the maximum detection values of different gases that can be measured by the gas detection and detection units respectively. Probability value. The micro-processing unit calculates the probability value formula of various gases as: gas probability value=1-[(1-Vsi/Vsimax) x (1_Vs2/Vs2_) X ... (1 - vSN/vSNmax)], wherein vSN refers to each gas The detecting unit detects the measured value corresponding to a certain gas, and the VB Tt and the state value VSN (4) X refers to the maximum detected value of each gas detecting unit corresponding to the gas. Preferably, the gas sampling device further comprises a wired transmission interface and two 201104247 wireless communication units, wherein the material interface comprises a (four) transmission interface, which is respectively disposed at the gas detection module end and the monitoring module end. r. The main controller of the gas detection module and the micro-location of the monitoring module transmit the values, the two wireless communication units (4) and the main controller of the gas detection module and the micro processing unit of the monitoring module _ Transmit these detected values. Preferably, the wired transmission interface further includes an interface conversion unit disposed between the two serial transmission interfaces, configured to convert the detection value of the serial transmission interface output of the main controller into the An acceptable type of transmission interface of the micro processing unit. Further, the gas detecting device of the present invention for achieving the above object includes a plurality of gas detecting units, a main controller and a display. The measuring unit may speculate N (N > 2) kinds of gases, and respectively for the measured body output - signal. The main controller prestores each gas detecting unit corresponding to the gas obtained in (4) The maximum measured value, the main controller generates a detection value according to the debt measurement signal, and obtains the ^^ according to the maximum detection value of the gas side unit for the N kinds of gas and the detected value. The probability value of the gas is determined by the N gas probability value to determine which gas has the highest probability, and the determination result is output to the display. The main controller is based on the gas detector for the maximum detection of a certain gas. Measured value After a weight value of the measured value, the value obtained by multiplying the weight values is subtracted to obtain the probability value of the gas, and the main controller repeats the above calculation steps and substitutes the gas detecting units respectively. The maximum detected value of the different gases can be measured to obtain the probability of 201104247 of the N kinds of gases. And the main controller calculates the probability value formula of various gases as: gas probability value=HU-vsl/vslmax) x (1_Vs2/Vs2max) x . (i-vSN/vSNmax)], where Vsn refers to the detection value corresponding to each gas detection unit detected by a certain gas, and VsNmax refers to each gas detection unit for the species. The above-mentioned and other technical contents, features, and effects of the present invention will be apparent from the following detailed description of the preferred embodiments of the accompanying drawings. 1 is a schematic block diagram of a first preferred embodiment of the gas detecting device of the present invention, which mainly includes a gas detecting module 100 and a monitoring module 200 coupled to each other. Gas detection module The gas detecting module 1 has a rectangular casing 丨〇丨, and the opposite ends of the casing 101 are respectively provided with an air filter 1〇2 and a fixing plate 103, and a fixing plate The opposite ends of the 1〇3 are provided with fixing holes 1〇4 for fixing the housing 〇1 to a wall surface 30, and the fixing plate 104 is provided with an air outlet 1〇5, and the fixing plate 104 faces the housing ιοί An air suction device 1〇6 is provided on the inner side surface for drawing air from the outside of the casing 1 〇1 through the air filter sheet 1 〇 2 into the casing 1 再 and then sent out from the air outlet 105 of the fixed plate 103. The detecting module 1 is further disposed in the housing 1〇1, and a detecting circuit board 丨丨〇 and a first driving circuit board 120 are sequentially disposed between the air filter sheet 102 and the fixed board 1 〇4. a second driving circuit board 13A, a host and a 201104247 signal board 140 and a power supply and output board 15〇0 detecting circuit board 110 is provided with a plurality of gas sensors (this embodiment has 7 gas sensations As