TW201016068A - Methods for responding to co-located coexistence (CLC) request from a mobile electronic device and communications apparatuses - Google Patents

Methods for responding to co-located coexistence (CLC) request from a mobile electronic device and communications apparatuses Download PDF

Info

Publication number
TW201016068A
TW201016068A TW098129854A TW98129854A TW201016068A TW 201016068 A TW201016068 A TW 201016068A TW 098129854 A TW098129854 A TW 098129854A TW 98129854 A TW98129854 A TW 98129854A TW 201016068 A TW201016068 A TW 201016068A
Authority
TW
Taiwan
Prior art keywords
radio
radio module
clc
module
communication device
Prior art date
Application number
TW098129854A
Other languages
Chinese (zh)
Other versions
TWI397338B (en
Inventor
Chi-Chen Lee
I-Kang Fu
Li-Chun Ko
Hong-Kai Hsu
Chih-Hao Yeh
Jiun-Jang Su
Original Assignee
Mediatek Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41796754&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW201016068(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mediatek Inc filed Critical Mediatek Inc
Publication of TW201016068A publication Critical patent/TW201016068A/en
Application granted granted Critical
Publication of TWI397338B publication Critical patent/TWI397338B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1685Details of the supervisory signal the supervisory signal being transmitted in response to a specific request, e.g. to a polling signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies

Abstract

A communications apparatus is provided. A first radio module provides a first wireless communications service and communicates with a first communications device in compliance with a first protocol. A second radio module provides a second wireless communications service and communicates with a second communications device in compliance with a second protocol. A Co-Located Coexistence radio manager detects activities of the first radio modules, obtains a first traffic pattern describing downlink and/or uplink traffic allocations of the first radio module from the first radio module, and generates a second traffic pattern of the second radio module according to the first traffic pattern to coordinate operations of the first and second radio modules. The second traffic pattern describes recommended downlink and/or uplink traffic allocations to a plurality of sub-frames for the second radio module, and each sub-frame defined by the second protocol includes Orthogonal Frequency Division Multiplexing symbols.

Description

201016068 , ·· 六、發明說明: 相關申請的交叉引用 本申請主張於2008年9月5日提交的美國臨時專利 申請第61/094,542號(名稱為“用於無線通信系統的多個無 線電並存模組控制架構”)的權益,且此專利申請在此全部 引用作為參考。 【發明所屬之技術領域】 本發明有關於協調通信裝置中多個無線通信服務運 作的方法,尤其有關於協調通信裝置中多個無線通信服務 的運作以避免信號干擾的方法。 【先前技術】 隨著無線通信技術的發展,行動電子設備可配備多個 無線通信服務,比如藍芽(Bluetooth)、無線高保真(Wireless Fidelity,簡稱WiFi)、全球互通微波存取(Worldwide Interoperability for Microwave Access,簡稱 WiMAX)無線 通信服務等。就這點而言,不同無線通信服務間重疊或鄰 近的操作頻帶導致了傳輸性能的退化。如下表1顯示了 WiMAX、WiFi和藍芽無線通信服務的操作頻帶。 表1無線通信服務分類 用途 無線通信服務 1頻帶 廣域網路 2.300-2.400 GHz (Wide Area WiMAX 2.496-2.690 GHz Network, WAN) 3.300-3.800 GHz 0758-A34330TWF MTKI-09-113 4 201016068 區域網路 (Local Area Network, LAN) WiFi 2.412-2.4835 GHz 4.9-5.9 GHz 個人網域網路 (Personal Area Network, PAN) 藍芽 2.402-2.480 GHz 如表1所示,WiFi和藍芽的頻帶彼此重疊。此外, ® WiFi和藍芽的頻帶與WiMAX的頻帶相鄰近。當將這些無 線通信服務整合到一個行動電子設備中時,不同無線通信 服務的同時傳輸和接收會導致傳輸干擾。 因此,急需一種協調通信裝置中多個無線通信服務運 作的方法。 【發明内容】 本發明提供回應行動電子設備之共址並存請求的通 ❹ 信裝置及方法。通信裝置的一個實施例包括:第一無線電 模組、第二無線電模組以及共址並存無線電管理器。第一 無線電模組提供第一無線通信服務並遵照第一協定與第一 通信設備通信;第二無線電模組提供第二無線通信服務並 遵照第二協定與第二通信設備通信;共址並存無線電管理 器偵測所述第一無線電模組的活動、從所述第一無線電模 組獲取第一訊務樣式,以及根據所述第一訊務樣式產生所 述第二無線電模組的第二訊務樣式,以協調所述第一無線 電模組與所述第二無線電模組的操作’所述第二訊務樣式 0758-A34330TWF MTKI-09-113 201016068 向所述第二無線電模組的多個子訊框描述推薦的下行鍵路 及/或上行鏈路訊務分配,以及其中所述第二協定定義的每 個子訊框包括多個正交頻分多工符號。 通信裝置的另一個實施例包括第一無線電模組與第 二無線電模組。第一無線電模組提供一第一無線通信服務 並遵照第一協定與第一通信設備通信;第二無線電模組提 供第二無線通信服務並遵照第二協定與第二通信設備通 信、進入學習階段並將第一請求訊息傳輪至所述第二通= 設備以請求離開-個時間段來支持所述第—無線電模組二 初始設置或連接設置操作。 從行動電子設備回應共址並存請求方法的一個 例,所述行動電子設備包括第一無線電模組和第二無 模組,且所述方法由基地台所執行,所述方法包括了二-述行動電子設備接枚共址並存請求,其請求訊務的_ = 間段給所述第二無線電模組,以防止與所述第— # 組的操作_干擾;以及當錢求的時間段傳料料至二 述第一無線電模組時,增強傳輸穩定性。 以下為根衫㈣柄本發明讀佳實施 細描述。 -N汁 【實施方式】 以下說明本發明的最佳實施方式。 明本發明之用,並非用以限制 描述為咩細畜 當視後附之巾請專利所界定者為準。0㈣保護範S 隨著無線11信技賴衫,提供缝通信服務& 0758-A34330TWF_MTKI-09-l 13 201016068 無線電模組可在一行動電子設備中共址且並存。第1圖是 根據本發明一個實施例的多個無線電通信系統的架構示意 圖。行動電子設備100可以是筆記型電腦、行動電話、可 攜式遊戲設備、可攜式多媒體播放器、全球定位系統(Global Positioning System,GPS)、接收機等。行動電子設備1〇〇 包括多個用於提供不同無線通信服務的無線電模組。舉例 來說’行動電子設備100可包括IEEE 802.11無線電模組 101、IEEE 802.16 無線電模組 102、IEEE 802.15.1 無線電 Φ 模組 1〇3、共址並存(Co-located Coexistence, CLC)無線電管 理器104。遵照IEEE 802.11協定’ IEEE 802.11無線電模 組101經由空氣介面(air interface)與IEEE 802.11設備201 通信。例如’ IEEE 802.11設備201可以是IEEE 802.11基 地台(Base Station,BS)、存取點(Access Point, AP)或工作站 (Station, STA)。IEEE 802.11無線電模組1〇1可以是和路由 器一樣運作的IEEE 802.11 BS、AP或STA,以便賦能IEEE 802.11設備201通過IEEE 802.16設備202連接至網際網 ❹ 路。遵照IEEE 802.16協定,IEEE 802.16無線電模組102 經由空氣介面與IEEE 802.16設備202通信。例如,IEEE 802.16設備202可以是IEEE 802.16 BS或中繼站(Relay Station, RS)。遵照 IEEE 802.15.1 協定,IEEE 802.15.1 無 線電模組103經由空氣介面與IEEE 802.15.1設備203通 信。例如’ IEEE 802.15.1設備203可以是藍芽耳機。CLC 無線電管理器104在IEEE 802.16無線電模組102與CLC 無線電模組之間提供介面並偵測IEEE 802.16無線電模組 102與CLC無線電模組的活動,以便協調IEEE 802.16無 0758-A34330TWFMTKI-09-113 η 201016068 線電模組102與CLC無線電模組的運作。CLC無線電模組 是行動電子設備1〇〇中與IEEE 802.16無線電模組共址並 存的無線電模組,當傳輸和接收無線電信號時,CLC無線 電模組對IEEE 802.16無線電模組產生干擾,其中clc無 線電模組比如第1圖中所示的ffiEE 802.11無線電模組ii 和IEEE 802.15.1無線電模組103。在本發明的一些實施例 中’每個無線電模組可各自包括一個用於收發無線電信號 的天線。當然,可在多個無線電模組之間設計一個共享天 線以提升面積效率,且本發明不限於此。 IEEE 802.11是在2.4、3.6和5GHz頻帶中執行無線區 域網路(Wireless Local Area Network, WLAN)通信的一套標 準。般入在行動電子設備100中的WLAN模組(比如IEEE 802.11無線電模組101)用於無線地連接至網際網路,以劇 覽網頁、收發電子郵件、在線聊天、下載並播放多媒體内 容等。WLAN通常作為建築内有線區域網路(LAN)的延 伸’可在有線網路與行動設備或固定設備間提供最後幾米 的連接。大部分的WLAN可運作於2.4GHz的無需授權 (license-free)的頻帶,且具有高達2Mbps的傳輸速率 (throughput rate)。802.11b 標準僅是直接序列(direct sequence),具有高達UMbps的傳輸速率。802.llg標準運 作的最大原始資料速率(raw data rate)達54Mb/s,或者其淨 通量(net throughput)為 19Mb/s。WLAN 模組經由一 Ap 將 使用者連接至LAN。AP通常在WLAN模組與有線網路基 礎建設(infrastructure)之間接收、緩衝並傳輸資料。每個 AP平均可支持20個設備,且其覆蓋範圍在有障礙物(例如 0758-A34330TWF_MTKI-09-l 13 g 201016068 踏、樓梯和電梯)的區域中達20米,在視線清楚的區域中 可達100米。 第 2 圖是 IEEE 802.11 掃瞄、認證(authentjcati〇n)與關 聯過程的示範示意圖。WLAN模組的存取過程可涉及三個 步驟.主動/被動持聪(active/passive scanning)、認證和關 聯,以賦能WLAN模組與AP關聯。WLAN模組利用主動 掃猫對周圍無線網路掃聪並從中找出一個兼容的裝置。在 一種主動掃瞄方式中,WLAN模組準備通道列表並在每個 參通道上廣播探測(Probe)請求訊樞,探測請求具有空白的服 務識別碼(SSID)。接著,AP接收探測請求並傳輸探測回 應。WLAN模組與具有最強信號的Ap進行關聯。另一種 方式中,WLAN模組僅單播探測請求(具有特定SSID)。若 AP接收到探測請求,則AP傳輪探測回應。主動掃瞄模式 賦能WLAN模組存取一特定無線網路。WLAN模組所利用 的被動掃瞄通過監聽AP週期性傳輸的信標訊框(beac〇n frame)來發現周圍的無線網路。WLAN模組準傷一通道列 _ I並監聽每個列表上的信標。