TW201037958A - Systems for highly efficient solar power - Google Patents

Systems for highly efficient solar power Download PDF

Info

Publication number
TW201037958A
TW201037958A TW098112277A TW98112277A TW201037958A TW 201037958 A TW201037958 A TW 201037958A TW 098112277 A TW098112277 A TW 098112277A TW 98112277 A TW98112277 A TW 98112277A TW 201037958 A TW201037958 A TW 201037958A
Authority
TW
Taiwan
Prior art keywords
photoelectric
power
converter
aforementioned
solar energy
Prior art date
Application number
TW098112277A
Other languages
Chinese (zh)
Other versions
TWI484746B (en
Inventor
Anatoli Ledenev
Robert M Porter
Original Assignee
Ampt Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ampt Llc filed Critical Ampt Llc
Priority to TW098112277A priority Critical patent/TWI484746B/en
Publication of TW201037958A publication Critical patent/TW201037958A/en
Application granted granted Critical
Publication of TWI484746B publication Critical patent/TWI484746B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

Different systems to achieve solar power conversion are provided in at least three different general aspects, with circuitry that can be used to harvest maximum power from a solar source (1) or strings of panels (11) for DC or AC use, perhaps for transfer to a power grid (10) three aspects can exist perhaps independently and relate to: (1) electrical power conversion in a multimodal manner, (2) alternating between differing processes such as by an alternative mode photovoltaic power converter functionality control (27), and (3) systems that can achieve efficiencies in conversion that are extraordinarily high compared to traditional through substantially power isomorphic photovoltaic DC-DC power conversion capability that can achieve 99.2% efficiency or even only wire transmission losses. Switchmode impedance conversion circuits may have pairs of photovoltaic power series switch elements (24) and pairs of photovoltaic power shunt switch elements (25).

Description

201037958 六、發明說明: 【發明所屬之技術領域】 本發明涉及太陽能技術領域,更具體地,涉及用於將 電源從若干類型的太陽能轉換爲使其在各種應用中可以利 用的方法和設備。本發明大槪從三個不同態樣提供能夠用 來從太陽能電池、太陽能板、或成串面板(strings of panels ) 獲得最大功率的技術和電路,以便該功率能夠用於DC或 AC用途,可能用於傳輸至電力網等。這三個態樣或許能夠 〇 獨立存在,並且涉及:1)以複合方式提供電源轉換,2) 建立能夠在不同過程(differingprocesses)間交替的系統, 以及3)能夠實現較常規系統高得多的轉換效率的系統。 【先前技術】 太陽能是最理想的可再生能源之一。近年來,它被奉 爲我們日益工業化的社會最有前景的能源之一。雖然理論 上太陽能的量遠超一一即使不是全部也是大部分一一其他 能源(可再生或不可再生)的量,但利用此種能源存在巨 〇 大的挑戰。通常,太陽能面臨完全發揮其作用的許多限制。 一方面,如何能提供與其成本相稱的電輸出是其面臨的挑 戰。本發明提出的一個主要態樣即顯著降低太陽能電利用 化的成本,使其成爲合算的電源來源。 最有效將太陽能轉換成電能的方式之一是利用太陽能 電池。該裝置經光電效應產生光生直流電。通常此類太陽 能電池彼此電連接以構成一個太陽能板或PV (光電)板的 電池組。PV板通常串聯連接,以在合理的電流時提供更高 -4- 201037958 的電壓。這可降低電互聯的損耗。由於使用的電源轉換器 能更有效地利用更高的電壓’太陽能電池或太陽能板或甚 至其組合的輸出一般是轉換成最有效的電源。常規電源轉 換器甚至在其輸入端使用MPPT(最大功率追蹤器)電路來 從一個或多個或甚至是一串連接板處提取最大量功率。但 是該方法的問題是由於通常由PV板起到電流源的作用以 及當串聯連接時,最小功率板將限制透過任意板的電流。 此外’歷史上的太陽能電池均用諸如矽PN結的半導體 〇 製成。這些結或二極體將太陽光轉換成電能。這些二極體 具有低電壓輸出的特性’通常在0.6伏的數量級。這種電 池與正向二極體並聯而起類似電流源作用。此類電池的輸 出電流可是許多結構因素的函數,通常與陽光量成正比。 這種太陽能電池的低電壓將難以轉換成適於供電至電 力網的功率。通常將許多二極體串聯在光電板上。例如, 一種可能的結構可具有以串聯方式連接以獲得21.6伏的 36個二極體或板。實際上這種具有旁路二極體的板還有互 〇 W 連損耗,因此在其最大功率點(MPP)處僅能產生15伏的 電壓。對於具有更多這種板的一些更大的系統來說,即使 15伏也不足以基本無損耗地在電線上傳輸。此外,現在典 型的系統以串聯方式合倂多個板來提供100伏的電壓,以 使PV板和電源轉換器之間的傳導損耗最小化。 然而,有關電態樣面臨的問題是找到轉換器合適的輸 入阻抗以從此種成串PV板處獲得最大功率。在最大功率點 上提取功率通常稱爲MPP追蹤。然而,一部分此類系統存 201037958 在這裏將討論的一些限制。首先,PV板可起到電流源的作 用。因此,產生最小電流的板將限制透過整排板的電流。 在不理想的情況中,如果一個較差的板產生了相對較小的 電流,它將被其他板反向偏置。反向二極體可設置在每個 板的交叉處來限制此種情況的功率損耗並保護板不被反向 擊穿。 在系統中,至少出現過以下問題並導致在太陽能轉換 中出現一定程度的損失: A. 板間的不均勻性 B. 半陰的天氣 C. 灰麈或累積物阻礙太陽光 D. 板的損壞 E. 隨著時間流逝板出現不均勻的退化 當昂貴的PV面板串聯使用時,也可能很麻煩,最脆弱 的板將限制從任意其他板流出的電流。不利的是,串聯連 接的目的是獲得足夠高的電壓以更有效地透過地域分佈將 功率傳輸至載荷負載處,諸如並聯型轉換器。此外,在許 多系統中,PV板可置於屋頂上,諸如用於居住相關的設 備。轉換器通常置於距離屋頂一定距離的地方,諸如透過 功率計等。因此在實施例中,需要提出串聯連接板且不產 生最小功率板造成的損耗或任意串列並聯的連接方式。還 需要能在不考慮連接結構(串聯或並聯等)的同時使用不同 的板。 光電能量轉換的技術被認爲是徹底發揮太陽能作用最 201037958 大的限制。已經提出了在沿著MPP電路的每個板上使用 DC/DC轉換器作爲太陽能轉換方法的一種嘗試,以提高使 用太陽能板串列時的能量收穫率。然而,這種嘗試已經導 致了無法接受的低效率,使該方法不具實際意義。在某種 程度上,這些技術已經被遺漏考慮此種問題。例如,在G.R. Walker、J. Xue 和 P. Sernia 的題爲 “PV String Per-Module Maximum Point Enabling Converters”的文章中,作者提出 效率損耗是不可避免的,但其提出的模組仍然具有一定的 〇 優點,儘管它獲得了低的效率。類似地,在兩個相同作者 G.R. Walker 和 P. Sernia 的題爲 “Cascaded DC-DC Converter Connection of photovoltaic Modules”的文中顯示所需要的 技術總是處於不利的效率。這些文獻中甚至還掲示了效率 與功率的曲線圖,其顯示的滿功率接近91%。簡單來說, 透過低效率轉換器的高成本的運轉PV板在市場上是不可 接受的。 另一個尙未硏究透的問題是巨大串列串聯的PV板具 〇 w 有差異度極大的輸出電壓,使得驅動電力網的轉換器狀態 需要在較大範圍內調整導致其效率降低。還有一個問題是 轉換器部分不供電給電力網(grid)期間將使該階段的輸 入電壓提高甚至超出可控限度。或相反地,即使在此期間 的電壓不超過可控限度,但最終運轉電壓仍將大大低於轉 換器效率的理想點。 此外,還有啓動和保護的問題,其將顯著提高整個太 陽能轉換方法的成本。還具有其他影響太陽能安裝系統成 201037958 本平衡(BOS)的次要因素。因而,太陽能的電需求的至 少一個態樣是提高電系統轉換階段的效率。本發明恰好提 供了這方面的必要改善方案。 【發明内容】 如本發明的發明領域之,本發明包括可以不同方式組 合的各個態樣。隨後的描述將列舉各部件並闡述本發明的 一些實施例。用基礎的實施例來描述各部件,然而,應理 解它們可以任意方式和任意數量進行組合以產生其他的實 施例。描述的多種實施例和優選的實施例不應理解爲限制 本發明,而僅僅是明確地描述系統、技術和應用。此外, 應該理解本說明書支持並包含所有各種實施例、系統、技 術、方法、裝置和具有所揭示元件的任意數目、具有單獨 的各元件的應用、以及也具有在此或任何隨後應用中所有 各種元件的任意和所有各種改變和組合的應用。 在各種實施例中,本發明揭示了可實現本發明一些目 的的成果、系統和不同的原始示例性結構。系統具有交替 方式的光電轉換、高效率轉換設計以及多峰轉換的技術。 —些結構可將PV板與MPP甚至與雙模功率轉換電路組合 使用以獲得儍選的功率調節器(PC)部件。如下前述,這 種功率調節器可以串聯或並聯或串/並聯的方式任意組合 連接’並設計成使太陽能板能主要地或甚至長期地進行它 們的滿功率輸出。即使具有不同輸出特性的不同類型的板 仍可組合使用並獲得每塊板的最大功率。在一些設計中, 用串聯串列來獲得電傳輸有用的高電壓,設計每個功率調 201037958 節器的目的是產生其最大功率。 在實施例中’本發明允許每塊板均單獨地產生其最大 功率,因而能收穫整個系統的更多的總能量。該系統在每 塊板上設置了 MPP電路和能量轉換電路。這些電路是能發 揮若干功能的低廉的簡單電路。首先,設計該電路來提取 每塊板可用的最大功率。其次,設計該電路來改變當與串 聯中的其他板組合時天然存在的阻抗。還可在並聯連接的 板甚至單個電池或面板串列中配置該電路。如此配置的實 〇 施例可獲得較高的電壓輸出(例如400伏)。另外,這種結 構也易於控制超壓或進行其他保護,可具有或不具有控制 系統避免超壓或其他情況的回饋部件。 在板上額外配置單個MPP電路在成本上並沒有太大的 增加,在一些實施例中可代替電源轉換器實現相同功能。 該電路還可加入PV板中,且不需要在網結轉換器中重複使 用,因而這將使相同的總電路獲得顯著的優勢。在實施例 中還可用數個小的MPP轉換器取代一個大的轉換器,這將 ^ 獲得更高的能量收益。 【實施方式】 [實施例] 如上前述,本發明揭示了可單獨使用和與其他相組合 使用的多種態樣的內容。最初的想法是根據本發明的功率 調節器的一個實例可與任意以下原理和電路組合使用:交 替處理轉換器(a 11 e r n a t i v e p r 〇 c e s s c ο n v e r t e r )、雙模光電 轉換器、極高效的光電轉換器、多峰光電轉換器、將最大 201037958 功率追蹤器(MPP或MPPT)倂入上述部件中,以及包括 可控界限的諸如可控輸出電壓、輸出電流以及輸出功率的 界限的實施例。所有這些都應當從廣義上以及借助顯示工 具基礎應用(display initial applications for implementation) 的實施例來理解。所有這些態樣的基礎益處將單獨討論以 及在如下討論中與代表一級拓撲學而不是僅僅是根據上述 的內容進行組合討論。 圖1顯示說明本發明的太陽能轉換基礎原理的太陽能 〇 系統之一實施例。如其所示,它包括注入光電DC-DC電源 轉換器(4)的太陽能源(1),電源轉換器(4)將轉換後 的輸出供給主要與電力網(grid )( 10)相連接的光電DC-AC 轉換器(5)。可以理解,太陽能源(1)可以是太陽能電池、 太陽能板或甚至面板串列。無論如何,太陽能源(1)能夠 提供DC光電輸出(2)。該DC光電輸出(2)可作爲DC-DC 電源轉換器(4)的DC輸入。 根據通常由轉換器功能控制電路(8 )指示的性能來控 ® 制DC-DC電源轉換器(4)的運轉。本技藝人士應理解轉 換器功能控制電路(8)的含義很廣,可以是真實的電路硬 體或固件或軟體來實現預期的控制。類似地,可以認爲 DC-DC電源轉換器(4)能夠代表光電DC-DC能量轉換電 路。在這點上,很可能必需硬體電路,然而,應該理解“電 路”一詞仍包括硬體、固件及軟體的組合。 如圖1所示,各種部件可彼此相連。直接連接僅僅是 一種方式,其中各種部件可彼此響應,即,一個部件的若 -10- 201037958 干效應可直接或間接引起另一個的效應或改變。DC-DC電 源轉換器(4)的作用是轉換其輸出並提供轉換後的DC光 電輸出(6),作爲多種設計的DC-AC轉換器(5)的輸入。 該DC-AC轉換器(5)可包括或可不包括在太陽能電源系 統的實施例中。如果包括,它的作用是完成將DC電源轉 換成轉換後的DC (7)諸如光電AC電源輸出(7)的步驟, 該輸出可用於例如透過所謂AC電力網介面(power grid interface )(9)連接的電力網(10)。這樣,系統可產生 0 DC光電輸出(6),作爲一些類型的DC-AC轉換器(5)的 輸入。轉換輸入的步驟應理解爲包括和產生來自任意直流 電流信號的任意交替信號,即使該信號本身並不完美或並 不十分穩定。 如圖2和圖6所示,單個太陽能源(1)(電池、板或 模組級的)可組合使用以產生成串電連接的來源。這種組 合可透過串聯或並聯連接作出回應。如圖2和圖6所示, 連接多個可形成成串列電連接項目。諸如電連接的太陽能 〇 V 板(11)串列。如圖2所示,每個這種串列本身均是從一 個部件到非常大的組合,形成光電陣列(1 2 )或多個組合 的太陽能源。透過物理的或電的總體佈局,若干這些電池、 板或串列可以彼此相鄰,使得它們暴露在較爲類似地電 的、機械的、環境的、太陽曝光(或非太陽的)的條件下。 如圖2示意性顯示,在使用大陣列情況下,須加入高電壓 的DC-AC太陽能轉換器以及三相高電壓轉換AC光電輸出。 如針對電串聯的組合所顯示,可以組合輸出,因此它 -11 - 201037958 們的電壓將提高但它們的電流將不變。相反,還可能出現 電並聯的組合。圖2和6示出連接來實現串聯組合或串聯 部件諸如經轉換的DC光電輸出(6 )以產生經轉換的DC 光電輸出至DC-AC轉換器(5)的實施例。如其所示,可 串聯獲得經轉換的DC光電輸出(6),隨後產生經轉換的 DC光電輸出(13),作爲經轉換的DC光電輸入(14)供 至一些類型的光電DC-AC轉換器(5)或其他負載器。再 次,每個太陽能源(1 )可以是電池、板、串列或甚至陣列 〇 級的。可以理解的,也可實現並聯以及並聯連接轉換器或 其輸出的步驟。 如上前述,可構造電路和系統自太陽能源(1)提取更 多功率。在電方面可利用 MPP電路或最大功率追蹤器 (MPPT )在一個或多個太陽能電池、板或串列的最大功率 (MPP )處的運轉實現提取更多電源。因而,在實施例中, 根據本發明的太陽能系統包括:具有能量轉換電路的MPPT 控制電路。還可包括隨後之範圍限制電路。 〇 圖3和4顯示最大功率點,可配置最大功率追蹤 (MPPT )電路來找到自給定板或其他太陽能源(1)提取 功率的最佳點。作爲背景,應理解在實驗室中測量的板具 有圖3顯示的電壓和電流的關係。縱軸是單位爲安培的電 流。橫軸是單位爲伏的電壓。圖4顯示用數倍於電流的電 壓來獲得功率的情況。現在縱軸是功率。這裏一個使用的 MPPT電路的實例的目的是賦予板適當的負載電阻或更精 確的阻抗,運轉板提供其功率峰。可以從圖表看出當板產 -12- 201037958 生接近15伏和8安時該板出現測定條件下的最大功率。這 可由最大光電功率轉換器功能性控制電路(15)確定,該 電路是轉換器功能性控制電路(8 )運轉模態(modality ) 的一部分或全部。這樣,轉換器或轉換的步驟可獲得光電 DC-DC能量轉換或最大光電功率轉換步驟的最大光電功率 模態。如下前述,可透過開關以及任務循環開關來實現上 述情況,同樣地,該系統也可完成最大光電功率任務循環 開關或最大光電電壓確定性任務循環開關的步驟。 〇 本領域技術人員將理解:有多種電路結構可用來獲取 MPP資訊。一些可根據觀察短路電流或開路電壓。其他類 型的方案可稱爲擾動和監測(P&0 )電路提及。該P&0方 法可與稱爲“爬山(hill climb) ”的技術組合使用以獲取 MPP。如以下解釋的,可單獨確定用於每個來源的、相鄰 來源的 '或整個串列的MPP以運轉實現最好的運轉。因而 組合系統的實施例可單獨利用板(理解爲包括任何來源級 別的)專用的最大光電功率點轉換器功能性控制電路 ❹(16)。 無論是否是單個構成的,在p&0方法中’可配置類比 電路來在板上產生波紋電壓。利用簡單的類比電路還能獲 得板電壓及其一階導數(V,)’以及板功率及其一階導數 (P,)。用兩個導數和簡單的邏輯能按照以下調整板上的負 載: -13- 201037958201037958 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to the field of solar energy technology and, more particularly, to a method and apparatus for converting a power source from several types of solar energy to make it useful in various applications. The present invention provides techniques and circuits that can be used to obtain maximum power from solar cells, solar panels, or strings of panels from three different aspects so that the power can be used for DC or AC purposes, possibly Used for transmission to power grids, etc. These three aspects may be independent and involve: 1) providing power conversion in a composite manner, 2) establishing a system that can alternate between different processes, and 3) enabling much higher performance than conventional systems. A system that converts efficiency. [Prior Art] Solar energy is one of the most ideal renewable energy sources. In recent years, it has been recognized as one of the most promising sources of energy in our increasingly industrialized society. Although in theory the amount of solar energy far exceeds most, if not all, of the amount of other energy (renewable or non-renewable), the use of such energy presents enormous challenges. Often, solar energy faces many limitations that fully play its role. On the one hand, how to provide an electrical output commensurate with its cost is a challenge. A major aspect of the present invention is to significantly reduce the cost of solar power utilization, making it a cost-effective source of power. One of the most effective ways to convert solar energy into electrical energy is to use solar cells. The device generates photo-generated direct current via a photoelectric effect. Typically such solar cells are electrically connected to each other to form a battery pack for a solar panel or a PV (photovoltaic) panel. PV panels are typically connected in series to provide a higher voltage of -4-201037958 at a reasonable current. This can reduce the loss of the electrical interconnection. Since the power converter used can more efficiently utilize higher voltages, the output of a solar cell or solar panel or even a combination thereof is generally converted into the most efficient power source. Conventional power converters even use MPPT (Maximum Power Tracker) circuitry at their inputs to extract the maximum amount of power from one or more or even a string of connectors. However, the problem with this approach is that since the PV panel typically acts as a current source and when connected in series, the minimum power panel will limit the current through any of the plates. Furthermore, historical solar cells have been fabricated using semiconductors such as 矽 PN junctions. These junctions or diodes convert sunlight into electrical energy. These diodes have a low voltage output characteristic 'usually on the order of 0.6 volts. This battery acts in parallel with the forward diode and acts like a current source. The output current of such batteries can be a function of many structural factors, usually proportional to the amount of sunlight. The low voltage of such solar cells will be difficult to convert into power suitable for powering the power grid. Many diodes are typically connected in series on a photovoltaic panel. For example, one possible configuration may have 36 diodes or plates connected in series to obtain 21.6 volts. In fact, such a board with a bypass diode also has an interconnect loss, so that only 15 volts can be generated at its maximum power point (MPP). For some larger systems with more such boards, even 15 volts is not sufficient to transmit substantially on the wire without loss. In addition, today's typical systems combine multiple plates in series to provide 100 volts to minimize conduction losses between the PV panel and the power converter. However, the problem with the electrical state is to find the appropriate input impedance of the converter to obtain maximum power from such a string of PV panels. Extracting power at the maximum power point is often referred to as MPP tracking. However, some of these systems have some limitations that will be discussed here in 201037958. First, the PV panel can act as a current source. Therefore, the board that produces the minimum current will limit the current through the entire board. In the undesired case, if a poor board produces a relatively small current, it will be reverse biased by the other boards. A reverse diode can be placed at the intersection of each board to limit the power loss in this case and protect the board from reverse breakdown. In the system, at least the following problems have occurred and caused a certain degree of loss in solar energy conversion: A. unevenness between plates B. half-negative weather C. ash or accumulation hinders sunlight D. board damage E. Uneven degradation of the board as time passes. When expensive PV panels are used in series, it can be cumbersome, and the most fragile boards will limit the current flowing from any other board. Disadvantageously, the purpose of the series connection is to obtain a sufficiently high voltage to more efficiently transmit power to the load load, such as a parallel type converter, through the geographical distribution. In addition, in many systems, PV panels can be placed on the roof, such as for housing related equipment. The converter is usually placed at a distance from the roof, such as through a power meter. Therefore, in the embodiment, it is necessary to propose a series connection board and not to generate loss due to the minimum power board or any series-parallel connection. It is also necessary to be able to use different boards without considering the connection structure (series or parallel, etc.). The technology of photoelectric energy conversion is considered to be the biggest limitation of the full effect of solar energy 201037958. An attempt to use a DC/DC converter as a solar energy conversion method along each of the boards of the MPP circuit has been proposed to improve the energy harvest rate when the solar panel is used in series. However, such attempts have led to unacceptable inefficiencies, making this approach impractical. To some extent, these technologies have been missed to consider such issues. For example, in an article by GR Walker, J. Xue, and P. Sernia entitled "PV String Per-Module Maximum Point Enabling Converters," the authors suggest that efficiency losses are inevitable, but the proposed modules still have some 〇 Advantages, although it achieves low efficiency. Similarly, the technique required by the two authors G.R. Walker and P. Sernia entitled "Cascaded DC-DC Converter Connection of photovoltaic Modules" shows that the required technology is always at an unfavorable efficiency. A graph of efficiency and power is even shown in these documents, which shows a full power approaching 91%. Simply put, the costly operation of PV panels through inefficient converters is unacceptable on the market. Another problem that has not been studied is that the huge series of PV panels in series have extremely different output voltages, so that the state of the converter driving the power grid needs to be adjusted over a wide range, resulting in a decrease in efficiency. A further problem is that the input voltage of the converter will not increase or exceed the controllable limit during the period when the converter is not powered to the grid. Or conversely, even if the voltage during this period does not exceed the controllable limit, the final operating voltage will be much lower than the ideal point of converter efficiency. In addition, there are issues with startup and protection that will significantly increase the cost of the entire solar energy conversion method. There are also other secondary factors that affect the solar installation system into the 201037958 balance (BOS). Thus, at least one aspect of the electrical demand for solar energy is to increase the efficiency of the electrical system conversion phase. The present invention just provides the necessary improvement in this regard. SUMMARY OF THE INVENTION As in the field of the invention, the invention includes various aspects that can be combined in different ways. The following description will enumerate various components and illustrate some embodiments of the invention. The components are described in terms of a basic embodiment, however, it should be understood that they can be combined in any manner and in any number to produce other embodiments. The various embodiments and preferred embodiments described are not to be understood as limiting the invention, but are merely illustrative of systems, techniques, and applications. In addition, it should be understood that the present description supports and encompasses all of the various embodiments, systems, techniques, methods, devices, and any number of disclosed elements, with separate elements, and also all of the various in this or any subsequent application. The use of any and all of the various changes and combinations of components. In various embodiments, the present invention discloses various results, systems, and different original exemplary structures that can achieve the objectives of the present invention. The system features alternating photoelectric conversion, high efficiency conversion design, and multi-peak conversion. Some structures can be used in combination with an MPP and even a dual mode power conversion circuit to obtain a stupid power conditioner (PC) component. As described above, such power conditioners can be arbitrarily combined in series or in parallel or in series/parallel connection and designed to enable solar panels to perform their full power output primarily or even for long periods of time. Even different types of boards with different output characteristics can be combined and get the maximum power of each board. In some designs, series series are used to obtain the high voltages useful for electrical transmission. The design of each power modulation 201037958 is to produce its maximum power. In an embodiment, the present invention allows each panel to individually produce its maximum power, thereby enabling more total energy to be harvested throughout the system. The system has an MPP circuit and an energy conversion circuit on each board. These circuits are inexpensive, simple circuits that perform several functions. First, the circuit is designed to extract the maximum power available for each board. Second, the circuit is designed to change the impedance that naturally occurs when combined with other boards in the series. This circuit can also be configured in parallel connected boards or even in a single battery or panel string. The embodiment thus configured achieves a higher voltage output (e.g., 400 volts). In addition, this structure is also easy to control overpressure or other protection, with or without feedback components that control the system to avoid overpressure or other conditions. The additional configuration of a single MPP circuit on the board does not add much to the cost, and in some embodiments can replace the power converter to achieve the same functionality. This circuit can also be incorporated into a PV panel and does not need to be reused in a net junction converter, so this will give significant advantages to the same overall circuit. In the embodiment, a small MPP converter can be used instead of a large converter, which will result in higher energy gain. [Embodiment] [Embodiment] As described above, the present invention discloses various aspects of the aspect that can be used alone and in combination with others. The original idea was that an example of a power conditioner according to the present invention could be used in combination with any of the following principles and circuits: an alternate processing converter (a 11 ernativepr 〇cessc ο nverter ), a dual mode photoelectric converter, an extremely efficient photoelectric converter , multi-peak opto-electrical converters, incorporating a maximum 201037958 power tracker (MPP or MPPT) into the above components, and embodiments including controllable limits such as controllable output voltage, output current, and output power. All of this should be understood in a broad sense and with the embodiment of the display initial applications for implementation. The underlying benefits of all of these aspects are discussed separately and discussed in the following discussion in conjunction with representative primary topology rather than merely based on the above. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows an embodiment of a solar crucible system illustrating the basic principles of solar energy conversion of the present invention. As shown, it includes a solar source (1) that is injected into the photoelectric DC-DC power converter (4), and the power converter (4) supplies the converted output to a photo-DC that is primarily connected to a grid (10). -AC converter (5). It will be appreciated that the solar source (1) may be a solar cell, a solar panel or even a panel string. In any case, the solar source (1) is capable of providing a DC photo-electric output (2). The DC optoelectronic output (2) acts as a DC input to the DC-DC power converter (4). The operation of the DC-DC power converter (4) is controlled according to the performance normally indicated by the converter function control circuit (8). Those skilled in the art will appreciate that the converter function control circuit (8) has a broad meaning and can be a real circuit hardware or firmware or software to achieve the desired control. Similarly, the DC-DC power converter (4) can be considered to represent an optoelectronic DC-DC energy conversion circuit. At this point, hardware circuits are likely to be required, however, it should be understood that the term "circuit" still includes a combination of hardware, firmware, and software. As shown in Figure 1, the various components can be connected to each other. Direct connection is only a way in which various components can respond to each other, i.e., if a component's dry effect can directly or indirectly cause another effect or change. The function of the DC-DC power converter (4) is to convert its output and provide a converted DC photo-electric output (6) as an input to a variety of designed DC-AC converters (5). The DC-AC converter (5) may or may not be included in an embodiment of a solar power system. If included, its function is to complete the conversion of the DC power to a converted DC (7) such as a photovoltaic AC power output (7) that can be used, for example, to connect via a so-called AC power grid interface (9) Power grid (10). Thus, the system can generate a 0 DC photooutput (6) as an input to some types of DC-AC converters (5). The step of converting the input should be understood to include and generate any alternating signal from any DC current signal, even if the signal itself is not perfect or not very stable. As shown in Figures 2 and 6, a single solar source (1) (battery, board or module level) can be used in combination to produce a source of string electrical connections. This combination can be responded to by a series or parallel connection. As shown in FIGS. 2 and 6, a plurality of connections can be formed into a series electrical connection item. A solar 〇 V plate (11) such as an electrical connection is arranged in series. As shown in Figure 2, each such string itself is from a component to a very large combination forming a photovoltaic array (12) or a plurality of combined solar sources. Through a physical or electrical overall layout, several of these cells, plates or strings may be adjacent to one another such that they are exposed to more similar electrical, mechanical, environmental, solar exposure (or non-sun) conditions. . As shown schematically in Figure 2, in the case of large arrays, a high voltage DC-AC solar converter and a three phase high voltage converted AC optoelectronic output must be added. As shown for the combination of electrical series, the output can be combined, so its voltage will increase but their current will not change. Conversely, a combination of electrical parallels may also occur. 2 and 6 illustrate an embodiment of a connection to implement a series combination or series component such as a converted DC optoelectronic output (6) to produce a converted DC optoelectronic output to a DC-AC converter (5). As shown, the converted DC optoelectronic output (6) can be obtained in series, followed by a converted DC optoelectronic output (13) that is supplied as a converted DC optoelectronic input (14) to some types of optoelectronic DC-AC converters. (5) or other loaders. Again, each solar source (1) can be battery, plate, tandem or even array 〇 grade. It will be appreciated that the steps of connecting the converter or its output in parallel and in parallel may also be implemented. As mentioned above, the configurable circuit and system extract more power from the solar source (1). Electrically, the MPP circuit or Maximum Power Tracker (MPPT) can be used to extract more power at the maximum power (MPP) of one or more solar cells, boards or series. Thus, in an embodiment, a solar energy system in accordance with the present invention includes an MPPT control circuit having an energy conversion circuit. A subsequent range limiting circuit can also be included. 〇 Figures 3 and 4 show the maximum power point and the Maximum Power Tracking (MPPT) circuit can be configured to find the best point to extract power from a given board or other solar source (1). As a background, it should be understood that the plates measured in the laboratory have the relationship of voltage and current as shown in Figure 3. The vertical axis is the current in amps. The horizontal axis is the voltage in volts. Fig. 4 shows the case where the power is obtained by using a voltage several times the current. The vertical axis is now power. An example of an MPPT circuit used here is to give the board the proper load resistance or more accurate impedance, and the operating board provides its power peak. It can be seen from the graph that when the board is produced, -12-201037958 is close to 15 volts and 8 amps, and the board has the maximum power under the measurement conditions. This can be determined by the maximum optoelectronic power converter functional control circuit (15), which is part or all of the modality of the converter functional control circuit (8). Thus, the converter or conversion step can achieve the maximum opto-electricity mode of the photovoltaic DC-DC energy conversion or maximum optoelectronic power conversion step. The above can be achieved by the switch and the task cycle switch as described below. Similarly, the system can also perform the steps of the maximum photoelectric power task cycle switch or the maximum photoelectric voltage deterministic task cycle switch.技术 Those skilled in the art will appreciate that there are a variety of circuit configurations that can be used to obtain MPP information. Some can be based on observing short circuit current or open circuit voltage. Other types of schemes can be referred to as disturbance and monitoring (P&0) circuits. This P&0 method can be used in combination with a technique called "hill climb" to obtain MPP. As explained below, the MPP of the adjacent source for each source, or the entire series, can be individually determined to operate to achieve the best operation. Thus, embodiments of the combined system may utilize a dedicated maximum opto-electric power point converter functional control circuit (16) dedicated to the board (understood to include any source level). Whether or not it is a single configuration, the analog circuit can be configured in the p&0 method to generate a ripple voltage on the board. The board voltage and its first derivative (V,)' as well as the board power and its first derivative (P,) can be obtained using a simple analog circuit. Use two derivatives and simple logic to adjust the load on the board as follows: -13- 201037958

