TW201021906A - Manufacturing method of sol-gel solution for CIGS solar cell - Google Patents

Manufacturing method of sol-gel solution for CIGS solar cell Download PDF

Info

Publication number
TW201021906A
TW201021906A TW97146944A TW97146944A TW201021906A TW 201021906 A TW201021906 A TW 201021906A TW 97146944 A TW97146944 A TW 97146944A TW 97146944 A TW97146944 A TW 97146944A TW 201021906 A TW201021906 A TW 201021906A
Authority
TW
Taiwan
Prior art keywords
copper
manufacturing
agent
gallium
indium
Prior art date
Application number
TW97146944A
Other languages
Chinese (zh)
Inventor
Quan-Long Zhuang
Original Assignee
Jenn Feng Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jenn Feng Ind Co Ltd filed Critical Jenn Feng Ind Co Ltd
Priority to TW97146944A priority Critical patent/TW201021906A/en
Publication of TW201021906A publication Critical patent/TW201021906A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A manufacturing method of sol-gel solution for CIGS (Cu-In-Ga-Se) solar cell is provided. Compounds containing Cu, In, Ga, and Se are mixed and then blended with dispersant, adhesive, thinner, leveling agent, antifreeze, reducing agent, stabilizer, delayed condensation agent, metal complexes agent and metal extraction solvent. Heating and stirring are then applied and followed by stirring during cooling down until finally the sol-gel solution is formed. The produced sol-gel solution is provided for the thin film processing usages such as printing, spraying, immersing or spin coating to form CIGS absorption layer on the CIGS solar cell.

Description

201021906 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種太%能電池的製造方法,尤其是製造 銅銦鎵硒溶膠凝膠溶液的方法。 【先前技術】 隨著石化能源的逐漸枯竭,尋求穩定可靠的替代能源 ❹ 已是本世紀所有人類要面對的最大生存課題,而包括生質 能源、地熱能源、風力能源、核能的各種能源,在來源可 靠度、使用安全性、環境保護的考慮下,皆比不上取自太 陽光輻射的太陽能,因為在地球表面上皆能接收到太陽 光,且使用過程中只是將光能轉換成電能,而沒有任何污 染性的物質產生,因此太陽能是目前最為潔淨的替代能源。 太陽能電池係將太陽光之光能轉換成方便使用之電能 Ο 的裝置’在眾多太陽能電池中,銅銦鎵砸 (Copper/Indium/Gallium/Selenium,CIGS)太陽能電池由 於向吸光率與光電轉換效率的優異性能而漸漸獲得重視。 CIGS太陽能電池係由銅銦硒 (Copper/Indium/Selenium,CIS)太陽能電池演進而來。cis 太%能電池主要包括CuInSe2,係屬於直接遷移性半導體, 尤其吸光係數極高,CulnSe2的禁止帶幅(Eg)為leV,小於 最適用於太陽電池的1.4-1.5eV,因此與Eg=1.6eV的 201021906201021906 IX. Description of the Invention: [Technical Field] The present invention relates to a method for producing a solar cell, in particular, a method for producing a copper indium gallium selenide sol gel solution. [Prior Art] With the gradual depletion of petrochemical energy, the search for stable and reliable alternative energy sources is the biggest survival problem for all human beings in this century, including biomass energy, geothermal energy, wind energy, and nuclear energy. In terms of source reliability, safety of use, and environmental protection, it is not comparable to solar energy taken from solar radiation, because it can receive sunlight on the surface of the earth, and only converts light energy into electrical energy during use. Without any polluting substances, solar energy is currently the cleanest alternative energy source. Solar cells are devices that convert the light energy of sunlight into convenient power devices. In many solar cells, Copper/Indium/Gallium/Selenium (CIGS) solar cells have high absorbance and photoelectric conversion efficiency. The excellent performance has gradually gained attention. The CIGS solar cell evolved from a copper indium selenide (Copper/Indium/Selenium, CIS) solar cell. The cis too% energy battery mainly includes CuInSe2, which belongs to direct migration semiconductors, especially the absorption coefficient is very high. The forbidden band width (Eg) of CulnSe2 is leV, which is less than 1.4-1.5eV most suitable for solar cells, so Eg=1.6 eV's 201021906