an example, these sensors include semiconductor, photoelectric, electrochemical, infrared or other measurement methods. The gas detecting component, and each gas sensor can be a single gas detecting or can detect a plurality of different gases at the same time, as shown in the example of FIG. 3, but is not limited thereto. The first driving circuit board 120 is electrically connected to the detecting circuit board u〇, and is provided with driving circuits, correction circuits and sampling circuits of four different gas sensors. The second driving circuit board 130 is electrically connected to the detecting circuit board 11 (), and is provided with driving circuits, correction circuits and sampling circuits of the other three different gas sensors. As shown in the circuit block diagram of the gas sensing module of FIG. 4, each of the gas detectors and the corresponding driving circuit, the calibration circuit and the sampling circuit form the seven gas detecting units UI to U7 of FIG. The main unit and the communication board 140 are electrically connected to the first and second driving circuit boards 12A and 13B. As shown in FIG. 1, a main controller 141, a wired transmission unit 142 and a wireless communication unit 143 are disposed. The main controller mi includes a type of analog/digital converter for respectively obtaining a detection signal from the sampling circuits of the respective gas detecting units 111 to 117 and converting them into digitally detected values. The wired transmission unit 142 includes a transmission interface 144 and an interface conversion unit 145 which are provided at the signal output % of the main controller 141. The main controller 141 outputs the detection values via the transmission interface 144. The interface conversion unit 145 is electrically connected to the transmission interface 144 and the monitoring module 200 for converting the detection values into the monitoring module 200. The signal format is output to the monitoring module 200. In this embodiment, the transmission interface 144 is an example of an I2C interface ’ 201104247, and the interface conversion unit 145 is an example of a sinking RS232 bridge, but is not limited thereto. As shown in FIG. 1 , the wireless communication unit 143 is electrically connected to the main controller to transmit the side value of the output of the main control H 141 to the monitoring module 200 in a wireless manner, and receives the transmission module 2 Other signals. In this embodiment, the wireless communication unit 143 is a duplex communication interface, which can be implemented by using one of conventional wireless communication circuits such as infrared, radio (radio frequency), and electromagnetic induction (coil). • The power supply and output board 15A shown in FIG. 1 includes a power supply 151 and a display 152. The power supply i5i is used to convert the parental AC 110V input from the external input into the gas detection module 1 〇〇Require the power supply to supply the above various circuits. The display 152 is a liquid crystal display electrically coupled to the main controller 14! for displaying the sensed values of the gas sensing sheets & u, 卜'. Referring to FIG. 1 again, the monitoring module 200 includes a wireless communication unit 210, a micro processing unit 220, and a display unit 23A. The wireless communication unit 210 and the gas debt measurement module 10 have the same wireless communication protocol for wireless communication with the wireless communication unit 143 of the gas detection module 1 to receive the wireless communication unit. The sensed value of the gas sensing unit. The microprocessor unit 220 is electrically connected to the gas detecting module and the 100 I2C to RS232 bridge 145 via an RS232 interface 221 to receive the senses of the gas sensing units lu~117 from the main controller 141 by wire. Measured value. It can be seen from the above description that the monitoring module 200 can communicate with the gas detecting module 100 through the wired or wireless party 201104247. When the monitoring module 200 is disposed close to the gas detecting module 100, the monitoring module 200 and the gas detecting device The module 1 can communicate via the wired connection of the I2C to the RS23 2 bridge 145; and when the monitoring module 200 is disposed at the remote end, the monitoring module 2 and the gas detection module 100 Communication can be performed through the wireless communication units 143, 210. Therefore, the setting position of the monitoring module 200 will not be limited by the distance from the gas detecting module 1〇〇, and the gas detecting module can be achieved! 