為防止非法用戶存取無線網 路,在WLAN模組和用於管理WLAN所有Ap的存取控制 器(Access Controller,AC)之間或WLAN和關聯的AP之間 需要5忍證。可用認證有兩種類型:開放系統認證;共享密 鍮認證(Shared Key Authentication)。若 WLAN 模組選擇具 有特定SSID的兼容網路並認證一 AP,則組傳輸 關聯請求訊框至該AP。AP傳輸關聯回應至WLAN模組並 在其資料庫中添加客戶資訊。WLAN模組可長時間進入省 電(卩〇^^1:8心比^?8)模式,其中?8模式也稱為睡眠模式。 0758-A34330TWF—ΜΤΚ]-09-113 9 201016068 第3圖顯示了訊賴承_請求,朗求具有指示將進入 PS模式的資訊。此資訊由第4圖所顯示的媒介存取控制 (Medium Access Control,MAC)資料働中訊框控制攔位 410的功率管理位元42〇所承載。隨後,Ap可對當前工作 續的更新記錄,並緩衝 傳輸至WLAN模組的封包直到WLAN模組傳輸輪詢請求 (簡稱為PS-Poll)至AP以特別請求封包。作為信標訊框 的一部分,AP週期性地傳輸用於指示哪些WLAN模組有 封包暫存於AP的資訊,其中該資訊位於MAC資料4〇〇的 訊框實體攔位460中訊務指示對照表(Traffic Indicati〇n201016068, ·················································· The benefit of the group control architecture" is hereby incorporated by reference in its entirety. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of coordinating operation of a plurality of wireless communication services in a communication device, and more particularly to a method of coordinating operation of a plurality of wireless communication services in a communication device to avoid signal interference. [Prior Art] With the development of wireless communication technology, mobile electronic devices can be equipped with multiple wireless communication services, such as Bluetooth, Wireless Fidelity (WiFi), Worldwide Interoperability for (Worldwide Interoperability for Microwave Access, referred to as WiMAX) wireless communication services. In this regard, overlapping or adjacent operating bands between different wireless communication services result in degradation of transmission performance. Table 1 below shows the operating bands for WiMAX, WiFi, and Bluetooth wireless communication services. Table 1 Wireless communication service classification purposes Wireless communication service 1 band wide area network 2.300-2.400 GHz (Wide Area WiMAX 2.496-2.690 GHz Network, WAN) 3.300-3.800 GHz 0758-A34330TWF MTKI-09-113 4 201016068 Regional network (Local Area Network, LAN) WiFi 2.412-2.4835 GHz 4.9-5.9 GHz Personal Area Network (PAN) Bluetooth 2.402-2.480 GHz As shown in Table 1, the WiFi and Bluetooth bands overlap each other. In addition, the WiFi and Bluetooth bands are adjacent to the WiMAX band. When these wireless communication services are integrated into one mobile electronic device, simultaneous transmission and reception of different wireless communication services can cause transmission interference. Therefore, there is a need for a method of coordinating the operation of multiple wireless communication services in a communication device. SUMMARY OF THE INVENTION The present invention provides a communication device and method for responding to a co-location coexistence request of a mobile electronic device. One embodiment of a communication device includes a first radio module, a second radio module, and a co-located coexisting radio manager. The first radio module provides a first wireless communication service and communicates with the first communication device in accordance with the first protocol; the second radio module provides a second wireless communication service and communicates with the second communication device in accordance with the second protocol; the co-located coexisting radio The manager detects the activity of the first radio module, acquires a first traffic pattern from the first radio module, and generates a second message of the second radio module according to the first traffic pattern a pattern to coordinate operation of the first radio module and the second radio module with the second traffic pattern 0758-A34330TWF MTKI-09-113 201016068 to a plurality of sub-modules of the second radio module The frame describes the recommended downlink and/or uplink traffic assignments, and wherein each of the subframes defined by the second protocol includes a plurality of orthogonal frequency division multiplex symbols. Another embodiment of a communication device includes a first radio module and a second radio module. The first radio module provides a first wireless communication service and communicates with the first communication device in accordance with the first protocol; the second radio module provides the second wireless communication service and communicates with the second communication device in accordance with the second protocol, entering the learning phase And transmitting the first request message to the second pass=device to request to leave for a period of time to support the first radio module two initial setting or connection setting operation. An example of a method for responding to a co-location coexistence request from a mobile electronic device, the mobile electronic device comprising a first radio module and a second moduleless, and the method is performed by a base station, the method comprising a second-described action The electronic device receives the co-location coexistence request, and the _= interval of the requesting traffic is given to the second radio module to prevent the operation_interference with the first-group; and the time period when the money is requested The transmission stability is enhanced when the first radio module is described. The following is a description of the root-shirt (four) handle of the present invention. -N juice [Embodiment] Hereinafter, preferred embodiments of the present invention will be described. The use of the invention is not intended to be limiting as described as a squid. 0 (4) Protection Fan S With the wireless 11 letter technology shirt, the seam communication service is provided & 0758-A34330TWF_MTKI-09-l 13 201016068 The radio module can be co-located and coexisted in a mobile electronic device. Fig. 1 is a block diagram showing the structure of a plurality of radio communication systems according to an embodiment of the present invention. The mobile electronic device 100 can be a notebook computer, a mobile phone, a portable gaming device, a portable multimedia player, a Global Positioning System (GPS), a receiver, and the like. The mobile electronic device 1 includes a plurality of radio modules for providing different wireless communication services. For example, the mobile electronic device 100 may include an IEEE 802.11 radio module 101, an IEEE 802.16 radio module 102, an IEEE 802.15.1 radio Φ module 1 〇 3, and a Co-located Coexistence (CLC) radio manager. 