CuGaSe2較高帶幅材料形成cu(InGa)Se2,亦即所謂的CIGS 混晶材料,以改善此一缺點。CiGS太陽能電池的光電效率 最高可達19%而模組的光電效率亦可達13%,且隨著錮鎵 含量的不同,光吸收範圍可從1〇2#至1.68^,因高達 1〇5cm1的吸光效率’所以厚度只需不到1 ,便有99%以 上的光子被吸收。 參閱第一圖,習用技術的CIGS太陽能電池之示意圖。 如第一圖所示’ CIGS太陽能電池1 一般包括玻璃基板1〇、 背面電極層20、CIGS吸光層30、緩衝層40以及透明電極 層50’其中背面電極層2〇係用以導電,一般是使用鉬金屬, CIGS吸光層30係p型半導體層,最主要的作用是吸光,緩 衝層40通常是使用硫倾(CdS),以形成n型半導體, 而透明電極層50主要氧化雜(Aluminum Zinc Oxide ’ AZO)、氧化鋅銦(Indium Zinc㈣如,IZ〇)或氧化 錫銦(IndiumTin 〇xide,⑽,具有高透光性以及導電性。 太陽光L如箭頭方向所示係由上而下射入nGS太陽能電池 1 ’穿透過透明電極層50以及緩衝層4〇而到達CIGS吸光 曰30 :呈CIGS吸光層3〇吸收後產生具電位能量的電洞電 子對’並分別由透明電極層50與背面電極層20傳導至外 部而提供電能。 201021906 參閱第二圖’習用技術的CIGS太陽能電池之製造流程 圖。如第二圖所示,首先在步驟S10中,使用金屬鉬靶材, 以磁控濺射法在玻璃基板上沉積出厚度約丨咖的背面電極 層’接著在步驟S20中,利用適當方法在背面電極層上沉 積出厚度約2醒的CIGS吸光層,並進入步驟S30,使用化 學水浴法(Chemical Bath Deposition,CBD),在 CIGS 吸 光層上形成緩衝層,通常是CdS,最後進入步驟S4G,以錢 鑛法或化學氣相沉積法,在緩衝層上形成透明電極,藉以 形成第一圖的CIGS太陽能電池之結構。 CIGS吸光層的製造方法包括蒸鍍法、濺鍍法、電化學沉積 法比及墨印法(Ink Coating) ’其中蒸鍍法、濺鍍法以及電 化學沉積法需要一系列的真空製程,造成硬體投資與製造 成本均相當高昂,而墨印法係由ISET公司(Internati〇nal Solar Electric Technology, Inc.)所開發的非真空技術, 利用奈米技術先備製奈米級金屬粉末或氧化物粉末,經適 畲溶劑混合後製成漿料,再以類似油墨製程(Ink Process) 將漿料配置在鉬金屬層上而形成CIGS吸光層,可大幅降低 製造成本。 然而,習用技術的缺點為’墨印法所需的奈米級金屬 粉末或氧化物粉末不容易製造,且製成漿料所需的溶劑也 不容易調配,使得墨印法缺乏來源穩定且可靠度高的原料。 201021906 因此,需要一種金屬粉末與溶劑之混合漿料的製造方 法’利用適當的混合製程,使不同的金屬粉末以及溶劑充 分均勻混合,以解決習用技術的缺點。 【發明内容】 本發明之主要目的在提供一種溶膠凝膠溶液的製造方 法’利用預先混合製程’將包含銅、姻、錄與砸的化合物 φ 混合成金屬化合物混合物,將稀釋劑加入分散劑中形成稀 釋分散劑,將黏著劑、流平劑以及穩定劑混合成穩定黏著 劑’將防凍劑與延遲凝結劑混合成防凍凝結劑,將還原劑、 金屬絡合劑以及提煉金屬溶劑混合成金屬還原劑,接著混 合金屬化合物混合物、稀釋分散劑、穩定黏著劑、防珠凝 結劑以及金屬還原劑,並進行加熱授拌,再進行降溫挽拌, 最後經冷卻而形成溶膠凝膠(Sol-Gel)溶液,供墨印法在位 〇 於玻璃基板上的金屬薄膜層上,形成CIGS太陽能電池的 CIGS吸光層。 因此,藉由本發明所提供的方法,可提供具適當金屬 比例的溶膠凝膠溶液給供墨印法,以形成所需的cigs吸光 層,因此能解決上述習知技術的所有缺點。 【實施方式】 以下配合圖式及元件符號對本發明之實施方式做更詳 細的說明,俾使熟習該項技藝者在研讀本說明書後能據以 201021906 實施。 參閱第三圖,本發明CIGS太陽能電池之溶膠凝膠溶液 的製造方法流程圖。如第三圖所示,首先由步驟S110開始, 在步驟S110中’進行預先混合操作,將包含銅、銦、鎵與 石西的化合物混合成金屬化合物混合物,將稀釋劑加入分散 劑中形成稀釋分散劑,將黏著劑、流平劑以及穩定劑混合 成穩定黏著劑,將防凍劑與延遲凝結劑混合成防凍凝結 劑,將還原劑、金屬絡合劑以及提煉金屬溶劑混合成金屬 還原劑,接著進入步驟S120。在步驟S120中,進行進階混 合操作,將銅銦鎵砸金屬化合物混合物、稀釋分散劑、穩 定黏著劑、防凍凝結劑以及金屬還原劑混合成進階混合 物,進入步驟S130。在步驟Si30中,將進階混合物的溫度 上升至第一預設溫度,進行加熱攪拌,持續第一預設時間, 其中第-預*溫度為1GGX:至135X:,第-預設時間為3〇 分至2小時。㈣進人麵S14Q,將進階混合物的溫度下 降到第二預奶显度,進行加紐拌,持續第二職時間, 其中第二預設溫度為耽至⑽。c,而第二預設時間為加 分至2小時’最後進入步驟S15G,經冷卻後得到所需的溶 膠凝膠溶液。 步驟S11G中的金屬化合物混合物係包括魏亞銅 (CU2Se)、砸化銦(Ιη&3)、砸化鎵(Ga2Se〇、硫化亞銅 9 201021906 (C112S)、硫化銦(ImSs)、硫化鎵(Ga2Ss)、二碼化銅銦鎵 (CuInGaSe2)、二硫化銅銦鎵(CuInGaS2)、二硫化銅銦 (CuInS〗)、二砸化銅銦(CuInSe2)、二硫化銅鎵(cuGaS2)、 -一砸化銅錄(CuGaSeO、二硫化銅銘(CuAlS2)、二砸化銅 銦銘(CuInAlSe2)、硫化鈉(toS)、醋酸銅、醋酸姻、醋酸 鎵、硫酸銅、硫酸錮、硫酸鎵、氣化銅、氯化銦、氯化鎵 以及亞硒酸的至少其中一。 此外’在稀釋分散劑中,稀釋劑包括去離子水以及二 曱氧基乙醇的至少其中之一,而分散劑包括聚丙烯酸以及 聚乙烯酸的至少其中之一。在穩定黏著劑中,黏著劑包括 聚丙稀酸胺以及聚乙烯酰胺的至少其中之一,流平劑包括 聚丙烤酸酯以及乙酸的至少其中之一,而穩定劑包括二乙 醇胺、乙醇胺、乙二醇以及丙二醇的至少其中之一。在防 凍凝結劑中’防凍劑包括乙醇以及異丙醇的至少其中之 一,而延遲凝結劑包括冰醋酸以及草酸的至少其中之一。 在金屬還原劑中’還原劑包括氨水、氫氧化鈉、氫氧化鉀 以及檸檬酸鈉的至少其中之一,金屬絡合劑包括乙酰丙 酮’而提煉金屬溶劑包括乙二酸。 本發明的製造方法所製造的溶膠凝膠溶液,可供墨印 法、喷塗法、浸泡法或旋轉塗佈法使用,藉以形成CIGS太 1%月b電池的CIGS吸光層,因此,本發明的製造方法能提升 201021906 整體CIGS太·電池的製造辟,鱗健造成本。 以上所述者僅為用贿釋本翻之健實施例,並非 企圖據輯本發任倾之關,是以,凡有在相 同之發明精神下所作有關本發明之任何修飾或變更,皆仍 應包括在本發明意圖保護之範疇。 【圖式簡單說明】 % 第一圖為顯示習用技術的CIGS太陽能電池之示意圖。 第二圖為顯示習用技術的c〖GS太陽能電池之製造流程圖。 第二圖為顯示本發明CIGS太陽能電池之溶膠凝膠溶液的製 造方法流程圖。 