〇〇 Flexible and mobile communication. In addition, in order to determine the gas measured by the gas detecting units 111 to 117, the micro processing unit 220 further prestores a gas type that can be sensed by the various gas sensing units 111 to 117 as shown in FIG. 3, and each A gas detecting unit 111-117 is configured to sense a maximum sensing value that can be rotated by different gases (the sensing value herein refers to a sensing signal output by the main controller 141 for different gas detecting units 111 to 117). The maximum detection value of the conversion output, for example, the HS130A alcohol sensor can sense hydrogen (maximum detection value 5), butane (maximum detection value 3) and alcohol (maximum detection value 4) three gases, hs 135 The air pollution sensor can sense four gases: Ding (maximum measured value 5), smoke (maximum measured value 4), carbon dioxide (maximum detected value 3) and alcohol (maximum detected value 4). The numerical values illustrated in Figure 3 are for illustrative purposes only and are not practical values. Furthermore, the microprocessor unit 220 determines the probability values of the various gases based on the maximum detected values of the same gas and the detected values of the gas detecting units 111-117, and then according to the probability values of the gases. To determine which gas has the highest probability, in order to achieve the above object, the microprocessor unit 220 performs a formula for obtaining various gas probability values as follows: 10 201104247 Gas probability value=w(1_Vsi/Vsimax) x (1_Vs2/Vs2max) χ ... U_vSN /vSNmax)].......................... (1) where vSN refers to each gas detection unit i丨丨~ 丨 17 detects the detection value corresponding to the gas, and VsNmax refers to the maximum detection value of each gas detection unit ^丨~ιΐ7 for the same gas. And the micro-processing unit 22 重 repeats 4 A (1)' and substitutes the maximum measured values of different gases that can be measured by the gas detecting units 1 1 1 to 1 1 7 respectively. Get the probability of various gases. The following will be illustrated. Referring to FIG. 2 and FIG. 3, when a gas to be tested enters the casing of the gas detecting module 1 through the suction of the air extracting device, some gas detecting units will test the gas to be tested. There is a reaction, but some are not. The gas detecting unit that is responsive to the gas to be tested senses the gas to be tested and outputs a sensing signal. In this embodiment, the gas detecting unit that is reacting is assumed to be FIG. The alcohol detector 丨丨丨, the ammonia detector u2, the air pollution detector 113, and the liquefied petroleum gas detector ιΐ5, and the output sensing signal is digitally detected by the main controller 141 The values are 2·5, 1.8, 1.6, and 〇·9, and the detected values are output to the display in display and simultaneously transmitted to the monitoring module 200 through the wireless communication unit 143, 21〇 or the I2C scale 5232 bridge 145. Microprocessing unit 22〇. The micro processing unit 220 temporarily stores the detected values, and then the alcohol detector m, the ammonia detector 112, the air pollution detector U3, and the liquefied petroleum gas detector 115 are respectively found in FIG. Reacts to hydrogen, liquefied petroleum gas, natural gas, butane, smoke 'carbon dioxide, ammonia and alcohol, so it is then based on the gas detection units i丨i, 112, 113 and 115 for the most 11 201104247 large detection values of these gases And the actual detection value, using the above formula (1) to calculate the probability values of these gases (ie hydrogen, liquefied petroleum gas, natural gas, butane, smoke, carbon dioxide, ammonia and alcohol) are as follows: probability (hydrogen) = 1 -[(1-2.5/5)χ(1-1·8/4)]=0.725 probability (liquefied petroleum gas)=1-[(1-〇·9/5)]=〇·18 probability (natural gas) =1-[(1-0·9/4)]=0.225 probability (butane)=1-[(1-2.5/3)χ(1-1.8/3)χ(1-1·6/5) ]=〇.9548 probability (smoke)=1-[(Μ.6/4)χ(1-0·9/3)]=0·58 probability (carbon dioxide)=1_[(1_16/3)]=〇 .53 probability (ammonia)=1-[(1-1.6/3)]=0.53 probability (alcohol)=1-[(1·2_5/5) X (1-1.8/4) X (Μ 6/5 ) χ (1-0.9/5)]=0.846 and by A gas detection unit 111, U2,113 and U5 toluenesulfonic burn and - no reaction carbon monoxide, methane and carbon monoxide, so the probability is zero. Therefore, based on the above calculation result, the microprocessor unit 22 can determine that the probability of the gas to be measured is the maximum, and output the probability values and the determination results of the respective gases to the display unit 230 (liquid crystal display) for display. Or, supervision