V,正數 P'正數 提高 MPP V’正數 P'負數 降低MPP V’負數 P'正數 降低 MPP V’負數 P'負數 提高MPP 表1 〇 當然,有許多用於發現輸出的導數和邏輯的其他電路 結構。通常,功率調節器(17)可包括功率計算回路(固 件或軟體)(21),其甚至可以是光電倍增合成回路(22)。 這些回路可以作用影響結果或對類似於功率指示的部件作 出回應(即使它不是V*I倍增函數的精確的計算結果)。當 然這可以是V*I類型對一些功率參數的計算,且該系統將 以某種方式作用以提高或降低其自身,以基本移動更接近 於並且最終實現在ΜΡΡ水準上的運轉運轉。透過產生功率 ® 以及實現計算光電倍增功率參數的步驟,該系統可對該參 數作出回應以獲得預期結果。 在串聯功率調節器(17)等的實施例中,透過每個PC 輸出的電流可能相同,但每個PC的輸出電壓將於該板產生 的功率量成正比。參考以下實施例以進一步解釋此類實施 例的功能。硏究圖6的電路並將其與簡單串聯連接的板相 比(注意簡單串聯可能具有交叉的反向二極體)。首先,假 設4塊面板串聯,每塊板產生1〇〇伏和1安供給,那麽提 -14- 201037958 供給轉換器的輸入設置將是400伏。用任何方法都將提供 400瓦的輸出。現在考慮一塊板產生1〇〇伏和〇.8安的結果 (模擬半陰的環境:較少光可簡單理解爲較少電流)。串聯 的話,〇·8安的電流將透過每塊板,獲得400X0.8 = 320瓦 的總功率。首先’當每塊板均在其自身MPP上產出時總功 率可以是380瓦。並且由於每個功率調節器隨後仍然串聯 連接’很顯然從它們流出的電流必須相等。但電壓可借助 每個P C的已知功率進行如下計算獲得: 3V + 0.8V = 400伏,其中V是每塊全功率板的電壓。 因而’可以看出在這個實施例中,三塊板可獲得105.3 伏,每塊板可獲得84.2伏。 此外,在圖6中,能夠理解,在一些實施例中,進串 列單個功率控制可獲得額外的益處。在這樣的實施例中, 功率塊被視爲在每塊板上具有功率轉換器和MPP的一組 PV板。這樣它們將根據需求調整它們的輸出,以始終維持 各自和每個功率塊輸出的最大功率。如果調整成配合這種 功率塊串列中使用,該系統甚至可能藉作用於其輸出之變 化電壓操作。 第二個實例的MPP的運轉顯示的這類結構的優點。該 實例顯示當一塊板處於陰影處時它僅能產生0.5安的電 流。對於串聯連接的串列來說,產生1安的三塊板可徹底 反向偏壓板,產生0.5安導向反向二極體的電流。還可能 僅僅存在總共300瓦的來自三塊板的功率。再次對於發明 的實施例電路來說,每塊PC將產生MPP總量350瓦。這 -15- 201037958 時電壓計算將是: 3V + 0.5V = 400 伏 在這個實例中,三塊板將獲得Π4.2伏的電壓,剩下 一塊可獲得一半,或57.1伏的電壓。輸出電壓能夠被視爲 與PV板輸出功率成正比,因而獲得較好結果。 有若干基礎實例來圖示一些優點。目前,在真實的PV 串列中,可有許多串聯的PV板。通常,它們都無法獲得完 全相同的功率。因而,許多板將被偏壓回,且大多數將產 ® 生小於它們單個的MPP。這可透過本發明的實施例來克 月艮。圖6顯示可從該面板串列中獲得功率並供給電力網的 功率轉換器。如以下所討論,這種結構可能透過設置運轉 運轉界限可需要電壓限制和/或保護。 功率調節器(17)可以配置來從PC板提取最大功率。 根據本發明的實施例,這可透過功率調節器(17)、光電 DC-DC功率轉換器(4)或轉換器功能性控制回路(8)提 供的阻抗轉換容量(impedance transformation capability) Ο 得以實現。其可根據需要轉換單個或組功率傳輸以維持 ΜΡΡ。因而該系統將導致每塊板的電壓不停變化,同時實 現每塊板的最大輸出。根據系統的拓撲,它可獲得恒定或 常規電流,因此串聯串列可處於最大功率。在實施例中, 本發明可配置以提高或減少每塊板的負載阻抗,如果需要 甚至可提供固定電壓。 如上所討論,光電DC-DC功率轉換的光電阻抗轉換模 態可由光電阻抗轉換功率轉換控制回路完成。圖5Α和5Β -16- 201037958 顯示配電(switching)或開關模式(switchmode)的光電 阻抗轉換的光電DC-DC功率轉換器的兩個實施例。可以理 解’這裏的開關可以被轉換器功能性控制回路(contr〇l circuitry) (8)控制進行任務循環配電,即在週期性(可以 恒定或不同的週期)的時間點上配電以實現多種目的。這 種配電可以多種方式進行。從一種模式至另一種的配電方 法有許多。例如,如果設置了最小脈衝寬度,那麼可透過 如下將討論的脈衝模式(burstmode)進一步減小能量或改 變阻抗。如果最小任務循環(duty cycle)設置爲2%,還 可用2%任務循環的偶發脈衝串列以及假定的〗〇%的脈衝串 列任務循環獲得0.2%的能量傳遞。這裏的大部分可透過頻 繁改變配電或不同開關的其他控制來實現。因而實施例可 提供開關頻繁改變配電的光電功率轉換控制回路(switch frequency alteration switching photovoltaic power conversion control circuitry)。在轉換期間實現高效的同 時還提供了從一個模式至另一個的平穩轉換的可能性。 配電的目的可包括如上討論的最大功率點運轉以及如 下將討論的多種模態。一部分這些模態是附屬的,使得在 部分時間點上、在部分功率狀態時一個將優先於一個或另 一個,或根據部分功率參數實現多種模態的運轉。此外, 一部分這些模態還將隨後進行討論。然而,在阻抗轉換的 過程中可以是光電阻抗轉換任務循環配電,且可由光電阻 抗轉換任務循環開關控制回路(可理解爲包括硬體、固件、 軟體及其任意的組合物)進串列控制。 -17- 201037958 參看圖5A和5B的兩個例子示出的特定實施例,可以 理解光電DC-DC功率轉換器(4)可以運轉來提高或降低 光電阻抗。由於一個或另一個將在任意的時間點上出現, 甚至這種運轉是隨著時間改變而改變的,因此這兩種變換 模式的運轉將是專用的。同樣地,實施例可包括光電阻抗 增大的光電DC-DC功率轉換回路(19)和光電阻抗減小的 光電DC-DC功率轉換回路(20)。圖5A和5B顯示兩個這 種例子,其中可以認爲光電DC-DC功率轉換器(4)的第 Ο 一部分以一種方式(圖5A上部和圖5B下部)作用以及光 電DC-DC功率轉換器(4)的另一部分以另一種方式(圖 5A下部和圖5B上部)作用。因而,可以看出光電DC-DC 功率轉換器(4)的運轉模式可以是相反的,其中一種實現 一種效果而另一種實現相反的效果。系統的實施例提供了 光電DC-DC功率轉換器的至少一種光電阻抗增大模態以及 光電DC_DC功率轉換器的至少一種光電阻抗減小模態。如 圖5A和5B的兩個實施例所示,這兩種模態可出現在一種 〇 W 光電DC-DC功率轉換器(4)中,因此光電DC-DC功率轉 換器(4)可完成光電負載阻抗增大和光電負載阻抗減小的 步驟。這種部件還可以是分離的,因此在交替運轉中,一 個運轉而另一個不運轉反之亦然。還可以是基本分離的’ 因此對於功率轉換無意義週期來說實際上或看上去是在相 同的時間框內運轉的。因而該系統包括基本分離的阻抗轉 換光電功率轉換控制回路。借助於功率調節器(17)結構 和設計,該系統可進行配電或實現其他性能,如果適當的 -18- 201037958 話,還可提供實現預期效果的控制回路。 再參看圖5A和5B示出的實施例,能夠看出一些實施 例使用由光電開關控制回路(23 )控制的一個或多個開關, 因而功率調節器(17)可以是開關模式特徵的。在示出的 實施例中,這些開關是指定的T1-T4和Τ21-24»在一些實 施例中,這些開關可以是半導體開關,且它們有助於降低 損耗和提高效率。此外,開關和連接可配置來獲得一個或 多個光電功率串聯開關部件(24)和一個或多個光電功率 〇 並聯開關部件(25 )。可以理解,光電功率串聯開關部件(24 ) 可提供一個或多個光電功率傳輸中斷(中斷的動作)的位 置,光電功率並聯開關部件(25)可提供一個或多個光電 功率傳輸分流(分流的動作)至地面、另一個功率通路等 的位置。 如圓5A和5B所示,實施例可包括不止一個開關、不 止一個串聯和並聯開關’而是數對串聯通路和分流通路半 導體(或其他)開關。因而,中斷和分流可發生在至少裏 ® 那個分離的半導體位置上。顯然,這些例子配置來更簡單 地示出配電、中斷、分流和組合的各種槪念,然而,可以 理解還可以有更複雜的結構。在許多回路方面,可設置一 些設計來避免實現相同的效果,這當然也落在本發明的範 圍中。 從之前討論的運轉模式(即增大或交替地減小光電負 載阻抗的內容)可以理解:根據本發明實施例的系統可具 有作爲多峰光電DC-DC功率轉換器的光電DC-DC功率轉 -19- 201037958 換器(4),由於它具有多於一種的運轉模式因此由多峰轉 換器功能性控制回路(26)控制。這些模式包括但不限於 光電阻抗增大和光電阻抗減小,以下討論若干其他模式。 通常來說’多峰活動包括至少在任意點上出現僅僅一種模 式的轉換的步驟。無論預期的輸出量如何,也不會再相同 步驟中增大及減小阻抗或其他因素。僅使用轉換的單個方 法,或者單數積分。 因而,功率調節器(17)可提供至少一種第一模態和 Ο 第二模態的光電DC-DC功率轉換電路、DC-DC功率轉換器 或DC-DC功率轉換。此外,在增大或減小光電負載阻抗的 MPP上下文中可以理解,多峰的光電DC-DC功率轉換器或 多峰轉換器功能性控制電路(26)可響應一種或多種光電 功率條件,諸如V”倍增因數、電壓水準、電流水準或一 些其他信號指示或計算設置點。在如此提供多於一種模式 的轉換運轉方式的性能(甚至不必同時使用)中,或在提 供改變運轉模式的性能中,該系統完成了多峰地將DC光 Ο W 電輸入轉換成經轉換的光電DC輸出的步驟。類似地,透 過提供控制多於一種的轉換運轉方式生效(又,甚至不必 同時使用)的性能,或對運轉方式的控制,該系統可完成 多峰地控制光電DC-DC功率轉換器(4)的運轉。 實施例可包括兩個或更多地運轉方式,因而被認爲是 雙模式功率轉換電路或雙模式轉換器。該電路的雙模性能 體現在具有顯著的益處,另一個區別將是大多數DC/DC轉 換器通常意在產生未經調整的源以及產生經調整的輸出。 -20- 201037958 在本發明中,將至DC/DC轉換器的輸入調整成PV板的 MPP。取自PV板的功率將被轉換輸出連接中需要的任意阻 抗’以在不考慮輸出的同時滿足輸入MPP需求,在阻抗被 改變使得輸出電壓低於輸入電壓的情況中,將驅使T3處於 連續導電狀態,T4處於非導電狀態,T1和T2在開關模式 任務循環狀態中運轉。這種任務循環的運轉是同步的,由 於電晶體T2可以是與T1 (反向任務循環)同步的開關。 T2可以是較低RDS(ON)的 FET,具有較該位置上的二極 Ο 體更小的損耗。透過同步運轉,該電路可具有如下之極高 的效率。該電路存在的問題是電流穿過額外的電晶體T3。 但該電晶體未通電時具有較低的損耗。顯然,類似的運轉 可獲得圖5B示出的實施例。 圖5A示出的電路的第二種模式包括需要改變阻抗以 使輸出電壓高於輸入電壓的情況。現在,T1可被轉換爲連 續導電狀態。T2可是非導電的。現在,電晶體T3和T4以 開關模式控制。大家可以看出這種想法適用。首先,所有 〇 開關是具有較低接通狀態損失的電晶體。其次,附加部分 (boost section)高效率地運轉,由於電晶體T1的接通狀 態損失中的雙模性能出現額外的損失。該電路還可利用節 省尺寸、空間和成本的公共電感器L1。此外,熟於本技藝 人士可以理解能使用類似的運轉來實現圖5B顯示的實施 例。 有意思的以及將在以下詳細討論的是,在現有效率有 時低於91 %的同時,該電路能實現預定的需求,且能獲得 -21- 201037958 超過98%的運轉效率以及甚至高達99.2%的效率水準《當 與太陽板或太陽板串列相連接時,這種效率差異將非常重 要。當然,與許多類的DC/DC轉換器相類似的隔離和非隔 離的阻抗轉換可用於本發明的其他揭示揭示態樣中,以及 大多數任意DC/DC轉換器拓撲可用於該功能中,由此包括 在本發明內。 如上簡述的,存在運轉的交替方式,系統可在根據參 數或其他顯示或計算的不同模式之間波動(以及獲得波動 〇 轉換模式)。在一種模式或另一種基本是專用地啓動的實施 例中,功率調節器(17)或其他系統部件可提供交替模式 的光電功率轉換器功能性控制(2 7 )。它是在至少一些時候 的模式之間的專用開關。這些模式可以是轉換模式,因此 系統可提供給產生太陽能功率的波動方法。如上所示,這 些模式可以是相反或相反的模態、基本分離或其他的模式。 在專用地控制特定運轉模式中,系統禁止出現無使用 模式。這是很重要的,例如,可實現如下之更高的效率水 〇 準等。參看圖5A和5B中的光電阻抗轉換顯示的實施例, 可以理解本發明的實施例是如何禁止光電DC-DC功率轉換 模式或至少某些時候的運轉,因而系統可提供無效的交替 模式的光電功率轉換控制電路(28)。如參看以上MPP的 開關運轉中所討論的,一個或多個開關,諸如光電功率並 聯開關部件(25),一個光電功率串聯開關部件(24)或其 他在運轉中可被禁用。這將實現比較運轉模式的性能,或 者更重要地,可實現之前認爲不可能實現的高效率的運 -22- 201037958 轉。因而,實施例可提供光電無效模式的轉換器功 制電路。 具有優越的運轉性能是本發明實施例的性能, 太陽能源或板能適應不同的運轉條件。如圖7A和 示,最大功率點的運轉電壓將根據太陽能源是否處 或低溫條件而不同。透過允許MPP與任意電壓限制 阻抗轉換相適應,根據本發明的實施例提供擴展了 性能。轉換器實際上是全光電溫度電壓運轉範圍內 O DC-DC功率轉換器,借此能在與低溫運轉時的MPP 的MPP電壓以及在與高溫運轉時的MPP同樣低的 壓時運轉。因而,從圖7A和7B可以看出,系統可 陽能源開路電路電壓決定性配電的光電功率轉換控 和太陽能源最大功率點熱電壓決定性的光電功率轉 電路。可以實現在全光電溫度電壓運轉範圍中的轉 可透過適當運轉開關任務循環來實現,因而系統提 陽能源開路電路電壓決定性任務循環配電和太陽能 〇 w 率點熱電壓決定性的任務循環配電(switching )。 此外,觀察如極端條件的熱及冷電壓,類似地 解系統是如何接受不同的日射量的,因而該系統具 日射變化的光電轉化能控制電路,無論板是否部 擋,甚至與相鄰板相對都能提取出MPP。系統及其 環配電可與日射量相適應,因此轉換的步驟可根據 的變化而適宜性轉換。這在新技術板諸如碲化鎘太 中尤爲顯著,尤其是當組合來自具有較大運轉電壓 能性控 即各種 7B所 於高溫 無關的 的板的 的光電 同樣高 MPP電 提供太 制電路 換控制 換。這 供了太 最大功 可以理 有適應 分被遮 任務循 曰射量 陽能板 的碲化 -23- 201037958 鎘太陽能面板串列的輸出時。 如早則之’非常重要的是轉換器運轉的效率水準。這 可定義爲在將來自之前轉換的功率轉換後輸出的功率。用 開關模式運轉的電晶體開關來實現一部分效率收益,然 而’在這點上拓撲更爲重要。特別是透過如上之開關運轉 等,系統可遠超過之前可能設想的效率水準。它甚至可獲 得基本功率同構的光電DC-DC功率轉換,基本沒有將功率 轉換爲熱量而是轉換爲電能,獲得高達大約99.2%的效率。 ^ 這可利用基本公理同構的光電轉換器功能和基本功率同構 的光電阻抗轉換器,以及透過控制運轉開關來實現,因此 如上前述限制了損失。這種運轉可獲得97、97.5、98、98.5 甚至高達99.2的水準或基本上是電線傳輸損失的效率(認 爲還可能更高)。 有助於實現這種效率的一個態樣是在轉換期間存儲的 最小量的能量。如圖5A和5B所示,該實施例可包括並聯 電容和串聯電感。這可用來存儲至少數次在轉換運轉期間 ® 的能量。可發現全能量轉換是無法實現的,對於獲得的預 期結果來說轉換量是必需的。因而實施例可起到低能存儲 光電DC-DC功率轉換器以及甚至部分能量存儲光電DC-DC 功率轉換器的作用。在輸入電壓和輸出電壓幾乎相等以& 轉換器實現統一轉換的情況中,能量存儲幾乎沒有發生改 變,因此系統出現具有基本恒定能量存儲的光電DC-DC功 率轉換器的實施例。任務循環能量存儲可與轉換中 電壓成正比(線性、連續或不是)。在電感器中的能量存胃 -24- 201037958 可與一個或多個開關的任務循環成正比。部分效率被認爲 是運轉期間開關保持靜態即打開或閉合的結果。因而實施 例提供了靜態開關交替模式的光電功率轉換控制電路,以 及類似的,靜態開關轉換。還提供了分級開關部件控制電 路。 在運轉的可變任務循環模式中可以控制開關,因而改 變配電頻率以實現預期效果。轉換器功能性控制電路(8) 可起到光電任務循環開關控制電路的作用。任務循環運轉 ® 和配電可實現各種結果,從起到光電阻抗轉換任務循環配 電作用至其他運轉。這些中的一部分甚至是與光電DC-DC 功率轉換器(4)的主要目的的轉換態樣相違背的。 雖然在理論上或日常運轉中上述電路表面良好,但對 具有實際功能的系統來說還有額外的需求。例如前述雙模 電路將產生無窮輸出電壓,如果不存在負載的話。這種情 況在實際中經常發生。考慮太陽首先照射到具有功率調節 器(17)的PV面板串列上的早晨的情況。這時沒有電力網 〇 連接,轉換器部分不抽運任何功率。這種情況中,功率調 器(17)在實際運轉中將提高其輸出電壓直至轉換器損 壞。該轉換器在其輸入增加額外功率轉換部件上具有過壓 保護,或功率調節器可簡單地具有其自身的內部輸出電壓 限制。例如如果每個功率調節器(1 7 )盡可產生1 00伏的 最大電壓,那麼串聯的10塊PC的一串列的最大輸出電壓 將是1 0 0 0伏。該輸出電壓限制將使網結轉換器不那麼複雜 及昂貴,以及圖7A中顯示如重置過壓限制的電壓限制。因 -25- 201037958 而實施例可表示出最大電壓決定性配電光電功率轉換控制 電路和最大光電電壓決定性任務循環配電(圖7A中用重置 過壓限制顯示)。它可以是特定的轉換器。 最大輸出電流限制也可能非常有用,在圖7A中其以被 顯示爲預置過流限制。這不那麼簡明且涉及PV板的性能。 如果PV板無法受到足夠光照射時其輸出電壓將降低但其 輸出電流可以不增加。優點在於僅允許額外電流存在小的 變化餘地。例如,具有1 〇〇瓦最大電壓限制的相同的1 00 Ο 瓦的板可具有2安的電流限制,而不需要限制其預期用 途。這還可極大簡化隨後的網結轉換器狀態。考慮在大型 設備中的轉換器情況,該大型設備需要用來保護的前端分 流斷路器。如果PC的輸出到達100安,斷路器將解決不實 用的電流。這種情況不會發生在非PC環境中,如一個簡單 的PV面板串列可由於斷路器電路而輕易地被損壞。僅僅 PC需要這種電流限制電路以及這也可透過任務循環或更 精確地開關運轉控制來簡單地實現。一旦電流限制包括在 〇 W 另一個中,將實現BOS節省。現在串聯PC串列的互聯的 電線尺寸均限制爲僅能負載最大電流限制的尺寸。這裏的 實施例可表示最大光電反相器電流轉換器功能性控制電 路、反相器最大電流決定性配電、光電反相器最大電流決 定性任務循環開關控制電路和光電反相器最大電流決定性 任務循環配電等。 繼續討論另一個系統的問題。在太陽能設備中,還可 能出現極端情況,即板或板的領域接收到多於全日的能 -26- 201037958 量。這發生在存在耐火情況以及雲或其他反射面時。PV源 在數分鐘內將產生大約1.5倍的額定功率。網結反相器部 分必須能在較高功率時運轉(增加成本)或必須某種程度 上避免這種功率。PC的功率限制是最有效的解決這個問題 的方法。通常,一些其他元件的保護可由轉換器完成。甚 至是後端或下游的部件諸如反相器,因此轉換器功能性控 制電路(8 )起到光電DC-DC功率轉換的光電反相器保護 模態作用,並被認爲是光電反相器保護轉換器功能性控制 D 電路。在保護之外,理想的反相器或其他運轉條件可由轉 換器實現,因而實施例可包括光電反相器運轉條件的轉換 器功能性控制電路。這可透過某種方式進串列簡單調整, 諸如透過光電反相器或後端部件調整模態或光電反相器或 後端部件調整轉換器功能性控制電路。還有具有較小輸出 電壓(處於允許的輸出電壓範圍內)的實施例。 如圖7A、7B和9所示,可如此設置邊界條件,諸如 過流限制和過壓限制。因而轉換器和/或其控制電路起到光 D 電邊界條件轉換器功能性控制電路的作用,實現光電 DC-DC功率轉換的光電邊界條件模態,以及可完成控制光 電DC-DC轉換器的光電邊界條件的步驟。 另一個模式的運轉是獲得與某些態樣成一定比例(廣 義的)的値。例如,產生與電流成一定比例的電壓以提供 平穩啓動性能等的優點。因而可配置成在將DC輸入轉換 成DC輸出的步驟期間可控制與至少一些次數的光電輸出 電流成一定比例的最大光電輸出電壓的實施例。通常,還 -27- 201037958 可提供軟轉換光電功率轉換控制電路。該系統可包括任務 循環控制或開關運轉’引導它們來實現最大電壓輸出和電 流輸出等之間的一種或多種比例。此外’不僅僅可組合上 述的任意結構,而且每個均可以附屬的方式進串列’因此 一種模態的考慮相對於另一種模態來說是次要的。 它們可透過簡單地改變開關影響的任務循環或開關實 現。它們可根據臨限値完成’並提供觸發臨限値的可選模 式、臨限値決定性的、臨限値啓動或臨限値滅活配電的光 Ο 電功率轉換控制電路。諸如當接近一種模式改變水準運轉 時可實現脈衝串列方式的運轉’且這時可等分頻率’相對 模式均可交替,以及可降低水準如改變回到初期。這也可 以是暫態的。脈衝串列模式配電的光電功率轉換控制電路 和脈衝串列模式配電可以這種方式完成,還有暫態相對模 式的光電任務循環開關控制電路和暫態建立相對配電模式 的步驟均可以這種方式完成。 如上前述,PC和光電DC-DC功率轉換器(4)可操縱 〇 w 單塊板。它們可附在板、框上或與之分離。實施例具有與 此類板物理集成的轉換器,以他們作爲最終裝置的附屬單 元形式存在。這是非常理想的,諸如當分離的太陽能源以 及相鄰的太陽能源具有獨立的運轉條件以適應不同的日射 量、條件或其他情況時。每塊板等實現它自身的MPP,並 與串列上的其他板等受到相同的保護。V, positive number P' positive number increases MPP V' positive number P' negative number decreases MPP V' negative number P' positive number decreases MPP V' negative number P' negative number increases MPP Table 1 〇 Of course, there are many other circuits for finding the derivative and logic of the output structure. Typically, the power conditioner (17) can include a power calculation loop (solid or software) (21), which can even be a photomultiplier synthesis loop (22). These loops can act to influence the result or respond to a component similar to the power indication (even if it is not an accurate calculation of the V*I multiplication function). Of course this can be a calculation of some power parameters of the V*I type, and the system will act in some way to raise or lower itself, with the basic movement being closer to and ultimately achieving operational operation at a level. By generating power ® and implementing the steps of calculating the photomultiplier power parameter, the system can respond to this parameter to obtain the desired result. In an embodiment of a series power regulator (17) or the like, the current output through each PC may be the same, but the output voltage of each PC will be proportional to the amount of power generated by the board. The following examples are referred to to further explain the functions of such embodiments. Consider the circuit of Figure 6 and compare it to a simple series connected plate (note that a simple series may have crossed reversed diodes). First, assuming that four panels are connected in series, each panel producing 1 volt and 1 amp supply, then the input setting for the -14-201037958 supply converter will be 400 volts. Any method will provide an output of 400 watts. Now consider the result of a plate producing 1 〇〇 and 〇8 amps (simulating a semi-shade environment: less light can be simply understood as less current). In series, 〇·8 amps of current will pass through each board, yielding a total power of 400X0.8 = 320 watts. First, the total power can be 380 watts when each board is produced on its own MPP. And since each power regulator is then still connected in series, it is clear that the current flowing from them must be equal. However, the voltage can be calculated by the known power of each P C as follows: 3V + 0.8V = 400 volts, where V is the voltage of each full power board. Thus, it can be seen that in this embodiment, three plates can obtain 105.3 volts and each plate can obtain 84.2 volts. Moreover, in Figure 6, it can be appreciated that in some embodiments, a series of individual power controls can provide additional benefits. In such an embodiment, the power block is considered to be a set of PV panels with power converters and MPPs on each board. This way they will adjust their output as needed to maintain the maximum power output for each and every power block. If used in conjunction with such a power block string, the system may even operate with varying voltages applied to its output. The operation of the MPP of the second example shows the advantages of this type of structure. This example shows that when a board is in the shadow it can only generate a current of 0.5 amps. For a series connected series, three plates of 1 amp are produced to completely reverse bias the plate, producing a current of 0.5 amps directed to the reverse diode. It is also possible that there is only a total of 300 watts of power from three boards. Again for the inventive embodiment circuit, each PC will produce a total of 350 watts of MPP. The voltage calculation for this -15-201037958 would be: 3V + 0.5V = 400 volts In this example, the three boards will get Π4.2 volts and the remaining one will get half, or 57.1 volts. The output voltage can be considered to be proportional to the PV panel output power, resulting in better results. There are several basic examples to illustrate some of the advantages. Currently, there are many PV panels in series in a real PV string. Often, they are not able to get the same power. As a result, many boards will be biased back, and most will produce less than their individual MPP. This can be achieved by the embodiment of the present invention. Figure 6 shows a power converter that can draw power from the panel string and supply it to the power grid. As discussed below, such a configuration may require voltage limiting and/or protection by setting operational operating limits. The power regulator (17) can be configured to extract maximum power from the PC board. According to an embodiment of the invention, this can be achieved by an impedance conversion capability provided by the power conditioner (17), the opto-electronic DC-DC power converter (4) or the converter functional control loop (8). . It can convert single or group power transfers as needed to maintain ΜΡΡ. Thus the system will cause the voltage of each board to constantly change while achieving the maximum output of each board. Depending on the topology of the system, it can achieve constant or regular current, so the series string can be at maximum power. In an embodiment, the invention can be configured to increase or decrease the load impedance of each board, even providing a fixed voltage if desired. As discussed above, the photoelectric impedance conversion mode of the photoelectric DC-DC power conversion can be accomplished by a photoelectric impedance conversion power conversion control loop. Figures 5A and 5A - 16 - 201037958 Two embodiments of a photoelectric DC-DC power converter showing photoelectric impedance conversion of a switching or switch mode. It can be understood that the switch here can be controlled by the converter's functional control loop (8) to perform duty cycle distribution, that is, to distribute power at a time point (which can be constant or different) for various purposes. . This type of distribution can be done in a variety of ways. There are many ways to distribute power from one mode to another. For example, if the minimum pulse width is set, the energy can be further reduced or the impedance can be changed by the burst mode discussed below. If the minimum duty cycle is set to 2%, 0.2% energy transfer can also be obtained with the 2% duty cycle burst sequence and the assumed 〇% pulse train task cycle. Much of this can be achieved by frequently changing the power distribution or other controls of different switches. Thus, embodiments can provide switch frequency alteration switching photovoltaic power conversion control circuitry. Efficient implementation during conversion also provides the possibility of a smooth transition from one mode to another. The purpose of power distribution may include maximum power point operation as discussed above and various modes as discussed below. A portion of these modalities are affixed such that at some point in time, in a partial power state one will take precedence over one or the other, or multiple modalities may be operated based on partial power parameters. In addition, some of these modalities will be discussed later. However, in the process of impedance conversion, the photoelectric impedance conversion task can be cyclically distributed, and can be controlled by a photo-electrical impedance conversion task cycle switch control loop (which can be understood to include hardware, firmware, software, and any combination thereof). -17- 201037958 Referring to the particular embodiment illustrated by the two examples of Figures 5A and 5B, it will be appreciated that the optoelectronic DC-DC power converter (4) can operate to increase or decrease the photoimpedance. Since one or the other will appear at any point in time, even if the operation changes over time, the operation of the two transformation modes will be dedicated. Likewise, embodiments may include an opto-electronic impedance-increasing opto-electronic DC-DC power conversion loop (19) and a photo-impedance-reduced opto-electronic DC-DC power conversion loop (20). Figures 5A and 5B show two such examples in which the third portion of the optoelectronic DC-DC power converter (4) can be considered to function in one manner (upper portion of Figure 5A and lower portion of Figure 5B) and optoelectronic DC-DC power converter. The other part of (4) acts in another way (lower part of Fig. 5A and upper part of Fig. 5B). Thus, it can be seen that the mode of operation of the optoelectronic DC-DC power converter (4) can be reversed, with one achieving one effect and the other achieving the opposite effect. Embodiments of the system provide at least one opto-electronic impedance increasing mode of the optoelectronic DC-DC power converter and at least one opto-electronic impedance reducing mode of the optoelectronic DC-DC power converter. As shown in the two embodiments of Figures 5A and 5B, the two modes can appear in a 〇W photoelectric DC-DC power converter (4), so the photoelectric DC-DC power converter (4) can complete the photoelectric The step of increasing the load impedance and reducing the photoelectric load impedance. Such components can also be separate so that in alternate operation one runs and the other does not. It can also be substantially separate' so it actually or appears to be operating in the same time frame for a power conversion meaningless cycle. The system thus includes a substantially separate impedance-switching opto-electric power conversion control loop. Thanks to the structure and design of the power conditioner (17), the system can be used for power distribution or other performance, and if appropriate -18- 201037958, a control loop can be provided to achieve the desired results. Referring again to the embodiment illustrated in Figures 5A and 5B, it can be seen that some embodiments use one or more switches controlled by a photoelectric switch control loop (23) such that the power regulator (17) can be switched mode features. In the illustrated embodiment, these switches are designated T1-T4 and Τ21-24». In some embodiments, these switches may be semiconductor switches and they help to reduce losses and improve efficiency. Additionally, the switches and connections can be configured to obtain one or more optoelectronic power series switching components (24) and one or more optoelectronic power 并联 parallel switching components (25). It will be appreciated that the opto-electric power series switching component (24) may provide one or more positions of the opto-electric power transmission interruption (interrupted action), and the opto-electric power parallel switching component (25) may provide one or more opto-electric power transmission shunts (split Action) to the ground, another power path, etc. As shown by circles 5A and 5B, embodiments may include more than one switch, more than one series and parallel switch', but a series of series and shunt path semiconductor (or other) switches. Thus, interruptions and shunts can occur at least in the separate semiconductor location. Obviously, these examples are configured to more simply illustrate the various complications of power distribution, interruption, shunting, and combination, however, it can be appreciated that there may be more complex structures. In many loops, some designs can be provided to avoid the same effect, which of course falls within the scope of the present invention. It will be understood from the previously discussed mode of operation (i.e., increasing or alternately reducing the optoelectronic load impedance) that a system in accordance with an embodiment of the invention may have an opto-electronic DC-DC power transfer as a multi-peak optoelectronic DC-DC power converter. -19- 201037958 The converter (4) is controlled by the multi-peak converter functional control loop (26) because it has more than one mode of operation. These modes include, but are not limited to, photoelectric impedance increase and photo-resistance reduction, and several other modes are discussed below. In general, multi-peak activity includes the step of converting only one mode at least at any point. Regardless of the expected output, the impedance or other factors will not increase or decrease in the same step. Use only a single method of conversion, or singular integration. Thus, the power conditioner (17) can provide at least one first modal and Ο second mode optoelectronic DC-DC power conversion circuit, DC-DC power converter or DC-DC power conversion. Furthermore, it is understood in the context of an MPP that increases or decreases the photoelectric load impedance that a multimodal opto-DC-DC power converter or multi-peak converter functional control circuit (26) can be responsive to one or more optoelectronic power conditions, such as V" multiplication factor, voltage level, current level or some other signal indicating or calculating set point. In the performance of the switching mode of operation that provides more than one mode (not even simultaneously), or in providing performance that changes the mode of operation The system completes the multi-peak conversion of the DC optical input into a converted optical DC output. Similarly, performance is achieved by providing more than one conversion mode of operation (again, not even simultaneously) , or control of the mode of operation, the system can perform multi-peak control of the operation of the optoelectronic DC-DC power converter (4). Embodiments may include two or more modes of operation and are therefore considered to be dual mode power Conversion circuit or dual mode converter. The dual mode performance of this circuit is reflected in significant benefits, another difference will be most DC/DC conversion It is generally intended to produce an unadjusted source and produce an adjusted output. -20- 201037958 In the present invention, the input to the DC/DC converter is adjusted to the MPP of the PV panel. The power taken from the PV panel will be converted. Any impedance required in the output connection 'to meet the input MPP requirements without considering the output. In the case where the impedance is changed such that the output voltage is lower than the input voltage, T3 will be driven in a continuous conduction state, and T4 is in a non-conducting state, T1 And T2 operate in the switch mode task cycle state. The operation of this task cycle is synchronous, since transistor T2 can be a switch synchronized with T1 (reverse task cycle). T2 can be a lower RDS(ON) FET. It has a smaller loss than the two-pole body at this position. Through synchronous operation, the circuit can have extremely high efficiency as follows. The circuit has a problem that current passes through the additional transistor T3. There is a lower loss when not energized. Obviously, a similar operation can achieve the embodiment shown in Figure 5B. The second mode of the circuit shown in Figure 5A includes the need to change the impedance to make the output voltage In the case of input voltage, T1 can now be converted to a continuous conduction state. T2 can be non-conductive. Now, transistors T3 and T4 are controlled in switch mode. You can see that this idea applies. First, all switches are A transistor with a lower on-state loss. Second, the boost section operates efficiently, with additional losses due to dual mode performance in the on-state loss of transistor T1. The circuit can also be utilized to save size. , Space and Cost Common Inductor L1. Further, it will be understood by those skilled in the art that similar operations can be used to implement the embodiment shown in Figure 5B. Interestingly and as will be discussed in detail below, current efficiency is sometimes low. At 91% of the time, the circuit can meet the predetermined requirements, and can achieve -98% of the operating efficiency of -21,037,958 and even an efficiency level of up to 99.2%. When connected to a solar panel or a solar panel, this The difference in efficiency will be very important. Of course, isolated and non-isolated impedance conversions similar to many types of DC/DC converters can be used in other disclosed aspects of the present invention, and most arbitrary DC/DC converter topologies can be used in this function, by This is included in the present invention. As briefly mentioned above, there is an alternating manner of operation, and the system can fluctuate between different modes based on parameters or other displays or calculations (and obtain a fluctuation 〇 conversion mode). In one mode or another embodiment that is essentially dedicated to startup, the power conditioner (17) or other system components can provide an alternate mode of optoelectronic power converter functionality control (27). It is a dedicated switch between modes at least some time. These modes can be conversion modes, so the system can provide a method of fluctuation that produces solar power. As indicated above, these modes can be opposite or opposite modes, substantially separate or other modes. In the specific control of the specific operation mode, the system prohibits the useless mode. This is important, for example, to achieve the following higher efficiency standards. Referring to the embodiment of the photoelectric impedance conversion display of Figures 5A and 5B, it will be appreciated how embodiments of the present invention inhibit photoelectric DC-DC power conversion mode or at least some of the time, and thus the system can provide an ineffective alternating mode of photovoltaic Power conversion control circuit (28). As discussed with reference to the switching operation of the MPP above, one or more switches, such as opto-electric power parallel switching components (25), a photovoltaic power series switching component (24) or the like, may be disabled during operation. This will achieve the performance of the comparative operational mode or, more importantly, the efficient operation of the -22-201037958 that was previously considered impossible. Thus, embodiments can provide a converter power circuit in a photo-inactive mode. Having superior performance is a property of embodiments of the present invention, and the solar source or panel can accommodate different operating conditions. As shown in Fig. 7A and Fig., the operating voltage at the maximum power point will vary depending on whether the solar source is at or low temperature. Embodiments in accordance with the present invention provide extended performance by allowing MPP to accommodate any voltage limited impedance conversion. The converter is actually an O-DC-DC power converter in the full photoelectric temperature and voltage operating range, so that it can operate at the same low pressure as the MPP of the MPP during low temperature operation and the MPP at the time of high temperature operation. Thus, as can be seen from Figures 7A and 7B, the system can convert the photovoltaic power circuit to the photovoltaic power conversion control and the solar power source maximum power point thermal voltage deterministic photoelectric power conversion circuit. It can be realized that the rotation in the full photoelectric temperature and voltage operating range can be realized through the proper operation switching task cycle, and thus the system, the yang energy open circuit voltage, the deterministic task, the cyclic power distribution, and the solar energy 率w rate point thermal voltage decisive task cycle power distribution (switching) . In addition, observing the thermal and cold voltages, such as extreme conditions, similarly explains how the system accepts different amounts of solar radiation, so the system has an insolation-changing photoelectric conversion energy control circuit, regardless of whether the plate is blocked or even adjacent to the adjacent plate. Can extract MPP. The system and its ring distribution can be adapted to the amount of solar radiation, so the conversion step can be adapted to suit the change. This is especially noticeable in new technology boards such as cadmium telluride, especially when combining optoelectronics from boards with large operating voltages, ie, various 7B high temperature-independent boards. Control change. This is for the maximum work. It can be adapted to the sub-coverage task. The amount of radiant solar energy plate -23- 201037958 cadmium solar panel serial output. As early as possible, it is very important that the efficiency of the converter is running. This can be defined as the power that is output after converting the power from the previous conversion. A transistor switch that operates in switch mode achieves some efficiency gains, but topology is more important at this point. In particular, by operating the switches as described above, the system can far exceed the efficiency levels previously conceivable. It even achieves a fundamental power isomorphic opto-electronic DC-DC power conversion that does not convert power to heat but converts it to electrical energy, achieving efficiencies as high as approximately 99.2%. ^ This can be achieved by using the basic axiom isomorphic photoelectric converter function and the basic power isomorphic photoelectric impedance converter, as well as by controlling the operation switch, so the loss is limited as described above. This operation can achieve levels of 97, 97.5, 98, 98.5 or even up to 99.2 or essentially the efficiency of wire transmission losses (think of it may be higher). One aspect that helps achieve this efficiency is the minimum amount of energy stored during the conversion. As shown in Figures 5A and 5B, this embodiment can include a parallel capacitor and a series inductor. This can be used to store energy at least several times during the conversion run. It can be found that full energy conversion is not achievable, and the amount of conversion is necessary for the expected results obtained. Thus embodiments can function as low energy storage optoelectronic DC-DC power converters and even partial energy storage optoelectronic DC-DC power converters. In the case where the input voltage and the output voltage are almost equal to the unified conversion of the & converter, the energy storage hardly changes, so the system exhibits an embodiment of the photoelectric DC-DC power converter with substantially constant energy storage. The task cycle energy storage can be proportional to the voltage in the conversion (linear, continuous or not). The energy stored in the inductor -24- 201037958 can be proportional to the duty cycle of one or more switches. Partial efficiency is considered to be the result of the switch remaining static or open during operation. Thus the embodiment provides a photoelectric switching control circuit for static switch alternate mode, and similar, static switching. A step switch component control circuit is also provided. The switch can be controlled in the operational variable task cycle mode, thus changing the distribution frequency to achieve the desired effect. The converter functional control circuit (8) can function as a photoelectric task cycle switch control circuit. Task cycle operation ® and power distribution can achieve a variety of results, from the photoelectric impedance conversion task cycle to other operations. Some of these are even contrary to the conversion of the primary purpose of the optoelectronic DC-DC power converter (4). Although the above circuit surface is good in theory or in daily operation, there is an additional need for a system having practical functions. For example, the aforementioned dual mode circuit will produce an infinite output voltage if no load is present. This situation often occurs in practice. Consider the morning situation when the sun first illuminates the PV panel string with the power conditioner (17). There is no power network connection at this time, and the converter section does not pump any power. In this case, the power regulator (17) will increase its output voltage during actual operation until the converter is damaged. The converter has overvoltage protection on its input to add additional power conversion components, or the power regulator can simply have its own internal output voltage limit. For example, if each power regulator (17) produces a maximum voltage of 100 volts, the maximum output voltage of a series of 10 PCs in series will be 100 volts. This output voltage limit will make the net junction converter less complicated and expensive, and the voltage limit as shown in Figure 7A resetting the overvoltage limit. The embodiment can show the maximum voltage deterministic power distribution photoelectric power conversion control circuit and the maximum photovoltaic voltage deterministic task cycle power distribution (shown in Figure 7A with a reset overvoltage limit display) due to -25-201037958. It can be a specific converter. The maximum output current limit can also be very useful, as shown in Figure 7A as a preset overcurrent limit. This is less concise and involves the performance of the PV panel. If the PV panel is not exposed to sufficient light, its output voltage will decrease but its output current may not increase. The advantage is that only a small margin of variation is allowed for the extra current. For example, a board of the same 100 watts with a maximum voltage limit of 1 watt can have a current limit of 2 amps without limiting its intended use. This also greatly simplifies the subsequent state of the mesh converter. Consider the converter case in a large device that requires a front-end shunt breaker for protection. If the output of the PC reaches 100 amps, the circuit breaker will resolve the impractical current. This situation does not occur in non-PC environments, as a simple PV panel string can be easily damaged by the circuit breaker circuitry. Only a PC needs such a current limiting circuit and this can also be achieved simply by a task cycle or more precisely switching the operation control. Once the current limit is included in 〇 W another, BOS savings will be achieved. The interconnected wire sizes of serial PC strings are now limited to sizes that can only support the maximum current limit. The embodiments herein may represent a maximum photoinverter current converter functional control circuit, an inverter maximum current decisive power distribution, a photoreactor maximum current deterministic task cycle switch control circuit, and a photoreactor maximum current deterministic task cycle power distribution. Wait. Continue to discuss the issue of another system. In solar installations, extremes can also occur, where the board or board area receives more than full-day energy -26-201037958. This occurs when there is a fire condition and a cloud or other reflective surface. The PV source will produce approximately 1.5 times the rated power in a few minutes. The networked inverter section must be able to operate at higher power (increased cost) or must be avoided to some extent. The power limit of the PC is the most effective way to solve this problem. In general, the protection of some other components can be done by the converter. Even the back-end or downstream components such as inverters, so the converter functional control circuit (8) functions as a photo-inverter protection mode for photoelectric DC-DC power conversion and is considered to be a photo-electric inverter. The protection converter functionally controls the D circuit. In addition to protection, an ideal inverter or other operating condition can be implemented by a converter, and thus embodiments can include a converter functional control circuit for the operating conditions of the photoinvertor. This can be done in a simple manner by a series of adjustments, such as adjusting the modal or opto-inverter or back-end components through a photo-inverter or back-end component to adjust the converter's functional control circuitry. There are also embodiments with a smaller output voltage (within the allowable output voltage range). As shown in Figures 7A, 7B and 9, boundary conditions such as overcurrent limiting and overvoltage limiting can be set. Therefore, the converter and/or its control circuit functions as a functional control circuit of the optical D electric boundary condition converter, realizes the photoelectric boundary condition mode of the photoelectric DC-DC power conversion, and can complete the control of the photoelectric DC-DC converter. The steps of the photoelectric boundary conditions. Another mode of operation is to obtain a certain proportion (a broad sense) of ambiguity. For example, it is advantageous to generate a voltage proportional to the current to provide smooth starting performance and the like. It is thus configurable to control an embodiment of the maximum photo output voltage that is proportional to at least some number of photo-electric output currents during the step of converting the DC input to the DC output. In general, a soft-switching opto-electric power conversion control circuit is also available from -27-201037958. The system may include task cycle control or switching operation 'guided them to achieve one or more ratios between maximum voltage output and current output, and the like. Furthermore, it is not only possible to combine any of the above structures, and each of them can be categorized in a subsidiary manner. Therefore, one modal consideration is secondary to the other modality. They can be implemented by simply changing the duty cycle or switch affected by the switch. They can be completed according to the threshold and provide an optional mode for triggering the threshold, a threshold, a threshold, a threshold, a threshold, or a live power conversion control circuit. The operation of the pulse train mode can be realized, for example, when approaching a mode change level operation, and the averaging frequency can be alternated at this time, and the level can be lowered as the change back to the initial stage. This can also be transient. The photoelectric power conversion control circuit and the pulse train mode power distribution of the pulse train mode power distribution can be completed in this manner, and the photoelectric task cycle switch control circuit of the transient relative mode and the step of establishing the relative power distribution mode in the transient mode can be performed in this manner. carry out. As mentioned above, the PC and opto-electronic DC-DC power converter (4) can operate a single board. They can be attached to or separated from the board, frame. Embodiments have converters that are physically integrated with such boards, in the form of their attached units as final devices. This is highly desirable, such as when separate solar sources and adjacent solar sources have independent operating conditions to accommodate different solar radiation, conditions, or other conditions. Each board or the like implements its own MPP and is protected the same as other boards on the string.