【主要元件符號說明】 1 CIGS太陽能電池 10玻璃基板 20背面電極層 30 CIGS吸光層 40緩衝層 50透明電極層 L光線 S10在玻璃基板上沉積出背面電極層 S20在背面電極層上沉積出CIGS吸光層 S30在CIGS吸光層上形成緩衝層 11 201021906 S40在緩衝層上形成透明電極層 S110預先混合 S120進階混合 S130加熱攪拌 S140降溫攪拌 S150冷卻The higher band width material of CuGaSe2 forms cu(InGa)Se2, also known as CIGS mixed crystal material, to improve this disadvantage. The photoelectric efficiency of CiGS solar cells is up to 19% and the photoelectric efficiency of the modules can reach 13%. With the different gallium content, the light absorption range can range from 1〇2# to 1.68^, as up to 1〇5cm1. The light absorption efficiency 'so that the thickness is less than one, more than 99% of the photons are absorbed. Referring to the first figure, a schematic diagram of a conventional CIGS solar cell. As shown in the first figure, the CIGS solar cell 1 generally includes a glass substrate 1 〇, a back electrode layer 20, a CIGS light absorbing layer 30, a buffer layer 40, and a transparent electrode layer 50', wherein the back electrode layer 2 is used for conducting electricity, generally Using molybdenum metal, the CIGS light absorbing layer 30 is a p-type semiconductor layer, the most important function is to absorb light, the buffer layer 40 is usually using sulfur tilting (CdS) to form an n-type semiconductor, and the transparent electrode layer 50 is mainly oxidized (Aluminum Zinc) Oxide ' AZO), indium zinc oxide (Indium Zinc (IV), for example, IZ〇) or indium tin oxide (Indium Tin 〇xide, (10), has high light transmittance and conductivity. The sunlight L is shot from top to bottom as indicated by the direction of the arrow. The nGS solar cell 1 'passes through the transparent electrode layer 50 and the buffer layer 4 〇 to reach the CIGS light absorbing 曰 30: after the absorption of the CIGS light absorbing layer 3 产生, a hole electron pair with potential energy is generated and is respectively composed of the transparent electrode layer 50 and The back electrode layer 20 is conducted to the outside to provide electrical energy. 201021906 Referring to the second figure, the manufacturing flow chart of the CIGS solar cell of the conventional technology. As shown in the second figure, first, in step S10, the metal molybdenum target is used. Depositing a back electrode layer having a thickness of about 20,000 on the glass substrate by magnetron sputtering. Then, in step S20, a CIGS light absorbing layer having a thickness of about 2 awake is deposited on the back electrode layer by an appropriate method, and the steps are advanced. S30, using a Chemical Bath Deposition (CBD), forming a buffer layer on the CIGS light absorbing layer, usually CdS, and finally proceeding to step S4G to form a transparent electrode on the buffer layer by money or chemical vapor deposition. The structure of the CIGS solar cell is formed by the first figure. The manufacturing method of the CIGS light absorbing layer includes an evaporation method, a sputtering method, an electrochemical deposition method, and an ink plating method (Ink Coating), wherein the evaporation method and the sputtering method are used. And electrochemical deposition requires a series of vacuum processes, resulting in high hardware investment and manufacturing costs, and the ink-printing method is developed by ISET (Internati〇nal Solar Electric Technology, Inc.) using non-vacuum technology. Nano technology prepares nano-sized metal powder or oxide powder, which is mixed into a slurry by suitable solvent, and then matched with an ink process (Ink Process). The formation of a CIGS light absorbing layer on the molybdenum metal layer can greatly reduce the manufacturing cost. However, the disadvantage of the conventional technique is that the nano-sized metal powder or oxide powder required for the ink printing method is not easy to manufacture and is made into a slurry. The solvent required is not easy to formulate, so that the ink printing method lacks a source of stable and reliable source. 