即時發出一警報聲響或警報訊息。Instantly sound an alarm or an alarm message.

不同的是,氣體偵測裝置300不需要另外設置 152。與第一實施例 十設置一監控模組, 12 201104247 • 且主控制器310除了將氣體偵測單元m〜ii7偵測氣體所產 生之偵測訊號轉換成數位偵測值外,其更兼具第一實施例中 之監控模組200的功能,亦即主控制器310争預存有一如圖 3所示的各種氣體感測單元ιη〜117所能感測的氣體種類, 以及每一種氣體偵測單元lu〜117針對感測不同氣體所能 輸出的最大感測值,並根據該等氣體偵測單元U1〜U7針對 同一種氣體的最大偵測值及該等偵測值,藉由如上述之公式 (1)求得各種氣體的機率值,再根據該等氣體的機率值判斷 • 何種氣體的機率最大,並將判斷結果輸出至顯示器152顯 7|χ 0 综上所述,上述實施例根據多個氣體偵測單元偵測一待 測氣體所得到的多個偵測值,以及各個氣體偵測單元對於不 同氣體所能對應產生的最大偵測值,以多重融合理論來估算 各種氣體的機率值’以由各種氣體的機率值來判斷待測氣體 的方式,可以更準確地判斷出待測氣體,並適時地發出警告 訊息,使氣體偵測裝置能夠真正地發揮其功效。 _ 准以上所述者,僅為本發明之較佳實施例而已,當不能 以此限定本發明實施之範圍,即大凡依本發明申請專利範圍 及發明說明内容所作之簡單的等效變化與修飾,皆仍屬本發 明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是本發明氣體偵測裝置的第一較佳實施例的電路 方塊圖; 圖2疋第一實施例之氣體偵測模組的外觀架構側面刮 13 201104247 視不意圖, 圖3是第一實施例所使用的各種氣體偵測單元及其所 能偵測的氣體及針對不同氣體的最大偵測值對照表;及 圖4是本發明氣體偵測裝置的第二較佳實施例的電路 方塊圖。 14 201104247 【主要元件符號說明】 100氣體偵測模組 101殼體 103固定板 105出風口 110偵測電路板 130第二驅動電路板 150電源及輸出板 111〜117氣體偵測單元 142有線傳輸介面 102空氣過濾片 104固定孔 106抽風裝置 120第一驅動電路板 140主機及通訊板 30 壁面 141主控制器 143無線通訊單元 144 I2C介面(傳輸介面) 145介面轉換單元(I2C轉RS232橋接器) 151電源供應器 152顯示器 200監控模組 210無線通訊單元 220微處理單元 221 RS232介面(傳輸介面) 230顯示單元 240警報單元 300氣體偵測裝置 310主控制器 15The difference is that the gas detecting device 300 does not need to be additionally provided 152. A monitoring module is provided in the first embodiment. 12 201104247 • The main controller 310 converts the detection signals generated by the gas detecting units m to ii7 into gas detection signals. The function of the monitoring module 200 in the first embodiment, that is, the main controller 310 competes for a gas type that can be sensed by the various gas sensing units ι 〜 117 as shown in FIG. 3, and each gas detection The units lu~117 are for sensing the maximum sensing value that can be output by different gases, and according to the maximum detection value of the same gas and the detection values of the gas detecting units U1~U7, by the above Formula (1) obtains the probability values of various gases, and then judges according to the probability values of the gases, which gas has the highest probability, and outputs the judgment result to the display 152. 7|χ 0 In summary, the above embodiment Multi-fusion theory is used to estimate various gases according to a plurality of detection values obtained by detecting a gas to be tested by a plurality of gas detecting units, and a maximum detection value that each gas detecting unit can generate for different gases. Probability 'Probability values to the various gases to determine the gas to be measured, it can be judged more accurately test gas, and a warning message in a timely manner, the gas detection apparatus can really exert their effects. The above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention, that is, the simple equivalent changes and modifications made by the scope of the present invention and the description of the invention. All remain within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit block diagram of a first preferred embodiment of a gas detecting device of the present invention; FIG. 2 is a perspective view showing the appearance of a gas detecting module of the first embodiment. 3 is a comparison table of various gas detecting units used in the first embodiment and the gas detectable by them and a maximum detected value for different gases; and FIG. 4 is a second comparison of the gas detecting device of the present invention. A circuit block diagram of a preferred embodiment. 14 201104247 [Main component symbol description] 100 gas detection module 101 housing 103 fixing plate 105 air outlet 110 detecting circuit board 130 second driving circuit board 150 power supply and output board 111 to 117 gas detecting unit 142 wired transmission interface 102 air filter 104 fixed hole 106 exhaust device 120 first drive circuit board 140 host and communication board 30 wall 141 main controller 143 wireless communication unit 144 I2C interface (transport interface) 145 interface conversion unit (I2C to RS232 bridge) 151 Power supply 152 display 200 monitoring module 210 wireless communication unit 220 micro processing unit 221 RS232 interface (transport interface) 230 display unit 240 alarm unit 300 gas detecting device 310 main controller 15