圖10顯示可使用的一種類型的光電DC-AC反相器 (5)。能容易從先前的評述中看出,可使用無需控制MPP -28- 201037958 以及受到轉換器選擇性保護的經增強的反相器。反相器甚 至還具有一個分離的控制輸入,因此輸入電壓可以是最優 化的水準,諸如圖9中用粗豎線顯示的單獨的甜點等。雖 然本受讓人的其他發明涉及這些態樣,但它們被認爲是從 這裏描述的轉換器偶然獲得的、因而圖10中顯示一種更傳 統的反相器。它可提供至一些類型的AC電力網介面(9) 的連接。 隨著本發明變得更能得到認同,將其與更傳統的技術 〇 相比仍是有益的。這可透過簡單的開關運轉來實現,其中 傳統模式的運轉非常繁瑣或更容易被模仿。因而,實施例 可包括太陽能功率轉換比較器(29),來比較第一和第二運 轉模式、或本發明的一個實施例的經改善的模式以及常規 的效率較低的模式。該比較器可包括每塊板的一些太陽能 參數的顯示。在這點上,並聯開關運轉無效部件是有益的。 從這裏可以看出多種差異,諸如太陽能輸出、太陽能效率 差異、太陽能成本差異、太陽能日射利用比較等。 ^ 透過上述這些態樣和電路的組合至少可實現以下的一 部分益處: 每個PV板可獲得其單個最大功率。目前的許多評估意 見認爲這可提高20%PV裝置產生的功率或更高。 可較大地簡化網結反相器以及更有效的運轉。 可降低PV裝置的系統運轉成本。 本發明的各種實施例的電路、槪念和方法可得以廣泛 應用。它可以在每塊板上使用一個或多個PC。例如存在單 -29- 201037958 塊板上的不均勻性或其他理由以從板的均勻部分收益功 率。還可以例如可在板局部上使用小的功率轉換器優化從 板獲得的功率。本發明明確表示包括副板的應用。 本發明優選用於面板串列。例如在大型裝置的每串列 板上簡單地使用PC是較爲經濟的。在並聯的串列中尤爲有 益,如果一串列無法產生足夠多的功率形成電壓,其餘串 列將產生。這時每串列一個PC可提高大型裝置的功率收 益。 本發明假定包括許多物理的設備選項。例如在PC和板 之間可具有物理連接硬體。在每串列中均安裝了 PC的串列 中也可具有互連盒。給定板可具有一個或多個倂入板的 PC 〇 上文均討論的是太陽能功率應用領域。可以意識到, 即使不是全部態樣,部分也可應用於其他領域中。因而, 本說明書應理解爲支持轉換器的其他應用的,無論如何應 用以及甚至是否用作功率轉換器、阻抗轉換器、電壓轉換 器或其他。 從上述可輕易看出,本發明的基本理念可以多種方式 體現。這既包括太陽能產生技術也包括裝置以實現適當的 功率產生。在本申請中,功率產生技術以透過各種前述電 路和裝置以及用途固有的步驟實現的結果的一部分揭示。 它們是利用所指和之裝置和電路的直接結果。此外,在揭 示相同電路的同時,可以理解它們不僅僅完成特定的方法 還可以多種方式發生改變。更重要地,對於上述內容來說, -30- 201037958 所有這些態樣應理解爲落入本說明書的範圍中。 本申請包括的討論意在進串列基本闡述。讀 到特定的討論並沒有很明確地描述所有可能的實 多選項都是不確定的。這裏也沒有完全闡述本 性,沒有明確示出一個特徵或部件事實上如何是 圍或具有許多替代或同等的部件的。再次,該說 未對其進行明示。是面向裝置的屬於描述了本發 的每個部件隱含地顯示了其功能。設備申請專利 〇 僅包含之裝置和電路,而且包含方法或工藝申 圍,以闡述本發明的功能和每個部件的功能。說 於均不意欲限制包括在隨後的專利申請中的申請 的範圍。 可以理解在不脫離本發明的要素的情況下可 變型。它們仍處於本發明的範圍內。包括示出的 施例、明確的可選實施例的變型均包括在廣義 中,該說明書還包括廣義的方法或工藝,且該方 Ο 可擬成任意在後專利申請的申請專利範圍。可以 語言的改變以及更寬或更詳細的專利保護將隨 成。在這種理解的基礎上,讀者可獲知本說明書 支持所有隨後提交的專利申請,申請人有尋求視 申請專利範圍相同寬泛的內容進串列審査的申 圍,這些專利申請設計來獲得覆蓋本發明多個獨 以及作爲一個整體系統的專利。 此外,本發明的任一各種部件和申請專利箱 者可意識 施例;許 發明的屬 廣義的範 明書中均 明,裝置 範圍不僅 請專利範 明書或屬 專利範圍 獲得多種 明確的實 的說明書 法或工藝 理解這種 後予以完 應理解爲 爲與基礎 請專利範 立的態樣 ;圍可以多 -31- 201037958 種方式獲得。另外,當使用或隱含時,元件應理解爲包括 單數或可物理連接或不連接的複數的結構。本說明書可理 解爲包括這種任意的變型,任意設備實施例、方法或工藝 實施例或僅僅是這些任意部件的變型的例子的變型。特別 地,可以理解如涉及本發明的部件的內容時,每個部件的 措辭均可用同等設備術語或方法術語表達,只要其功能或 結果是相同的即可。這種同等的、更寬的或通稱的術語均 認爲包括每個部件或動作的描述中。這些術語可被取代使 〇 其明確隱含的範圍覆蓋本發明將被授權的範圍。即使僅有 一個實施例,也應理解爲所有動作表達的是採取的起作用 的方法或導致該動作的部件。類似地,揭示的每個物理部 件應理解爲包括這些物理部件實施的動作的揭示。關於該 最後一個態樣,即使僅有一個實施例,“轉換器”的揭示也 應理解爲包括所有“轉換”的動作(無論是否明確討論過或 沒有的內容),相反地,“轉換”動作的有效揭示的這種揭示 也應理解爲包括“轉換器,,的揭示以及“轉換的裝置”的揭 ® 示。這種變換和變型的屬於應理解爲明確包括在本說明書 中的》 本專利申請中提到的任意專利、出版物及其它參考檔或 其引用文獻均在此倂入作爲參考。本申請或任意在後申請 請求的優先權檔均附於此並在此引入作爲參考。此外’對 於使用的每個術語應理解爲除了本申請的使用與廣泛認同 的解釋不一致之外,應將每個術語和所有定義、可選的屬 於以及同義詞理解爲一般辭典的定義’諸如在Random -32- 201037958Figure 10 shows one type of optoelectronic DC-AC inverter (5) that can be used. It can be easily seen from the previous comments that an enhanced inverter that does not require control of MPP -28-201037958 and is selectively protected by the converter can be used. The inverter even has a separate control input so the input voltage can be optimized, such as a separate dessert shown in thick lines in Figure 9. Although other inventions of the assignee relate to these aspects, they are considered to be arbitrarily obtained from the converters described herein, and thus a more conventional inverter is shown in FIG. It provides connectivity to some types of AC power grid interfaces (9). As the invention becomes more recognized, it is still beneficial to compare it to more conventional techniques. This can be achieved by a simple switching operation in which the traditional mode is very cumbersome or easier to imitate. Thus, embodiments may include a solar power conversion comparator (29) to compare the first and second operational modes, or the improved mode of one embodiment of the present invention, as well as conventional less efficient modes. The comparator can include a display of some solar parameters for each panel. In this regard, it is beneficial to operate the inactive components in parallel switches. From here, we can see a variety of differences, such as solar output, solar efficiency differences, solar cost differences, solar solar utilization comparisons. ^ At least some of the following benefits can be achieved through the combination of these aspects and circuits: Each PV panel can achieve its single maximum power. Many current evaluations suggest that this can increase the power generated by 20% PV devices or higher. The networked inverter can be greatly simplified and more efficient operation. It can reduce the system running cost of the PV device. The circuits, concepts, and methods of various embodiments of the present invention are widely applicable. It can use one or more PCs on each board. For example, there may be inhomogeneities on the single -29-201037958 board or other reasons to derive power from the uniform portion of the board. It is also possible, for example, to optimize the power obtained from the board using a small power converter on the board portion. The invention expressly indicates the application including the sub-board. The invention is preferably used in a panel string. For example, it is economical to simply use a PC on each column of a large device. This is especially beneficial in parallel series. If a series of columns does not produce enough power to form a voltage, the remaining series will be generated. At this point, each string of PCs can increase the power gain of a large device. The invention is assumed to include a number of physical device options. For example, there may be a physical connection hardware between the PC and the board. An interconnect box can also be present in a serial array in which PCs are installed in each column. A given board can have one or more PCs that break into the board. All of the above are discussed in the field of solar power applications. It can be appreciated that even if not all aspects, portions can be applied to other fields. Thus, this description should be understood to support other applications of the converter, regardless of how it is applied and even whether it is used as a power converter, impedance converter, voltage converter or others. As can be readily seen from the above, the basic idea of the present invention can be embodied in a variety of ways. This includes both solar energy generation technologies and devices to achieve proper power generation. In the present application, power generation techniques are disclosed as part of the results achieved by various steps inherent in the circuits and devices and uses. They are a direct result of the use of the devices and circuits referred to. Moreover, while revealing the same circuits, it will be appreciated that they may not only perform a particular method but may also vary in a number of ways. More importantly, for the above, all of these aspects are to be understood as falling within the scope of this specification. The discussion included in this application is intended to be a basic explanation. Reading a particular discussion does not explicitly describe all possible real multiple options as uncertain. The nature is not fully described herein, and it is not explicitly shown how a feature or component may be in the art or have many alternative or equivalent components. Again, the statement is not explicitly stated. It is device-oriented that describes each function of the present invention implicitly. The device patents 〇 contain only the devices and circuits, and include methods or process variations to clarify the function of the invention and the function of each component. It is not intended to limit the scope of the application included in the subsequent patent application. It will be appreciated that variations may be made without departing from the elements of the invention. They are still within the scope of the invention. Variations of the illustrated embodiments, including the alternative embodiments, are included in the broad sense, and the description also includes a broadly defined method or process, and the invention is intended to be included in the scope of the patent application. Language changes and wider or more detailed patent protection will follow. On the basis of this understanding, the reader is informed that this specification supports all subsequent patent applications, and the applicant has the right to seek a wide range of content in the scope of the patent application, which is designed to cover the present invention. Multiple patents as well as a system as a whole. In addition, any of the various components of the present invention and the applicant for the patent box can be consciously applied; the invention is broadly described in the general disclosure of the invention, and the scope of the device is not limited to the patent specification or the patent scope to obtain a variety of clear and practical instructions. Or the understanding of the process should be understood as the aspect of the patent application with the basics; the circumference can be obtained in more than 31-201037958. In addition, when used or implied, an element should be understood to include a singular or a plurality of structures that may or may not be physically connected. This description is understood to include any such variations, any device embodiments, methods, or process embodiments, or merely variations of examples of variations of any of these components. In particular, it will be understood that the terms of each component may be expressed in equivalent device terms or method terms as long as the function or result is the same. Such equivalent, broader or generic terms are considered to include a description of each component or action. These terms may be substituted so that the scope of the invention is intended to cover the scope of the invention. Even if there is only one embodiment, it should be understood that all actions express a functioning method or a component that causes the action. Similarly, each physical component disclosed should be understood to include a disclosure of the actions that these physical components perform. With regard to this last aspect, even if there is only one embodiment, the disclosure of "converter" should be understood to include all "conversion" actions (whether or not explicitly discussed or not), and conversely, "conversion" actions This disclosure of effective disclosure should also be understood to include the disclosure of "converters," and "transformed devices." Such transformations and variations are to be understood as being expressly included in this specification. The use of any of the patents, publications, and other references cited in the application, the disclosure of which is hereby incorporated by reference in its entirety, the entire disclosure of the entire disclosure of the disclosure of 'As for each term used, it should be understood that each term and all definitions, optional affiliations, and synonyms should be understood as a definition of a general dictionary, except in the use of this application, which is inconsistent with widely accepted interpretations, such as in Random - 32- 201037958

House Webster’s Unabridged Dictionary 中的含義,其第二 版在此引入作爲參考。最後,包括或不包括在本申請中的 參考資訊列表中列出的所有參考文獻均附於此並引入作爲 參考,然而,對於上述每一件文獻來說,應理解這些與本 申請的專利內容不很一致的作爲參考引入的資訊或內容並 不直接被認爲本申請人表達的含義。 參考文獻列表 I.美國專利檔 檔號及類別代碼 (如果已知) 公開日期月日年 (mm-dd-yyyy ) 專利權人或 申請人姓名 4127797 11-28-1978 Perper 4375662 03-01-1983 Baker 4390940 06-28-1983 C orbefin et al. 4404472 09-13-1983 Steigerwald 4445049 04-24-1984 Steigerwald 14626983 12-02-1986 Harada et al. 4725740 02-16-1988 Nakata 5027051 06-25-1991 Lafferty 5747967 05-05-1998 Muljadi et al. 6081104 06-27-2000 Kern 6281485 08-28-2001 Siri 6282104 08-28-2001 Kern 6351400 02-26-2002 Lumsden 6369462 04-09-2002 Siri 6448489 09-10-2002 Kimura et al. -33- 201037958 檔號及類別代碼 (如果已知) 公開日期月曰年 (mm-dd-yyyy ) 專利權人或 申請人姓名 6791024 09-14-2004 Toy omura 6889122 05-03-2005 Perez 6914418 07-05-2005 Sung 7091707 08-15-2006 Cutler 7158395 0 1 -02-2007 Deng et al. 7227278 06-05-2007 Realmuto et al. 7274975 09-25-2007 Miller 2005002214A1 0 1 /06/2005 Deng et al. 2005068012A1 03/31/2005 Cutler 2005162018A1 07/28/2005 Realmuto et al. 2006103360A9 05/18/2006 Cutler I 2006174939A1 08/10/2006 Matan | 2007035975A1 02/15/2007 Dickerson et al. | 20010007522 A1 07-12-2001 Nakagawa et al. I 20030 1 1 1 1 03 A1 06-19-2003 Bower et al. I 20070069520 A1 03-29-2007 S chetter s | 20070133241 A1 06-14-2007 Mumtaz et al. 199105027051 02/25/1991 Laffferty 200106281485 08/28/2001 Siri 200206369462 04/09/2002 Siri 1200707158395 01/02/2007 Deng et al 200707227278 06/05/2007 Realmuto et al. -34- 201037958 II. 國外專利文件The meaning of House Webster’s Unabridged Dictionary, the second edition of which is incorporated herein by reference. Finally, all references listed in the list of referenced information, including or not included in the present application, are hereby incorporated by reference, however, for each of the above references, Information or content that is not consistently incorporated as a reference is not directly considered to be the meaning expressed by the applicant. Reference List I. US Patent File Number and Category Code (if known) Publication Date Month Day (mm-dd-yyyy) Patentee or Applicant Name 4127797 11-28-1978 Perper 4375662 03-01-1983 Baker 4390940 06-28-1983 C orbefin et al. 4404472 09-13-1983 Steigerwald 4445049 04-24-1984 Steigerwald 14626983 12-02-1986 Harada et al. 4725740 02-16-1988 Nakata 5027051 06-25-1991 Lafferty 5747967 05-05-1998 Muljadi et al. 6081104 06-27-2000 Kern 6281485 08-28-2001 Siri 6282104 08-28-2001 Kern 6351400 02-26-2002 Lumsden 6369462 04-09-2002 Siri 6448489 09-10- 2002 Kimura et al. -33- 201037958 File number and category code (if known) Publication date Month year (mm-dd-yyyy) Patentee or applicant name 6791024 09-14-2004 Toy omura 6889122 05-03 -2005 Perez 6914418 07-05-2005 Sung 7091707 08-15-2006 Cutler 7158395 0 1 -02-2007 Deng et al. 7227278 06-05-2007 Realmuto et al. 7274975 09-25-2007 Miller 2005002214A1 0 1 /06 /2005 Deng et al. 2005068012A1 03/31/2005 Cutler 2005162018A1 07 /28/2005 Realmuto et al. 2006103360A9 05/18/2006 Cutler I 2006174939A1 08/10/2006 Matan | 2007035975A1 02/15/2007 Dickerson et al. | 20010007522 A1 07-12-2001 Nakagawa et al. I 20030 1 1 1 1 03 A1 06-19-2003 Bower et al. I 20070069520 A1 03-29-2007 S chetter s | 20070133241 A1 06-14-2007 Mumtaz et al. 199105027051 02/25/1991 Laffferty 200106281485 08/28/2001 Siri 200206369462 04/09/2002 Siri 1200707158395 01/02/2007 Deng et al 200707227278 06/05/2007 Realmuto et al. -34- 201037958 II. Foreign patent documents

國外專利文件 揭示曰期 專利權人或申請人姓名 0 2004100344 A2 11/18/2004 Ballard Power Systems Corporation WO 2004100348 A1 11-18-2004 Encesys Limited WO 2005027300 A1 03/24/2005 Solarit AB WO 2005036725 A1 04-21-2005 Konin-Klijke Philips Electronics WO 2006005125 A1 01/19/2006 Central Queensland University et al. WO 20060071436 A2 07/06/2006 ISG Technologies, LLC WO 2006013600 A2 02/09/2006 Universita Degli Studi DiRoma uLa Sapienza” WO 2006013600 A3 02/09/2006 Universita Degli Studi DiRoma “La Sapienza” WO 2006048688 A2 05-11-2006 Encesys Limited WO 2006048689 A2 05-11-2006 Encesys Limited WO 2006048689 A3 05-11-2006 Encesys Limited WO 2006137948 A2 12/28/2006 ISG Technologies, LLC WO 2007007360 A2 01/18/2007 Universita Degli Studi Di Salerno WO 2007080429 A2 07-19-2007 Encesys Limited JP 198762154121A2 Kyogera Corp EP 0964415 A1 12/15/1999 Igarashi, Katsuhiko-TDK Corp EP 0780750 B1 03/27/2002 Nakata,et al. EP 1120895 A3 05/06/2004 Murata Manufacturing Co, et al. EP 0964415 A1 12/15/1999 TDK Corp,et al. GB 2434490 A 07/25/2007 Enecsys Limited, et al. GB 2421847 A 07/05/2006 Enecsys Limited, et al. GB 2419968 A 05/10/2006 Enecsys Limited, et al. -35- 201037958 國外專利文件 揭示曰期 專利權人或申請人姓名 GB 2415841 A 01/04/2006 Enecsys Limited, et al. GB 612859 11/18/1948 Statndard Telephones and Cables Limited DE 310,362 09/26/1929 Rheinishce Metallwaaren-Und Maschinenfabrik Sommerda Aktien-Gesellschaft JP 2002231578 A 08/16/2002 Meidensha Corp JP 2000020150 A 01/21/2000 Toshiba Fa Syst Eng Corp,et al· JP 08066050 A 03/08/1996 Hitachi Ltd JP 08033347 A 02/02/1996 Hitachi Ltd, et al. JP 07222436 A 08/18/1995 Meidensha Corp JP 05003678 A 01/08/1993 Toshiba F EE Syst KK, et al.Foreign patent documents reveal the name of the patentee or applicant in the future. 0 2004100344 A2 11/18/2004 Ballard Power Systems Corporation WO 2004100348 A1 11-18-2004 Encesys Limited WO 2005027300 A1 03/24/2005 Solarit AB WO 2005036725 A1 04 -21-2005 Konin-Klijke Philips Electronics WO 2006005125 A1 01/19/2006 Central Queensland University et al. WO 20060071436 A2 07/06/2006 ISG Technologies, LLC WO 2006013600 A2 02/09/2006 Universita Degli Studi DiRoma uLa Sapienza" WO 2006013600 A3 02/09/2006 Universita Degli Studi DiRoma "La Sapienza" WO 2006048688 A2 05-11-2006 Encesys Limited WO 2006048689 A2 05-11-2006 Encesys Limited WO 2006048689 A3 05-11-2006 Encesys Limited WO 2006137948 A2 12 /28/2006 ISG Technologies, LLC WO 2007007360 A2 01/18/2007 Universita Degli Studi Di Salerno WO 2007080429 A2 07-19-2007 Encesys Limited JP 198762154121A2 Kyogera Corp EP 0964415 A1 12/15/1999 Igarashi, Katsuhiko-TDK Corp EP 0780750 B1 03/27/2002 Nakata, et al. EP 1120895 A3 05/06/2004 Murata M Anufacturing Co, et al. EP 0964415 A1 12/15/1999 TDK Corp, et al. GB 2434490 A 07/25/2007 Enecsys Limited, et al. GB 2421847 A 07/05/2006 Enecsys Limited, et al. GB 2419968 A 05/10/2006 Enecsys Limited, et al. -35- 201037958 Foreign patent documents reveal the name of the patentee or applicant of the later period GB 2415841 A 01/04/2006 Enecsys Limited, et al. GB 612859 11/18/ 1948 Statndard Telephones and Cables Limited DE 310,362 09/26/1929 Rheinishce Metallwaaren-Und Maschinenfabrik Sommerda Aktien-Gesellschaft JP 2002231578 A 08/16/2002 Meidensha Corp JP 2000020150 A 01/21/2000 Toshiba Fa Syst Eng Corp, et al· JP 08066050 A 03/08/1996 Hitachi Ltd JP 08033347 A 02/02/1996 Hitachi Ltd, et al. JP 07222436 A 08/18/1995 Meidensha Corp JP 05003678 A 01/08/1993 Toshiba F EE Syst KK, et al.