201021906 Therefore, there is a need for a method for producing a mixed slurry of a metal powder and a solvent 'using a suitable mixing process to make different metals The powder and the solvent are thoroughly and uniformly mixed to solve the disadvantages of the conventional technique. SUMMARY OF THE INVENTION The main object of the present invention is to provide a method for producing a sol-gel solution, which uses a pre-mixing process to mix a compound φ containing copper, a mixture, and a ruthenium into a metal compound mixture, and a diluent is added to the dispersant. Forming a diluted dispersant, mixing the adhesive, leveling agent and stabilizer into a stable adhesive. Mixing the antifreeze with the delayed coagulant into an antifreeze coagulant, mixing the reducing agent, the metal complexing agent and the refining metal solvent into a metal reducing agent Then, the metal compound mixture, the diluted dispersant, the stabilizing adhesive, the anti-bead coagulant, and the metal reducing agent are mixed, heated and mixed, and then cooled and mixed, and finally cooled to form a Sol-Gel solution. The ink supply method is formed on the metal thin film layer on the glass substrate to form a CIGS light absorbing layer of the CIGS solar cell. Thus, by the method provided by the present invention, a sol-gel solution having a suitable metal ratio can be provided for ink supply to form a desired cigs absorptive layer, thereby solving all of the above-mentioned drawbacks of the prior art. [Embodiment] Hereinafter, the embodiments of the present invention will be described in more detail with reference to the drawings and the reference numerals, so that those skilled in the art can implement the invention according to 201021906 after studying the present specification. Referring to the third figure, a flow chart of a method for producing a sol-gel solution of a CIGS solar cell of the present invention. As shown in the third figure, starting from step S110, in step S110, 'premixing operation is performed, a compound containing copper, indium, gallium and lithus is mixed into a metal compound mixture, and a diluent is added to the dispersing agent to form a dilution. a dispersing agent, which mixes an adhesive, a leveling agent and a stabilizer into a stable adhesive, mixes the antifreeze with a delayed coagulant into an antifreeze coagulant, and mixes the reducing agent, the metal complexing agent and the metallizing solvent into a metal reducing agent, and then Go to step S120. In step S120, an advanced mixing operation is performed to mix the copper indium gallium antimony metal compound mixture, the diluted dispersant, the stabilizing adhesive, the antifreeze coagulant, and the metal reducing agent into the advanced mixture, and the process proceeds to step S130. In step Si30, the temperature of the advanced mixture is raised to a first preset temperature, and heating and stirring are performed for a first preset time, wherein the first pre-* temperature is 1GGX: to 135X:, and the first-preset time is 3. The score is 2 hours. (4) Entering the human face S14Q, the temperature of the