Claims (1)

201104247 七、申請專利範圍: i一種氣體偵測裝置,包括: „ 軋體偵測模組,包含多個氣體偵測單元及-主控制 :所體偵測單元可以谓測N(N>2)種氣體,並各別針 “1件的氣體輸出-偵測訊號給該主控制器 根據該價測訊號產生一偵測值;及 控㈣ —監控模組,與該氣體偵測模組祕,並包含-微處理 —凡及-顯示單元’該微處理單元中預存有各該氣體偵測單 一子斤月t測得之氣體的最大偵測值,且該微處理單元根據兮 等氣體:測單元針對該N種氣體的最大㈣值及該等“ 、求得該N種氣體的機率值,並根據該N個氣體機率值 判斷何種氣體的機率最大,並由該顯示單it輸出判斷結果。 2.依:申請專利範圍第1項所述之氣體侦測裝置,其中該微處 理早讀據該# 4體偵測單元針對同-種氣體的最大偵測 值’求得各該谓測值的一權重值後’以i減去該等權重值相 乘後的值以求彳于該種氣體的機率值,且該微處理單元重覆 ^述計算步驟,分別根據該等氣體偵測單元所能測得之不同 氣體的最大偵測值,求得該N種氣體的機率值。 3·依據中請專利I!圍第2項所述之氣體制裝置,其中該微處 理單兀計算各種氣體的機率值公式為:氣體機率值 = L[(i-vsl/vslmax)x(1-Vs2/Vs2max)x . (1_VsN/VsNmax)],其中 VSN疋指各個氣體偵測單元偵測某一種氣體所對應產生之偵 測值’ VSNmax是指各個氣體偵測單元針對該種氣體所對應產 生的最大偵测值。 16 201104247 4.依據申請專利範圍第〗項所述之氣體㈣裝置,更包括一有 線傳輸介面及兩個無線通訊單元,該有線傳輸介面包含兩個 傳輸介面,其分別設於該_測模紐端及該監控模組端, 用以性連接該氣體痛測模組之主控制器與該監控模組之微 處理草几以傳輸該等偵測值,該二無線通訊單元各別與該氣 體偵測模組之主控制器及該監控模組之微處理單元電連 接’用以無線傳輸該等偵測值。201104247 VII. Patent application scope: i A gas detection device, including: „ Rolling body detection module, including multiple gas detection units and - main control: the body detection unit can be said to measure N (N> 2) a gas, and each pin "one gas output-detection signal to the main controller generates a detection value according to the price measurement signal; and control (four) - the monitoring module, and the gas detection module secret, and Including - micro-processing - where - display unit 'the micro-processing unit pre-stored the maximum detected value of each gas detected by the gas, and the micro-processing unit is based on gas such as helium: measuring unit The maximum (four) value of the N kinds of gases and the probability values of the N kinds of gases are determined, and the probability of which gas is maximized based on the N gas probability values, and the determination result is outputted from the display unit it. 2. The gas detecting device according to claim 1, wherein the micro-processing early reading determines the measured value according to the maximum detection value of the same type of gas. After a weight value, the value obtained by multiplying the weight values by i is Taking the probability value of the gas, and the micro processing unit repeats the calculation step, and determining the probability of the N gas according to the maximum detection value of the different gases that the gas detection unit can measure. 3. According to the gas system described in the second item of Patent I!, wherein the micro-processing unit calculates the probability value of each gas as: gas probability value = L[(i-vsl/vslmax)x (1-Vs2/Vs2max)x. (1_VsN/VsNmax)], where VSN refers to the detection value corresponding to each gas detection unit by detecting a certain gas. 'VSNmax means that each gas detection unit targets the gas. Corresponding maximum detection value. 16 201104247 4. The gas (4) device according to the application scope of the patent scope includes a wired transmission interface and two wireless communication units, and the wired transmission interface comprises two transmission interfaces. The method is configured to connect the main controller of the gas pain test module and the micro-process grass of the monitoring module to transmit the detection values. Two wireless communication units and the gas detection Groups of micro main controller and said monitoring module electrically connected to the processing unit 'for wireless transmission of such detection value. 5·依據申請專利範圍第4項所述之氣㈣測裝置,其中該有線 傳輸"面更包含-設在該二串列傳輸介面之間介面轉換單 兀用以將該主控制器之串列傳輸介面輸出的偵測值轉換成 該微處理單元之傳輸介面可以接受的型態。 6.依據申請專利範圍第5項所述之氣體偵測裝置,其中該主控 制器之傳輸介面是一 I2C介面,該微處理單元之傳輸介面是 RS232 ;丨面,且該介面轉換單元是一 η。轉橋接 7·依據中請專利範圍第1項所述之氣體❹]裝置,其中該氣體 偵測模組更包括-與該主控制器電連接的顯示器,用以顯示 該等偵測值。 8·依據申請專利範圍第1項所述之_測裳置,其中該監控 模且更包括艾該微處理單元控制的警報單元,該微處理單 兀可根據氣體判斷結果控制該警報單元發出一警報訊息。 