104. The IEEE 802.11 radio module 101 is in communication with the IEEE 802.11 device 201 via an air interface in compliance with the IEEE 802.11 protocol. For example, the IEEE 802.11 device 201 may be an IEEE 802.11 Base Station (BS), an Access Point (AP), or a Station (STA). The IEEE 802.11 radio module 101 may be an IEEE 802.11 BS, AP or STA operating in the same manner as the router to enable the IEEE 802.11 device 201 to connect to the Internet through the IEEE 802.16 device 202. In accordance with the IEEE 802.16 protocol, the IEEE 802.16 radio module 102 communicates with the IEEE 802.16 device 202 via an air interface. For example, the IEEE 802.16 device 202 can be an IEEE 802.16 BS or a Relay Station (RS). In accordance with the IEEE 802.15.1 protocol, the IEEE 802.15.1 radio module 103 communicates with the IEEE 802.15.1 device 203 via the air interface. For example, the IEEE 802.15.1 device 203 can be a Bluetooth headset. The CLC radio manager 104 provides an interface between the IEEE 802.16 radio module 102 and the CLC radio module and detects the activity of the IEEE 802.16 radio module 102 and the CLC radio module to coordinate IEEE 802.16 no 0758-A34330TWFMTKI-09-113 η 201016068 Operation of line module 102 and CLC radio module. The CLC radio module is a radio module coexisting with the IEEE 802.16 radio module in the mobile electronic device. When transmitting and receiving radio signals, the CLC radio module interferes with the IEEE 802.16 radio module, wherein the clc radio The module is such as the ffiEE 802.11 radio module ii and the IEEE 802.15.1 radio module 103 shown in FIG. In some embodiments of the invention, each radio module may each include an antenna for transmitting and receiving radio signals. Of course, a shared antenna can be designed between a plurality of radio modules to improve area efficiency, and the present invention is not limited thereto. IEEE 802.11 is a set of standards for performing Wireless Local Area Network (WLAN) communications in the 2.4, 3.6, and 5 GHz bands. A WLAN module (such as the IEEE 802.11 radio module 101) that is incorporated into the mobile electronic device 100 is used to wirelessly connect to the Internet to view web pages, send and receive emails, chat online, download and play multimedia content, and the like. WLANs are often used as extensions to wired local area networks (LANs) within buildings to provide the last few meters of connectivity between wired networks and mobile or fixed devices. Most WLANs operate at a 2.4 GHz license-free frequency band with a throughput rate of up to 2 Mbps. The 802.11b standard is only a direct sequence with a transmission rate of up to UMbps. The 802.llg standard operates at a raw data rate of 54 Mb/s or a net throughput of 19 Mb/s. The WLAN module connects the user to the LAN via an Ap. APs typically receive, buffer, and transmit data between WLAN modules and wired network infrastructure. Each AP can support an average of 20 devices, and its coverage is up to 20 meters in the area of obstacles (such as 0758-A34330TWF_MTKI-09-l 13 g 201016068 step, stairs and elevator), in the clear line of sight Up to 100 meters. Figure 2 is an exemplary diagram of the IEEE 802.11 scan, authentication (authentjcati〇n) and associated process. The access process of the WLAN module can involve three steps: active/passive scanning, authentication and association to enable the WLAN module to be associated with the AP. The WLAN module uses an active sweeping cat to wipe the surrounding wireless network and find a compatible device. In an active scanning mode, the WLAN module prepares a channel list and broadcasts a Probe request armature on each of the reference channels, the probe request having a blank Service Identification Number (SSID). The AP then receives the probe request and transmits the probe response. The WLAN module is associated with the Ap with the strongest signal. In the other way, the WLAN module only unicasts the probe request (with a specific SSID). If the AP receives the probe request, the AP transmits a probe response. Active Scan Mode Enables the WLAN module to access a specific wireless network. The passive scan used by the WLAN module discovers the surrounding wireless network by monitoring the beacon frame periodically transmitted by the AP. The WLAN module insures one channel column _ I and listens for beacons on each list. To prevent unauthorized users from accessing the wireless network, a five-way charge is required between the WLAN module and the Access Controller (AC) for managing all Aps of the WLAN or between the WLAN and the associated AP. There are two types of available authentication: Open System Authentication; Shared Key Authentication. If the WLAN module selects a compatible network with a specific SSID and authenticates an AP, the group transmits an association request frame to the AP. The AP transport association responds to the WLAN module and adds customer information to its database. The WLAN module can enter the power saving mode for a long time (卩〇^^1:8 heart ratio ^?8) mode, where? The 8 mode is also called the sleep mode. 0758-A34330TWF—ΜΤΚ]-09-113 9 201016068 Figure 3 shows the newsletter _ request, hoping to have information indicating that it will enter PS mode. This information is carried by the Medium Access Control (MAC) data shown in Figure 4, which is carried by the power management bit 42 of the frame control block 410. Subsequently, Ap can update the current working update record and buffer the packets transmitted to the WLAN module until the WLAN module transmits a polling request (referred to as PS-Poll) to the AP to specifically request the packet. As part of the beacon frame, the AP periodically transmits information indicating which WLAN modules have packets temporarily stored in the AP, wherein the information is located in the frame entity block 460 of the MAC data 4 Table (Traffic Indicati〇n