advanced mixture is lowered to the second pre-milk degree, and the doubling is continued for the second job time, wherein the second preset temperature is 耽 to (10). c, and the second predetermined time is the addition to 2 hours'. Finally, the process proceeds to step S15G, and after cooling, the desired sol gel solution is obtained. The metal compound mixture in the step S11G includes copper (CU2Se), indium antimonide (Ιη & 3), gallium antimonide (Ga2Se, copper sulfide 9 201021906 (C112S), indium sulfide (ImSs), gallium sulfide ( Ga2Ss), CuInGaSe2, CuInGaS2, CuInS, CuInS, CuInSe2, CuGaS2, -1砸化铜录(CuGaSeO, copper disulfide (CuAlS2), copper indium bismuth (CuInAlSe2), sodium sulfide (toS), copper acetate, acetic acid, gallium acetate, copper sulfate, barium sulfate, gallium sulfate, gas At least one of copper, indium chloride, gallium chloride, and selenite. Further, in the diluted dispersant, the diluent includes at least one of deionized water and dimethoxyethanol, and the dispersant includes poly At least one of acrylic acid and polyvinyl acid. In the stable adhesive, the adhesive includes at least one of polyacrylamide and polyvinyl amide, and the leveling agent includes at least one of polyacrylic acid ester and acetic acid. Stabilizers include diethanolamine, ethanolamine, and B. At least one of an alcohol and propylene glycol. In the antifreeze coagulant, the antifreeze agent includes at least one of ethanol and isopropyl alcohol, and the delayed coagulant includes at least one of glacial acetic acid and oxalic acid. The reducing agent includes at least one of ammonia water, sodium hydroxide, potassium hydroxide, and sodium citrate, the metal complexing agent includes acetylacetone', and the metal solvent is extracted including oxalic acid. The sol-gel solution produced by the manufacturing method of the present invention. It can be used by ink printing method, spray coating method, immersion method or spin coating method to form a CIGS light absorbing layer of CIGS too 1% month b battery. Therefore, the manufacturing method of the present invention can improve the overall CIGS solar battery of 201021906. The invention is based on the practice of using bribes to release the book. It is not an attempt to make a copy of the law. It is the case that the invention is made under the same invention spirit. Any modification or modification shall be included in the scope of the intention of the present invention. [Simplified illustration] % The first figure shows the CIGS solar cell showing the conventional technology. The second figure is a manufacturing flow chart showing the c GS solar cell of the conventional technology. The second figure is a flow chart showing the manufacturing method of the sol gel solution of the CIGS solar cell of the present invention. [Main component symbol description] 1 CIGS solar energy Battery 10 Glass substrate 20 Back electrode layer 30 CIGS light absorbing layer 40 Buffer layer 50 Transparent electrode layer L Light S10 deposits a back electrode layer S20 on a glass substrate. A CIGS light absorbing layer S30 is deposited on the back electrode layer to form a buffer on the CIGS light absorbing layer. Layer 11 201021906 S40 forms a transparent electrode layer on the buffer layer S110 premixes S120 advanced mixing S130 heating stirring S140 cooling stirring S150 cooling