9,一種氣體偵測敦置,包括: 多個氣體偵測單元’該等氣體偵測單元可以偵測N(N>2) 種氣體,並各別針對所測得的氣體輸出一偵測訊號; 17 201104247 -主控制器’其中預存有各該_測單元對應所能測 得之氣體的最大偵測值,該主控制器根據該伯測訊號產生一 债測值,並根據該等氣㈣測單元針對該氣體的最大偵 測值及該等❹】值,求得該_氣體的機率值,以根據該n 個载體機率值判斷何種氣體的機率最大;及 一顯示單元’輸出上述判斷結果。 10.依據申請專利範圍第9項所述之氣體偵測裝置其中該主 控制器根據該等氣體偵測器針對某一種氣體的最大偵測 值,求得各該制值的—權重值後,卩!減去該等權重值 相乘後的值,以求得该種氣體的機率值,且該主控制器重 覆上述計算步驟’分別代入該等氣體偵測單元所能測得之 不同氣體的最大偵測值,以求得該Ν種氣體的機率值。 11·依據申請專利範圍第10項所述之氣體谓測裝置,其中該主 控制器計算各種氣體的機率值公式為:氣體機率值 = M^_vsl/vslinaxMi_Vs2/Vs2max)x···. (1_VsN/VsNmax)],其中 VSN疋私各個氣體偵測單元偵測某一種氣體所對應產生之 偵測值,VSNmax是指各個氣體偵測單元針對該種氣體的最 大偵測值。 12. 依據申請專利範圍第9項所述之氣體偵測裝置,更包括一 受該主控制器控制的警報單元,該主控制器可根據氣體判 斷結果控制該警報單元發出一警報訊息。 13. -種氣體監控裝置,用以接收來自一氣體伯測裝置的複數 個價測值,該等债測值代表$氣體债測裝置中的不同氣體 俄測單元所測得之氣體濃度,該氣體監控裝置包括: 18 201104247 . 一傳輸單元,用以接收該等偵測值; 一微處理單元,其中預存有各該氣體偵測單元訝所能 測得之氣體的最大偵測值,並根據該等氣體偵測單元針對 同一種氣體的最大偵測值及該等偵測值,求得該N種氣體 的機率值,以根據該N個氣體機率值判斷何種氣體的2率 最大;及 一顯示單元,輸出上述判斷結果。 14. 依據申請專利範圍第13項所述之氣體監控裝置,其中該微 • 處理單元根據該等氣體偵測單元針對某一種氣體的最^偵 測值’求得各該偵測值的一權重值後,以i減去該等權重 值相乘後的值,以求得該種氣體的機率值,且該主控制器 重覆上述計算步驟,分別代入該等氣體偵測單元所能測得 之不同氣體的最大偵測值,以求得該N種氣體的機率值。 15. 依據申請專利範圍第14項所述之氣體監控裝置,其中該微 處理單元計算各種氣體的機率值公式為:氣體機率值 -i-[(i-vsl/vslmax)x(i_Vs2/Vs2max)x (1Vsn/Vsn_”,其中 • vSN是指各個氣體们則器仙體所對應產生之仙值, vSNmax是指各個氣體偵測器針對同一種氣體的最大偵測 值。 16-依據申請專利範圍第13項所述之氣體監控裝置,其中該傳 輸=元包括一有線傳輸介面及一無線通訊單元,該有線傳 輸"面用以電性連接該氣體偵測裝置及該微處理單元以傳 輸边等偵測值,該無線通訊單元用以透過無線傳輸方式接 收該氣體偵測裝置輸出之該等偵測值。 19 201104247 17.依據申請專利範圍第16項所述之氣體監控裝置,其中該有 線傳輸介面是一 RS232介面,該無線通訊單元可以由紅外 線、射頻或電磁感應電路其中之一實現。 205. The gas (four) measuring device according to item 4 of the patent application scope, wherein the wired transmission " face further comprises: an interface conversion unit disposed between the two serial transmission interfaces for stringing the main controller The detected value of the output of the column transmission interface is converted into a form acceptable to the transmission interface of the microprocessor unit. 6. The gas detecting device according to claim 5, wherein the transmission interface of the main controller is an I2C interface, the transmission interface of the micro processing unit is RS232, and the interface conversion unit is a η. The device of the gas detection device according to the first aspect of the invention, wherein the gas detection module further comprises a display electrically connected to the main controller for displaying the detection values. 8. The method according to claim 1, wherein the monitoring module further comprises an alarm unit controlled by the micro-processing unit, and the micro-processing unit can control the alarm unit to emit a warning according to the gas judgment result. Alert message. 9. A gas detection device comprising: a plurality of gas detection units 'the gas detection units are capable of detecting N(N>2) gases and respectively outputting a detection signal for the measured gas output 17 201104247 - The main controller 'pre-stores each of the _ measuring units corresponding to the maximum detected value of the gas that can be measured, the main controller generates a debt measurement value according to the primary test signal, and according to the gas (4) The measuring unit determines the probability value of the gas for the maximum detected value of the gas and the value of the gas, to determine which gas has the highest probability according to the n carrier probability values; and a display unit to output the above critical result. 