Map, TIM)資訊元素中。於是,WLAN模組週期性醒來~吐6 up)以接收信標訊框。若信標訊框有指標表明在Ap中存在 至少一個封包有待傳輸,則對應的冒1^^模組保持清醒狀 態,並向AP傳輸PS-Poll以獲取所緩衝的封包。WLAN模 組與AP之間為獲取所缓衝的封包而進行的信號發送可參 考第5圖。此外,如果於接收的資料訊框或管理訊框中指 出AP上存有緩衝儲存的資料,其中所述資料由MAC資料 400中訊框控制攔位410的資料位元43〇承載,則對應的 WLAN模組保持清醒狀態,並向AP傳輸PS-Poll。可藉由 MAC資料400中訊框控制欄位41〇的類型位元440和子類 型位元450區別信標訊框、PS-P〇ll、應答和資料訊框。 第6圖為在一條時間線上用於獲取緩衝封包的訊框交 換示意圖。AP週期性地傳輸信標訊框610,其中信標訊框 610包括所有有關通告WLAN網路存在的網路資訊。若 WLAN模組根據接收的信標訊框610識別出在AP有緩衝 0758-A34330TWF_MTKI-09-l 13 ,n 201016068 的封包,WLAN模組則通過傳輸PS-Poll請求620來請求 封包。接收PS-Poll請求620後,AP以應答(ACK)630回應 並傳輸緩衝的訊框640。最終,WLAN模組根據接收的訊 框以應答(ACK)650回應AP。注意’對於未提及的WLAN 通信協定,可參照對應的IEEE 802.11標準,此處為簡潔, 不再贅述。 IEEE 802.15是IEEE 802的第15個工作組並專門從事 無線個人網域網路(PAN)標準,其中IEEE 802.15.1是用於藍 Φ 芽的一套標準。藍芽是一個開放的無線協定,用於短距離 内對固定設備和行動設備交換資料,並建立個人網域網 路。WLAN和藍芽共同佔用2.4GHz工業、科學、醫療 (Industrial,Scientific,and Medical,ISM)頻帶的一部分,即 83MHz頻寬。參考第7圖,藍芽採用跳頻展頻(Frequency Hopping Spread Spectrum, FHSS)技術,並且可以在頻帶中 79個不同的1MHz頻寬的通道中跳頻^ WLAN採用直接序列 展頻(Direct Sequence Spread Spectrum, DSSS),而非跳頻展 ® 頻,其載波保持在一個通道的中心,即22MHz頻寬。當 WLAN模組(比如IEEE 802.11無線電模組101)和藍芽(比如 IEEE 802.15.1無線電模組103)運作於相同的區域時,單個 22MHz頻寬的WLAN通道與79個1MHz頻寬的藍芽通道中 22個通道所佔據的頻率範圍相同。當藍芽傳輸的頻率位於 與之同時進行的WLAN傳輸的頻率範圍之内時,則會發生 一定程度的干擾,干擾程度取決於每個信號的強度。 藍芽設備(比如IEEE 802.15.1設備203)可作為控制 PAN的主設備(master device),藍芽模組(比如IEEE 802.15.1 0758-A34330TWF_MTKl-09-l 13 Π 201016068 無線電模組103)可作為與主設備無線連接的從設備⑼ave device)。藍芽设備利用查詢過程(丨叫以巧卩⑺⑶如代)發現周 圍的設備,或者被所在之處的其他設備發現。藍芽設備作 為公知的查詢設備嘗試尋找周邊的其他設備並主動傳輸查 詢請求。作為公知的可發現設備,藍芽設備可被查找以及 監聽這些查詢請求並傳輸回應。查詢過程利用特定實體通 道(physical channel)接收查詢請求並傳輸回應。形成連接的 過程是非對稱的且需要一個藍芽設備在另一個藍芽設備可 連接時(尋呼掃瞄)執行尋呼(連接)過程。對尋呼過程進行設❹ 定以便僅通過一個特定的藍芽設備對尋呼過程作出回應。 可連接設備利用特定實體通道監聽來自尋呼(連接)設備的 連接請求封包。實體通道對於可連接設備是特定的,因此 僅一個知悉可連接設備的尋呼設備能夠在此通道上通信。 尋呼設備和可連接設備均已連接至微網(piconet)中的其他 藍芽設備。有兩種類型的連接可用於主設備和從設備間的 通4§ .同步連接導向/延伸同步連接導向(synchronous connection oriented /extended synchronous connection ❹ oriented, SCO/eSCO)鏈接,以及異步連接導向(aSynchr〇nous connection oriented,ACL)鏈接。SCO/eSCO鏈接(也稱為同 步鏈接)是主設備與特定從設備之間對稱的點對點鏈接。 通過按規則的間隔來採用預留的時槽(slot),主設備保持 SCO/eSCO鏈接。建立SCO/eSCO鏈接後,通常採用某些同 步封包(例如ΗV和DV封包)用於語音傳輸,且不會重新 傳輸這些同步封包。主設備以規則的間隔傳輸同步封包, 例如每2、4或6個時槽,取決於傳輸的封包類型,其中通常 0758-A34330TWF ΜΤΚΙ-09-113 201016068 每個時槽為625叫。HV和DV封包通常經由SCO鏈接傳輸, EV封包通常經由eSC〇鏈接傳輸。第8圖為每六個時槽進行 一-人HV3封包傳輸的示範示意圖。ACL鏈接(也稱為異步 鏈接)是主設備與PAN中所有從設備之間的點對多點鏈 接。沒有時槽預留用於ACL鏈接。主設備基於每個時槽建 立與任何一個從設備之間的ACL鏈接。建立ACL鏈接後(即 進入連接狀態),ACL封包(例如dm、DH和AUX封包) 通常用於資料傳輸。 ❹ 此外,主設備規則地傳輸封包以保持從設備與通道同 步。第9圖為ACL鏈接的示範連接狀態示意圖。在連接狀 態的活動模式910中,主設備以及從設備均主動地參與一 個通道。主設備基於訊務需求對不同從設備間的往返傳輸 進行排程。如果一活動從設備未被處理,則該活動從設備 進入睡眠狀態直到下-個主傳輪。在連接狀態的監聽模式 (sniff m〇de)93〇期間,縮短從設備處於監聽狀態時的時槽, 以_省功率消耗。此外’在監聽模式93〇期間,到達監聽 ® 定錨點(anch〇r P〇int)後,在包含2、4、6或8或更多個時 槽的監聽嘗試中,主設備在與從設備往返的傳輸和接收封 包之間切換。第1()圖顯示了監聽m點的示意圖 。監聽定 銷點規則地以監聽間㉟Ts爾隔開。在連接狀態的活動模式 910期間,主設備在任—個主·從時槽中向從設備傳輸資 料。,在監聽模式930期間,監聽定錯點之後,主設備於監 聽嘗試(例如監聽定錯點後,第1〇圖中的心豪的監聽嘗 試)的-個或多個主-從時槽中向從毁備傳輸資料。第u 圖為在主設備和從設備之間資料傳輪的示意圖。在活動模 0758-A34330TWF_MTKI-09-] 13 201016068 式以及監聽模式中’從設備於先前的主_從時槽中從主設備 接收資料後’從设備於從-主時槽中向主設備傳輸資料。在 從設備從主設備接收職詢/空封包(也指由主節點輪詢) 或者資料封包(也指接收資料)後,從設備可向主設備傳 輸資料封包(也指傳輪資料)或空封包(也指應答)。為 了避免ACL鏈接斷開’活動模式910期間,從設備頻繁的 在主-從時槽中監聽,以及監聽模式93〇期間,在到達監聽 定錨點時,從設備在主-從時槽中進行監聽。請注意,如果 主s又備在預設數目的輪詢、傳輸或者預設時間段内沒有接 收到任何回應,則主設備自動斷開與從設備的ACL鏈接。 對於未提及的藍芽協定,可參照對應的IEEE 8〇2 15標準, 此處為簡潔,不再贅述。 IEEE 802.16(WiMAX)是無線寬頻存取標準,用於戶 外、長距離且具有馬通量的電信級(carrier-class)應用。 802.16標準支持經過授權和無需經授權⑴cense-exempt)的 頻譜’其中802.16a標準對2至10GHz頻帶中的運作作了規 定,在從1.5MHz到20MHz可變通道頻寬下可支持高達 75]\41)/8的原始位元速率。\^]^人又模組(比如正££ 802.16無 線電模組102)可採用具有20MHz頻寬的正交頻分多工 (Orthogonal Frequency-Division Multiplexing, OFDM)技 術。表1所示的WiMAX通信服務的操作頻帶接近WLAN和 藍芽通信的操作頻帶。第12a圖至第12c圖是多個無線電並 存場景的範例示意圖。行動電話1100和膝上型設備1200是 行動電子設備100的實施例,且包括用於提供WiMAX通信 服務的IEEE 802.16無線電模組、用於提供藍芽通信服務的 〇758-A34330TWF_MTKI-09-l 13 14 201016068 至少一個IEEE 802.15.1無線電模組以及用於提供WLAN通 信服務的IEEE 802.11無線電模組。有關共址無線電模組的 硬體架構可參照第1圖及相應描述’此處為簡潔不再贊述。 如第12a圖所示,行動電話11〇〇通過基地台11〇3利用全 雙工語音哞叫(full duplex voice call)GSM通信服務,同時經 由中繼站1102通過WiMAX執行網際網路瀏覽。行動電話 1100通過建立的PAN將語音資料傳輸至藍芽耳機11〇1並經 由嵌入的藍芽模組(如第1圖所示的IEEE 802.15.1無線電模 ❹組103)接收藍芽耳機1101所擷取的語音信號。如前所述, 由於WiMAX模組(如第1圖所示的IEEE 8〇2. i 6無線電模組 102)和藍芽模組操作在相鄰的頻帶且如第丨圖所示彼此位 置相互鄰近,因此WiMAX模組和藍芽模組之間會產生干 擾。第13圖是顯示802.15.1傳輸(Τχ)和接收(RX)資料訊框分 配與802.16下行鏈路(DL)和上行鏈路(UL)資料訊框分配的 示範訊務樣式的示意圖。當藍芽模組經由空氣介面將 肋2.15.1訊框210中的資料傳輸至藍芽耳機1101時,WiMAX 模組同時經由空氣介面從中繼站丨1〇2接收資料於8〇2 16訊 框220中’傳輸的藍芽資料可被鬚獨莫組擷取,並於擷 取的過程中產生干擾。相似地,當1脇又模組經由空氣介 面將802.16訊框230中的資料傳輸至中繼站11〇2且藍芽模 組同時經由空氣介面從藍芽耳機1101接收資料於謝.… 訊框240中,傳輸的WiMAXf料可被藍芽模組摘取,並於 擷取的過程中產生干擾。對於長距離傳輸來說 ,WiMAX 的 則(Τχ)功率通常強於藍芽模組接受的接收㈣功率,因此 *傳輸的WiMAX資料被藍芽模組擷取時,干擾問題愈加嚴 0758-A34330TWF MTKI-09-113 ~ 15 201016068 第12b圖顯示了於藍芽和WLAN模組間所引起的另一 干擾的場景示意圖。行動電話11〇〇可利用網路協定語音 (Voice over Internet Protocol,VoIP)通信服務,同時,可經 由WLAN模組(如第1圖所示的正证802.11無線電模組ι〇1) 通過WLAN連接接收來自網際網路的ν〇ΙΡ資料,反之亦 然。接著,行動電話1100通過已建立的PAN將語音資料傳 輸至藍芽耳機1101並通過藍芽模組接收藍芽耳機11〇1的麥 克風擷取的語音信號。如前所述,由於WLAN模組和藍芽 模組共享頻譜且如第1圖所示彼此位置相互鄰近,因此 WLAN模組和藍芽模組之間會產生干擾。第12c圖顯示了於 藍芽和WiMAX模組間引起干擾的另一干擾場景示意圖。膝 上型設備1200通過WiMAX從中繼站1102接收多媒體流或 資料且同時傳輸音頻資料至藍芽耳機11〇1。藍芽耳機11〇1 可作為無線耳機播放從第12c圖中膝上型設備1200處接收 的音樂。膝上型設備1200和藍芽耳機1101與先進音頻傳輸 規格(Advanced Audio Distribution Profile, A2DP)兼容。利 用ACL鏈接將單指向性雙通道(1111丨_(^代(;1;丨〇仙1 2-channel)立 體音頻流從膝上型設備1200的藍芽模組傳遞至藍芽耳機, 其中單指向性雙通道立體音頻流例如MPEG-1、MPEG-2、 MPEG-4、高級音頻編碼(Advanced Audio Coding,AAC)、 自適應聽覺轉換編碼(Adaptive Transform Acoustic Coding, ATRAC)或其他音頻流。然而,如前所述,由於wiMAX模 組和藍芽模組操作在相鄰的頻帶且如第1圖所示彼此位置 相互鄰近,因此WiMAX模組和藍芽模組之間會產生干擾。 〇758-A34330TWF^MTKf-09-!I:, 16 201016068 於是,為了避免WiMAX模組和藍芽模組之間的干擾,急需 一種對通信裝置中CLC無線電模組的運作進行協調的方 法。 第14圖是IEEE 802.16m協定架構的方塊示意圖。IEEE 802.16m媒介存取控制(Medium Access Control,MAC)分為 兩個子層:收斂子層(Convergence Sublayer,CS)1401和通用 子層(Common Part Sublayer,CPS)。MAC通用子層進一步分 為無線電資源控制與管理(Radio Resource Control and ⑩ Management, RRCM)功能和MAC功能。RRCM功能在控制 平面(control plane)上實現。MAC功能在控制平面和資料平 面上實現。RRCM功能包括與無線電資源功能關聯的多個 功能區塊,比如: •無線電資源管理區塊1402 ; •行動性管理區塊1403 ; •入網管理區塊1404 ; •位置管理區塊1405 ; ® •閑置模式管理區塊1406 ; •安全管理區塊1407 ; •系統配置管理區塊1408 ; •群播廣播服務(Multicast Broadcast Service,MBS)區 塊 1409 ; •服務流與連接管理(Service Flow and Connection Management)區塊 1410 ; •繼電功能(Relay Function)區塊 1411 ; •自組織(SelfOrganization)區塊 1412 ;以及 0758-A34330TWFMTKI-09-113 17 201016068 •多載波區塊1413。 無線電資源管理區塊1402根據訊務負載調整無線電 網路參數,並且無線電資源管理區塊H02還包括負載控制 (負載平衡)、許可控制及干擾控制的功能。行動性管理區 塊1403支持與同一無線電接取系統/不同無線電接取系統 間(Intra-RAT/Inter-RAT)交遞相關的功能。行動性管理區塊 1403處理系統内/系統間網路拓撲獲得(Network topology acquisition)、管理候選相鄰目標基地台(BSs)/標準基地台 (Yardstick Base Stations,YBSs)/先進基地台(Advanced Base Stations, ABSs)/ 中繼站(Relay Stations,RSs)/先進中繼站 (Advanced Relay Stations, ARSs)並判定行動台(Mobile Station,MS)/先進行動台(Advanced Mobile Station, AMS)是 否執行同一無線電接取系統/不同無線電接取系統間交遞 操作,其中同一無線電接取系統/不同無線電接取系統間網 路拓撲獲得包括公告(advertisement)和量測。入網管理區塊 1404用於初始化和存取過程。入網管理區塊丨/^斗產生存取 過程期間所需的管理訊息(management message),即測距、 基本容量協商(Basic Capabilities Negotiation)和註冊等。位 置目、理S塊1405用於支持適地性服務(L〇cati〇n Based Service, LBS)。位置管理區塊1405產生包括LBS資訊的訊 息。閑置模式官理區塊1406在閑置模式期間處理管理位置 更新操作。閑置模式管理區塊14〇6控制閑置模式操作,並 根據來自核心網路尋呼控制器的尋呼訊息(paging message) 產生尋呼公告訊息。安全管理區塊14〇7用於安全通信的認 證/授權及密鑰管理。系統配置管理區塊14〇8管理系統配置 0758-A34330TWF_MTKI-09-] 13 ,〇 201016068 參數,並將系統配置資訊傳輸至MS/AMS。增強型群播廣 播服務(Enhanced Multicast Broadcast Service,E-MBS)區塊 1409控制管理訊息以及與廣播及/或群播服務相關聯的管 理訊息和資料。服務流與連接管理區塊1410在存取/交遞/ 服務流產生過程期間分配工作站標識符(station identifiers, STID)與流標識符(fi〇w identifiers, FIDs)。繼電功能區塊 1411包括支持多躍式中繼(muiti_h〇p reiay)機制的功能,且 該功能包括在ABS和存取ARS之間保持中繼路徑(relay _ Path)的過程的功能。自組織區塊1412執行支持自配置(self configuration)和自優化(seif 0ptimizati〇n)機制的功能,且該 功能包括請求RSs/MSs以報告自配置和自優化的量測並從 RSs/MSs接收篁測。多載波(Multi-carrier, MC)區塊1413賦 能通用MAC實體以控制實體層(Physical, ΡΗγ)在多個頻率 通道上擴展。