1212

Claims (1)

201021906 十、申請專利範圍: 1· 一種銅銦鎵硒太陽能電池之溶膠凝膠溶液的製造方法, 用以形成一溶膠凝膠溶液,供一薄膜製造法形成一銅銦 鎵石西太陽能電池的一鋼銦鎵砸吸光層,該製造方法包括 以下步驟: 步驟A :進行一預先混合操作,形成一銅銦鎵鍤金屬化合物 混合物、一稀釋分散劑、一穩定黏著劑、一防凍凝結劑以及 ❿ 一金屬還原劑,進入步驟B ; 步驟B :將該銅銦鎵硒金屬化合物混合物、稀釋分散劑、穩 定黏著劑、防凍凝結劑以及金屬還原劑混合成一進階混合 物,進入步驟C ; 步驟C :將該進階混合物加熱到一第一預設溫度,接著進行 一第一預設時間的一第一攪拌操作,進入步驟D ; 步驟D .降溫到一第二預設溫度,進行一第二預設時間的一 & 第二攪拌操作,進入步驟E ;以及 步驟E :冷卻而形成該溶膠凝膠溶液。 2. 依據申請專利範圍第1項所述之方法,其中該薄膜製造 法為一墨印法、一喷塗法、一浸泡法或一旋轉塗佈法。 3. 依據申請專利範圍第1項所述之方法,其中該銅銦鎵硒 金屬化合物混合物包括硒化亞銅、硒化銦、硒化錄、硫 化亞銅、硫化銦、硫化鎵、二硒化銅銦鎵、二硫化銅銦 鎵、二硫化銅銦、二硒化銅銦、二硫化銅鎵、二砸化銅 13 201021906 録、二硫化銅銘、二石西化銅銦銘、硫化納、醋酸銅、醋 酸銦、醋酸鎵、硫酸銅、硫酸銦、硫酸鎵、氯化銅、氯 化銦、氯化鎵以及亞硒酸的至少其中之_。 4.依據申請專利範圍第1項所述之製造方法,其中該稀釋 为散劑包括一稀釋劑以及一分散劑,該稀釋劑包括去離 子水以及二曱氧基乙醇的至少其_之—,而該分散劑包 ^ 括聚丙浠酸以及聚乙烯酸的至少其中之一。 5·依據申請專利範圍第丨項所述之製造方法,其中該穩定 黏著劑包括-黏著劑、-流平劑以及一穩定劑,該黏著 劑包括聚丙烯酰胺以及聚乙烯酰胺的至少其中之一,該 流平劑包括聚丙烯酸酯以及乙酸的至少其中之一,該穩 定劑包括二乙醇胺、乙醇胺、乙二醇以及丙二醇的至少 其中之一。 ^ 6·依據申請專利範圍第1項所述之製造方法,其中該防凍 凝結劑包括一防凍劑以及一延遲凝結劑,該防凍劑包括 乙醇以及異丙醇的至少其中之一,該延遲凝結劑包括冰 醋酸以及草酸的至少其中之一。 7.依據申請專利範圍第1項所述之製造方法,其中該金屬 還原劑包括一還原劑、一金屬絡合劑以及一提煉金屬溶 劑,該還原劑包括氨水、氫氧化鈉、氫氧化舒以及檸檬 酸鈉的至少其中之一,該金屬絡合劑包括乙酰丙酮,該 201021906 提煉金屬溶劑包括乙二酸。 8. 依據申請專利範圍第1項所述之製造方法,其中該步驟C 的第一預設溫度係100°C至135°C。 9. 依據申請專利範圍第1項所述之製造方法,其中該步驟C 的第一預設時間係30分至2小時。 10. 依據申請專利範圍第1項所述之製造方法,其中該步驟 D的第二預設溫度係70°C至90°C。 11. 依據申請專利範圍第1項所述之製造方法,其中該步驟 D的第二預設時間係30分至2小時。 15201021906 X. Patent application scope: 1. A method for preparing a sol-gel solution of a copper indium gallium selenide solar cell, which is used to form a sol-gel solution for forming a copper indium gallium-depleted solar cell by a film manufacturing method The steel indium gallium antimony light absorbing layer comprises the following steps: Step A: performing a pre-mixing operation to form a copper indium gallium antimony metal compound mixture, a dilute dispersing agent, a stabilizing adhesive, an antifreeze coagulant, and a crucible Metal reducing agent, proceeding to step B; Step B: mixing the copper indium gallium selenide metal compound mixture, the diluted dispersing agent, the stabilizing adhesive, the antifreeze coagulating agent and the metal reducing agent into an advanced mixture, and proceeding to step C; Step C: The advanced mixture is heated to a first preset temperature, and then a first stirring operation of a first predetermined time is performed, and the process proceeds to step D; step D. cooling down to a second preset temperature, and performing a second preset The second & second agitation operation proceeds to step E; and step E: cools to form the sol gel solution. 2. The method according to claim 1, wherein the film manufacturing method is an ink printing method, a spray coating method, a immersion method or a spin coating method. 