10. The gas detecting device according to claim 9 wherein the main controller obtains the weight value of each of the values according to the maximum detected value of the gas detector for a certain gas. Hey! Subtracting the value obtained by multiplying the weight values to obtain the probability value of the gas, and the main controller repeats the above calculation step to respectively substitute the maximum detection of different gases that can be measured by the gas detecting units The value is measured to obtain the probability value of the gas. 11. The gas pre-measurement device according to claim 10, wherein the main controller calculates a probability value formula of each gas as: gas probability value = M^_vsl/vslinaxMi_Vs2/Vs2max)x···. (1_VsN /VsNmax)], wherein the VSN private gas detection unit detects the detection value corresponding to a certain gas, and VSNmax refers to the maximum detection value of each gas detection unit for the gas. 12. The gas detecting device according to claim 9, further comprising an alarm unit controlled by the main controller, wherein the main controller can control the alarm unit to send an alarm message according to the gas judgment result. 13. A gas monitoring device for receiving a plurality of price measurements from a gas detector device, the debt values representing gas concentrations measured by different gas detector units in the gas debt measuring device, The gas monitoring device comprises: 18 201104247. A transmission unit for receiving the detection values; a micro processing unit, wherein the maximum detection value of the gas that each gas detection unit can detect is pre-stored, and according to The gas detecting unit obtains the probability values of the N kinds of gases for the maximum detected value of the same gas and the detected values, so as to determine which gas has the highest rate 2 according to the N gas probability values; A display unit outputs the above judgment result. 14. The gas monitoring device of claim 13, wherein the micro-processing unit obtains a weight of each of the detected values according to the most detected value of the gas detecting unit for the gas. After the value, the value obtained by multiplying the weight values is subtracted from i to obtain the probability value of the gas, and the main controller repeats the above calculation steps and respectively substitutes the gas detecting units to measure The maximum detected value of different gases to obtain the probability value of the N kinds of gases. 15. The gas monitoring device according to claim 14, wherein the micro-processing unit calculates a probability value formula of each gas as: a gas probability value -i-[(i-vsl/vslmax)x(i_Vs2/Vs2max) x (1Vsn/Vsn_), where • vSN is the sum of the values generated by each gas, and vSNmax is the maximum detection value of each gas detector for the same gas. 16-Based on the scope of patent application The gas monitoring device of claim 13, wherein the transmission=element comprises a wired transmission interface and a wireless communication unit, wherein the wired transmission " surface is electrically connected to the gas detecting device and the micro processing unit to transmit the edge For the detection value, the wireless communication unit is configured to receive the detected value of the gas detection device by wireless transmission. 19 201104247 17. The gas monitoring device according to claim 16, wherein the cable The transmission interface is an RS232 interface, and the wireless communication unit can be implemented by one of an infrared, radio frequency or electromagnetic induction circuit.
TW98125361A 2009-07-28 2009-07-28 Gas detecting device and gas monitoring device TWI414786B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98125361A TWI414786B (en) 2009-07-28 2009-07-28 Gas detecting device and gas monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98125361A TWI414786B (en) 2009-07-28 2009-07-28 Gas detecting device and gas monitoring device