這些通道為鄰近的或非鄰近的頻帶上的不同 頻寬(比如5、10和20MHz)。通道有相同或不同的雙工模式 且僅廣播載波,其中雙工模式比如頻分雙工(Frequency Division Duplex,FDD)、時分雙工(Time Divisi〇n Duplex, TDD)或雙向性(bidirectional)混合。對於鄰近的頻率通道, 將重疊的保護子載波排列在頻域中以用於資料傳輸。 MAC功能組的控制平面部分包括有關實體層和鏈路 控制的功能性區塊,比如: •實體層控制區塊1414 ; •控制信號發送區塊1415 ; •睡眠模式管理區塊1416 ; •服務品質(Quality of Service, Q〇s)區塊 1417 ; 0758-A34330TWF_MTKI-09-l 13 19 201016068 •排程與資源多工(Scheduling and ResourceMap, TIM) in the information element. Therefore, the WLAN module periodically wakes up and vomits 6 up) to receive the beacon frame. If there is an indicator in the beacon frame indicating that at least one packet is to be transmitted in the Ap, the corresponding module is kept awake and transmits a PS-Poll to the AP to obtain the buffered packet. The signal transmission between the WLAN module and the AP for obtaining the buffered packet can be referred to Fig. 5. In addition, if the data stored in the buffer is stored in the received data frame or the management frame, wherein the data is carried by the data bit 43 of the frame control block 410 of the MAC data 400, the corresponding data is The WLAN module remains awake and transmits a PS-Poll to the AP. The beacon frame, the PS-P〇ll, the response, and the data frame can be distinguished by the type bit 440 and the subtype bit 450 of the frame control field 41 of the MAC data 400. Figure 6 is a schematic diagram of frame exchange for obtaining a buffer packet on a timeline. The AP periodically transmits a beacon frame 610, wherein the beacon frame 610 includes all network information about the presence of the WLAN network. If the WLAN module recognizes that the AP has buffered packets of 0758-A34330TWF_MTKI-09-l 13 , n 201016068 according to the received beacon frame 610, the WLAN module requests the packet by transmitting the PS-Poll request 620. After receiving the PS-Poll request 620, the AP responds with an acknowledgement (ACK) 630 and transmits the buffered frame 640. Finally, the WLAN module responds to the AP with an acknowledgment (ACK) 650 based on the received frame. Note that for the WLAN communication protocol not mentioned, reference may be made to the corresponding IEEE 802.11 standard, which is succinct and will not be described again. IEEE 802.15 is the fifteenth working group of IEEE 802 and specializes in the Wireless Personal Area Network (PAN) standard, where IEEE 802.15.1 is a set of standards for Blue Φ Buds. Bluetooth is an open wireless protocol for exchanging data between fixed and mobile devices over short distances and establishing a personal domain network. WLAN and Bluetooth share a portion of the 2.4 GHz Industrial, Scientific, and Medical (ISM) band, which is the 83 MHz bandwidth. Referring to Figure 7, Bluetooth uses Frequency Hopping Spread Spectrum (FHSS) technology and can hop across 79 different 1MHz bandwidth channels in the band. WLAN uses direct sequence spread (Direct Sequence Spread) Spectrum, DSSS), instead of frequency hopping, the carrier is kept at the center of a channel, which is 22MHz bandwidth. When a WLAN module (such as IEEE 802.11 radio module 101) and a Bluetooth (such as IEEE 802.15.1 radio module 103) operate in the same area, a single 22MHz bandwidth WLAN channel and 79 1MHz bandwidth Bluetooth The 22 channels in the channel occupy the same frequency range. When the frequency of the Bluetooth transmission is within the frequency range of the WLAN transmission simultaneously with it, a certain degree of interference occurs, depending on the strength of each signal. A Bluetooth device (such as IEEE 802.15.1 device 203) can be used as a master device for controlling the PAN, and a Bluetooth module (such as IEEE 802.15.1 0758-A34330TWF_MTKl-09-l 13 Π 201016068 radio module 103) can be used. As a slave device (9) ave device that is wirelessly connected to the master device. The Bluetooth device uses the query process (calling to use Qiao(7)(3) as a generation) to discover surrounding devices or to be discovered by other devices where they are located. The Bluetooth device, as a well-known query device, attempts to find other devices in the vicinity and actively transmits the query request. As a well-known discoverable device, the Bluetooth device can be queried and listen to these query requests and transmit responses. The query process utilizes a specific physical channel to receive query requests and transmit responses. The process of forming a connection is asymmetrical and requires a Bluetooth device to perform a paging (connection) process when another Bluetooth device is connectable (page scan). The paging process is set to respond to the paging process by only a particular Bluetooth device. The connectable device utilizes a specific physical channel to listen for connection request packets from the paging (connected) device. The physical channel is specific to the connectable device, so only one paging device that knows the connectable device can communicate on this channel. Both the paging device and the connectable device are connected to other Bluetooth devices in the piconet. There are two types of connections that can be used for the connection between the master device and the slave device. Synchronous connection oriented/extended synchronous connection (SCO/eSCO) links, and asynchronous connection guidance (aSynchr) 〇nous connection oriented, ACL) link. A SCO/eSCO link (also known as a synchronous link) is a symmetric point-to-point link between a master device and a particular slave device. The master keeps the SCO/eSCO link by using the reserved slot at regular intervals. After the SCO/eSCO link is established, some synchronous packets (such as ΗV and DV packets) are usually used for voice transmission, and these synchronization packets are not retransmitted. The master transmits synchronous packets at regular intervals, for example every 2, 4 or 6 time slots, depending on the type of packet being transmitted, which is usually 0758-A34330TWF ΜΤΚΙ-09-113 201016068 Each time slot is 625. HV and DV packets are typically transmitted via an SCO link, which is typically transmitted via an eSC〇 link. Figure 8 is an exemplary diagram of a one-person HV3 packet transmission for every six time slots. An ACL link (also known as an asynchronous link) is a point-to-multipoint link between the master device and all slave devices in the PAN. There is no time slot reserved for ACL links. The master device establishes an ACL link with any slave device based on each time slot. After