3. The method according to claim 1, wherein the copper indium gallium selenide metal compound mixture comprises cuprous selenide, indium selenide, selenium, cuprous sulfide, indium sulfide, gallium sulfide, and selenization. Copper indium gallium, copper indium gallium disulfide, copper indium disulfide, copper indium diselenide, copper disulfide gallium, copper disulfide 13 201021906 Record, copper disulfide, two stone copper indium, sodium sulfide, acetic acid At least one of copper, indium acetate, gallium acetate, copper sulfate, indium sulfate, gallium sulfate, copper chloride, indium chloride, gallium chloride, and selenite. 4. The manufacturing method according to claim 1, wherein the dilute to a powder comprises a diluent and a dispersing agent, and the diluent comprises at least one of deionized water and dimethoxyethanol. The dispersing agent comprises at least one of polyacrylic acid and polyvinyl acid. 5. The manufacturing method according to claim 2, wherein the stabilizing adhesive comprises an adhesive, a leveling agent, and a stabilizer, the adhesive comprising at least one of polyacrylamide and polyvinyl amide. The leveling agent includes at least one of a polyacrylate and an acetic acid, the stabilizer comprising at least one of diethanolamine, ethanolamine, ethylene glycol, and propylene glycol. The manufacturing method according to claim 1, wherein the antifreeze coagulant comprises an antifreeze agent and a delayed coagulant, the antifreeze agent comprising at least one of ethanol and isopropyl alcohol, the delayed coagulant At least one of glacial acetic acid and oxalic acid is included. 7. The manufacturing method according to claim 1, wherein the metal reducing agent comprises a reducing agent, a metal complexing agent and a refining metal solvent, the reducing agent comprising ammonia water, sodium hydroxide, hydroxide and lemon. At least one of the sodium complexes, the metal complexing agent comprises acetylacetone, and the 201021906 refined metal solvent comprises oxalic acid. 8. The manufacturing method according to claim 1, wherein the first preset temperature of the step C is 100 ° C to 135 ° C. 9. The manufacturing method according to claim 1, wherein the first preset time of the step C is 30 minutes to 2 hours. 10. The manufacturing method according to claim 1, wherein the second preset temperature of the step D is 70 ° C to 90 ° C. 11. The manufacturing method according to claim 1, wherein the second predetermined time of the step D is 30 minutes to 2 hours. 15
TW97146944A 2008-12-03 2008-12-03 Manufacturing method of sol-gel solution for CIGS solar cell TW201021906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97146944A TW201021906A (en) 2008-12-03 2008-12-03 Manufacturing method of sol-gel solution for CIGS solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97146944A TW201021906A (en) 2008-12-03 2008-12-03 Manufacturing method of sol-gel solution for CIGS solar cell