III. 非專利文獻檔III. Non-patent literature files

Northern Arizona Wind & Sun; solar-electric.com; All about MPPT Solar Charge Controllers; 11/05/2007Northern Arizona Wind &Sun;solar-electric.com; All about MPPT Solar Charge Controllers; 11/05/2007

SatCon Power Systems, PowerGate photovoltaic 50kW power conditioner System, June 2004SatCon Power Systems, PowerGate photovoltaic 50kW power conditioner System, June 2004

Bower, et al. Innovative PV Micro-inverter Topology Eliminates Electrolytic Capacitors for Longer Lifetime, 1-4244-0016-3/06 IEEE p. 2038 Gene Z. Guo, Design of a 400W, 1Φ. Buck-Boost inverter for PV Applications. 32. nd. Annual Canadian Solar Energy Conference June 10, 2007Bower, et al. Innovative PV Micro-inverter Topology Eliminates Electrolytic Capacitors for Longer Lifetime, 1-4244-0016-3/06 IEEE p. 2038 Gene Z. Guo, Design of a 400W, 1Φ. Buck-Boost inverter for PV Applications 32. nd. Annual Canadian Solar Energy Conference June 10, 2007

Hua, C. et al.5 Control of DC/DC converters for solar energy system with maximum power tracking,Department of Electrical Engineering; National Yumin University of Science & Technology, Taiwan, Volume 2, Issue ? 9-14 Nov 1997 Page(s):827 - 832___Hua, C. et al. 5 Control of DC/DC converters for solar energy system with maximum power tracking,Department of Electrical Engineering; National Yumin University of Science & Technology, Taiwan, Volume 2, Issue ? 9-14 Nov 1997 Page (s): 827 - 832___

Kang, F. et al., photovoltaic power interface concuitry incorporated with a buck-boost converter and a full-bridge_inverter; -36- 201037958 doi:10.1016/j.apenergy.2004.10.009Kang, F. et al., photovoltaic power interface concuitry incorporated with a buck-boost converter and a full-bridge_inverter; -36- 201037958 doi:10.1016/j.apenergy.2004.10.009

Kretschmar K., et al. An AC converter with a small DC link capacitor for a 15kW permanent magnet synchronous integral motor, Power Electronics and Variable Speed Drives, 1998. Seventh International Conference on (Conf. Publ. No. 456) Volume , Issue , 21-23 Sep 1998 Page(s):622 - 625Kretschmar K., et al. An AC converter with a small DC link capacitor for a 15kW permanent magnet synchronous integral motor, Power Electronics and Variable Speed Drives, 1998. Seventh International Conference on (Conf. Publ. No. 456) Volume , Issue , 21-23 Sep 1998 Page(s): 622 - 625

Lim, Y.H. et al., Simple maximum power point tracker for photovoltaic arrays, Electronics Letters 05/25/2000 Vol. 36, No. 11Lim, Y.H. et al., Simple maximum power point tracker for photovoltaic arrays, Electronics Letters 05/25/2000 Vol. 36, No. 11

Matsuo, H. et al., Novel solar cell power supply system using the multiple-input DC-DC converter, Telecommunications Energy Conference, 1998. INTELEC. Twentieth International, Volume , Issue , 1998 Page(s):797 - 8022Matsuo, H. et al., Novel solar cell power supply system using the multiple-input DC-DC converter, Telecommunications Energy Conference, 1998. INTELEC. Twentieth International, Volume, Issue, 1998 Page(s): 797 - 8022

Roman, E. et al. Intelligent PV Module for Grid-Connected PV Systems, IEEE Transactions of Power Electronics, Vol. 53. No. 4 August 2006Roman, E. et al. Intelligent PV Module for Grid-Connected PV Systems, IEEE Transactions of Power Electronics, Vol. 53. No. 4 August 2006

Takahashi, I. et al. Development of a long-life three-phase flywheel UPS using an electrolytic capacitorless converter/inverter, 1999 Scripta Technica, Electr. Eng. Jpn, 127(3): 25-32Takahashi, I. et al. Development of a long-life three-phase flywheel UPS using an electrolytic capacitorless converter/inverter, 1999 Scripta Technica, Electr. Eng. Jpn, 127(3): 25-32

Walker, G. R. et al, Cascaded DC-DC converter Connection of photovoltaic Modules, IEEE Transactions of Power Electronics, Vol. 19. No. 4 July 2004Walker, G. R. et al, Cascaded DC-DC converter Connection of photovoltaic Modules, IEEE Transactions of Power Electronics, Vol. 19. No. 4 July 2004

Walker, G. R. et al.,“PV String Per-Module Power Point Enabling Converters,” School of Information Technology and Electrical Engineering, The University of Queensland, presented at the Australasian Universities Power Engineering Conference, AUPEC2003, Christchurch, September 28 - October 1, 2003. Hashimoto, et al. A Novel High Performance Utility Interactive photovoltaic inverter System, Department of Electrical Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan, p. 2255 Shimizu, et al. Generation Control circuit for photovoltaic Modules, Eli Transactions on Power Electronics, Vol 16, No. 3, May 2001 United States Provisional Application filed October 15, 2007, Serial Number 60/980,157Walker, GR et al., "PV String Per-Module Power Point Enabling Converters," School of Information Technology and Electrical Engineering, The University of Queensland, presented at the Australasian Universities Power Engineering Conference, AUPEC2003, Christchurch, September 28 - October 1 , 2003. Hashimoto, et al. A Novel High Performance Utility Interactive photovoltaic inverter System, Department of Electrical Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan, p. 2255 Shimizu, et Al. Generation Control circuit for photovoltaic Modules, Eli Transactions on Power Electronics, Vol 16, No. 3, May 2001 United States Provisional Application filed October 15, 2007, Serial Number 60/980,157

United States Provisional Application filed October 23, 2007, Serial Number 60/982,053United States Provisional Application filed October 23, 2007, Serial Number 60/982,053

United States Provisional Application filed November 15, 2007, Serial Number 60/986,979 -37- 201037958 因而,須知本申請人對申請專利範圍支持並說 明如下申請專利範圍:i)這裏揭示和描述的每種 置;ϋ)揭示和描述的相關方法;iii)每種這些裝 法的類似的、同等的甚至隱含的變型;iv)實現揭 述的示出的任一功能的那些設計的變型;v)完成隱 揭示和描述的示出的任一功能的那些設計的變型; 爲分離及獨立的發明示出的任一特徵、部件以及步 由揭示的各種系統或構件改進的申請;viii )這種系 〇 件制得的最終產品;ix )與提及的任一領域或裝置 的示出或描述的任一系統、方法和部件;X)基本如 看任意附屬的實施例描述的方法和設備;xi)揭示 部件的各種組合和排列;xii )依賴於這裏的任一獨 專利範圍或槪念的附屬物的任一潛在的附屬申請專 或槪念;以及xiii )這裏描述的所有發明。另外涉 化的態樣以及服從於編程或其他可編程電子自動運 一態樣來說,應理解本申請人已經支持申請專利範 ® 說明書的內容至少包括如下態樣:xiv)在上述討論 的借助電腦執行的方法;XV)在上述討論中的可編 備;xvi)編碼了資料的電腦可讀取記憶體,以引導 有如上述討論之功能的裝置或部件的電腦;xvii )如 示和描述配置的電腦;xviii )如這裏揭示和描述的 組合的副程式或程式;xix )揭示和描述的相關方法 每個這些系統和方法的類似的、同托該燈甚至隱 型;xxi )實現這裏揭示和描述的任一功能的那些設 明本發 電源裝 置和方 示和描 含實現 Vi)作 聚;vii ) 統或構 相適應 之前參 的任一 立申請 利範圍 及電腦 轉的任 圍書和 中描述 程的設 包括具 這裏揭 單個或 ;XX ) 含的變 計的變 • 38- 201037958 型;xxii)如分離的和獨立的發明示出的任一特徵、部件和 步驟;以及xxiv )上述任一的各種組合和排列。 對現在或隨後將被提交審查的申請專利範圍來說,應 理解出於實際的理由以及避免審查物件的過大擴展,本申 請人可在任何時候提交僅僅是最初的申請專利範圍或具有 最初的附屬申請專利範圍的最初的申請專利範圍。官方及 對本申請或隨後申請的潛在範圍感興趣的任意第三人應理 解爲將在之後的日期裏提交更寬的申請專利範圍的情況, ^ 即在請求這個案子的益處或任意初步的修改、其他修改、 申請專利範圍語言或提出的爭論的情況,因而在任意懸而 未決的案子中均不會放棄或拒絕任意潛在的主題。審查員 以及對出現或潛在的範圍感興趣或認爲是否任何時機均可 放棄或拒絕潛在主題的任意公眾應瞭解在不存在隱含的描 述中,本申請或任意在後申請中出現的均不會認爲是或進 串列所謂的這種棄權或方法。諸如Hakim V. Cannon Avent Group, PLC,479 F.3d 1313 (Fed. Cir 2007)中提出的限制等 Ο w 不直接包括在本申請或任意在後申請的相關主題中。 另外,應認爲這裏的揭示符合新審查指南的要求,包 括但不限於歐洲專利公約條例123(2)和美國專利法35 USC 1 3 2或其他法律,以允許增加一項獨立申請專利範圍下出現 的任意的各種附屬申請專利範圍或其他部件或在任意其他 獨立申請專利範圍或槪念下的附屬申請專利範圍或部件的 槪念。在設計這些本申請或任意在後申請的申請專利範圍 時,應理解本申請人意在在法律允許的範圍內盡可能地擴 -39- 201037958 展和放大覆蓋的範圍。對於不具有實際基礎的範圍、爲了 在字面上包括任意特定格式實例申請人事實上無法設計的 申請專利範圍、以及其他可應用的範圍,不應認爲本申請 人意在或事實上放棄了這些範圍,而是申請人無法簡單地 預測所有偶然事件;本領域技術人員也不應質疑必須獲得 能在字面上包括所有這種可選實施例的申請專利範圍。 此外,如果或當使用時,根據常規的申請專利範圍解 釋,常用詞“包括”的使用指的是開放式申請專利範圍》 〇 因而,除非有特別說明,應理解詞語“包括”及其各種變 型指的是包括聲明的部件或步驟或一組部件或步驟,而不 排除包括任意其他部件或步驟或一組部件或步驟。這種詞 語應廣義地進串列理解,以涵蓋法律意義上允許的最大範 IS! 圍。 最後,這裏提出的任意申請專利範圍均作爲本發明的 說明書的一部分倂入作爲參考,申請人保留用這些申請專 利範圍的這些合倂內容的全部或一部分來進一步解釋支援 ^ 全部或任意申請專利範圍或其任意部件或構件的權利,申 請人還保留將這些申請專利範圍的合倂部分的任意部分或 全部或其任意部件或構件從說明書中該移動到申請專利範 圍中作爲限定本申請或任意在後繼續申請、分案申請或其 部分繼續申請需求保護的主題的必要內容,或減少費用, 或使之與任意國家的專利法、細則或規定或條約相符合的 必要內容的權利,在包括任意在後繼續申請、分案申請或 其部分繼續或其任意再發行或其擴展的本申請的整個審查 -40- 201037958 過程中應保留此類倂入作爲參考的內容 【闽式簡單說明】 圖1顯示根據本發明一個實施例的單個典型的太陽能 源的轉換系統的示意圖。 圖2顯示根據本發明一個實施例的互連的面板串列的 多個示意圖。 圖3顯示典型的太陽能板的電流與電壓關係的曲線 回 圖。 Ο 圖4顯示類似板的功率和電壓關係的曲線圖。 圖5A和5B顯示諸如用於本發明實施例的兩種類型的 雙模能量轉換電路。 圖6顯示串聯連接的板和單個網結轉換器結構的本發 明的實施例。 圖7A和7B顯示在不同溫度的運轉條件下的太陽能輸 出的點和輸出範例。 圖8顯示現有技術與本發明相比的損耗拓撲和範圍的 〇 曲線圖。 圖9顯示根據本發明一個可運轉實施例的組合的保護 性條件和整個方法條件的曲線圖。 圖10顯示現有技術的具有網結轉換器的系統。 【主要元件符號說明】 無。 -41-United States Provisional Application filed November 15, 2007, Serial Number 60/986,979 -37-201037958 Accordingly, it is to be understood that the Applicant supports the scope of the patent application and describes the following patent claims: i) each of the disclosed and described herein; Related methods disclosed and described; iii) similar, equivalent, or even implicit variations of each of these methods; iv) variations of those designs that implement any of the functions shown; v) complete hidden reveals and Variations of those designs of any of the functions illustrated; applications of any of the features, components, and steps illustrated for the separation and independent invention are improved by the various systems or components disclosed; viii) such components are produced The final product; ix) any of the systems, methods and components shown or described in connection with any of the fields or devices; X) substantially as described in any of the accompanying embodiments, and xi) Various combinations and permutations; xii) any potential sub-applications or mournings that rely on any of the exclusive patent scopes or tribute attachments herein; and xiii) all the hairs described herein Bright. In addition to the aspects of the invention and the obedience to programming or other programmable electronic automation, it should be understood that the applicant has supported the application of the patent specification. The content includes at least the following aspects: xiv) Computer-implemented method; XV) may be prepared in the above discussion; xvi) computer-readable memory that encodes data to guide a computer or device having the functions as discussed above; xvii) as shown and described Computer; xviii) a subprogram or program as disclosed and described herein; xix) reveals and describes related methods for each of these systems and methods, similar to the lamp or even implicit; xxi) implementations disclosed herein and The description of any of the functions of the power supply device and the implementation and description of the realization of Vi) to make a poly; vii) system or structure to adapt to any previous application scope and computer transfer of the book and in the middle The description of the design includes the variants of the variants contained herein; XX) variants 38- 201037958; xxii) any features, components and features as shown in the separate and independent inventions Step; and xxiv) various combinations and permutations of any of the above. For the scope of the patent application that will be submitted for review now or subsequently, it should be understood that for practical reasons and to avoid excessive expansion of the review object, the applicant may submit at any time only the original scope of the patent application or have an initial attachment. The scope of the initial patent application for the scope of the patent application. Officials and any third person interested in the potential scope of this or subsequent applications should be understood to be submitting a wider range of patent applications on a later date, ^ ie in requesting the benefit of the case or any preliminary modification, Other modifications, the language of the patent application, or the contention of the dispute, and therefore will not abandon or reject any potential subject matter in any pending case. The examiner and any public interested in or appearing to be interested in or suggesting that any opportunity may waive or reject the potential subject matter should be aware that in the absence of an implied description, neither this application nor any subsequent application appears. It would be considered to be a series of so-called abstentions or methods. Limitations such as those proposed in Hakim V. Cannon Avent Group, PLC, 479 F. 3d 1313 (Fed. Cir 2007) are not directly included in the related subject matter of this application or any subsequent application. In addition, the disclosure herein should be considered to comply with the requirements of the new review guidelines, including but not limited to the European Patent Convention Regulation 123(2) and the US Patent Law 35 USC 13 2 or other laws to allow for the addition of an independent patent application. Any of a variety of sub-application patents or other components that appear to be in the scope of the patent application scope or component of any other independent patent application or complication. In designing these patent applications or any of the scope of the patent application filed in the hereinafter, it is understood that the applicant intends to extend the scope of the coverage as much as possible within the scope permitted by law. For those who do not have a practical basis, in order to literally include any particular format instance, the scope of the patent application that the applicant is in fact unable to design, and other applicable scope, the applicant should not be considered to have intentionally or in fact abandoned the scope. However, the applicant cannot simply predict all incidents; those skilled in the art should not question the need to obtain a patentable scope that can literally include all such alternative embodiments. In addition, if used or when used, the use of the generic term "comprising" refers to the scope of the open patent application, and, unless otherwise stated, the word "comprising" and its various variants are understood. References are made to the components or steps or a set of components or steps that are included in the claims, and do not exclude the inclusion of any other components or steps or a set of components or steps. This term should be interpreted in a broad sense to cover the largest range of IS! In the meantime, the scope of any patent application filed here is hereby incorporated by reference in its entirety in its entirety in its entirety in its entirety in the the the the the the the the the And the right of any part or component thereof, the applicant also reserves the right to move any part or all of the combined parts of the scope of the patent application or any part or component thereof from the specification to the scope of the patent application as a limitation of the application or any The right to continue to apply, to divide the application, or to continue to apply for the necessary content of the subject of demand protection, or to reduce the cost, or to make it necessary to comply with any country's patent laws, rules or provisions or treaties, including any The content of the continuation of the application, division of the application, or part of the continuation of the application, or its partial re-issuance or its extension, the entire review of the application -40-201037958, should retain such intrusion as a reference [simplified description] Showing a single typical solar source in accordance with one embodiment of the present invention Schematic of a system change. 2 shows a plurality of schematic diagrams of interconnected panel strings in accordance with one embodiment of the present invention. Figure 3 shows a plot of current vs. voltage for a typical solar panel. Ο Figure 4 shows a plot of power and voltage for a similar board. Figures 5A and 5B show two types of dual mode energy conversion circuits such as those used in embodiments of the present invention. Figure 6 shows an embodiment of the invention in series connected plates and a single netk converter configuration. Figures 7A and 7B show examples of points and outputs of solar energy output under operating conditions at different temperatures. Figure 8 is a graph showing the loss topology and range of the prior art compared to the present invention. Figure 9 is a graph showing the combined protective conditions and overall process conditions for an operational embodiment in accordance with the present invention. Figure 10 shows a prior art system with a net junction converter. [Main component symbol description] None. -41-

Claims (1)