the ACL link is established (ie, entering the connection state), ACL packets (such as dm, DH, and AUX packets) are usually used for data transmission. ❹ In addition, the master device regularly transfers packets to keep the slave device synchronized with the channel. Figure 9 is a schematic diagram showing the exemplary connection state of the ACL link. In the active mode 910 of the connected state, both the master device and the slave device actively participate in one channel. The master device schedules round-trip transmissions between different slave devices based on the traffic demand. If an active slave device is not processed, then the active slave device goes to sleep until the next master pass. During the listening mode of the connected state (sniff m〇de) 93〇, the time slot when the slave device is in the listening state is shortened to save power consumption. In addition, during the listening mode 93〇, after reaching the monitoring anchor point (anch〇r P〇int), in the monitoring attempt containing 2, 4, 6 or 8 or more time slots, the master device is in and out. Switch between the device's round-trip transmission and the receiving packet. Figure 1() shows a schematic diagram of listening to m points. The listening and fixing points are regularly separated by 35Ts. During active mode 910 of the connected state, the master transmits data to the slave in any of the master-slave time slots. During the listening mode 930, after listening to the error point, the master device is in the one or more master-slave slots of the listening attempt (for example, after listening to the fixed point, the listening attempt of the heart in the first map). Transfer data from the destruction. Figure u is a schematic diagram of the data transfer between the master device and the slave device. In the active mode 0758-A34330TWF_MTKI-09-] 13 201016068 and the listening mode, 'the slave device receives the data from the master device in the previous master_slave time slot' and the slave device transmits to the master device in the slave-master time slot. data. After the slave device receives the polling/empty packet (also referred to as polling by the master node) or the data packet (also referred to as receiving data) from the master device, the slave device may transmit the data packet (also referred to as the routing data) or the null to the master device. Packet (also referred to as a response). In order to avoid ACL link disconnection during the active mode 910, the slave device frequently listens in the master-slave time slot, and during the listening mode 93〇, when the monitoring anchor point is reached, the slave device performs in the master-slave time slot. monitor. Note that if the primary s is not ready to receive any response within a preset number of polls, transmissions, or preset time periods, the primary device automatically disconnects the ACL from the secondary device. For the Bluetooth protocol not mentioned, reference may be made to the corresponding IEEE 8〇2 15 standard, which is succinct and will not be described again. IEEE 802.16 (WiMAX) is a wireless broadband access standard for outdoor, long-haul and carrier-class carrier-class applications. The 802.16 standard supports licensed and unlicensed (1)cense-exempt) spectrums where the 802.16a standard specifies operation in the 2 to 10 GHz band and supports up to 75 channels from 1.5 MHz to 20 MHz variable channel bandwidth. 41) The original bit rate of /8. The \^]^ human module (such as the 802.16 radio module 102) can employ Orthogonal Frequency-Division Multiplexing (OFDM) technology with 20MHz bandwidth. The operating band of the WiMAX communication service shown in Table 1 is close to the operating band of WLAN and Bluetooth communication. Figures 12a through 12c are schematic diagrams of examples of multiple radio coherent scenarios. Mobile phone 1100 and laptop 1200 are embodiments of mobile electronic device 100 and include an IEEE 802.16 radio module for providing WiMAX communication services, 〇 758-A34330TWF_MTKI-09-l 13 for providing Bluetooth communication services 14 201016068 At least one IEEE 802.15.1 radio module and an IEEE 802.11 radio module for providing WLAN communication services. For the hardware architecture of the co-located radio module, refer to Figure 1 and the corresponding description. As shown in Fig. 12a, the mobile telephone 11 utilizes a full duplex voice call GSM communication service through the base station 11〇3, while performing Internet browsing via the relay station 1102 via WiMAX. The mobile phone 1100 transmits the voice data to the Bluetooth headset 11〇1 through the established PAN and receives the Bluetooth headset 1101 via the embedded Bluetooth module (such as the IEEE 802.15.1 radio module group 103 shown in FIG. 1). The captured voice signal. As described above, since the WiMAX module (such as the IEEE 8〇2.i 6 radio module 102 shown in FIG. 1) and the Bluetooth module operate in adjacent frequency bands and are mutually positioned as shown in FIG. Proximity, so there is interference between the WiMAX module and the Bluetooth module. Figure 13 is a diagram showing exemplary traffic patterns for 802.15.1 transmission (Τχ) and reception (RX) data frame assignments and 802.16 downlink (DL) and uplink (UL) data frame assignments. When the Bluetooth module transmits the data in the rib 2.15.1 frame 210 to the Bluetooth headset 1101 via the air interface, the WiMAX module simultaneously receives data from the relay station 〇1〇2 via the air interface to the 8〇2 16 frame 220. The Bluetooth data transmitted in the 'transmission' can be extracted from the group and interfere with the acquisition process. Similarly, when the module fails to transmit the data in the 802.16 frame 230 to the relay station 11〇2 via the air interface, and the Bluetooth module simultaneously receives the data from the Bluetooth headset 1101 via the air interface, in the frame 240. The transmitted WiMAX material can be extracted by the Bluetooth module and interfere in the process of capturing. For long-distance transmission, WiMAX's (Τχ) power is usually stronger than the receiving (four) power received by the Bluetooth module. Therefore, when the transmitted WiMAX data is captured by the Bluetooth module, the interference problem becomes more severe. 