Publications (1)

Publication Number Publication Date
TW201021906A true TW201021906A (en) 2010-06-16

Family

ID=44832830

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97146944A TW201021906A (en) 2008-12-03 2008-12-03 Manufacturing method of sol-gel solution for CIGS solar cell

Country Status (1)

Country Link
TW (1) TW201021906A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI423453B (en) * 2010-11-03 2014-01-11 Univ Nat Cheng Kung Electro-deposition system of solar cell device and method thereof
CN109904258A (en) * 2019-03-06 2019-06-18 常州沃兰特电子有限公司 A kind of preparation method of high compactness copper indium gallium selenium solar cell thin-film material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI423453B (en) * 2010-11-03 2014-01-11 Univ Nat Cheng Kung Electro-deposition system of solar cell device and method thereof
CN109904258A (en) * 2019-03-06 2019-06-18 常州沃兰特电子有限公司 A kind of preparation method of high compactness copper indium gallium selenium solar cell thin-film material

Similar Documents

Publication Publication Date Title
US7922804B2 (en) Method for preparing sol-gel solution for CIGS solar cell
TW200937644A (en) Improved photovoltaic device with solution-processed chalcogenide absorber layer
US20110143492A1 (en) Method of p-type doping of cadmium telluride
US20100243043A1 (en) Light Absorbing Layer Of CIGS Solar Cell And Method For Fabricating The Same
US20110143493A1 (en) Method of making photovoltaic cell
CN110429145A (en) A kind of antimony selenide thin film solar cell and preparation method thereof
CN112490315A (en) Cadmium telluride solar cell and preparation method thereof
Li et al. CZTSSe solar cells: insights into interface engineering
Saha A Status Review on Cu2ZnSn (S, Se) 4‐Based Thin‐Film Solar Cells
CN109148641A (en) The method of modifying of copper zinc tin sulfur selenium thin-film solar cells and preparation method thereof and back electrode
CN102074592A (en) Light absorption layer of copper indium gallium selenide (CIGS) solar cell and manufacturing method thereof
CN108400184B (en) Preparation method and application of indium-doped CZTSSe film
KR101219835B1 (en) Solar cell apparatus and method of fabricating the same
CN104241439A (en) Method for preparing cadmium telluride thin-film solar cell
CN103572229A (en) Preparation method of flexible base material and thin film for vacuum reel-to-reel coating
TW201021906A (en) Manufacturing method of sol-gel solution for CIGS solar cell
Siqin et al. Cu2ZnSn (S, Se) 4 solar cells with over 10% power conversion efficiency enabled by dual passivation strategy
KR20120121210A (en) Solar cell apparatus and method of fabricating the same
CN102074614B (en) Method for preparing sol-gel solution of copper-indium-gallium-selenium solar battery
CN111489958B (en) Copper indium gallium selenium absorbing layer prepared by low-temperature printing ink method
KR101584072B1 (en) Non-vacuum Process Method of Thin film using Carbon Layer as Diffusion Barier Film
CN105047737B (en) CIGS-based thin film solar cell manufacturing method
KR101262529B1 (en) Solar cell and method of fabricating the same
Luo et al. Recent Progress on Cu2BaSn (SxSe1–x) 4: From Material to Solar Cell Applications
Li et al. Cu (In, Ga) Se2 solar cells with double layered buffers grown by chemical bath deposition