201037958 七、申請專利範圍: 1.一種波動轉換模式太陽能系統,包括: 至少一個具有DC光電輸出的太陽能源; 從前述DC光電輸出接受功率的DC輸入; 對前述DC輸入響應的第一模態光電DC-DC功 率轉換電路; 對前述DC輸入響應的第二模態光電DC-DC功率 轉換電路; 0 交換模式光電功率轉換器功能性控制電路,其配 置以在前述第一模態光電DC-DC功率轉換電路和前述 第二模態光電DC-DC功率轉換電路間選擇性地轉換至 少若干次; 對前述交換模式光電功率轉換器功能性控制電路 回應的光電DC-DC功率轉換器; 連接至前述光電DC-DC功率轉換器的光電DC功 率輸出, 0 對前述光電DC功率輸出回應的DC-AC光電反相 器;以及 對前述光電DC-AC反相器回應的光電AC功率輸 出。 2如申請專利範@第1項之波動轉換模式太陽能系統’ 前述交換模式光電功率轉換器功能性控制電路包 括無效的交換模式光電功率轉換控制電路。 3 專利範圍第2項之波動轉換模式太陽能系統, -42- 201037958 其中前述第一模態光電dc-dc功率轉換電路和前述第 二模態光電DC-DC功率轉換電路包括相反的模態光電 DC-DC功率轉換電路。 4. 如申請專利範圍第3項之波動轉換模式太陽能系統, 其中前述相反的模態光電DC-DC功率轉換電路包括至 少一個光電阻抗增大光電DC-DC功率轉換電路和至少 —個光電阻抗減小光電DC-DC功率轉換電路。 5. 如申請專利範圍第1項之波動轉換模式太陽能系統, ^ 其中前述交換模式光電功率轉換器功能性控制電路包 括基本上分離的阻抗轉換光電功率轉換控制電路。 6. 如申請專利範圍第1項之波動轉換模式太陽能系統, 其中前述交換模式光電轉換器功能性控制電路包括選 自由以下組成的組的交換模式光電功率轉換器功能性 控制電路: 光電阻抗轉換功率功能性控制電路; 最大光電反相器電流功能性控制電路; 最大光電功率點轉換器功能性控制電路; 光電反相器運轉條件轉換器功能性控制電路; 光電負荷阻抗增大轉換器功能性控制電路和光電 負荷阻抗減小轉換器功能性控制電路; 從屬最大光電功率點轉換器功能性控制電路; 從屬光電反相器運轉條件轉換器功能性控制電 路; 從屬光電負荷阻抗增大轉換器功能性控制電路; -43- 201037958 從屬光電負荷阻抗減小轉換器功能性控制電路; 從屬光電負荷阻抗增大轉換器功能性控制電路和 從屬光電負荷阻抗減小功能性控制電路; 光電邊界條件轉換器功能性控制電路; 在後的光電元件保護轉換器功能性控制電路; 光電反相器保護轉換器功能性控制電路; 光電反相器調整的轉換器功能性控制電路;以及 以上各項的全部排列與組合。 〇 7.如申請專利範圍第1項之波動轉換模式太陽能系統, 進一步包括對前述交換模式光電功率轉換控制電路響 應的光電功率條件響應電路。 8. 如申請專利範圍第7項之波動轉換模式太陽能系統, 其中前述交換模式光電功率轉換器功能性控制電路包 括臨限値觸發的交換模式光電功率轉換控制電路。 9. 如申請專利範圍第1項或第6項之波動轉換模式太陽 能系統,進一步包括由前述AC功率輸出提供能量的 ^ AC電力網介面。 10.—種太陽能轉換器,包括: 至少一個具有DC光電輸出的太陽能源; 從前述DC光電輸出接受功率的DC輸入; 對前述DC輸入響應的第一模態光電DC-DC功率 轉換電路; 對前述DC輸入響應的第二模態光電DC-DC功率 轉換電路; -44-201037958 VII. Patent application scope: 1. A wave conversion mode solar energy system, comprising: at least one solar energy source with DC photoelectric output; a DC input receiving power from the aforementioned DC photoelectric output; and a first mode photoelectric response to the aforementioned DC input a DC-DC power conversion circuit; a second modal photoelectric DC-DC power conversion circuit responsive to the aforementioned DC input; 0 an exchange mode photoelectric power converter functional control circuit configured to be in the aforementioned first mode photoelectric DC-DC Selectively switching between the power conversion circuit and the aforementioned second modal photoelectric DC-DC power conversion circuit at least several times; an optoelectronic DC-DC power converter responsive to the aforementioned switched mode photoelectric power converter functional control circuit; Photoelectric DC power output of the optoelectronic DC-DC power converter, 0 DC-AC photoinverter responsive to the aforementioned optoelectronic DC power output; and opto-electronic power output responsive to the aforementioned opto-electronic DC-AC inverter. 2 For example, the wave conversion mode solar energy system of the patent specification @第1 item The aforementioned switching mode photoelectric power converter functional control circuit includes an invalid switching mode photoelectric power conversion control circuit. 3 undulation conversion mode solar energy system of the second aspect of the patent scope, -42- 201037958 wherein the aforementioned first modal photoelectric dc-dc power conversion circuit and the aforementioned second modal photoelectric DC-DC power conversion circuit comprise opposite modal optical DC - DC power conversion circuit. 4. The wave conversion mode solar energy system of claim 3, wherein the aforementioned opposite mode photoelectric DC-DC power conversion circuit comprises at least one photoelectric impedance increasing photoelectric DC-DC power conversion circuit and at least one photoelectric impedance reduction Small photoelectric DC-DC power conversion circuit. 5. The wave switching mode solar energy system of claim 1, wherein the aforementioned switching mode photoelectric power converter functional control circuit comprises a substantially separate impedance converting photoelectric power conversion control circuit. 6. The wave conversion mode solar energy system of claim 1, wherein the exchange mode photoelectric converter functional control circuit comprises an exchange mode photoelectric power converter functional control circuit selected from the group consisting of: photoelectric impedance conversion power Functional control circuit; maximum photoelectric inverter current functional control circuit; maximum photoelectric power point converter functional control circuit; photoelectric inverter operating condition converter functional control circuit; photoelectric load impedance increase converter functional control Circuit and photoelectric load impedance reduction converter functional control circuit; slave maximum photoelectric power point converter functional control circuit; slave photoelectric inverter operating condition converter functional control circuit; slave photoelectric load impedance increase converter functionality Control circuit; -43- 201037958 Slave photoelectric load impedance reduction converter functional control circuit; Slave photoelectric load impedance increase converter functional control circuit and slave photoelectric load impedance reduction functional control circuit; Photoelectric boundary condition converter function Sex Circuit circuit; the subsequent photoelectric element protection converter functional control circuit; photoelectric inverter protection converter functional control circuit; photoelectric inverter adjusted converter functional control circuit; and all the above arrangement and combination . 〇 7. The wave conversion mode solar energy system of claim 1, further comprising a photoelectric power condition response circuit responsive to the exchange mode photoelectric power conversion control circuit. 8. The wave conversion mode solar energy system of claim 7, wherein the exchange mode photoelectric power converter functional control circuit comprises a switching mode photoelectric power conversion control circuit. 9. The wave conversion mode solar energy system of claim 1 or 6 of the patent scope further includes an AC power network interface that provides energy from the aforementioned AC power output. 10. A solar energy converter comprising: at least one solar energy source having a DC photo-electric output; a DC input receiving power from the aforementioned DC photo-electric output; a first modal optical-to-DC power conversion circuit responsive to the DC input; The second modal photoelectric DC-DC power conversion circuit of the aforementioned DC input response; -44- 201037958 交換模式光電功率轉換器功能性控制 置以在前述第一模態光電DC-DC功率轉換 第二模態光電DC-DC功率轉換電路間選擇 少若干次; 對前述交換模式光電功率轉換器功能 回應的光電DC-DC功率轉換器; 連接至前述光電DC-DC功率轉換器的 率輸出。 11. 一種高效的太陽能系統,包括: 至少一個具有DC光電輸出的太陽能涵 從前述DC光電輸出接受功率的DC鞴 至少一個對前述DC輸入響應的基本 的光電DC-DC功率轉換器; 對至少一個前述基本上相同的DC-DC 響應的基本上功率相同的光電轉換器功 路; 連接至前述光電DC-DC功率轉換器的 率輸出; 對前述光電DC功率輸出回應的光電 器;以及 對前述光電DC-AC反相器回應的光霄 出。 12·如申請專利範圍第n項之高效太陽能系翻 基本上功率相同的光電DC-DC功率轉換器 電路,其配 電路和前述 性地轉換至 性控制電路 光電D C功 i入; 上功率相同 功率轉換器 能性控制電 丨光電DC功 DC-AC反相 ί AC功率輸 S,其中前述 包括基本上 -45- 201037958 功率相同的光電阻抗轉換器。 13. 如申請專利範圍第12項之高效太陽能系統,其中前述 基本上功率相同的光電阻抗轉換器包括基本上功率相 同的開關模式光電阻抗轉換器。 14. 如申請專利範圍第13項之高效太陽能系統,其中前述 至少一個太陽能源包括至少一個複合太陽能板,其中 前述DC-DC功率轉換器包括多個串聯的DC-DC功率 轉換器,各個響應地對前述複合太陽能板的一個響 Ο 應,並且其中前述多個串聯的DC-DC功率轉換器各個 獨立地包括: 對前述 DC輸入響應的獨立的第一模態光電 DC-DC功率轉換電路; 對前述 DC輸入響應的獨立的第二模態光電 DC-DC功率轉換電路:以及 獨立的交換模式光電功率轉換器功能性控制電 路,其配置以在前述第一模態光電DC-DC功率轉換電 ® 路和前述第二模態光電DC-DC功率轉換電路間選擇 性地轉換至少若干次》 15. 如申請專利範圍第14項之高效太陽能系統,其中前述 獨立的交換模式光電功率轉換器功能性控制電路包括 靜態開關交換模式光電功率轉換控制電路。 16. 如申請專利範圍第11項或第14項之高效太陽能系 統,其中前述基本上功率相同光電轉換器功能性控制 電路包括選自由以下組成的組的基本上功率相同的光 -46- 201037958 電轉換器功能性控制電路: 至少約97%的高效光電轉換電路, 至少約97.5 %的高效光電轉換電路, 至少約98%的高效光電轉換電路, 至少約98.5%的高效光電轉換電路, 至少約97%高至約99.2%的高效光電轉換電路, 至少約97.5 %高至約99.2%的高效光電轉換電路, 至少約98 %高至約99.2 %的高效光電轉換電路, Ο 至少約98.5%高至約99.2%的高效光電轉換電路, 至少約97%高至約電線傳輸損失高效的光電轉換 電路, 至少約97.5 %高至約電線傳輸損失高效的光電轉 換電路, 至少約98%高至約電線傳輸損失高效的光電轉換 電路,以及 至少約98.5%高至約電線傳輸損失高效的光電轉 0 換電路。 1 7.如申請專利範圍第1 1、1 4或1 6項之高效太陽能系統, 進一步包括由前述AC功率輸出提供功率的AC電力網 介面。 18. —種太陽能功率轉換器,包括: 至少一個具有DC光電輸出的太陽能源; 從前述DC光電輸出接受功率的DC輸入; 至少一個對前述DC輸入響應的基本上功率相同 -47- 201037958 的光電DC-DC功率轉換器; 對至少一個前述基本上相同的DC-DC功率轉換器 響應的基本上功率相同的光電轉換器功能性控制電 路; 連接至前述光電DC-DC功率轉換器的光電DC功 率輸出。 19. Ο ❹ 20 2 1 一種多式太陽能系統,包括: 至少一個具有DC光電輸出的太陽能源; 從前述DC光電輸出接受功率的DC輸入; 至少一個對前述DC輸入響應的多式光電DC-DC 功率轉換器; 對至少一個前述基本上相同的DC-DC功率轉換器 響應的多式光電轉換器功能性控制電路; 連接至前述多式光電DC-DC功率轉換器的光電 DC功率輸出; 對前述光電DC功率輸出回應的光電DC-AC反相 器;以及 對前述光電DC-AC反相器回應的光電AC功率輸 出。 .如申請專利範圍第19項之多式太陽能系統,其中前述 至少一個多式光電DC-DC功率轉換器包括至少一個低 能量存儲光電DC-DC功率轉換器。 .如申請專利範圍第20項之多式太陽能系統,其中前述 至少一個低能量存儲光電DC-DC功率轉換器包括.至少 -48- 201037958 —個部分能量存儲光電DC-DC功率轉換器。 22. 如申請專利範圍第20項之多式太陽能系統,其 至少一個低能量存儲光電DC-DC功率轉換器包 一個基本上恒定能量存儲的光電DC-DC功率轉 23. 如申請專利範圍第20項之多式太陽能系統,其 至少一個低能量存儲光電DC-DC功率轉換器包 一個能量存儲一任務循環比例性光電DC-DC功 器》 〇 24.如申請專利範圍第20項之多式太陽能系統,其 至少一個低能量存儲光電DC-DC功率轉換器包 一個轉換週期感應器能量一任務循環比例 DC-DC功率轉換器。 25.如申請專利範圍第20項之多式太陽能系統,其 至少一個低能量存儲光電DC-DC功率轉換器包 一個週期接週期能量存儲一轉換電壓差比例 DC-DC功率轉換器。 V 26.如申請專利範圍第19項或第20項之多式太 統,其中前述多式轉換器功能性控制電路包括 式光電功率轉換器功能性控制電路。 27.如申請專利範圍第19項之多式太陽能系統,其 至少一個太陽能源包括至少一個複合太陽能板 前述至少一個多式光電DC-DC功率轉換器包括 聯的多式DC-DC功率轉換器,各個對前述複合 板的一個回應,並且進一步包括串聯結合的多 中前述 括至少 換器。 中前述 括至少 率轉換 中前述 括至少 性光電 中前述 括至少 性光電 陽能系 交換模 中前述 ,其中 多個串 太陽能 個光電 -49- Ο Ο 201037958 DC轉換器輸出以產生前述轉換器洗 28·如申請專利範圍第27項之多式太陽 多數串聯多式光電DC-DC功率轉換 板物理地整合。 29·如申請專利範圍第19項之多式太陽 多式轉換器功能性控制電路包括光 功能性控制電路。 3 0·如申請專利範圍第29項之多式太陽 多式轉換器功能性控制電路進一步 轉條件轉換器功能性控制電路。 3 1.如申請專利範圍第19、29或30項二 其中前述多式轉換器功能性控制電 相器輸入光電電壓轉換器輸出電壓 32. 如申請專利範圍第19、29或30項二 其中前述多式轉換器功能性控制電 出電壓一光電輸出電流成比例的光 制電路。 33. 如申請專利範圍第19項之多式太陽 多式轉換器功能性控制電路包括: 最大光電反相器電流轉換器功 從屬最大光電功率點轉換器功 及 最大光電反相器輸入光電電壓 能性控制電路》 i電DC功率輸出。 V能系統’其中前述 器與獨立的太陽能 If能系統,其中前述 電邊界條件轉換器 y能系統,其中前述 包括獨立的光電運 匕多式太陽能系統, 路包括最大光電反 功能性控制電路。 匕多式太陽能系統, 路包括最大光電輸 電轉換器功能性控 I能系統,其中前述 能性控制電流; 能性控制電路;以 轉換器輸出電壓功 -50- 201037958 34. 如申請專利範圍第19項之多式太陽能系統,其中前述 多式轉換器功能性控制電路包括: 最大光電反相器電流轉換器功能性控制電流; 附屬光電電壓增大和光電電壓減小最大光電功率 點轉換器功能性控制電路;以及 最大光電反相器輸入電壓光電轉換器輸出電壓功 能性控制電路。 35. 如申請專利範圍第19項之多式太陽能系統,其中前述 〇 多式轉換器功能性控制電路包括選自由以下組成的組 的多式轉換器功能性控制電路: 交換模式光電功率轉換器功能性控制電路,其配 置以在第一模態光電DC-DC功率轉換電路和第二模態 光電DC-DC功率轉換電路間選擇性地轉換至少若干 次; 光電負荷阻抗增大轉換器功能性控制電路和光電 負荷阻抗減小轉換器功能性控制電路; 〇 光電邊界條件轉換器功能性控制電路; 在後的光電運轉條件轉換器功能性控制電路; 在後的光電元件保護轉換器功能性控制電路; 基本上功率相同的光電轉換器功能性控制電路; 光電無效模式轉換器功能性控制電路; 光電反相器保護轉換器功能性控制電路; 在後的反相器調整的轉換器功能性控制電路; 光電從屬模式轉換器功能性控制電路;以及 -51- 201037958 光電反相器從屬轉換器功~能性控制電路。 36.如申請專利範圍第19、20、27或35項之多式太陽能 系統,進一步包括由前述AC功率輸出提供功率的AC 電力網介面。 37·—種太陽能轉換器,包括: 至少一個具有DC光電輸出的太陽能源; 從前述DC光電輸出接受功率的DC輸入; 至少一個對前述DC輸入響應的多式光電DC-DC 功率轉換器: 對前述至少一個的多式光電DC-DC功率轉換器響 應的多式轉換器功能性控制電路;以及 連接至前述多式光電DC-DC功率轉換器的光電 DC功率輸出。 38.如申請專利範圍第37項之太陽能系統,其中前述光電 DC-AC轉換器包括高壓DC-AC太陽會巨反相器。 3 9.如申請專利範圍第38項之太陽能系統,其中前述光電 AC功率輸出包括三相的光電AC功率輸出。 4 0.如申請專利範圍第1、11或19項之太陽能系統,其中 具有DC光電輸出的前述至少一個太陽能源包括至少 —個太陽能電池。 41.如申請專利範圍第1、11或19項之太陽能系統,其中 具有DC光電輸出的前述至少一個太陽能源包括多個 電連接的太陽能電池。 42·如申請專利範圍第丨、11或19項之太陽能系統,其中 -52- 201037958 具有DC光電輸出的前述至少一個太陽能源包括多個 緊鄰的電連接的太陽能電池。 43.如申請專利範圍第1、11或19項之太陽能系統,其中 具有DC光電輸出的前述至少一個太陽能源包括至少 一個太陽能板。 4 4.如申請專利範圍第1、11或19項之太陽能系統,其中 具有DC光電輸出的前述至少一個太陽能源包括多個 電連接的太陽能板。 Ο 45.如申請專利範圍第1、11或19項之太陽能系統,其中 具有DC光電輸出的前述至少一個太陽能源包括至少 一串電連接的太陽能板。 46. 如申請專利範圍第44項之太陽能系統,其中前述光電 DC-DC功率轉換器包括: 至少一個光電功率中斷開關元件; 至少一個光電功率並聯開關元件;以及 對前述至少一個光電功率中斷開關元件和前述至 ^ 少一個光電功率並聯開關元件響應的光電開關控制電 路。 47. 如申請專利範圍第44項之太陽能系統,其中前述至少 一個功率中斷開關元件包括一對功率串聯半導體開 關,並且其中前述至少一個功率並聯開關元件包括一 對功率並聯半導體開關。 4 8.如申請專利範圍第47項之太陽能系統,其中前述光電 DC-DC功率反相器進一步包括: -53- 201037958 a. 至少一個並聯電容;以及 b. 至少一個串聯電感。 49.如申請專利範圍第47項之太陽能系統,其中前述轉換 器功能性控制電路包括分級開關元件控制電路。 5 0.如申請專利範圍第44項至第49項之太陽能系統,其 中前述控制電路包括光電阻抗轉換任務循環開關控制 電路。 5 1.如申請專利範圍第44項至第50項之太陽能系統,其 中前述至少一個太陽能源包括至少一個複合太陽能 板,其中前述至少一個光電DC-DC功率反相器包括多 個串聯光電DC-DC功率轉換器,各個對前述複合太陽 能板的一個回應,並且進一步包括連接多個光電DC 轉換器輸出的串聯以產生前述轉換器光電DC功率輸 出。 5 2.如申請專利範圍第51項之太陽能系統,其中前述多個 光電DC-DC功率轉換器包括用於光電DC-DC功率轉 換器的多個獨立的板。 5 3 _如申請專利範圍第52項之太陽能系統,其中前述轉換 器功能性控制電路包括用於最大光電功率點轉換器功 能性控制電路的多個獨立的板。 5 4.如申請專利範圍第53項之太陽能系統,其中用於光電 OC-DC功率轉換器的前述多個獨立的板和用於最大功 率點轉換器功能性控制電路的前述多個獨立的板各自 與獨立的太陽能板物理地整合。 -54- 201037958 55. 如申請專利範圍第52項之太陽能系統,其中用於光電 DC-DC功率轉換器的前述多個獨立的板和前述多個太 陽能板包括多個串聯的數串太陽能電路。 56. 如申請專利範圍第55項之太陽能系統,其中前述光電 DC-AC反相器包括高電壓DC-AC太陽能反相器。 5 7.如申請專利範圍第56項之太陽能系統,其中前述光電 AC功率輸出包括三相的光電AC功率輸出。 58.如申請專利範圍第44項之太陽能系統,其中前述多個 D 太陽能板包括多個碲化鎘太陽能板。 5 9.如申請專利範圍第51項或第55項之太陽能系統,其 中前述光電DC-DC功率轉換器包括完整的光電溫度電 壓運轉範圍光電DC-DC功率轉換器。 6 0.如申請專利範圍第11項或第19項之太陽能系統,其 中前述光電DC-DC功率轉換器包括: 對前述DC輸入響應的第一模態光電DC-DC功率 轉換電路;以及 r\ U 對前述DC輸入響應的第二模態光電DC-DC功率 轉換電路;以及 其中’前述轉換器功能性控制電路包括轉換模式 光電功率轉換器功能性控制電路,其配置以在前述第 一模態光電DC-DC功率轉換電路和前述第二模態光電 DC-DC功率轉換電路間選擇性地轉換至少若干次。 6 1.如申請專利範圍第60項之太陽能系統,其中前述轉換 模式光電功率轉換器功能性控制電路包括無效的轉換 -55- 201037958 模式光電功率轉換控制電路。 6 2.如申請專利範圍第61項之太陽能系統,其中前述第一 模態光電DC-DC功率轉換電路和前述第二模態光電 DC _DC功率轉換電路包括相反的模態光電DC-DC功率 轉換電路。 63.如申請專利範圍第62項之太陽能系統,其中前述相反 的模態光電DC-DC功率轉換電路包括至少一個阻抗增 大光電DC-DC功率轉換電路和至少一個阻抗減小光電 〇 DC-DC功率轉換電路。 6 4.如申請專利範圍第60項之太陽能系統,其中前述交換 模式光電功率轉換器功能性控制電路包括基本上分離 的阻抗轉換光電功率轉換控制電路。 65.如申請專利範圍第60項之太陽能系統,其中前述交換 模式光電轉換器功能性控制電路包括選自由以下組成 的組的交換模式光電功率轉換器功能性控制電路: 光電阻抗轉換功率功能性控制電路; 〇 最大光電反相器電流功能性控制電路; 最大光電功率點轉換器功能性控制電路; 光電反相器運轉條件轉換器功能性控制電路; 光電負荷阻抗增大轉換器功能性控制電路和光電 負荷阻抗減小轉換器功能性控制電路; 從屬最大光電功率點轉換器功能性控制電路; 從屬光電反相器運轉條件轉換器功能性控制電 路; -56- 201037958 從屬光電負荷阻抗增大轉換器功能性控制電路; 從屬光電負荷阻抗減小轉換器功能性控制電路; 從屬光電負荷阻抗減小轉換器功能性控制電路和 從屬光電負荷阻抗減小功能性控制電路; 光電邊界條件轉換器功能性控制電路; 在後的光電元件保護轉換器功能性控制電路; 光電反相器保護轉換器功能性控制電路; 光電反相器調整的轉換器功能性控制電路;以及 以上各項的全部排列與組合。 66.如申請專利範圍第65項之太陽能系統,進一步包括對 前述交換模式光電功率轉換控制電路響應的光電功率 條件響應電路。 67·如申請專利範圍第66項之太陽能系統,其中前述交換 模式光電功率轉換器功能性控制電路包括臨限値觸發 的交換模式光電功率轉換控制電路。 6 8.如申請專利範圍第1項或第11項之太陽能系統,其中 前述光電DC-DC功率轉換器包括至少一個多式光電 DC-DC反相器,並且其中前述轉換器功能性控制電路 包括多式轉換器功能性控制電路。 69·如申請專利範圍第68項之太陽能系統,其中前述多式 轉換器功能性控制電路包括光電邊界條件轉換器功能 性控制電路。 7 0.如申請專利範圍第69項之太陽能系統,其中前述多式 轉換器功能性控制電路進一步包括獨立的光電運轉條 -57- 201037958 件轉換器功能性控制電路* 7 1.如申請專利範圍第68、69和70項之太陽能系統,其 中前述多式轉換器功能性控制電路包括最大光電反相 器輸入光電轉換器輸出電壓功能性控制電路。 72.如申請專利範圍第68、69和70項之太陽能系統,其 中前述多式轉換器功能性控制電路包括最大光電輸出 電壓一光電輸出電流成比例的光電轉換器功能性控制 電路。 €) 73.如申請專利範圍第68項之太陽能系統,其中前述多式 轉換器功能性控制電路包括: 最大光電反相器電流轉換器功能性控制電流; 從屬最大光電功率點轉換器功能性控制電路;以 及 最大光電反相器輸入光電電壓轉換器輸出電壓功 能性控制電路。 74. 如申請專利範圍第68項之太陽能系統,其中前述多式 〇 w 轉換器功能性控制電路包括: 最大光電反相器電流轉換器功能性控制電流; 從屬光電電壓增大和光電電壓減小最大光電功率 點轉換器功能性控制電路;以及 最大光電反相器輸入電壓光電轉換器輸出電壓功 能性控制電路。 75. 如申請專利範圍第68項之太陽能系統,其中前述多式 轉換器功能性控制電路包括選自由以下組成的組的多 -58- 201037958 式轉換器功能性控制電路: 交換模式光電功率轉換器功能性控制電路, 置以在第一模態光電DC-DC功率轉換電路和第二 光電DC-DC功率轉換電路間選擇性地轉換至少 次; 光電負荷阻抗增大轉換器功能性控制電路 電負荷阻抗減小轉換器功能性控制電路; 光電邊界條件轉換器功能性控制電路; Ο 在後的光電運轉條件轉換器功能性控制電路 在後的光電元件保護轉換器功能性控制電路 基本上功率相同的光電轉換器功能性控制電丨 光電無效模式轉換器功能性控制電路; 光電反相器保護轉換器功能性控制電路; 在後的反相器調整的轉換器功能性控制電路 光電附屬模式轉換器功能性控制電路;以及 光電反相器附屬轉換器功能性控制電路。 D 7 6.如申請專利範圍第丨、19項之太陽能系統, 步包括太陽能功率轉換比較器,其指示與第二功 量相比的第一功率容量的太陽能參數。 7 7.如申請專利範圍第76項之太陽能系統,其中前述 能轉換比較器包括在前述第一功率容量和前述第 率容量間轉換運轉的轉換運轉開關。 78.如申請專利範圍第77項之太陽能系統,其中前述 功率容量包括傳統的功率轉換容量,並且其中前 其配 模態 若干 和光 進一 率容 太陽 二功 第一 述第 -59- 201037958 二功率容量包括改進的功率轉換容量。 79.如申請專利範圍第76項或第77項之太陽能系統,其 中前述太陽能轉換比較器包括選自由以下組成的組的 太陽能轉換比較器: 太陽能輸出差別比較器; 太陽能功率差別比較器; 太陽能成本差別比較器;以及 太陽能日照利用比較器。 0 8 0.如申請專利範圍第78項之太陽能系統,其中前述改進 的功率轉換容量包括選自由以下組成組的改進的功率 轉換容量: 交換模式光電功率轉換器容量; 基本上能量相同的光電阻抗轉換器容量;以及 多式光電DC-DC功率轉換器容量。 81. 如申請專利範圍第80項之太陽能系統,其中前述光電 DC-DC功率轉換器包括一對功率串聯半導體開關,並 〇 且其中前述至少一個功率並聯開關元件包括一對功率 並聯半導體開關,而且其中前述太陽能轉換比較器包 括並聯開關運轉無效元件。 82. 如申請專利範圍第1或19項之太陽能系統,其中前述 轉換器功能性控制電路包括基本上功率相同的光電轉 換器功能性控制電路。 83. 如申請專利範圍第82項之太陽能系統,其中前述光電 DC-DC功率轉換器包括基本上功率相同的光電阻抗轉 -60- 201037958 換器。 84. Ο 85. Ο 86 如申請專利範圍第8 3項之太陽能系統,其中前述至少 一個太陽能源包括至少一個複合太陽能板,其中前述 DC-DC功率轉換器包括多個串聯的DC-DC功率轉換 器,各個獨立對前述複合太陽能板的一個響應,並且 其中前述多個串聯的DC-DC功率轉換器各個獨立地包 括: 對前述 DC輸入響應的獨立的第一模態光電 DC-DC功率轉換電路; 對前述 DC輸入響應的獨立的第二模態光電 DC-DC功率轉換電路;以及 獨立的交換模式光電功率轉換器功能性控制電 路,其配置以在前述第一模態光電DC-DC功率轉換電 路和前述第二模態光電DC-DC功率轉換電路間選擇性 地轉換至少若干次。 如申請專利範圍第84項之太陽能系統,其中前述獨立 的交換模式光電功率轉換器功能性控制電路包括靜態 開關交換模式光電功率轉換控制電路。 .如申請專利範圍第83項或第84項之太陽能系統,其 中前述基本上功率阻抗光電轉換器功能性控制電路包 括選自由以下組成的組的基本上功率相同的光電轉換 器功能性控制電路: 至少約97%的高效光電轉換電路, 至少約97.5%高效光電轉換電路, -61 - 201037958 至少約98%高效光電轉換電路, 至少約98.5%高效光電轉換電路, 至少約97%高至約99.2%高效光電轉換電路, 至少約97.5%高至約99.2%高效光電轉換電路, 至少約98%高至約99·2%高效光電轉換電路, 至少約98.5%高至約99.2%高效光電轉換電路, 至少約97%高至約電線傳輸損失高效的光電轉換 電路, Ο 至少約97.5%高至約電線傳輸損失高效的光電轉 換電路, 至少約98%高至約電線傳輸損失高效的光電轉換 電路,以及 至少約98.5%高至約電線傳輸損失高效的光電轉 換電路。 8 7.如申請專利範圍第1、11或19項之太陽能系統,進一 步包括對前述至少一個光電DC-DC功率轉換器響應的 ^ 最大光電功率點轉換器功能性控制電路。 8 8.如申請專利範圍第87項之太陽能系統,進一步包括對 前述最大光電功率點轉換器功能性控制電路響應的功 率計算電路。 89.如申請專利範圍第88項之太陽能系統,其中前述功率 計算包括光電倍增合成電路。 9 0.如申請專利範圍第87項之太陽能系統,其中前述轉換 器功能性控制電路進一步包括獨立於前述最大光電功 -62- 201037958 率點轉換器功能性控制電路的獨立的光電轉換器最大 電壓輸出電路。 9 1 ·如申請專利範圍第90項之太陽能系統,其中前述至少 一個太陽能源包括至少一個複合太陽能板,其中前述 光電DC-DC功率轉換器包括用於具有多個光電DC功 率輸出的光電DC-DC功率轉換器的多個獨立的板,其 中用於光電DC-DC功率轉換器的各個前述單獨的板與 單獨的太陽能板物理地整合,並且進一步包括與前述 多個光電DC功率輸出串聯的多個轉換器輸出串聯連 接,並且其中前述轉換器功能性控制電路包括用於最 大功率點轉換器功能性控制電路的多個獨立的板。 92.如申請專利範圍第90項之太陽能系統,其中前述獨立 的光電轉換器最大電壓輸出控制電路包括日照變化適 應性光電轉換器控制電路。 9 3.如申請專利範圍第1、11或19項之太陽能系統,其中 前述轉換器功能性控制電路包括光電任務循環開關控 制電路。 9 4.如申請專利範圍第93項之太陽能系統,其中前述光電 任務循環開關控制電路包括光電阻抗轉換任務循環開 關控制電路。 95.如申請專利範圍第93項之太陽能系統,其中前述光電 任務循環開關控制電路包括光電任務循環開關控制電 路選自由以下組成的組: 臨限値確定的配電光電功率轉換控制電路; -63- 201037958 開關頻率改變配電光電功率轉換控制電路; 脈衝方式配電光電功率轉換控制電路;以及 以上各項的全部排列與組合。 9 6.如申請專利範圍第93項之太陽能系統,其中前述光電 工作迴圈開關控制電路包括: 臨限値確定的模式啓動配電光電功率轉換控制電 路;以及 臨限値確定的模式去活配電光電功率轉換控制電 路。 9 7.如申請專利範圍第93項之太陽能系統,其中前述光電 任務循環開關控制電路包括選自由以下組成的組的光 電任務循環開關控制電路: 太陽能源開路電路冷電壓決定的配電光電功率轉 換控制電路: 太陽能源最大功率點熱電壓決定的配電光電功率 轉換控制電路; 〇 w 最大電壓決定的配電光電功率轉換控制電路; 反相器最大電流決定的配電光電功率轉換控制電 路;以及 以上各項的全部排列與組合。 9 8.如申請專利範圍第93項之太陽能系統,其中前述光電 任務循環開關控制電路包括最大光電功率點轉換器控 制電路。 9 9.如申請專利範圍第98項之太陽能系統,其中前述光電 -64- 201037958 工作開關控制電路進一步包括光電反相器最大電壓決 定的任務循環開關控制電路。 100.如申請專利範圍第98項或第99項之太陽能系統,其 中前述光電任務循環開關控制電路進一步包括最大光 電電壓決定的任務循環開關控制電路。 10 1.如申請專利範圍第98、99或100項之太陽能系統,其 中前述光電任務循環開關控制電路進一步包括光電反 相器最大電流決定的任務循環開關控制電路。 © 102.如申請專利範圍第98、99、100或101項之太陽能系 統,其中前述光電任務循環開關控制電路進一步包括 軟轉換光電功率轉換控制電路。 103. 如申請專利範圔第1〇2項之太陽能系統,其中前述軟 轉換光電功率轉換控制電路包括最大光電輸出電壓一 光電輸出電流比例性任務循環開關控制電路。 104. 如申請專利範圍第98、99、100、101或103項之太陽 能系統,其中前述光電任務循環開關控制電路進一步 ® 包括暫態相對模式光電任務循環開關控制電路。 1〇5.—種太陽能產生的波動方法,包括以下步驟: 從至少一個太陽能源產生DC光電輸出; 建立前述DC光電輸出作爲光電DC-DC功率轉換 器的DC光電輸入; 提供光電DC-DC功率轉換的第一模態; 提供光電DC-DC功率轉換的第二模態; 在前述光電DC-DC功率轉換的第一模態和前述光 -65- 201037958 電DC-DC功率轉換的第二模態間交互轉換以完成前述 光電DC-DC轉換器的控制運轉; 利用光電DC-DC功率轉換的前述第一或前述第二 模態的至少一個將前述DC光電輸入轉換爲轉換的DC 光電輸出; 建立前述轉換的DC光電輸出作爲DC-AC反相器 的轉換的DC光電輸入;以及 將前述轉換的DC光電輸入轉換爲轉換的AC光電 〇 輸出。 106•如申請專利範圍第105項之太陽能產生的波動方法, 其中前述在前述光電DC-DC功率轉換的第一模態和前 述光電DC-DC功率轉換的第二模態間交互轉換的步驟 包括使光電DC-DC功率轉換的模態無效的步驟。 107. 如申請專利範圍第106項之太陽能產生的波動方法, 其中前述提供光電DC-DC功率轉換的第一模態和提供 光電DC-DC功率轉換的第二模態的步驟包括提供光電 r\ W DC-DC功率轉換的相反的模態。 108. 如申請專利範圍第107項之太陽能產生的波動方法, 其中前述提供光電DC-DC功率轉換的相反的模態的步 驟包括以下步驟: 提供至少一個光電DC-DC功率轉換的光電阻抗增 大模態;以及 提供至少一個光電DC-DC功率轉換的光電阻抗減 小模態。 -66- 201037958 1〇9·如申請專利範圍第i〇5項之 其中前述提供光電DC-DC功 光電DC-DC功率轉換的第二 DC-DC功率轉換的分離的模 1 10.如申請專利範圍第105項之 其中前述在前述光電DC-DC 述光電DC-DC功率轉換的第 包括在光電DC-DC功率轉換 〇 驟,選自由以下組成的組: 光電DC-DC功率轉換的 光電 DC-DC功率轉換| 態; 光電DC-DC功率轉換的 光電DC-DC功率轉換 態; 組合的光電DC-DC功率 ® 模態和光電DC-DC功率轉 態; 光電 DC-DC功率轉換 態; 光電DC-DC功率轉換的 模態; 光電DC-DC功率轉換的 態; 太陽能產生的波動方法, 率轉換的第一模態和提供 模態的步驟包括提供光電 態的步驟。 太陽能產生的波動方法, 功率轉換的第一模態和前 二模態間交互轉換的步驟 的模態間的交互轉換的步 光電阻抗轉換模態; 的最大光電反相器電流模 最大光電功率點模態; 的光電反相器運轉條件模 轉換的光電負載阻抗增大 換的光電負載阻抗較小模 的附屬最大光電功率點模 附屬光電反相器運轉條件 從屬光電負載阻抗增大模 -67- 201037958 光電DC-DC功率轉換的從屬光電負載阻抗減小模 態; 組合的從屬光電DC-DC功率轉換的光電負載阻抗 增大模態和從屬光電DC-DC功率轉換的光電負載阻抗 較小模態; 光電DC-DC功率轉換的光電邊界條件模態; 光電DC-DC功率轉換的在後的光電元件保護模 態; 〇 光電DC-DC功率轉換的光電反相器保護模態; 光電DC-DC功率轉換的光電反相器調整的模態; 以及 以上各項的排列與組合。 ηι.如申請專利範圍第105項之太陽能產生的波動方法, 進一步包括響應至少一個光電功率條件的轉換模態的 步驟。 112. 如申請專利範圍第ηι項之太陽能產生的波動方法, Ο w 其中前述響應至少一個光電功率條件的轉換模態的步 驟包括光電DC-DC功率轉換的臨限値觸發的步驟。 113. 如申請專利範圍第105項或第11〇項之太陽能產生的 波動方法,進一步包括將述轉換的AC光電輸出與AC 電力網連接的步驟。 114· 一種太陽能轉換的方法,包括以下步驟: 從至少一個太陽能源產生DC光電輸出; 建立前述DC光電輸出作爲光電DC-DC功率轉換 -68- 201037958 器的DC光電輸入; 提供光電DC-DC功率轉換的第一模態; 提供光電D C · D C功率轉換的第二模態; 在前述光電DC-DC功率轉換的第一模態和前述光 電DC-DC功率轉換的第二模態間交互轉換以完成前述 光電DC-DC轉換器的控制運轉; 利用光電DC-DC功率轉換的前述第一或前述第二 模態的至少一個將前述DC光電輸入轉換爲轉換的DC 〇 光電輸出。 11 5. —種高效的產生太陽能的方法,包括以下步驟: 從至少一個太陽能源產生DC光電輸出; 建立前述DC光電輸出作爲光電DC-DC功率轉換 器的DC光電輸入; 以基本上相同的功率將前述DC光電輸入轉換爲 轉換的DC光電輸出; 以基本上相同的功率控制前述光電DC-DC轉換器 〇 的運轉,同時其運作將前述DC光電輸入轉換爲前述 DC光電輸出; 建立前述轉換的DC光電輸出作爲DC_AC反相器 的轉換的DC光電輸入;以及 將前述轉換的DC光電輸入轉換爲轉換的AC光電 輸出。 116.如申請專利範圍第115項之高效的產生太陽能的方 法,其中前述以基本上相同的功率將前述DC光電輸入 -69- 201037958 轉換爲轉換的DC光電輸出的步驟包括以基本上相同 的功率轉換光電電路阻抗的步驟。 117. 如申請專利範圍第116項之高效的產生太陽能的方 法,其中前述基本上以相同的功率轉換光電電路阻抗 的步驟包括開關模式轉換光電電路阻抗的步驟。 118. 如申請專利範圍第117項之高效的產生太陽能的方 法,其中前述開關模式轉換光電電路阻抗的步驟包括 在光電DC-DC功率轉換和光電DC-DC功率轉換間交 〇 互轉換的步驟。 119. 如申請專利範圍第118項之高效的產生太陽能的方 法’其中前述基本上以相同的功率轉換前述DC光電輸 入的步驟包括靜態開關轉換前述DC光電輸入的步驟。 120. 如申請專利範圍第116項或第118項之高效的產生太 陽能的方法,其中前述以基本上相同的功率轉換包括 以基本上1相同的功率轉換的步驟,選自由以下組成 的組: Q 具有至少約97%效率的太陽能轉換, 具有至少約97.5 %效率的太陽能轉換, 具有至少約98%效率的太陽能轉換, 具有至少約98.5%效率的太陽能轉換, 具有至少約97%高至約99.2%效率的太陽能轉換, 具有至少約97.5%高至約99.2%效率的太陽能轉 換, 具有至少約98 %高至約99.2%效率的太陽能轉換, -70- 201037958 具有至少約98.5%高至約99.2%效率的太陽能轉 換, 具有至少約97%高至約電線傳輸損失的效率的太 陽能轉換, 具有至少約97.5 %高至約電線傳輸損失的效率的 太陽能轉換, 具有至少約98%高至約電線傳輸損失的效率的太 陽能轉換,以及 Ο 12 1 122. ❹ 具有至少約98.5%高至約電線傳輸損失的效率的 太陽能轉換。 如申請專利範圍第115、118或120項之高效的產生太 陽能的方法,進一步包括將前述轉換的AC光電輸出與 AC電力網連接的步驟。 一種太陽能轉換的方法,包括以下步驟: 從至少一個太陽能源產生DC光電輸出; 建立前述DC光電輸出作爲光電DC-DC功率轉換 器的DC光電輸入; 以基本上相同的功率將前述DC光電輸入轉換爲 轉換的DC光電輸出; 以基本上相同的功率控制前述光電DC-DC轉換器 的運轉,同時其運作將前述DC光電輸入轉換爲前述 DC光電輸出。 一種產生太陽能的多式方法’包括以下步驟: 從至少一個太陽能源產生DC光電輸出; -71- 123 201037958 建立前述DC光電輸出作爲光電DC_DC功率轉換 器的DC光電輸入; 將前述DC光電輸入多式轉換爲轉換的DC光電輸 出; 多式控制前述光電DC-DC轉換器的運轉,同時其 運作將前述DC光電輸入轉換爲前述轉換的DC光電輸 出; 建立前述轉換的DC光電輸出作爲DC-AC反相器 〇 的轉換的DC光電輸入;以及 轉換前述轉換的DC光電輸入爲轉換的AC光電輸 出。 124. 如申請專利範圍第123項之產生太陽能的多式方法, 其中前述將前述DC光電輸入多式轉換爲轉換的DC光 電輸出的步驟包括低能量存儲將前述DC光電輸入轉 換爲轉換的DC光電輸出的步驟。 125. 如申請專利範圍第124項之產生太陽能的多式方法, Ο 其中前述低能量存儲將前述DC光電輸入轉換爲轉換 的DC光電輸出的步驟包括在將前述DC光電輸入轉換 爲轉換的DC光電輸出的過程中的僅部分地存儲能量 的步驟。 126. 如申請專利範圍第124項之產生太陽能的多式方法, 其中前述低能量存儲將前述DC光電輸入轉換爲轉換 的DC光電輸出的步驟包括當統一轉換前述DC光電輸 入爲轉換的DC光電輸出時的提供基本上恒定的能量 -72- 201037958 存儲的步驟。 127·如申請專利範圍第124項之產生太陽能的多式方法, 其中前述低能量存儲將前述DC光電輸入轉換爲轉換 的DC光電輸出的步驟包括在轉換前述DC光電輸入爲 轉換的DC光電輸出中使用的與工作迴圈成比例的存 儲能量的步驟。 128.如申請專利範圍第124項之產生太陽能的多式方法, 其中前述低能量存儲將前述DC光電輸入轉換爲轉換 〇 的DC光電輸出的步驟包括在轉換前述DC光電輸入爲 轉換的DC光電輸出中使用的與開關工作迴圈成比例 的感應器中的存儲能量的步驟。 129·如申請專利範圍第I24項之產生太陽能的多式方法, 其中前述低能量存儲將前述DC光電輸入轉換爲轉換 的DC光電輸出的步驟包括存儲由前述轉換前述DC光 電輸入至轉換的DC光電輸出的步驟產生的與電壓差 成比例的任務循環能量的步驟。 Ο 130.如申請專利範圍第123項或第124項之產生太陽能的 多式方法,其中將前述DC光電輸入多式轉換爲轉換的 DC光電輸出的步驟包括在光電DC-DC功率轉換和光 電DC-DC功率轉換間交互轉換的步驟》 13 1.如申請專利範圍第123項之產生太陽能的多式方法, 其中前述從至少一個太陽能源產生DC光電輸出的步 驟包括從多個太陽能板和多個轉換的DC光電輸出產 生多個DC光電輸出的步驟,並且進一步包括串聯前述 -73- 201037958 轉換的DC光電輸出以產生至前述光電DC-AC反相g 的前述轉換的DC光電輸入的步驟。 132. 如申請專利範圍第131項之產生太陽能的多式方法, 其中將前述DC光電輸入多式轉換爲轉換的DC光電輸 出的前述步驟包括在至少一個太陽能板上轉換前述 DC光電輸入爲轉換的DC光電輸出的步驟。 133. 如申請專利範圍第123項之產生太陽能的多式方法, 其中前述多式控制前述光電DC-DC轉換器的控制運轉 〇 的步驟包括控制前述光電DC-DC轉換器的光電邊界條 件的步驟。 134. 如申請專利範圍第133項之產生太陽能的多式方法, 其中前述多式控制前述光電DC-DC轉換器的控制運轉 的步驟進一步包括除了控制前述光電DC-DC轉換器的 邊界條件的前述步驟以外的獨立地控制前述光電 DC-DC轉換器的光電運轉條件的步驟。 135. 如申請專利範圍第123、133或143項之產生太陽能的 Ο 多式方法,其中前述多式控制前述光電DC-DC轉換器 的控制運轉的步驟包括由前述光電DC-DC轉換器控制 最大光電反相器輸入電壓輸出的步驟。 136. 如申請專利範圍第123、133或143項之產生太陽能的 多式方法,其中前述多式控制前述光電DC-DC轉換器 的控制運轉的步驟包括在轉換前述DC光電輸入爲轉 換的DC光電輸出的過程中至少若干次次控制與光電 輸出電流成比例的最大光電輸出電壓的步驟。 -74- 201037958 1 3 7 .如 其 的 器 電 〇 器 1 3 8 ·如 其 的 器 增 ❹ 反 1 3 9 ·如 其 的 功 申請專利範圍第123項之產生太陽能的多式方法’ 中前述多式控制前述光電DC-DC轉換器的控制運轉 步驟包括以下步驟: 控制來自前述光電DC-DC轉換器的最大光電反相 輸入; 從屬地控制透過前述光電DC-DC轉換器的最大光 功率點運轉;以及 控制來此前述光電DC-DC轉換器的最大光電反相 輸入電壓。 申請專利範圍第123項之產生太陽能的多式方法, 中前述多式控制前述光電DC-DC轉換器的控制運轉 步驟包括以下步驟: 控制來自前述光電DC-DC轉換器的最大光電反相 輸入; 透過前述光電DC-DC轉換器附屬地控制光電阻抗 大和光電阻抗減小;以及 透過前述光電DC-DC轉換器的運轉控制最大光電 相器輸入電壓。 申請專利範圍第123項之產生太陽能的多式方法, 中前述多式控制前述光電DC_DC轉換器的控制運轉 步驟包括步驟,選自由以下步驟組成的組: 在光電DC-DC功率轉換的第一模態和光電DC-DC 率轉換的第二模態間轉換至少若干次; 光電負載阻抗增大和光電負載阻抗減小; -75- 201037958 控制光電轉換邊界條件; 透過前述光電DC-DC轉換器的控制來控制在後的 光電運轉條件; 透過前述光電DC-DC轉換器的控制來保護在後的 光電元件; 前述光電DC-DC轉換器的基本上功率相同的控制 運轉; 基本上功率相同的光電轉換器功能性控制電路; 透過前述光電DC-DC轉換器的控制來使光電轉換 模式無效; 透過前述光電DC-DC轉換器的控制來保護光電反 相器; 控制前述光電DC-DC轉換器以用光電反相器的特 徵來調整; 透過前述光電DC-DC轉換器從屬地控制光電轉換 模態;以及 透過前述光電DC-DC轉換器光電反相器從屬地控 制光電轉換模態。 WO.如申請專利範圍第123、131或139項之產生太陽能的 高效的方法’進一步包括用AC電力網連接前述轉換的 AC光電輸出的步驟。 141·—種太陽能轉換的方法,包括以下步驟: 從至少一個太陽能源產生DC光電輸出; 建立前述DC光電輸出作爲光電dc-DC轉換器的 -76- 201037958 DC光電輸入; 將前述DC光電輸入多式轉換爲轉換的DC光電輸 出;以及 多式控制前述光電DC-DC轉換器的運轉,同時其 作用將前述DC光電輸入轉換爲前述轉換的DC光電輸 出。 142. 如申請專利範圍第105、115或123項之產生太陽能的 方法,其中前述從至少一個太陽能源產生DC光電輸出 © 的步驟包括從至少一個太陽能電池產生DC光電輸出 的步驟。 143. 如申請專利範圍第105、115或123項之產生太陽能的 方法,其中前述從至少一個太陽能源產生DC光電輸出 的步驟包括從多個電連接的太陽能電池產生DC光電 輸出的步驟。 144. 如申請專利範圍第105、115或123項之產生太陽能的 方法,其中前述從至少一個太陽能源產生DC光電輸出 ® 的步驟包括從多個連接的電連接的太陽能電池產生 DC光電輸出的步驟。 145. 如申請專利範圍第105、115或123項之產生太陽能的 方法,其中前述從至少一個太陽能源產生DC光電輸出 的步驟包括從至少一個太陽能板產生DC光電輸出的 步驟。 146. 如申請專利範圍第105、115或123項之產生太陽能的 方法,其中前述從至少一個太陽能源產生DC光電輸出 -77- 201037958 的步驟包括將來自多個電連接的太陽能板的輸出結合 的步驟。 147. 如申請專利範圍第105、115或123項之產生太陽能的 方法,其中前述從至少一個太陽能源產生DC光電輸出 的步驟包括從至少一串電連接的太陽能板產生DC光 電輸出的步驟。 148. 如申請專利範圍第146項之產生太陽能的方法,其中 前述將前述DC光電輸入轉換爲轉換的DC光電輸出的 〇 步驟包括以下步驟: 連續地中斷前述光電功率的傳送;以及 並聯前述光電功率的傳送。 149. 如申請專利範圍第146項之產生太陽能的方法,其中 前述連續地中斷前述光電功率的傳送和並聯前述光電 功率的傳送的步驟能夠各自在至少兩個分離的半導體 開關位置發生。 15〇·如申請專利範圍第149項之產生太陽能的方法,其中 〇 V 前述將前述DC光電輸入轉換至轉換的DC光電輸出的 步驟包括以下步驟: 在前述轉換步驟期間電容地存儲並聯能量至少若 干次;以及 在前述轉換步驟期間誘導地存儲串聯能量至少若 干次。 151.如申請專利範圍第丨49項之產生太陽能的方法,其中 前述控制前述光電DC-DC轉換器的運轉的步驟包括在 -78- 201037958 前述光電DC-DC反相器內分級地I 件。 U2.如申請專利範圍第151項之產生太 前述控制前述光電DC-DC轉換器的: 務循環轉換光電阻抗的步驟。 153. 如申請專利範圍第146至21.6項 法,其中前述轉換前述DC光電輸出 個光電DC-DC功率反相器的步驟, 陽能板的一個響應。 154. 如申請專利範圍第153項之產生太 前述轉換前述DC光電輸出的步驟 前述複合太陽能板轉換DC光電輸 的步驟。 155. 如申請專利範圍第154項之產生太 前述從各個前述複合太陽能板轉換 獨的用於板的步驟包括從各個前述 DC光電輸入的用於最大光電功率點 156. 如申請專利範圍第155項之產生太 前述轉換前述DC光電輸入的步驟 陽能板物理地整體地轉換前述DC Μ 15 7.如申請專利範圍第154項之產生太 步包括串聯地連接多個光電DC-DC 合太陽能板串聯地連接輸出的步驟 158.如申請專利範圍第157項之產生太 換半導體開關元 陽能的方法,其中 轉的步驟包括任 之產生太陽能的方 的步驟包括串聯多 各自對前述複合太 陽能的方法,其中 進一步包括從各自 入的單獨的用於板 陽能的方法,其中 DC光電輸入的單 複合太陽能板轉換 的單獨的步驟。 陽能的方法,其中 包括對於單獨的太 ί電輸出的步驟。 陽能的方法,進一 功率轉換器以從複 〇 陽能的方法,其中 -79- 201037958 前述將前述轉換的DC光電輸入轉換爲轉換的AC光電 輸出的步驟包括高電壓轉換前述轉換的DC光電輸入 爲高電壓轉換的AC光電輸出》 159. 160. ❹ 161. 162. ❹ 163. 如申請專利範圍第158項之產生太陽能的方法,其中 前述將前述轉換的DC光電輸入轉換爲轉換的AC光電 輸出的步驟包括高電壓轉換前述轉換的DC光電輸入 爲二相高電壓轉換的AC光電輸出。 如申請專利範圍第146項之產生太陽能的方法,其中 前述從多個電連接的太陽能板連接輸出的步驟包括從 多個碲化鎘太陽能板合倂輸出的步驟。 如申請專利範圍第146至21.6項之產生太陽能的方 法,其中前述轉換前述DC光電輸出的步驟包括並聯多 個光電DC-DC功率反相器的步驟,各自對前述複合太 陽能板的一個響應。 如申請專利範圍第153或157項之產生太陽能的方 法,其中前述轉換前述DC光電輸出的步驟包括完整光 電溫度電壓運轉範圍轉換前述DC光電輸入的步驟。 如申請專利範圍第115或123項之產生太陽能的方 法,其中前述轉換前述DC光電輸出的步驟包括在另外 在前述光電DC-DC功率轉換的第一模態和前述光電 DC-DC功率轉換的第二模態間轉換的步驟。 如申請專利範圍第163項之產生太陽能的方法,其中 前述轉換前述DC光電輸入的步驟包括使光電DC-DC 功率轉換的模態無效的步驟。 -80- 164 201037958 165.如申請專利範圍第164項之產生太陽能的方法,其中 前述轉換前述DC光電輸入的步驟包括提供光電 DC-DC功率轉換的相反的模態的步驟。 16 6.如申請專利範圍第165項之產生太陽能的方法,其中 前述提供光電DC-DC功率轉換的相反的模態的步驟包 括以下步驟: 提供至少一個光電DC-DC功率轉換的光電阻抗增 大模態;以及 〇 提供至少一個光電DC-DC功率轉換的光電阻抗減 小模態。 167. 如申請專利範圍第163項之產生太陽能的方法,其中 前述光電 DC-DC功率轉換的第一模態和前述光電 DC-DC功率轉換的第二模態包括提供光電DC-DC功率 轉換的分離的模態的步驟。 168. 如申請專利範圍第163項之產生太陽能的方法,其中 前述在前述光電DC-DC功率轉換的第一模態和前述光 〇 電DC-DC功率轉換的第二模態間交互轉換的步驟包括 在光電DC-DC功率轉換的模態間交互轉換的步驟,選 自由以下組成的組: 光電DC-DC功率轉換的光電阻抗轉換模態; 光電DC-DC功率轉換的最大光電反相器電流模 態; 光電DC-DC功率轉換的最大光電功率點模態; 光電DC-DC功率轉換的光電反相器運轉條件模 -81 - 201037958 態; 模態 態; 態; 模態 Ο 態; 態; 增大 較小 〇 態; 以及 1 6 9 .如申 步包 組合的光電DC-DC功率轉換的光電負載阻抗增大 和光電DC-DC功率轉換的光電負載阻抗較小模 光電DC-DC功率轉換的從屬最大光電功率點模 光電DC-DC功率轉換的從屬光電反相器運轉條件 光電DC-DC功率轉換的從屬光電負載阻抗增大模 光電DC-DC功率轉換的從屬光電負載阻抗減小模 組合的從屬光電DC-DC功率轉換的光電負載阻抗 模態和從屬光電DC-DC功率轉換的光電負載阻抗 模態; 光電DC-DC功率轉換的光電邊界條件模態; 光電DC-DC功率轉換的在後的光電元件保護模 光電DC-DC功率轉換的光電反相器保護模態; 光電DC-DC功率轉換的光電反相器調整的模態; 以上各項的全部排列與組合。 請專利範圍第168項之產生太陽能的方法,進一 括對至少一個光電功率條件的轉換模態響應的步 -82- 201037958 驟。 170. 如申請專利範圍第169項之產生太陽能的方法,其中 前述對至少一個光電功率條件的轉換模態回應的步驟 包括光電DC-DC功率轉換的臨限値觸發的步驟》 171. 如申請專利範圍第105項或第115項之產生太陽能的 方法,其中進一步包括以下步驟: 將前述DC光電輸入多式轉換爲轉換的DC光電輸 出;以及 Ο 多式控制前述光電DC-DC轉換器的運轉,同時其 運作將前述DC光電輸入轉換爲前述轉換的DC光電輸 出。 172. 如申請專利範圍第171項之產生太陽能的方法,其中 前述多式控制前述光電DC-DC轉換器的控制運轉的步 驟包括控制前述光電DC-DC轉換器的光電邊界條件的 步驟。 173. 如申請專利範圍第172項之產生太陽能的方法,其中 〇 前述多式控制前述光電DC-DC轉換器的控制運轉的步 驟進一步包括除了控制前述光電DC-DC轉換器的邊界 條件的前述步驟以外的獨立地控制前述光電DC-DC轉 換器的光電運轉條件的步驟。 174. 如申請專利範圍第171、172或173項之產生太陽能的 方法,其中前述多式控制前述光電DC-DC轉換器的控 制運轉的步驟包括由前述光電DC-DC轉換器控制最大 %電反相器輸入電壓輸出的步驟》 -83- 201037958 175. 如申請專利範圍第171、172或173項之產生太陽能的 方法,其中前述多式控制前述光電DC-DC轉換器的控 制運轉的步驟包括在轉換前述DC光電輸入爲轉換的 DC光電輸出的過程中至少若干次次控制與光電輸出 電流成比例的最大光電輸出電壓的步驟。 176. 如申請專利範圍第171項之產生太陽能的方法,其中 前述多式控制前述光電DC-DC轉換器的控制運轉的步 驟包括以下步驟: 控制來自前述光電DC-DC轉換器的最大光電反相 器輸入; 從屬地控制透過前述光電DC-DC轉換器的最大光 電功率點運轉;以及 控制來此前述光電DC-DC轉換器的最大光電反相 器輸入電壓。 177·如申請專利範圍第171項之產生太陽能的方法,其中 前述多式控制前述光電DC-DC轉換器的控制運轉的步 驟包括以下步驟: 控制來自前述光電DC-DC轉換器的最大光電反相 器輸入; 透過前述光電DC-DC轉換器附屬地控制光電阻抗 增大和光電阻抗減小;以及 透過前述光電DC-DC轉換器的運轉控制最大光電 反相器輸入電壓。 178·如申請專利範圍第171項之產生太陽能的方法,其中 -84- 201037958 前述多式控制前述光電DC-DC轉換器的控制運轉的步 驟包括步驟,選自由以下步驟組成的組: 在光電DC-DC功率轉換的第一模態和光電DC-DC 功率轉換的第二模態間轉換至少若干次; 光電負載阻抗增大和光電負載阻抗減小; 控制光電轉換邊界條件; 透過前述光電DC-DC轉換器的控制來控制在後的 光電運轉條件; 透過前述光電DC-DC轉換器的控制來保護在後的 光電元件; 前述光電DC-DC轉換器的基本上功率相同的控制 運轉; 基本上功率相同的光電轉換器功能性控制電路; 透過前述光電DC-DC轉換器的控制來使光電轉換 模式無效; 透過前述光電DC-DC轉換器的控制來保護光電反 相器; 控制前述光電DC-DC轉換器以用光電反相器的特 徵來調整; 透過前述光電DC-DC轉換器附靥地控制光電轉換 模態;以及 透過前述光電DC-DC轉換器光電反相器附靥地控 制光電轉換模態。 179·如申請專利範圍第1〇5、115或123項之產生太陽能的 -85- 201037958 方法,進一步包括在第一功率電容間與第二功率電容 相比較間的比較太陽能功率轉換。 180·如申請專利範圍第179項之產生太陽能的方法,其中 前述在第一功率電容間與第二功率電容相比較間的比 較太陽能功率轉換的步驟包括在前述第一功率容器和 前述第二功率容器間轉換的步驟。 181. 如申請專利範圍第180項之產生太陽能的方法,其中 前述在前述第一功率容器和前述第二功率容器間轉換 的步驟包括在傳統的功率轉換前述DC光電輸入和改 進的功率轉換前述DC光電輸入的步驟間轉換的步驟。 182. 如申請專利範圍第179或180項之產生太陽能的方 法,其中前述比較太陽能轉換的步驟包括選自由以下 組成的組的步驟: 比較太陽能輸出差別; 比較太陽能功率差別; 比較太陽能成本差別;以及 比較太陽能日照利用。 、 183. 如申請專利範圍第181項之產生太陽能的方法,其中 前述改進的功率轉換前述DC功率輸入的步驟包括選 自由以下組成的組的步驟: 在光電DC-DC功率轉換和光電DC-DC功率轉換間 交互轉換; 以基本上相同的功率將前述DC光電輸入轉換爲 轉換的DC光電輸出;以及 -86- 201037958 將前述DC光電輸入多式轉換爲轉換的DC光電輸 出。 184. 如申請專利範圍第183項之產生太陽能的方法,其中 前述改進的功率轉換前述DC光電輸入的步驟包括以 下步驟: 串聯地中斷前述光電功率透過電路的傳送以便其 能夠各自在至少兩個分離的半導體開關位置發生;以 及 η 並聯前述光電功率透過電路的傳送以便其能夠各 自在至少兩個分離的半導體開關位置發生。 185. 如申請專利範圍第1〇5或123項之產生太陽能的方 法’其中前述轉換前述DC光電輸入爲轉換的DC光電 輸出的步驟包括以基本上相同的功率將前述DC光電 輸入轉換爲轉換的DC光電輸出。 186. 如申請專利範圍第185項之產生太陽能的方法,其中 前述以基本上相同的功率將前述DC光電輸入轉換爲 轉換的DC光電輸出的步驟包括以基本上相同的功率 轉換光電電路阻抗的步驟。 187. 如申請專利範圍第186項之產生太陽能的方法,其中 前述轉換前述DC光電輸入至轉換的DC光電輸出的步 驟包括在光電DC-DC功率轉換和光電DC-DC功率轉 換間轉換的另外的步驟。 188. 如申請專利範圍第187項之產生太陽能的方法,其中 前述基本上以相同的功率轉換前述DC光電輸入的步 -87- 201037958 驟包括靜態開關轉換前述DC光電輸入的步驟。 189. 如申請專利範圍第186項或第187項之產生太陽能的 方法,其中前述以基本上相同的功率轉換包括以基本 上相同的功率轉換的步驟,選自由以下組成的組: 具有至少約97 %效率的太陽能轉換, 具有至少約97.5 %效率的太陽能轉換, 具有至少約98%效率的太陽能轉換, 具有至少約98.5 %效率的太陽能轉換, 〇 具有至少約97%高至約99.2%效率的太陽能轉換, 具有至少約97.5%高至約99.2%效率的太陽能轉 換, 具有至少約98%高至約99.2%效率的太陽能轉換, 具有至少約98.5%高至約99.2%效率的太陽能轉 換, 具有至少約97%高至約電線傳輸損失的效率的太 陽能轉換, 0 具有至少約97.5%高至約電線傳輸損失的效率的 太陽能轉換, 具有至少約98%高至約電線傳輸損失的效率的太 陽能轉換,以及 具有至少約98.5%高至約電線傳輸損失的效率的 太陽能轉換。 190. 如申請專利範圍第105、115或123項之產生太陽能的 方法,其中前述轉換前述DC光電輸入爲轉換的DC光 -88- 201037958 191 . Ο 192. 193. ❹ 1 94 電輸出的步驟包括最大光電功率點轉換DC光電輸入 爲轉換的DC光電輸出。 如申請專利範圍第190項之產生太陽能的方法,其中 前述最大光電功率點轉換DC光電輸入爲轉換的DC光 電輸出的步驟包括以下步驟: 計算光電功率參數;以及 在完成前述最大光電功率點轉換DC光電輸入爲 轉換的DC光電輸出的步驟中,對前述光電功率參數回 應。 如申請專利範圍第191項之產生太陽能的方法,其中 前述計算光電功率參數的步驟包括計算光電倍增功率 參數的步驟。 如申請專利範圍第190項之產生太陽能的方法,其中 前述最大光電功率點轉換DC光電輸入爲轉換的DC光 電輸出的步驟包括引起轉換的DC光電輸出電壓的步 驟,並且其中前述最大光電功率點轉換DC光電輸入爲 轉換的DC光電輸出的步驟包括以獨立於前述轉換的 DC光電輸出電壓的方式、獨立地最大光電功率點轉換 DC光電輸入爲轉換的DC光電輸出。 如申請專利範圍第193項之產生太陽能的方法,其中 前述從至少一個太陽能源產生DC光電輸出的步驟包 括將來自多個電連接的太陽能板的輸出結合的步驟, 包括轉換前述DC光電輸入的前述步驟和其中的前述 步驟,包括前述對於單獨的太陽能板物理地整體地轉 -89- 201037958 換前述DC光電輸出的步驟》 195. 如申請專利範圍第193項之產生太陽能的方法,其中 前述將DC光電輸入轉換爲轉換的DC光電輸出的步驟 包栝日照可變適應地將前述DC光電輸入轉換爲前述 轉換的DC光電輸出。 196. 如申請專利範圍第1〇5、1 15或123項之產生太陽能的 方法,其中前述轉換前述DC光電輸入的步驟包括任務 循環配電光電DC-DC轉換器的步驟。 / 197.如申請專利範圍第196項之產生太陽能的方法,其中 前述任務循環配電光電DC-DC轉換器的步驟包括阻抗 轉換任務循環配電光電DC-DC轉換器的步驟。 198. 如申請專利範圍第197項之產生太陽能的方法,其中 前述阻抗轉換任務循環配電光電DC-DC轉換器的步驟 包括選自由以下組成的組的步驟: 臨限値確定的任務循環配電光電DC-DC轉換器; > 頻率改變的配電光電DC-DC轉換器; 脈衝方式配電光電DC-DC轉換器;以及 以上各項的全部排列與組合。 199. 如申請專利範圍第196項之產生太陽能的方法,其中 前述任務循環配電光電DC-DC轉換器的步驟包括以下 步驟: 臨限値確定的啓動光電DC-DC轉換器的配電模 式;以及 臨限値確定的去活光電DC-DC轉換器的配電模 -90- 201037958 式。 200. 如申請專利範圍第196項之產生太陽能的方法,其中 前述任務循環配電光電DC_DC轉換器的步驟包括選自 由以下組成的組的步驟: 太陽能開啓電路冷電壓確定地任務循環配電光電 DC-DC轉換器; 太陽能最大功率點熱電壓確定地任務循環配電光 電DC-DC轉換器; ^ 最大光電電壓確定的任務循環配電光電DC-DC轉 換器; 光電反相器最大電流確定的任務循環配電光電 DC-DC轉換器;以及 以上各項的全部排列與組合。 201. 如申請專利範圍第196項之產生太陽能的方法,其中 前述任務循環配電光電DC-DC轉換器的步驟包括將最 大光電功率點DC光電輸入轉換爲轉換的DC光電輸出 ❹ 的步驟。 202. 如申請專利範圍第201項之產生太陽能的方法,其中 前述任務循環配電光電DC-DC轉換器的步驟包括光電 反相器最大電壓確定的任務循環配電光電DC-DC轉換 器。 2〇 3.如申請專利範圍第201項或第202項之產生太陽能的 方法,其中前述將最大光電功率點DC光電輸入轉換爲 轉換的DC光電輸出的步驟包括最大功率點任務循環 -91- 201037958 配電光電DC-DC轉換器。 204. 如申請專利範圍第201至203項之產生太陽能的方 法,其中前述任務循環配電光電DC-DC轉換器的步驟 包括光電反相器最大電流確定的任務循環配電光電 DC-DC轉換器的步驟。 205. 如申請專利範圍第201至204項之產生太陽能的方 法,其中前述任務循環配電光電DC-DC轉換器的步驟 包括軟轉換光電DC-DC轉換器。 > 206.如申請專利範圍第205項之產生太陽能的方法,其中 前述軟轉換光電DC-DC轉換器的步驟包括建立最大光 電輸出電壓一光電輸出電流成比例的任務循環。 207. 如申請專利範圍第201至206項之產生太陽能的方 法,其中前述任務循環配電光電DC-DC轉換器的步驟 包括在廣電DC-DC轉換器中建立相反的光電任務循環 配電模式》 208. —種基本上根據上文所述且參考任一所附實例的方 ) 法。 209. —種基本上根據上文所述且參考任一所附實例的裝 置。 -92-201037958 The switching mode photoelectric power converter functional control is set to be selected a few times between the aforementioned first mode photoelectric DC-DC power conversion second mode photoelectric DC-DC power conversion circuit; for the aforementioned switching mode photoelectric power converter function Responsive optoelectronic DC-DC power converter; connected to the rate output of the aforementioned optoelectronic DC-DC power converter. 11.  An efficient solar energy system comprising: at least one solar culvert having a DC photo-electric output receiving DC power from said DC photo-electric output, at least one basic optoelectronic DC-DC power converter responsive to said DC input; for at least one of said basic a substantially identically-powered opto-electrical converter circuit with the same DC-DC response; a rate output coupled to the aforementioned optoelectronic DC-DC power converter; an optoelectronic device responsive to the aforementioned optoelectronic DC power output; and to the aforementioned opto-electronic DC- The light reflected by the AC inverter is turned out. 12. The high-efficiency solar energy system of the nth item of the patent application scope is an optoelectronic DC-DC power converter circuit with substantially the same power, and the matching circuit and the foregoing conversion to the control circuit photoelectric DC power input; the same power of the upper power The converter can control the power photoelectric DC power DC-AC inversion ί AC power transmission S, wherein the aforementioned includes a photoelectric impedance converter of substantially the same power of -45-201037958. 13.  A high efficiency solar energy system as claimed in claim 12, wherein said substantially identical power photoelectric impedance converter comprises a switch mode photoelectric impedance converter of substantially the same power. 14.  The high efficiency solar energy system of claim 13, wherein the at least one solar energy source comprises at least one composite solar panel, wherein the aforementioned DC-DC power converter comprises a plurality of series-connected DC-DC power converters, each responsive to the foregoing One of the composite solar panels, and wherein the plurality of series-connected DC-DC power converters each independently comprise: a separate first modal optical DC-DC power conversion circuit responsive to the aforementioned DC input; Input responsive independent second modal optical DC-DC power conversion circuit: and independent switching mode optical power converter functional control circuit configured to operate in the aforementioned first modal optical DC-DC power conversion circuit The second modal photoelectric DC-DC power conversion circuit is selectively switched between at least several times.  The high efficiency solar energy system of claim 14, wherein the independent switching mode photoelectric power converter functional control circuit comprises a static switching mode photoelectric power conversion control circuit. 16.  The high efficiency solar energy system of claim 11 or 14, wherein the aforementioned substantially identical power photoelectric converter functional control circuit comprises substantially the same power selected from the group consisting of: -46-201037958 electrical converter Functional control circuit: At least about 97% of high efficiency photoelectric conversion circuits, at least about 97. 5% high efficiency photoelectric conversion circuit, at least about 98% efficient photoelectric conversion circuit, at least about 98. 5% of high efficiency photoelectric conversion circuits, at least about 97% up to about 99. 2% efficient photoelectric conversion circuit, at least about 97. 5 % up to about 99. 2% efficient photoelectric conversion circuit, at least about 98% up to about 99. 2% efficient photoelectric conversion circuit, 至少 at least about 98. 5% up to about 99. 2% efficient photoelectric conversion circuit, at least about 97% high to about wire transmission loss efficient photoelectric conversion circuit, at least about 97. 5% up to about a wire transmission loss efficient photoelectric conversion circuit, at least about 98% up to about the wire transmission loss efficient photoelectric conversion circuit, and at least about 98. 5% up to about the wire transmission loss efficient photoelectric conversion 0 circuit. 1 7. A high efficiency solar energy system, such as the patent application scope 1, 1 or 14 or 16 further includes an AC power network interface that provides power from the aforementioned AC power output. 18.  a solar power converter comprising: at least one solar source having a DC optoelectronic output; a DC input receiving power from the aforementioned DC optoelectronic output; at least one optoelectronic DC having a substantially identical power response to the aforementioned DC input - 47- 201037958 A DC power converter; a substantially identically-powered photoelectric converter functional control circuit responsive to at least one of the foregoing substantially identical DC-DC power converters; coupled to the optoelectronic DC power output of the aforementioned optoelectronic DC-DC power converter. 19.  Ο ❹ 20 2 1 A multi-type solar energy system comprising: at least one solar energy source having a DC photoelectric output; a DC input receiving power from the aforementioned DC photoelectric output; at least one multi-mode photoelectric DC-DC power conversion responsive to the aforementioned DC input a multi-mode optical converter functional control circuit responsive to at least one of the aforementioned substantially identical DC-DC power converters; an opto-electronic power output coupled to the aforementioned multi-mode photo-DC-DC power converter; A photo-electric DC-AC inverter responsive to the power output; and an opto-electrical AC power output responsive to the aforementioned optoelectronic DC-AC inverter. . A multi-type solar energy system as claimed in claim 19, wherein said at least one multi-mode photo-DC-DC power converter comprises at least one low-energy storage opto-electronic DC-DC power converter. . The multi-type solar energy system of claim 20, wherein the at least one low energy storage photoelectric DC-DC power converter comprises: At least -48- 201037958 - a partial energy storage optoelectronic DC-DC power converter. twenty two.  For example, in the multi-type solar energy system of claim 20, at least one low energy storage photoelectric DC-DC power converter package has a substantially constant energy storage photoelectric DC-DC power transfer.  