0758-A34330TWF MTKI -09-113 ~ 15 201016068 Figure 12b shows a schematic diagram of another interference caused by the Bluetooth and WLAN modules. The mobile phone can use the Voice over Internet Protocol (VoIP) communication service, and can be connected via WLAN via the WLAN module (such as the 802.11 radio module ι〇1 shown in Figure 1). Receive ν〇ΙΡ data from the Internet and vice versa. Next, the mobile phone 1100 transmits the voice data to the Bluetooth headset 1101 through the established PAN and receives the voice signal captured by the microphone of the Bluetooth headset 11〇1 through the Bluetooth module. As mentioned above, since the WLAN module and the Bluetooth module share the spectrum and are adjacent to each other as shown in Fig. 1, interference occurs between the WLAN module and the Bluetooth module. Figure 12c shows a schematic diagram of another interference scenario that causes interference between the Bluetooth and WiMAX modules. The knee-top device 1200 receives multimedia streams or data from the relay station 1102 via WiMAX and simultaneously transmits audio material to the Bluetooth headset 11〇1. The Bluetooth headset 11〇1 can be used as a wireless headset to play music received from the laptop 1200 in Figure 12c. The laptop 1200 and the Bluetooth headset 1101 are compatible with the Advanced Audio Distribution Profile (A2DP). Using the ACL link to pass the unidirectional dual channel (1111丨_(^1;丨〇1 1-channel) stereo audio stream from the Bluetooth module of the laptop 1200 to the Bluetooth headset, where the single Directivity two-channel stereo audio streams such as MPEG-1, MPEG-2, MPEG-4, Advanced Audio Coding (AAC), Adaptive Transform Acoustic Coding (ATRAC) or other audio streams. As mentioned above, since the wiMAX module and the Bluetooth module operate in adjacent frequency bands and are adjacent to each other as shown in Fig. 1, interference occurs between the WiMAX module and the Bluetooth module. -A34330TWF^MTKf-09-!I:, 16 201016068 Therefore, in order to avoid interference between the WiMAX module and the Bluetooth module, a method for coordinating the operation of the CLC radio module in the communication device is urgently needed. It is a block diagram of the IEEE 802.16m protocol architecture. IEEE 802.16m Medium Access Control (MAC) is divided into two sub-layers: Convergence Sublayer (CS) 1401 and Common Part Sublayer (Common Part Sublayer, CPS).MAC Universal The layer is further divided into a Radio Resource Control and 10 Management (RRCM) function and a MAC function. The RRCM function is implemented on a control plane. The MAC function is implemented on the control plane and the data plane. The RRCM function includes Multiple functional blocks associated with radio resource functions, such as: • Radio Resource Management Block 1402; • Mobility Management Block 1403; • Incoming Network Management Block 1404; • Location Management Block 1405; • • Idle Mode Management Block 1406; • Security Management Block 1407; • System Configuration Management Block 1408; • Multicast Broadcast Service (MBS) Block 1409; • Service Flow and Connection Management Block 1410; • Relay Function block 1411; • SelfOrganization block 1412; and 0758-A34330TWFMTKI-09-113 17 201016068 • Multi-carrier block 1413. The radio resource management block 1402 adjusts the radio network parameters based on the traffic load, and the radio resource management block H02 also includes functions of load control (load balancing), admission control, and interference control. The mobility management block 1403 supports functions related to intra-RAT/Inter-RAT handover between the same radio access system/different radio access systems. The mobility management block 1403 handles network topology acquisition, management of neighboring target base stations (BSs)/standard base stations (YBSs)/advanced base stations (Advanced Base) Stations, ABSs) / Relay Stations (RSs) / Advanced Relay Stations (ARSs) and determine whether the Mobile Station (MS) / Advanced Mobile Station (AMS) performs the same radio access system / Different radio access system inter-system handover operations, where the same radio access system / different radio access system network topology acquisition includes advertising and measurement. The access management block 1404 is used for initialization and access procedures. The network management block generates management messages required during the access process, namely ranging, basic capacity negotiation (Basic Capabilities Negotiation), and registration. The location and the S block 1405 are used to support the Lscati〇n Based Service (LBS). Location management block 1405 generates information including LBS information. The idle mode official block 1406 processes the management location update operation during the idle mode. The idle mode management block 14〇6 controls the idle mode operation and generates a paging announcement message based on a paging message from the core network paging controller. The security management block 14〇7 is used for authentication/authorization and key management of secure communication. The system configuration management block 14〇8 manages the system configuration 0758-A34330TWF_MTKI-09-] 13 , 〇 201016068 parameters, and transmits system configuration information to the MS/AMS. The Enhanced Multicast Broadcast Service (E-MBS) block 1409 controls management messages and management messages and materials associated with broadcast and/or multicast services. The Service Flow and Connection Management Block 1410 assigns station identifiers (STIDs) and flow identifiers (fi〇w identifiers, FIDs) during the access/delivery/service flow generation process. The relay function block 1411 includes a function of supporting a multi-hop relay (muiti_h〇p reiay) mechanism, and the function includes a function of a process of maintaining a relay path (relay_path) between the ABS and the access ARS. Self-organizing block 1412 performs functions that support self configuration and self-optimization mechanisms, and the function includes requesting RSs/MSs to report self-configuration and self-optimized measurements and receive from RSs/MSs. Speculation. A multi-carrier (MC) block 1413 enables a general-purpose MAC entity to control the physical layer (Physical, ΡΗ γ) to spread over multiple frequency channels. These channels are of different bandwidths (e.g., 5, 10, and 20 MHz) in adjacent or non-adjacent bands. Channels have the same or different duplex modes and only broadcast carriers, where duplex mode such as Frequency Division Duplex (FDD), Time Divisi〇 Duplex (TDD) or bidirectional (bidirectional) mixing. For adjacent frequency channels, overlapping guard subcarriers are arranged in the frequency domain for data transmission. The control plane portion of the MAC functional group includes functional blocks related to physical layer and link control, such as: • physical layer control block 1414; • control signal transmission block 1415; • sleep mode management block 1416; • service quality (Quality of Service, Q〇s) Block 1417; 0758-A34330TWF_MTKI-09-l 13 19 201016068 • Scheduling and Resource Scheduling