Publications (2)

Publication Number Publication Date
TW201104247A true TW201104247A (en) 2011-02-01
TWI414786B TWI414786B (en) 2013-11-11

Family

ID=44813538

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98125361A TWI414786B (en) 2009-07-28 2009-07-28 Gas detecting device and gas monitoring device

Country Status (1)

Country Link
TW (1) TWI414786B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI507685B (en) * 2013-01-14 2015-11-11 Univ Fooyin Nitric oxide radiosonde

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661666A (en) * 1992-11-06 1997-08-26 The United States Of America As Represented By The Secretary Of The Navy Constant false probability data fusion system
JP3169715B2 (en) * 1992-11-20 2001-05-28 エヌオーケー株式会社 Gas identification method and gas identification device
US6446027B1 (en) * 1999-09-17 2002-09-03 General Electric Company Intelligent analysis system and method for fluid-filled electrical equipment
US7096125B2 (en) * 2001-12-17 2006-08-22 Honeywell International Inc. Architectures of sensor networks for biological and chemical agent detection and identification
US7065465B2 (en) * 2002-03-26 2006-06-20 Lockheed Martin Corporation Method and system for multi-sensor data fusion
WO2008039996A2 (en) * 2006-09-28 2008-04-03 Smiths Detection Inc. Multi-detector gas identification system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI507685B (en) * 2013-01-14 2015-11-11 Univ Fooyin Nitric oxide radiosonde

Also Published As

Publication number Publication date
TWI414786B (en) 2013-11-11

Similar Documents

Publication Publication Date Title
US11047843B2 (en) Atmospheric environment monitoring apparatus detecting failure of atmospheric environment sensor, and method for detecting failure of atmospheric environment sensor
TWI445958B (en) Gas detecting system, device and method
JP3168701U (en) Digitized sensor system
US20110129939A1 (en) Portable electronic device and method for using the same
KR101006692B1 (en) Stroller with internal temperature sensing and real-time development check computing and its operation method
TW201104247A (en) Gas detecting device and gas monitoring device
CN203789906U (en) Bluetooth bracelet
CN203338510U (en) Portable early fire detection device
CN105261158A (en) High-precision natural gas leakage detector based on Internet of things
CN212060015U (en) Detection device for detecting exhaled gas of electronic cigarette smoker
TW200513642A (en) Device and method for detecting concentration of gas
TW201413667A (en) Ambient detection system and portable ambient measurement device thereof
CN207007309U (en) A kind of scale with air quality detection function
CN203455927U (en) Gas alarm controller
CN203365408U (en) Replaceable multi-gas determination device with uniform interface
CN104730203A (en) Hydrogen concentration detector with temperature measurement function
CN202795671U (en) Gas alarm
TWI473045B (en) Solar wireless remote leakage-aware system
CN201247247Y (en) Device with extension bar for determination of carbon monoxide
CN112379043A (en) Gas detection system and method
RU126052U1 (en) GAS ANALYZER
KR20200030746A (en) Industial measuring instrument and thereof controling system
CN104783766B (en) Body temperature real-time dynamic monitoring warning device
TWI779367B (en) A compensation differential thermal imaging and testing device and method thereof
KR20080024933A (en) Apparatus for unobtrusive measurement of indoor activities using infra-red motion sensor and method thereof