For example, the multi-type solar energy system of claim 20, at least one low-energy storage photoelectric DC-DC power converter package, an energy storage-task cycle proportional photoelectric DC-DC power device 〇 24. For example, in the multi-type solar energy system of claim 20, at least one low energy storage photoelectric DC-DC power converter includes a conversion cycle sensor energy-task cycle proportional DC-DC power converter. 25. For example, in the multi-type solar energy system of claim 20, at least one low-energy storage photoelectric DC-DC power converter package has a cycle-connected period energy storage-conversion voltage difference proportional DC-DC power converter. V 26. The multi-type converter functional control circuit includes a type of photoelectric power converter functional control circuit, as claimed in claim 19 or claim 20. 27. The multi-type solar energy system of claim 19, wherein the at least one solar energy source comprises at least one composite solar panel, the at least one multi-mode photoelectric DC-DC power converter comprises a multi-mode DC-DC power converter, each pair A response of the aforementioned composite panel, and further comprising a plurality of the aforementioned combinations of at least the converter. The foregoing includes at least the above-mentioned at least photoelectric photoelectric exchange mode in the at least photoelectric conversion, wherein the plurality of strings of solar photovoltaic-49-Ο Ο 201037958 DC converter outputs to generate the aforementioned converter wash 28 · The multi-type solar multi-mode photoelectric DC-DC power conversion board is physically integrated as claimed in the 27th patent application. 29. The multi-mode solar multi-converter functional control circuit as claimed in claim 19 includes an optical functional control circuit. 3 0. The multi-type solar multi-converter functional control circuit of claim 29 is further transferred to the conditional converter functional control circuit. 3 1. For example, the scope of the patent application is 19, 29 or 30. The multi-converter functionally controls the phase input voltage of the photoelectric converter.  For example, the above-mentioned multi-type converter functionally controls an optical circuit in which the output voltage is proportional to the photoelectric output current, as described in claim 19, 29 or 30. 33.  The multi-type solar multi-converter functional control circuit as claimed in claim 19 includes: maximum photoinverter current converter work slave maximum photoelectric power point converter work and maximum photoinverter input photoelectric voltage energy control Circuit" i electric DC power output. The V-energy system' wherein the foregoing apparatus and the independent solar energy If energy system, wherein the aforementioned electrical boundary conditional converter y energy system, wherein the foregoing comprises an independent photovoltaic multi-purpose solar energy system, the circuit includes a maximum photoelectric anti-functionality control circuit.匕Multiple solar systems, the road includes the maximum optoelectronic converter functional control I energy system, in which the aforementioned energy control current; energy control circuit; converter output voltage work -50- 201037958 34.  The multi-type solar energy system of claim 19, wherein the multi-type converter functional control circuit comprises: a maximum photo-inverter current converter functional control current; an auxiliary photo-voltage increase and a photo-voltage reduction maximum photoelectric power Point converter functional control circuit; and maximum photoinverter input voltage photoelectric converter output voltage functional control circuit. 35.  The multi-type solar energy system of claim 19, wherein the aforementioned multi-converter functional control circuit comprises a multi-converter functional control circuit selected from the group consisting of: exchange mode photoelectric power converter functional control a circuit configured to selectively convert between the first modal optical DC-DC power conversion circuit and the second modal optical DC-DC power conversion circuit at least several times; the photoelectric load impedance increasing converter functional control circuit and Photoelectric load impedance reduction converter functional control circuit; 〇 photoelectric boundary condition converter functional control circuit; subsequent photoelectric operation condition converter functional control circuit; subsequent photoelectric element protection converter functional control circuit; The same power converter functional control circuit; photoelectric invalid mode converter functional control circuit; photoelectric inverter protection converter functional control circuit; after the inverter adjustment converter functional control circuit; Slave mode converter functional control circuit; and -51- 201037958 light The electric inverter slave converter power control circuit. 36. A multi-type solar energy system as claimed in claim 19, 20, 27 or 35, further comprising an AC power grid interface powered by the aforementioned AC power output. 37. A solar energy converter comprising: at least one solar source having a DC optoelectronic output; a DC input receiving power from the aforementioned DC optoelectronic output; at least one multi-mode photo-DC-DC power converter responsive to the aforementioned DC input: A multi-mode converter functional control circuit responsive to at least one of the foregoing multi-mode optoelectronic DC-DC power converters; and an optoelectronic DC power output coupled to the multi-mode optoelectronic DC-DC power converter. 38. The solar energy system of claim 37, wherein the aforementioned photoelectric DC-AC converter comprises a high voltage DC-AC solar giant inverter. 3 9. The solar energy system of claim 38, wherein the aforementioned photoelectric AC power output comprises a three-phase photoelectric AC power output. 4 0. A solar energy system as claimed in claim 1, 11 or 19, wherein said at least one solar energy source having a DC photoelectric output comprises at least one solar cell. 41. A solar energy system as claimed in claim 1, 11 or 19, wherein said at least one solar energy source having a DC photoelectric output comprises a plurality of electrically connected solar cells. 42. A solar energy system as claimed in claim 1, 11 or 19, wherein -52-201037958 said at least one solar source having a DC photovoltaic output comprises a plurality of immediately adjacent electrically connected solar cells. 43. A solar energy system as claimed in claim 1, 11 or 19, wherein said at least one solar energy source having a DC photoelectric output comprises at least one solar panel. 4 4. A solar energy system as claimed in claim 1, 11 or 19, wherein said at least one solar energy source having a DC photoelectric output comprises a plurality of electrically connected solar panels. Ο 45. A solar energy system as claimed in claim 1, 11 or 19, wherein said at least one solar energy source having a DC photoelectric output comprises at least one string of electrically connected solar panels. 46.  The solar energy system of claim 44, wherein the aforementioned photoelectric DC-DC power converter comprises: at least one photoelectric power interruption switching element; at least one photoelectric power parallel switching element; and at least one of the aforementioned photoelectric power interruption switching elements and the aforementioned To a photoelectric switch control circuit that responds to a photoelectric power parallel switching element. 47.  A solar energy system according to claim 44, wherein said at least one power interruption switching element comprises a pair of power series semiconductor switches, and wherein said at least one power parallel switching element comprises a pair of power parallel semiconductor switches. 4 8. The solar energy system of claim 47, wherein the aforementioned photoelectric DC-DC power inverter further comprises: -53- 201037958 a.  At least one shunt capacitor; and b.  At least one series inductance. 49. A solar energy system as claimed in claim 47, wherein said converter functional control circuit comprises a hierarchical switching element control circuit. 5 0. For example, in the solar energy system of claim 44 to 49, the aforementioned control circuit includes a photoelectric impedance conversion task cycle switch control circuit. 5 1. The solar energy system of claim 44, wherein the at least one solar energy source comprises at least one composite solar panel, wherein the at least one optoelectronic DC-DC power inverter comprises a plurality of series photoelectric DC-DC power conversion Each of the plurality of solar panels in response to the foregoing, and further comprising a series connected to the plurality of optoelectronic converter outputs to produce the aforementioned converter optoelectronic DC power output. 5 2. A solar energy system as in claim 51, wherein said plurality of optoelectronic DC-DC power converters comprise a plurality of individual boards for the optoelectronic DC-DC power converter. 5 3 _ The solar energy system of claim 52, wherein the aforementioned converter functional control circuit comprises a plurality of independent boards for maximum optoelectronic power point converter functional control circuitry. 5 4. The solar energy system of claim 53, wherein the plurality of independent boards for the photoelectric OC-DC power converter and the plurality of independent boards for the maximum power point converter functional control circuit are each independent The solar panels are physically integrated. -54- 201037958 55.  A solar energy system according to claim 52, wherein said plurality of independent panels for said photovoltaic DC-DC power converter and said plurality of solar panels comprise a plurality of series of solar circuits connected in series. 56.  The solar energy system of claim 55, wherein the aforementioned photoelectric DC-AC inverter comprises a high voltage DC-AC solar inverter. 5 7. The solar energy system of claim 56, wherein the aforementioned photoelectric AC power output comprises a three-phase photoelectric AC power output. 58. The solar energy system of claim 44, wherein the plurality of D solar panels comprise a plurality of cadmium telluride solar panels. 5 9. A solar energy system as claimed in claim 51 or 55, wherein the aforementioned photoelectric DC-DC power converter comprises a complete photoelectric temperature voltage operating range photoelectric DC-DC power converter. 6 0. The solar energy system of claim 11 or 19, wherein the aforementioned photoelectric DC-DC power converter comprises: a first modal photoelectric DC-DC power conversion circuit responsive to the aforementioned DC input; and r\U a second modal photo-DC-DC power conversion circuit responsive to the DC input; and wherein the aforementioned converter functional control circuit includes a conversion mode optical power converter functional control circuit configured to be in the aforementioned first modal optical DC The DC power conversion circuit and the aforementioned second modal photoelectric DC-DC power conversion circuit are selectively switched at least several times. 6 1. For example, in the solar energy system of claim 60, wherein the aforementioned conversion mode photoelectric power converter functional control circuit includes an invalid conversion -55-201037958 mode photoelectric power conversion control circuit. 6 2. A solar energy system according to claim 61, wherein said first modal photoelectric DC-DC power conversion circuit and said second modal photoelectric DC_DC power conversion circuit comprise opposite modal photoelectric DC-DC power conversion circuits. 63. The solar energy system of claim 62, wherein the aforementioned opposite modal photoelectric DC-DC power conversion circuit comprises at least one impedance increasing photoelectric DC-DC power conversion circuit and at least one impedance reducing photoelectric 〇 DC-DC power conversion Circuit. 6 4. A solar energy system as claimed in claim 60, wherein said exchange mode photoelectric power converter functional control circuit comprises a substantially separate impedance converted photoelectric power conversion control circuit. 65. The solar energy system of claim 60, wherein the exchange mode photoelectric converter functional control circuit comprises an exchange mode photoelectric power converter functional control circuit selected from the group consisting of: a photoelectric impedance conversion power functional control circuit; 〇Maximum photoelectric inverter current functional control circuit; Maximum photoelectric power point converter functional control circuit; Photoelectric inverter operating condition converter functional control circuit; Photoelectric load impedance increase converter functional control circuit and photoelectric load Impedance reduction converter functional control circuit; slave maximum photoelectric power point converter functional control circuit; slave photoelectric inverter operating condition converter functional control circuit; -56- 201037958 slave photoelectric load impedance increase converter functionality Control circuit; slave photoelectric load impedance reduction converter functional control circuit; slave photoelectric load impedance reduction converter functional control circuit and slave photoelectric load impedance reduction functional control circuit; photoelectric boundary condition converter functional control circuit;A photoelectric converter element protection functionality of the control circuit; protection of the photoelectric converter inverter control circuit; a photoelectric converter of the inverter to adjust the functionality of a control circuit; and above all the permutations and combinations. 66. A solar energy system as claimed in claim 65, further comprising a photoelectric power condition response circuit responsive to said exchange mode photoelectric power conversion control circuit. 67. The solar energy system of claim 66, wherein the exchange mode photoelectric power converter functional control circuit comprises a switching mode photoelectric power conversion control circuit. 6 8. The solar energy system of claim 1 or 11, wherein the aforementioned photoelectric DC-DC power converter comprises at least one multi-mode photoelectric DC-DC inverter, and wherein the aforementioned converter functional control circuit comprises a multi-mode conversion Functional control circuit. 69. The solar energy system of claim 68, wherein said multi-converter functional control circuit comprises a photoelectric boundary condition converter functional control circuit. 7 0. The solar energy system of claim 69, wherein the multi-function converter functional control circuit further comprises an independent photoelectric operating strip -57- 201037958 converter functional control circuit * 7 1. For example, in the solar energy system of claims 68, 69 and 70, the aforementioned multi-converter functional control circuit includes a maximum photoinverter input opto-electrical converter output voltage functional control circuit. 72. For example, in the solar energy system of claims 68, 69 and 70, the aforementioned multi-converter functional control circuit includes a photoelectric converter functional control circuit having a maximum photo-electric output voltage and a photoelectric output current proportional. €) 73. The solar energy system of claim 68, wherein the multi-converter functional control circuit comprises: a maximum photoinverter current converter functional control current; a slave maximum photoelectric power point converter functional control circuit; Photoelectric inverter input photoelectric voltage converter output voltage functional control circuit. 74.  The solar energy system of claim 68, wherein the multi-type 〇w converter functional control circuit comprises: a maximum photoinverter current converter functional control current; a slave photovoltage increase and a photovoltage decrease maximum photoelectric power Point converter functional control circuit; and maximum photoinverter input voltage photoelectric converter output voltage functional control circuit. 75.  The solar energy system of claim 68, wherein the multi-converter functional control circuit comprises a multi-58-201037958 type converter functional control circuit selected from the group consisting of: exchange mode photoelectric power converter functionality a control circuit configured to selectively switch between the first modal photoelectric DC-DC power conversion circuit and the second photoelectric DC-DC power conversion circuit at least twice; the photoelectric load impedance increase converter functional control circuit electrical load impedance minus Small converter functional control circuit; photoelectric boundary condition converter functional control circuit; Ο After photoelectric operation condition converter functional control circuit, the latter photoelectric element protection converter functional control circuit is basically the same photoelectric conversion Functional control of the photoelectric photoelectric invalid mode converter functional control circuit; photoelectric inverter protection converter functional control circuit; converter control function control circuit photoelectric auxiliary mode converter functional control after the inverter adjustment Circuit; and photoelectric inverter accessory converter functional control circuitD 7 6. For example, in the solar energy system of claim Scope No. 19, the step includes a solar power conversion comparator that indicates a solar energy parameter of a first power capacity compared to the second power. 7 7. The solar energy system of claim 76, wherein the energy conversion comparator comprises a switching operation switch that switches between the first power capacity and the first rate capacity. 78. For example, in the solar energy system of claim 77, wherein the aforementioned power capacity includes a conventional power conversion capacity, and wherein the first mode of the mode and the light rate of the first phase are -59-201037958, the second power capacity includes improvement. Power conversion capacity. 79. The solar energy system of claim 76 or 77, wherein the solar energy conversion comparator comprises a solar energy conversion comparator selected from the group consisting of: solar energy output difference comparator; solar power difference comparator; solar cost difference comparison And solar photovoltaics using comparators. 0 8 0. The solar energy system of claim 78, wherein the improved power conversion capacity comprises an improved power conversion capacity selected from the group consisting of: an exchange mode photoelectric power converter capacity; a substantially identical energy photoelectric impedance converter capacity; And multi-mode photoelectric DC-DC power converter capacity. 81.  The solar energy system of claim 80, wherein the aforementioned photoelectric DC-DC power converter comprises a pair of power series semiconductor switches, and wherein the at least one power parallel switching element comprises a pair of power parallel semiconductor switches, and wherein the foregoing The solar energy conversion comparator includes a parallel switch operation invalid component. 82.  A solar energy system as claimed in claim 1 or 19 wherein said converter functional control circuit comprises a substantially identical power photoelectric converter functional control circuit. 83.  A solar energy system according to claim 82, wherein the aforementioned photoelectric DC-DC power converter comprises a photoelectric impedance to-60-201037958 converter having substantially the same power. 84.   Ο 85.  The solar energy system of claim 83, wherein the at least one solar energy source comprises at least one composite solar panel, wherein the aforementioned DC-DC power converter comprises a plurality of DC-DC power converters connected in series, each independent pair One response of the foregoing composite solar panel, and wherein the plurality of series-connected DC-DC power converters each independently comprise: a separate first modal optical DC-DC power conversion circuit responsive to the aforementioned DC input; to the aforementioned DC input a responsive independent second modal optical DC-DC power conversion circuit; and an independent switched mode optical power converter functional control circuit configured to be in the aforementioned first modal optical DC-DC power conversion circuit and the aforementioned second The modal photoelectric DC-DC power conversion circuit is selectively switched between at least several times. A solar energy system as claimed in claim 84, wherein the aforementioned independent exchange mode photoelectric power converter functional control circuit comprises a static switching exchange mode photoelectric power conversion control circuit. . The solar energy system of claim 83 or 84, wherein the aforementioned substantially power impedance photoelectric converter functional control circuit comprises a substantially identical power photoelectric converter functional control circuit selected from the group consisting of: About 97% of high-efficiency photoelectric conversion circuits, at least about 97. 5% high efficiency photoelectric conversion circuit, -61 - 201037958 At least about 98% efficient photoelectric conversion circuit, at least about 98. 5% high efficiency photoelectric conversion circuit, at least about 97% up to about 99. 2% efficient photoelectric conversion circuit, at least about 97. 5% up to about 99. 2% high efficiency photoelectric conversion circuit, at least about 98% up to about 99. 2% high efficiency photoelectric conversion circuit, at least about 98. 5% up to about 99. 2% high efficiency photoelectric conversion circuit, at least about 97% up to about wire transmission loss efficient photoelectric conversion circuit, 至少 at least about 97. 5% of high-efficiency optoelectronic conversion circuits with up to about wire transmission losses, at least about 98% up to about a high efficiency photoelectric conversion circuit for wire transmission losses, and at least about 98. 5% high to about the wire transmission loss efficient photoelectric conversion circuit. 8 7. A solar energy system as claimed in claim 1, 11 or 19, further comprising a maximum optoelectronic power point converter functional control circuit responsive to said at least one optoelectronic DC-DC power converter. 8 8. A solar energy system as claimed in claim 87, further comprising a power calculation circuit responsive to said maximum photoelectric power point converter functional control circuit. 89. A solar energy system as claimed in claim 88, wherein the aforementioned power calculation comprises a photomultiplier synthesis circuit. 9 0. A solar energy system as claimed in claim 87, wherein said converter functional control circuit further comprises a separate photoelectric converter maximum voltage output circuit independent of said maximum photoelectric power -62-201037958 rate converter functional control circuit. The solar energy system of claim 90, wherein the at least one solar energy source comprises at least one composite solar panel, wherein the aforementioned photoelectric DC-DC power converter comprises an optoelectronic DC for having a plurality of photoelectric DC power outputs. Multiple independent boards of a DC power converter, wherein each of the aforementioned separate boards for an optoelectronic DC-DC power converter is physically integrated with a separate solar panel, and further includes a plurality of series in series with the aforementioned plurality of optoelectronic DC power outputs The converter outputs are connected in series, and wherein the aforementioned converter functional control circuit includes a plurality of independent boards for the maximum power point converter functional control circuit. 92. A solar energy system as claimed in claim 90, wherein said independent photoelectric converter maximum voltage output control circuit comprises a solar radiation change adaptive photoelectric converter control circuit. 9 3. A solar energy system as claimed in claim 1, 11 or 19, wherein said converter functional control circuit comprises a photoelectric task cycle switch control circuit. 9 4. The solar energy system of claim 93, wherein the photoelectric task cycle switch control circuit comprises a photoelectric impedance conversion task cycle switch control circuit. 95. The solar energy system of claim 93, wherein the photoelectric task cycle switch control circuit comprises a photoelectric task cycle switch control circuit selected from the group consisting of: a power distribution photoelectric power conversion control circuit determined by the threshold; -63- 201037958 Frequency change power distribution photoelectric power conversion control circuit; pulse mode power distribution photoelectric power conversion control circuit; and all the above arrangement and combination. 9 6. For example, in the solar energy system of claim 93, wherein the aforementioned photoelectric working loop switch control circuit comprises: a threshold mode determined mode to start the distribution photoelectric power conversion control circuit; and a threshold determined mode deactivated power distribution photoelectric power conversion control Circuit. 9 7. The solar energy system of claim 93, wherein the photoelectric task cycle switch control circuit comprises a photoelectric task cycle switch control circuit selected from the group consisting of: a solar energy source open circuit, a cold voltage-determined power distribution photoelectric power conversion control circuit: the sun Power distribution photoelectric power conversion control circuit determined by energy maximum power point thermal voltage; 配电w maximum voltage-determined power distribution photoelectric power conversion control circuit; inverter maximum current-determined power distribution photoelectric power conversion control circuit; and all the above arrangement combination. 9 8. A solar energy system as claimed in claim 93, wherein said photoelectric task cycle switch control circuit comprises a maximum photoelectric power point converter control circuit. 9 9. The solar energy system of claim 98, wherein the photoelectric-64-201037958 working switch control circuit further comprises a task cycle switch control circuit for determining a maximum voltage of the photoelectric inverter. 100. The solar energy system of claim 98 or claim 99, wherein the photoelectric task cycle switch control circuit further comprises a task cycle switch control circuit determined by a maximum photovoltage. 10 1. The solar energy system of claim 98, 99 or 100, wherein the photoelectric task cycle switch control circuit further comprises a task cycle switch control circuit determined by a maximum current of the photoelectric inverter. © 102. A solar energy system of claim 98, 99, 100 or 101, wherein said photoelectric task cycle switch control circuit further comprises a soft-switching photoelectric power conversion control circuit. 103.  For example, in the solar energy system of claim 1, the soft-switching photoelectric power conversion control circuit includes a maximum photoelectric output voltage-photoelectric output current proportional task cycle switch control circuit. 104.  For example, the solar energy system of claim 98, 99, 100, 101 or 103, wherein the aforementioned photoelectric task cycle switch control circuit further comprises a transient relative mode photoelectric task cycle switch control circuit. 1〇5. a method for generating fluctuations in solar energy, comprising the steps of: generating a DC photoelectric output from at least one solar source; establishing the aforementioned DC photoelectric output as a DC photoelectric input of the photoelectric DC-DC power converter; providing the first of the photoelectric DC-DC power conversion Modal; providing a second mode of photoelectric DC-DC power conversion; inter-conversion between the first mode of the aforementioned photoelectric DC-DC power conversion and the second mode of the aforementioned optical-65-201037958 electrical DC-DC power conversion Completing the control operation of the aforementioned photoelectric DC-DC converter; converting the aforementioned DC photoelectric input into the converted DC photoelectric output by using at least one of the aforementioned first or the aforementioned second mode of photoelectric DC-DC power conversion; establishing the aforementioned conversion The DC photo-electric output acts as a converted DC optoelectronic input of the DC-AC inverter; and converts the aforementioned converted DC optoelectronic input to a converted AC photo-electric chirp output. 106. A method of wave-generating solar energy according to claim 105, wherein the step of interactively converting between the first mode of the aforementioned photoelectric DC-DC power conversion and the second mode of the aforementioned photoelectric DC-DC power conversion comprises A step of invalidating the mode of photoelectric DC-DC power conversion. 107.  A method of wave-generating solar energy according to claim 106, wherein the step of providing a first mode of photoelectric DC-DC power conversion and a second mode of providing photoelectric DC-DC power conversion comprises providing a photoelectric r\W DC - The opposite mode of DC power conversion. 108.  A method of wave-generating solar energy according to claim 107, wherein the step of providing an opposite mode of photoelectric DC-DC power conversion comprises the steps of: providing a photoelectric impedance increasing mode of at least one photoelectric DC-DC power conversion And a photoelectric impedance reduction mode that provides at least one photoelectric DC-DC power conversion. -66- 201037958 1〇9·If the scope of application of the patent scope is item i〇5, the foregoing is provided for the separation of the second DC-DC power conversion of the photoelectric DC-DC power photoelectric DC-DC power conversion. As described in claim 105, wherein the foregoing photoelectric DC-DC power conversion is included in the photoelectric DC-DC power conversion step, and is selected from the group consisting of: photoelectric DC-DC power conversion Photoelectric DC-DC power conversion | state; photoelectric DC-DC power conversion of photoelectric DC-DC power conversion; combined photoelectric DC-DC power® modal and photoelectric DC-DC power conversion; photoelectric DC-DC power conversion state Mode of photoelectric DC-DC power conversion; state of photoelectric DC-DC power conversion; method of wave generation by solar energy, first mode of rate conversion and step of providing mode include steps of providing a photoelectric state. The solar energy generated wave method, the first mode of the power conversion and the step between the first two modes of the interactive conversion step are the photoelectric conversion mode of the alternating conversion of the mode; the maximum photoelectric inverter current mode maximum photoelectric power point Mode; Photoelectric inverter operating condition Mode conversion of photoelectric load impedance increased photoelectric load impedance smaller mode Auxiliary maximum photoelectric power point mode auxiliary photoelectric inverter operating condition slave photoelectric load impedance increasing mode -67- 201037958 Subordinate photoelectric load impedance reduction mode for photoelectric DC-DC power conversion; Photoelectric load impedance increase mode for combined subordinate photoelectric DC-DC power conversion and photoelectric load impedance for subordinate photoelectric DC-DC power conversion ; photoelectric boundary condition mode of photoelectric DC-DC power conversion; photoelectric element protection mode of photoelectric DC-DC power conversion; photoelectric inverter protection mode of photoelectric DC-DC power conversion; photoelectric DC-DC The modal of the power conversion of the photoelectric inverter; and the arrangement and combination of the above. Ηι. The method of fluctuating solar energy generated in claim 105 of the patent application further includes the step of converting the modality in response to at least one optoelectronic power condition. 112.  The method of fluctuating the solar energy generated by the patent application ηη item, Ο w wherein the step of responding to the conversion mode of the at least one optoelectronic power condition comprises the step of triggering the photo DC-DC power conversion. 113.  The method of fluctuating solar energy generated in claim 105 or 11 of the patent application further includes the step of connecting the converted AC photo-electric output to the AC power grid. 114. A method of solar energy conversion comprising the steps of: generating a DC photoelectric output from at least one solar source; establishing the aforementioned DC photoelectric output as a DC photoelectric input of the photoelectric DC-DC power conversion-68-201037958; providing photoelectric DC-DC power a first mode of conversion; providing a second mode of photoelectric DC DC power conversion; interchanging between the first mode of the aforementioned photoelectric DC-DC power conversion and the second mode of the aforementioned photoelectric DC-DC power conversion Completing the control operation of the aforementioned photoelectric DC-DC converter; converting the aforementioned DC photoelectric input into a converted DC 〇 photoelectric output using at least one of the aforementioned first or second modalities of photoelectric DC-DC power conversion. 11 5.  An efficient method of producing solar energy comprising the steps of: generating a DC photo-electric output from at least one solar source; establishing the aforementioned DC photo-electric output as a DC optoelectronic input of the optoelectronic DC-DC power converter; and arranging the DC at substantially the same power The photoelectric input is converted into a converted DC photoelectric output; the operation of the aforementioned photoelectric DC-DC converter 〇 is controlled at substantially the same power, and the operation thereof converts the aforementioned DC photoelectric input into the aforementioned DC photoelectric output; establishing the converted DC photoelectric output a converted DC optoelectronic input as a DC_AC inverter; and converting the previously converted DC optoelectronic input to a converted AC optoelectronic output. 116. An efficient method of producing solar energy as claimed in claim 115, wherein the step of converting the aforementioned DC photoelectric input -69-201037958 into a converted DC photoelectric output at substantially the same power comprises converting the photovoltaic at substantially the same power The step of circuit impedance. 117.  An efficient method of producing solar energy as in claim 116, wherein the step of converting the impedance of the optoelectronic circuit substantially at the same power comprises the step of switching the mode impedance of the optoelectronic circuit. 118.  An efficient solar energy generating method as claimed in claim 117, wherein the step of converting the impedance of the optoelectronic circuit by the switching mode comprises the step of interconverting between photoelectric DC-DC power conversion and photoelectric DC-DC power conversion. 119.  An efficient solar energy generating method as claimed in claim 118 wherein the step of converting the aforementioned DC photoelectric input substantially at the same power comprises the step of static switching the aforementioned DC photoelectric input. 120.  An efficient method of producing solar energy according to claim 116 or 118, wherein the foregoing step of converting substantially the same power comprises substantially the same power conversion, selected from the group consisting of: Q having at least A solar conversion of about 97% efficiency, with at least about 97. 5% efficient solar energy conversion, solar energy conversion with at least about 98% efficiency, having at least about 98. 5% efficiency solar conversion, having at least about 97% up to about 99. 2% efficient solar conversion with at least about 97. 5% up to about 99. 2% efficient solar conversion, with at least about 98% up to about 99. 2% efficient solar conversion, -70- 201037958 has at least about 98. 5% up to about 99. 2% efficient solar energy conversion, solar energy conversion having an efficiency of at least about 97% up to about wire transmission loss, having at least about 97. 5% solar energy conversion up to about the efficiency of wire transmission loss, solar energy conversion with an efficiency of at least about 98% up to about wire transmission loss, and Ο 12 1 122.   ❹ has at least about 98. 5% up to about the efficiency of solar wire transmission loss of solar energy conversion. An efficient method of generating solar energy as claimed in claim 115, 118 or 120, further comprising the step of connecting said converted AC photo-electric output to an AC power grid. A method of solar energy conversion comprising the steps of: generating a DC photoelectric output from at least one solar source; establishing the aforementioned DC photoelectric output as a DC photoelectric input of the photoelectric DC-DC power converter; converting the aforementioned DC photoelectric input at substantially the same power The converted DC photoelectric output; controls the operation of the aforementioned photoelectric DC-DC converter at substantially the same power, while its operation converts the aforementioned DC photoelectric input into the aforementioned DC photoelectric output. A multi-method for generating solar energy' comprises the steps of: generating a DC photoelectric output from at least one solar source; -71- 123 201037958 establishing the aforementioned DC photoelectric output as a DC photoelectric input of the photoelectric DC_DC power converter; Converting to converted DC photoelectric output; multi-control controlling the operation of the aforementioned photoelectric DC-DC converter, and simultaneously operating the DC photoelectric input to the converted DC photoelectric output; establishing the aforementioned converted DC photoelectric output as DC-AC inverse The converted DC photoelectric input of the phase converter; and the converted DC photoelectric input of the aforementioned conversion is the converted AC photoelectric output. 124.  A multi-method for generating solar energy according to claim 123, wherein the step of converting the aforementioned DC photoelectric input multi-mode into a converted DC photoelectric output comprises low energy storage converting the aforementioned DC photoelectric input into a converted DC photoelectric output. step. 125.  A multi-method for generating solar energy as claimed in claim 124, wherein the step of converting the aforementioned DC photoelectric input into the converted DC photoelectric output by the aforementioned low energy storage comprises converting the aforementioned DC photoelectric input into a converted DC photoelectric output. The step of storing energy only partially. 126.  A multi-method for generating solar energy according to claim 124, wherein the step of converting the aforementioned DC photoelectric input into the converted DC photoelectric output by the aforementioned low energy storage includes when the DC photoelectric input is uniformly converted into the converted DC photoelectric output. Provides a step of storing a substantially constant energy -72- 201037958. 127. The multi-method for generating solar energy according to claim 124, wherein the step of converting the aforementioned DC photoelectric input into the converted DC photoelectric output by the low energy storage comprises converting the DC photoelectric input into a converted DC photoelectric output. The step of storing energy that is proportional to the working loop. 128. A multi-method for generating solar energy according to claim 124, wherein the step of converting the aforementioned DC photoelectric input into the converted DC photoelectric output of the aforementioned low energy storage comprises using the DC photoelectric input for converting the DC photoelectric input into a converted DC photoelectric output. The step of storing energy in a sensor that is proportional to the switch working loop. 129. The multi-method for generating solar energy according to claim 12, wherein the step of converting the aforementioned DC photoelectric input into the converted DC photoelectric output by the low energy storage comprises storing the DC photoelectric input to the converted DC photoelectric input by the foregoing conversion. The step of outputting produces a step of energy that is proportional to the voltage difference. Ο 130. A multi-method for generating solar energy according to claim 123 or 124, wherein the step of converting the aforementioned DC photoelectric input multi-mode into a converted DC photoelectric output includes photoelectric DC-DC power conversion and photoelectric DC-DC power. Steps for interactive conversion between conversions" 13 1. A multi-method for generating solar energy according to claim 123, wherein the step of generating a DC photo-electric output from the at least one solar source comprises the step of generating a plurality of DC photo-electric outputs from the plurality of solar panels and the plurality of converted DC photo-electric outputs. And further comprising the step of concatenating the DC photo-electrical output of the aforementioned -73-201037958 conversion to produce the aforementioned converted DC photoelectric input to the aforementioned photo-DC-AC inversion g. 132.  A multi-method for generating solar energy according to claim 131, wherein the foregoing step of converting the aforementioned DC photoelectric input multi-mode into a converted DC photoelectric output comprises converting the DC photoelectric input to converted DC photoelectric on at least one solar panel The steps of the output. 133.  A multi-method for generating solar energy according to claim 123, wherein the step of controlling the control operation 〇 of the aforementioned photoelectric DC-DC converter by the plurality of types includes the step of controlling the photoelectric boundary condition of the photoelectric DC-DC converter. 134.  A multi-method for generating solar energy according to claim 133, wherein the step of controlling the control operation of the photoelectric DC-DC converter by the multi-type control further includes: in addition to the foregoing steps of controlling boundary conditions of the photoelectric DC-DC converter The step of independently controlling the photoelectric operating conditions of the aforementioned photoelectric DC-DC converter. 135.  A multi-method for generating solar energy according to claim 123, 133 or 143, wherein the step of controlling the control operation of the aforementioned photoelectric DC-DC converter by the multi-type control comprises controlling the maximum photoelectric reversal by the aforementioned photoelectric DC-DC converter Phaser input voltage output step. 136.  A multi-method for generating solar energy according to claim 123, 133 or 143, wherein the step of controlling the control operation of the aforementioned photoelectric DC-DC converter by the multi-type control comprises converting the DC photoelectric input to the converted DC photoelectric output. The step of controlling the maximum photo-electrical output voltage proportional to the photo-electric output current at least several times during the process. -74- 201037958 1 3 7 . For example, the device of the above-mentioned photoelectric DC-DC converter is the same as the above-mentioned multi-type control of the above-mentioned photoelectric DC-DC converter. The controlling operation step comprises the steps of: controlling a maximum photoelectric inversion input from the aforementioned photoelectric DC-DC converter; slavely controlling operation through a maximum optical power point of the photoelectric DC-DC converter; and controlling the aforementioned photoelectric DC-DC The maximum opto-inverting input voltage of the converter. The multi-mode method for generating solar energy according to the 123rd patent of the patent application, wherein the controlling the operation step of the foregoing photoelectric DC-DC converter comprises the following steps: controlling a maximum photoelectric inversion input from the photoelectric DC-DC converter; The photoelectric impedance is greatly increased and the photoelectric impedance is reduced by the aforementioned photoelectric DC-DC converter; and the maximum photoelectric phase input voltage is controlled by the operation of the aforementioned photoelectric DC-DC converter. In the multi-method of generating solar energy according to item 123 of the patent application, the control operation step of controlling the aforementioned photoelectric DC-DC converter in the foregoing multi-form includes a step selected from the group consisting of: the first mode in photoelectric DC-DC power conversion State and photoelectric DC-DC rate conversion of the second mode transition at least several times; photoelectric load impedance increase and photoelectric load impedance reduction; -75- 201037958 control photoelectric conversion boundary conditions; through the aforementioned photoelectric DC-DC converter control To control the subsequent photoelectric operating conditions; to protect the subsequent photovoltaic elements through the control of the aforementioned photoelectric DC-DC converter; the photoelectric power DC-DC converter has substantially the same power control operation; substantially the same photoelectric conversion a functional control circuit; the photoelectric conversion mode is disabled by the control of the photoelectric DC-DC converter; the photoelectric inverter is protected by the control of the photoelectric DC-DC converter; and the photoelectric DC-DC converter is controlled to be used Adjusting the characteristics of the photoreactor; controlling the photoelectric conversion mode subordinately through the aforementioned photoelectric DC-DC converter; The photoelectric conversion mode is subordinately controlled by the aforementioned photo-inverter of the photoelectric DC-DC converter. WO. An efficient method of producing solar energy as claimed in claim 123, 131 or 139' further includes the step of connecting the previously converted AC photo-electric output with an AC power grid. 141. A method for solar energy conversion, comprising the steps of: generating a DC photoelectric output from at least one solar source; establishing the aforementioned DC photoelectric output as a photoelectric dc-DC converter -76-201037958 DC photoelectric input; Converting to a converted DC optoelectronic output; and multi-control controlling the operation of the aforementioned optoelectronic DC-DC converter while simultaneously converting the aforementioned DC optoelectronic input to the aforementioned converted DC optoelectronic output. 142.  A method of producing solar energy according to claim 105, 115 or 123, wherein the step of generating a DC photo-electric output © from at least one solar source comprises the step of generating a DC photo-electric output from at least one solar cell. 143.  A method of producing solar energy according to claim 105, 115 or 123, wherein said step of generating a DC photo-electric output from at least one solar source comprises the step of generating a DC photo-electric output from a plurality of electrically connected solar cells. 144.  A method of producing solar energy according to claim 105, 115 or 123, wherein the step of generating a DC photo-electric output from at least one solar source comprises the step of generating a DC photo-electric output from a plurality of connected electrically-connected solar cells. 145.  A method of producing solar energy according to claim 105, 115 or 123, wherein the step of generating a DC photo-electric output from the at least one solar source comprises the step of generating a DC photo-electric output from the at least one solar panel. 146.  A method of producing solar energy according to claim 105, 115 or 123, wherein the step of generating a DC photoelectric output from at least one solar source - 77 - 201037958 comprises the step of combining the outputs from a plurality of electrically connected solar panels. 147.  A method of producing solar energy according to claim 105, 115 or 123, wherein said step of generating a DC photo-electric output from at least one solar source comprises the step of generating a DC photo-electric output from at least one string of electrically connected solar panels. 148.  A method of producing solar energy according to claim 146, wherein the step of converting the aforementioned DC photoelectric input into the converted DC photoelectric output comprises the steps of: continuously interrupting the transmission of the aforementioned photoelectric power; and parallelizing the transmission of the aforementioned photoelectric power. . 149.  A method of producing solar energy according to claim 146, wherein the step of continuously interrupting the transmission of the aforementioned photoelectric power and the parallel transmission of the photovoltaic power can each occur at at least two separate semiconductor switch positions. The method of producing solar energy according to claim 149, wherein the step of converting the aforementioned DC photoelectric input to the converted DC photoelectric output comprises the steps of: capacitively storing at least a plurality of parallel energies during the aforementioned converting step And storing the series energy inductively at least several times during the aforementioned conversion step. 151. A method of producing solar energy according to claim 49, wherein the step of controlling the operation of the aforementioned photoelectric DC-DC converter comprises classifying one of the aforementioned photoelectric DC-DC inverters from -78 to 201037958. U2. As described in the scope of claim 151, the foregoing steps of controlling the photoelectric conversion of the aforementioned photoelectric DC-DC converter are cyclically converted. 153.  Such as the scope of patent application 146 to 21. The sixth method, wherein the step of converting the aforementioned DC photoelectric output photoelectric DC-DC power inverter, a response of the yang board. 154.  The step of converting the aforementioned DC photoelectric output as described in the Scope of Patent Application No. 153 is the step of converting the DC photoelectric conversion of the foregoing composite solar panel. 155.  As described in the scope of claim 154, the foregoing steps for converting the panels from the respective composite solar panels described above for the panels include the maximum photovoltaic power points from the respective aforementioned DC photoelectric inputs 156.  The above-mentioned conversion of the aforementioned DC photoelectric input is carried out as in the case of the application of the Scope No. 155. The positivity plate physically converts the aforementioned DC Μ 15 7. The step of generating a continuation of the scope of claim 154 includes the step of connecting a plurality of photovoltaic DC-DC solar panels in series to connect the outputs in series. For example, in the method of claim 157, the method for generating a semiconductor switch element solar energy, wherein the step of converting includes any step of generating solar energy comprises the step of connecting a plurality of respective methods for the aforementioned composite solar energy, wherein further comprising A separate method for slab solar energy, in which a single step of DC photoelectric input is converted into a single composite solar panel. The method of cations, including the steps for the individual electrical output. The method of ergonomic energy, the method of converting a DC photoelectric input from the converted DC photoelectric input into the converted AC photoelectric output by the method of converting a power converter to a power conversion from the above, comprising -79-201037958, comprising the step of converting the DC input of the aforementioned converted high-voltage input AC photoelectric output for high voltage conversion" 159.   160.  ❹ 161.   162.  ❹ 163.   The method for generating solar energy according to claim 158, wherein the step of converting the aforementioned converted DC photoelectric input into the converted AC photoelectric output comprises high voltage conversion of the converted DC photoelectric input to two-phase high voltage conversion AC photoelectric Output. A method of producing solar energy according to claim 146, wherein the step of outputting from the plurality of electrically connected solar panel connections comprises the step of combining the output from a plurality of cadmium telluride solar panels. Such as the scope of patent application 146 to 21. A method of producing solar energy according to the sixth aspect, wherein said step of converting said DC photo-electric output comprises the step of paralleling a plurality of photoelectric DC-DC power inverters, each of which responds to said composite solar panel. A method of producing solar energy according to claim 153 or 157, wherein the step of converting the aforementioned DC photo-electric output comprises the step of converting the entire photo-electric temperature-voltage operating range to the aforementioned DC photoelectric input. A method of producing solar energy according to claim 115 or 123, wherein the step of converting the aforementioned DC photo-electric output comprises the first mode of the aforementioned photoelectric DC-DC power conversion and the aforementioned photoelectric DC-DC power conversion. The step of conversion between two modes. The method of producing solar energy according to claim 163, wherein the step of converting the aforementioned DC photoelectric input comprises the step of invalidating the mode of the photoelectric DC-DC power conversion. -80- 164 201037958 165. A method of producing solar energy according to claim 164, wherein the step of converting the aforementioned DC photoelectric input comprises the step of providing an opposite mode of photoelectric DC-DC power conversion. 16 6. A method of producing solar energy according to claim 165, wherein the step of providing an opposite mode of photoelectric DC-DC power conversion comprises the steps of: providing a photoelectric impedance increasing mode of at least one photoelectric DC-DC power conversion; And providing a photo-electrical impedance reduction modality of at least one optoelectronic DC-DC power conversion. 167.  A method of producing solar energy according to claim 163, wherein the first mode of the aforementioned photoelectric DC-DC power conversion and the second mode of the aforementioned photoelectric DC-DC power conversion comprise separation for providing photoelectric DC-DC power conversion Modal steps. 168.  The method for generating solar energy according to claim 163, wherein the step of interactively converting between the first mode of the foregoing photoelectric DC-DC power conversion and the second mode of the foregoing optical power DC-DC power conversion is included in The step of inter-modal cross-conversion of photoelectric DC-DC power conversion is selected from the group consisting of: photoelectric impedance conversion mode of photoelectric DC-DC power conversion; maximum photoelectric inverter current mode of photoelectric DC-DC power conversion ; maximum photoelectric power point mode of photoelectric DC-DC power conversion; photoelectric inverter operating condition of photoelectric DC-DC power conversion mode -81 - 201037958 state; mode state; state; mode state; state; Smaller state; and 1 6 9 . Such as Shenbu package combination photoelectric DC-DC power conversion photoelectric load impedance increase and photoelectric DC-DC power conversion photoelectric load impedance smaller mode photoelectric DC-DC power conversion subordinate maximum photoelectric power point mode photoelectric DC-DC power conversion Dependent Photoelectric Inverter Operating Conditions Photoelectric DC-DC Power Conversion Dependent Photoelectric Load Impedance Increase Mode Photoelectric DC-DC Power Conversion Dependent Photoelectric Load Impedance Reduction Mode Combination Dependent Photoelectric DC-DC Power Conversion Photoelectric Load Impedance Mode State and subordinate photoelectric DC-DC power conversion photoelectric load impedance mode; photoelectric DC-DC power conversion photoelectric boundary condition mode; photoelectric DC-DC power conversion after photoelectric element protection mode photoelectric DC-DC power conversion Photoelectric inverter protection mode; Photoelectric DC-DC power conversion photoelectric inverter adjusted mode; all the above items are arranged and combined. The method for generating solar energy in the scope of Patent No. 168, and the step of converting the modal response to at least one photoelectric power condition, is -82-201037958. 170.  The method for generating solar energy according to claim 169, wherein the step of responding to the conversion mode of the at least one photoelectric power condition comprises a step of triggering the threshold of the photoelectric DC-DC power conversion 171.  The method for generating solar energy according to claim 105 or 115, further comprising the steps of: converting the aforementioned DC photoelectric input multi-mode into a converted DC photoelectric output; and Ο multi-controlling the aforementioned photoelectric DC-DC converter The operation while its operation converts the aforementioned DC photoelectric input into the aforementioned converted DC photoelectric output. 172.  A method of producing solar energy according to claim 171, wherein the step of controlling the control operation of the photoelectric DC-DC converter by the multi-form includes the step of controlling the photoelectric boundary condition of the photoelectric DC-DC converter. 173.  The method for generating solar energy according to claim 172, wherein the step of controlling the control operation of the photoelectric DC-DC converter by the plurality of types further comprises: in addition to the foregoing steps of controlling boundary conditions of the photoelectric DC-DC converter The step of independently controlling the photoelectric operating conditions of the aforementioned photoelectric DC-DC converter. 174.  The method for generating solar energy according to claim 171, 172 or 173, wherein the step of controlling the control operation of the aforementioned photoelectric DC-DC converter by the multi-type control comprises controlling the maximum % electric inverter by the aforementioned photoelectric DC-DC converter Steps for input voltage output" -83- 201037958 175.  A method of producing solar energy according to claim 171, 172 or 173, wherein the step of controlling the control operation of the photoelectric DC-DC converter by the multi-type control comprises: converting the DC photoelectric input into a converted DC photoelectric output. The step of controlling the maximum photo-electrical output voltage proportional to the photo-electric output current at least several times. 176.  The method for generating solar energy according to claim 171, wherein the step of controlling the control operation of the photoelectric DC-DC converter by the multi-type includes the following steps: controlling a maximum photoelectric inverter input from the photoelectric DC-DC converter Slave control operates through the maximum photovoltaic power point of the aforementioned photoelectric DC-DC converter; and controls the maximum photoinverter input voltage of the aforementioned photoelectric DC-DC converter. 177. The method for producing solar energy according to claim 171, wherein the step of controlling the control operation of the photoelectric DC-DC converter by the multi-type includes the following steps: controlling a maximum photoelectric inversion from the photoelectric DC-DC converter The input is controlled by the aforementioned photoelectric DC-DC converter to control the photoelectric impedance increase and the photoelectric impedance reduction; and the maximum photoelectric inverter input voltage is controlled by the operation of the aforementioned photoelectric DC-DC converter. 178. A method of producing solar energy according to claim 171, wherein the step of controlling the control operation of the aforementioned photoelectric DC-DC converter comprises a step selected from the group consisting of: - converting the first mode of the DC power conversion and the second mode of the photoelectric DC-DC power conversion at least several times; increasing the photoelectric load impedance and reducing the photoelectric load impedance; controlling the photoelectric conversion boundary condition; transmitting the aforementioned photoelectric DC-DC Control of the converter to control the subsequent photoelectric operating conditions; protection of the subsequent photovoltaic elements by control of the aforementioned photoelectric DC-DC converter; substantially simultaneous power control operation of the aforementioned photoelectric DC-DC converter; The same photoelectric converter functional control circuit; the photoelectric conversion mode is disabled by the control of the photoelectric DC-DC converter; the photoelectric inverter is protected by the control of the photoelectric DC-DC converter; and the photoelectric DC-DC is controlled The converter is adjusted by the characteristics of the photoelectric inverter; the photoelectric conversion mode is controlled by the photoelectric DC-DC converter ; And through the photoelectric converter DC-DC photovoltaic inverter to control the dimple is attached photoelectric conversion mode. 179. The method of producing solar energy of -85-201037958, as claimed in claim 1, paragraph 1, 115 or 123, further comprising comparing solar power conversion between the first power capacitor and the second power capacitor. 180. The method of producing solar energy according to claim 179, wherein the step of comparing solar power conversion between the first power capacitor and the second power capacitor comprises the foregoing first power container and the aforementioned second power The step of converting between containers. 181.  A method of producing solar energy according to claim 180, wherein the step of converting between the aforementioned first power container and the aforementioned second power container comprises converting the aforementioned DC photoelectric input and the improved power conversion of the aforementioned DC photoelectric input in a conventional power conversion Steps to convert between steps. 182.  A method of producing solar energy according to claim 179 or 180, wherein the step of comparing solar energy conversion comprises the steps selected from the group consisting of: comparing solar energy output differences; comparing solar power differences; comparing solar cost differences; and comparing solar energy Sunshine use. 183.  A method of producing solar energy according to claim 181, wherein the step of the aforementioned improved power conversion of the aforementioned DC power input comprises the step of selecting from the group consisting of: between photoelectric DC-DC power conversion and photoelectric DC-DC power conversion Interactive conversion; converting the aforementioned DC optoelectronic input to a converted DC optoelectronic output at substantially the same power; and -86-201037958 converting the aforementioned DC optoelectronic input poly-type into a converted DC optoelectronic output. 184.  A method of producing solar energy according to claim 183, wherein the step of the aforementioned improved power conversion of the DC photoelectric input comprises the steps of: interrupting the transmission of the aforementioned photoelectric power transmission circuit in series so that they can each be in at least two separate semiconductors The switching position occurs; and η is coupled in parallel with the transmission of the aforementioned optoelectronic power transmitting circuitry such that they can each occur at at least two separate semiconductor switching locations. 185.  A method of producing solar energy as claimed in claim 1 or 5 or wherein the step of converting the aforementioned DC photoelectric input into a converted DC photoelectric output comprises converting the aforementioned DC photoelectric input into converted DC photoelectric at substantially the same power. Output. 186.  A method of producing solar energy according to claim 185, wherein the step of converting the aforementioned DC photoelectric input to a converted DC photoelectric output at substantially the same power comprises the step of converting the photoelectric circuit impedance at substantially the same power. 187.  A method of producing solar energy according to claim 186, wherein the step of converting the aforementioned DC photoelectric input to the converted DC photoelectric output comprises the additional step of converting between photoelectric DC-DC power conversion and photoelectric DC-DC power conversion. 188.  A method of producing solar energy according to claim 187, wherein the step of converting the aforementioned DC photoelectric input substantially at the same power as the step -87-201037958 comprises the step of switching the aforementioned DC photoelectric input by a static switch. 189.  A method of producing solar energy according to claim 186 or 187, wherein the foregoing step of converting substantially the same power comprises substantially the same power conversion, selected from the group consisting of: having an efficiency of at least about 97% Solar energy conversion, with at least about 97. 5% efficient solar energy conversion, solar energy conversion with at least about 98% efficiency, having at least about 98. 5% efficiency solar conversion, 〇 has at least about 97% up to about 99. 2% efficient solar conversion with at least about 97. 5% up to about 99. 2% efficient solar conversion, having at least about 98% up to about 99. 2% efficient solar conversion with at least about 98. 5% up to about 99. 2% efficient solar conversion, with a solar energy conversion of at least about 97% up to about the efficiency of wire transmission losses, 0 having at least about 97. 5% up to about the efficiency of wire transmission loss, solar energy conversion, solar energy conversion having an efficiency of at least about 98% up to about wire transmission loss, and having at least about 98. 5% up to about the efficiency of solar wire transmission loss of solar energy conversion. 190.  A method of producing solar energy according to claim 105, 115 or 123, wherein said converting said DC photoelectric input into converted DC light is -88-201037958 191 .   Ο 192.   193.   ❹ 1 94 The step of electrical output includes the maximum photoelectric power point conversion DC photoelectric input for the converted DC photoelectric output. The method for generating solar energy according to claim 190, wherein the step of converting the maximum photoelectric power point conversion DC photoelectric input into a converted DC photoelectric output comprises the steps of: calculating a photoelectric power parameter; and completing the aforementioned maximum photoelectric power point conversion DC In the step of photoelectrically inputting the converted DC photoelectric output, the aforementioned photoelectric power parameters are responsive. A method of producing solar energy according to claim 191, wherein the step of calculating the photoelectric power parameter comprises the step of calculating a photomultiplying power parameter. A method of producing solar energy according to claim 190, wherein the step of the aforementioned maximum photoelectric power point conversion DC photoelectric input being a converted DC photoelectric output comprises the step of causing a converted DC photoelectric output voltage, and wherein the aforementioned maximum photoelectric power point conversion The step of the DC optoelectronic input being the converted DC optoelectronic output includes independently converting the DC optoelectronic input to the converted DC optoelectronic output in a manner independent of the aforementioned converted DC photo-output voltage. A method of producing solar energy according to claim 193, wherein the step of generating a DC photo-electric output from the at least one solar source comprises the step of combining outputs from the plurality of electrically connected solar panels, including the aforementioned The steps and the foregoing steps therein, including the aforementioned step of physically converting the individual solar panels to -89-201037958 for the aforementioned DC photoelectric output" 195.  A method of producing solar energy according to claim 193, wherein the step of converting the DC photoelectric input into the converted DC photoelectric output comprises converting the aforementioned DC photoelectric input into the converted DC photoelectric output. 196.  A method of producing solar energy as claimed in claim 1, wherein the step of converting said DC photoelectric input comprises the step of task-circulating a photovoltaic DC-DC converter. / 197. A method of producing solar energy according to claim 196, wherein the step of circulating the power distribution photoelectric DC-DC converter comprises the step of converting the duty cycle to distribute the photoelectric DC-DC converter. 198.  The method for generating solar energy according to claim 197, wherein the step of converting the power distribution photoelectric DC-DC converter of the foregoing impedance conversion task comprises the step of selecting a group consisting of the following: a task cycle power distribution photoelectric DC-DC determined by the threshold Converter; > Frequency-changing distribution optoelectronic DC-DC converter; Pulse mode distribution opto-electronic DC-DC converter; and all the above arrangement and combination. 199.  The method for generating solar energy according to claim 196, wherein the step of circulating the power distribution photoelectric DC-DC converter comprises the following steps: the power distribution mode of the activated photoelectric DC-DC converter determined by the threshold; and the threshold Determining the distribution mode of the deactivated photoelectric DC-DC converter -90-201037958. 200.  The method for generating solar energy according to claim 196, wherein the step of the task of cyclically distributing the photoelectric DC-DC converter comprises the step of selecting a group consisting of: a solar-powered circuit, a cold-voltage-determined task, a cyclic distribution, an opto-electronic DC-DC converter ; solar maximum power point thermal voltage to determine the task of circulating power distribution photoelectric DC-DC converter; ^ maximum photoelectric voltage determination of the task cycle distribution photoelectric DC-DC converter; photoelectric inverter maximum current determination task cycle distribution optical DC-DC Converter; and all arrangements and combinations of the above. 201.  The method of producing solar energy according to claim 196, wherein the step of circulating the distributed photo-electrical DC-DC converter comprises the step of converting the maximum photoelectric power point DC photoelectric input into the converted DC photoelectric output ❹. 202.  The method for generating solar energy according to claim 201, wherein the step of the task of circulating the distributed photoelectric DC-DC converter comprises a task-cycle power distribution photoelectric DC-DC converter determined by a maximum voltage of the photoelectric inverter. 2〇 3. The method for generating solar energy according to claim 201 or 202, wherein the step of converting the maximum photoelectric power point DC photoelectric input into the converted DC photoelectric output comprises a maximum power point task cycle-91-201037958 distribution photoelectric DC- DC converter. 204.  The method for generating solar energy according to claims 201 to 203, wherein the step of the task of cyclically distributing the photovoltaic DC-DC converter comprises the step of the duty cycle of the photoelectric inverter to determine the duty cycle of the distributed DC-DC converter. 205.  A method of producing solar energy according to claims 201 to 204, wherein the step of the task cycle power distribution photoelectric DC-DC converter comprises a soft conversion photoelectric DC-DC converter. > 206. A method of producing solar energy according to claim 205, wherein the step of the soft-switching photoelectric DC-DC converter comprises establishing a task cycle in which a maximum photo-electric output voltage and a photoelectric output current are proportional. 207.  The method for generating solar energy according to claims 201 to 206, wherein the step of the task of periodically distributing the photovoltaic DC-DC converter comprises establishing an opposite photoelectric task cycle distribution mode in the radio and television DC-DC converter 208.  - A method substantially as hereinbefore described with reference to any of the accompanying examples. 209.  An apparatus substantially as hereinbefore described with reference to any of the accompanying examples. -92-
TW098112277A 2009-04-14 2009-04-14 Solar energy power system, vacillatory method of solar energy power creation, method of solar energy power conversion, efficient method of solar energy power creation and method of solar energy power creation TWI484746B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098112277A TWI484746B (en) 2009-04-14 2009-04-14 Solar energy power system, vacillatory method of solar energy power creation, method of solar energy power conversion, efficient method of solar energy power creation and method of solar energy power creation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098112277A TWI484746B (en) 2009-04-14 2009-04-14 Solar energy power system, vacillatory method of solar energy power creation, method of solar energy power conversion, efficient method of solar energy power creation and method of solar energy power creation

Publications (2)

Publication Number Publication Date
TW201037958A true TW201037958A (en) 2010-10-16
TWI484746B TWI484746B (en) 2015-05-11

Family

ID=44856869

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098112277A TWI484746B (en) 2009-04-14 2009-04-14 Solar energy power system, vacillatory method of solar energy power creation, method of solar energy power conversion, efficient method of solar energy power creation and method of solar energy power creation

Country Status (1)

Country Link
TW (1) TWI484746B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3176933A1 (en) * 2013-03-15 2017-06-07 Ampt, Llc High efficiency interleaved solar power supply system
US10032939B2 (en) 2009-10-19 2018-07-24 Ampt, Llc DC power conversion circuit
US10116140B2 (en) 2013-03-15 2018-10-30 Ampt, Llc Magnetically coupled solar power supply system
US10326283B2 (en) 2007-10-15 2019-06-18 Ampt, Llc Converter intuitive photovoltaic electrical energy power system
TWI708476B (en) * 2019-08-26 2020-10-21 中國鋼鐵股份有限公司 Pv system and method for measuring pv array
US10938219B2 (en) 2009-04-17 2021-03-02 Ampt, Llc Dynamic methods and apparatus for adaptive operation of solar power systems

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000020150A (en) * 1998-06-30 2000-01-21 Toshiba Fa Syst Eng Corp Solar power generation inverter device
DE10120595B4 (en) * 2000-04-28 2004-08-05 Sharp K.K. Solar Energy System
JP2002231578A (en) * 2001-01-30 2002-08-16 Meidensha Corp Device and tool for fitting electrolytic capacitor
US6914418B2 (en) * 2003-04-21 2005-07-05 Phoenixtec Power Co., Ltd. Multi-mode renewable power converter system
US7274975B2 (en) * 2005-06-06 2007-09-25 Gridpoint, Inc. Optimized energy management system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11070063B2 (en) 2007-10-15 2021-07-20 Ampt, Llc Method for alternating conversion solar power
US11070062B2 (en) 2007-10-15 2021-07-20 Ampt, Llc Photovoltaic conversion systems
US11289917B1 (en) 2007-10-15 2022-03-29 Ampt, Llc Optimized photovoltaic conversion system
US10326283B2 (en) 2007-10-15 2019-06-18 Ampt, Llc Converter intuitive photovoltaic electrical energy power system
US10608437B2 (en) 2007-10-15 2020-03-31 Ampt, Llc Feedback based photovoltaic conversion systems
US11228182B2 (en) 2007-10-15 2022-01-18 Ampt, Llc Converter disabling photovoltaic electrical energy power system
US10886746B1 (en) 2007-10-15 2021-01-05 Ampt, Llc Alternating conversion solar power system
US10938219B2 (en) 2009-04-17 2021-03-02 Ampt, Llc Dynamic methods and apparatus for adaptive operation of solar power systems
US10032939B2 (en) 2009-10-19 2018-07-24 Ampt, Llc DC power conversion circuit
US10714637B2 (en) 2009-10-19 2020-07-14 Ampt, Llc DC power conversion circuit
US11411126B2 (en) 2009-10-19 2022-08-09 Ampt, Llc DC power conversion circuit
EP3176933A1 (en) * 2013-03-15 2017-06-07 Ampt, Llc High efficiency interleaved solar power supply system
US11121556B2 (en) 2013-03-15 2021-09-14 Ampt, Llc Magnetically coupled solar power supply system for battery based loads
US10116140B2 (en) 2013-03-15 2018-10-30 Ampt, Llc Magnetically coupled solar power supply system
TWI708476B (en) * 2019-08-26 2020-10-21 中國鋼鐵股份有限公司 Pv system and method for measuring pv array

Also Published As

Publication number Publication date
TWI484746B (en) 2015-05-11

Similar Documents

Publication Publication Date Title
US11289917B1 (en) Optimized photovoltaic conversion system
Du et al. A novel solar panel optimizer with self-compensation for partial shadow condition
Walker et al. PV string per-module maximum power point enabling converters
KR101344024B1 (en) Maximum power tracking device using orthogonal perturbation signal and maximum power tracking control method thereof
TW201037958A (en) Systems for highly efficient solar power
AU2012332081A1 (en) System and method for power conversion for renewable energy sources
EP2951868B1 (en) Voltaic system and intelligent cell current converter technology
Bansal et al. Design of a DC-DC converter for photovoltaic solar system
Bhattacharya et al. A standalone solar photovoltaic power generation system with automated bidirectional battery charging discharging control
AU2016286182B2 (en) Energy management system for an energy generation system
Balakrishnan et al. PV-battery system for smart green building using transformer coupled DC-DC converter
CN106505945B (en) Method for operating a photovoltaic system
Huang et al. Fast switching reconfigurable photovoltaic modules integrated within dc-dc converters
Selvabharathi et al. Design of Stand Alone Photovoltaic System Using Three Port DC–DC Converter
WO2013098844A2 (en) Grid tie inverter
Zarkov DC-DC converter for interfacing PV panel to micro-inverter.
Kumar PV System Operation in Islanded Mode Based on Interleaved Boost Converter
Meshram et al. Design and Development of MPPT based Converter for Efficient Solar Power Conversion
Fathima et al. Improved DC bus voltage regulation for a DC distribution system using quasi Y source converter
Vemula et al. Modelling of Asymmetric Cascaded H-Bridge Multilevel inverter using PD-PWM technique for PV Systems
Saravanan et al. Solar powered low cost DC-DC converter based line frequency inverter for domestic lighting loads
NATH SOLAR PANEL
Sharma et al. Implementation of Perturb and Observe (P&O) Method to Track the Maximum Power Point Using Buck Converter
Seshadri Pithani et al. BESS based Multi input inverter for Grid connected hybrid pv and wind power system
Saikrishna et al. Hardware implementaion of 10w PV panel as STATCOM voltage compensation in a daytime distribution utility