Multiplexing)區塊 1418 ; •多個無線電並存區塊1419 ; •資料前送(Data Forwarding)區塊 1420 ; •干擾管理區塊1421 ;以及 • ABS 間協調(Inter-ABS Coordination)區塊。 實體層控制區塊1414處理實體層信號發送,比如測 距、量測/回镇通道品質資訊(Channel Quality Information, CQI)及混合自動重傳請求機制(Hybrid Automatic Repeat request, HARQ) ACK/NACK。基於 CQI 和 HARQ ACK/NACK ’實體層控制區塊估計MS/AMS所觀測的通道 品質’並通過調整調變及編碼方案(Modulation And Coding Schemes,MCS)與/或功率位準來執行鏈接自適應。在測距 過程期間’實體層控制區塊1414對功率調整、頻率偏移和 時序偏移估計執行UL同步。控制信號發送區塊〗415產生 資源配置訊息。睡眠模式管理區塊1416處理睡眠模式操 作。睡眠模式管理區塊1416也產生與睡眠操作有關的Mac 信號發送’並同排程與資源多工區塊1418通信以根據睡眠 週期運作。對於每個連接,根據從服務流與連接管理區塊 1斗10所輸入的QoS參數,QoS區塊1417對處理q〇s管理 進行處理。排程與資源多工區塊1418根據連接的屬性對封 包進行排程和多工處理。為了反映連接屬性,排程與資源 多工區塊1418從QoS區塊處接收每個連接的Q〇s資訊。 多個無線電並存區塊1419具有對位於同一行動台上的 IEEE 802.16m和非IEEE 802.16m無線電執行同時操作的 0758-A34330TWFMTKI-09-113 20 201016068 功能。若RSs在ABS和AMS間的路徑上,則資料前送區 塊1420執行前送功能。冑料前送區塊1420與其他區塊協 作,比如排程與資源多工區塊1418和MAC協定資料單元 (Protocol Data Unit,pDu)格式區塊1424。干擾管理區塊 1421具有處理網路單元間/扇區㈣版伽r)干擾的功 能。處理干擾的操作包括·· MAC層操作和PHY層操作。 MAC層操作包括:經纟MAC信號發送傳輸干擾量測/評估 報告,以及通過排程和靈活的頻率再利用帶來干擾抑制。 ❹PHY層操作包括:傳輸功率控制、干紐機化、干擾消除、 干擾量測和Tx波束成形/預編碼(beamforming/precodiiig)。 ABS間協調區塊具有通過交換資訊(如干擾管理)對多 個ABS的動作進行協調的功能。該功能包括通過骨幹信號 發送(backbone signaling)和MS/AMS MAC訊息傳輸進行資 訊交換的過程,比如交換ABS間的干擾管理。資訊包括干 擾特性’例如干擾量測結果等。資料平面包括如下MAC 功能: ® •自動重傳請求(ARQ)區塊1422; •分割/封裝(Fragmentation/Packing)區塊 1423 ;以及 • MAC PDU格式區塊1424。Multiplexing) Block 1418; • Multiple radio coexistence blocks 1419; • Data Forwarding block 1420; • Interference management block 1421; and • Inter-ABS Coordination block. The physical layer control block 1414 processes the physical layer signal transmission, such as the measurement, the channel quality information (CQI), and the hybrid automatic repeat request (HARQ) ACK/NACK. Estimating the channel quality observed by MS/AMS based on CQI and HARQ ACK/NACK 'physical layer control block' and performing link adaptation by adjusting Modulation And Coding Schemes (MCS) and/or power level . The physical layer control block 1414 performs UL synchronization on power adjustment, frequency offset, and timing offset estimation during the ranging process. Control Signal Transmit Block 415 generates a resource configuration message. Sleep mode management block 1416 handles sleep mode operations. The sleep mode management block 1416 also generates a Mac signal transmission associated with the sleep operation and communicates with the resource multiplex block 1418 to operate in accordance with the sleep cycle. For each connection, based on the QoS parameters entered from the service flow and connection management block 1 bucket 10, QoS block 1417 processes the processing q〇s management. The scheduling and resource multiplex block 1418 schedules and multiplexes the packets based on the attributes of the connection. To reflect the connection attributes, the schedule and resource multiplex block 1418 receives the Q〇s information for each connection from the QoS block. The plurality of radio coexisting blocks 1419 have the function of performing simultaneous operation of the IEEE 802.16m and non-IEEE 802.16m radios located on the same mobile station as 0758-A34330TWFMTKI-09-113 20 201016068. If the RSS is on the path between the ABS and the AMS, the data forwarding block 1420 performs the forward function. The feed forward block 1420 cooperates with other blocks, such as the schedule and resource multiplex block 1418 and the Protocol Data Unit (pDu) format block 1424. The interference management block 1421 has the function of handling inter-cell/sector (four) version gamma interference. The handling of interference includes: · MAC layer operation and PHY layer operation. The MAC layer operation consists of transmitting a transmission interference measurement/evaluation report via a 纟MAC signal and interference suppression through scheduling and flexible frequency reuse. ❹ PHY layer operations include: transmit power control, dry-to-machine, interference cancellation, interference measurement, and Tx beamforming/precoding (beamforming/precodiii). The inter-ABS coordination block has the function of coordinating the actions of multiple ABSs by exchanging information (e.g., interference management). This function includes the process of information exchange through backbone signaling and MS/AMS MAC message transmission, such as switching interference management between ABSs. The information includes interference characteristics such as interference measurement results. The data plane includes the following MAC functions: ® • Automatic Repeat Request (ARQ) block 1422; • Fragmentation/Packing block 1423; and • MAC PDU format block 1424.

ARQ區塊1422具有處理MAC ARQ的功能。對於賦 能的ARQ(ARQ-enabled)連接來講,ARQ區塊邏輯上將 MAC服務資料單元(Service Data Unit, SDU)分割成ARQ區 塊,並對每個邏輯ARQ區塊編號。ARQ區塊也產生ARQ 管理訊息,比如回饋訊息(ACK/NACK資訊)。根據排程與 資源多工區塊的排程結果,分割/封裝區塊1423執行MAC 0758-A34330TWF MTKI-09-113 201016068 服務資料單元(MAC Service Data Unit,MSDUs)的分割或封 裝。MAC PDU格式區塊1424構建MAC PDU以便 ABS/AMS能夠將使用者訊務或管理訊息傳輸至PHY通 道。MAC PDU格式區塊1424添加MAC標頭和子標頭。 第15圖是根據本發明一個實施例的基本wiMAX訊框 架構示意圖。每個20ms超訊框(super-frame)分為四個5ms 同等大小的無線電訊框。若對5MHz、10MHz或20MHz的 通道頻寬利用相同的正交頻分多工存取(OFDMA)參數,每 個5ms無線電訊框進一步由八個子訊框組成。子訊框用於 DL或UL傳輸。根據循環字首(Cyeijc prenx)的大小將子訊 框分為四類:1)類型-1子訊框,由六個OFDMA符號組成, 其中一些可為空閒付號;2)類型_2子訊框,由一個穿孔 (puncture)符號和五個OFDma符號組成;3)類型·3子訊 框,由七個OFDMA符號組成(增加了一個符號);4)類型_4 子訊框,由九個OFDMA符號組成(增加了三個符號)。 再次參照第1圖’根據本發明的實施例,IEEE 802 16 無線電模組102提供支持多個無線電並存操作的協定。在 本發明的一個實施例中’ CLC無線電管理器1〇4為無線電 模組101、102和103提供介面、偵測無線電模組ι〇1、1〇2 和103的活動、將與共址無線電活動有關的資訊收集到行 動電子設備1GG以及產生管理訊息且將其傳輸至多個無線 電並存處理模組(如第14圖所示的多個無線電並存功能區 塊⑷9)以回應相應的動作,從而支持多個無線電並存的運 作’其中與共址無線電活動有關的資訊(比如時間特性和無 線電特性)直接來自對應的CLC無線電模組或内部無線電 0758-A34330TWF_MTKI-OQ-113 201016068 間(inter-radio)介面。需注意CLC無線電管理器i 〇4也可在 無線電模組101、102及/或1〇3内部實現,且本發明不限 於此。 根據本發明的實施例,IEEE 802.16無線電模組102 和基地台或令繼站(比如基地台11〇3和中繼站11〇2)可經由 空氣介面彼此通信。ΙΕΕΕ 802·16無線電模組1〇2可產生管 理訊息以報告與其共址無線電活動相關的資訊,其中共址 無線電活動從無線電間介面或CLC無線電管理器1〇4直接 ® 獲彳于,且BS或RS可產生管理訊息以對IEEE 802.16無線 電模組102回應對應的動作,從而支持多個無線電並存的 運作。而且,BS或RS處的多個無線電並存功能區塊1419 可同排程與資源多工功能區塊1418通信以根據報告的共 址並存活動進行操作。多個無線電並存功能可獨立於睡眠 模式操作以允許最佳功率效率的同時也支持高位準共址並 存運作。然而’若睡眠模式提供充分的共址並存支持,則 可不利用多個無線電並存功能。 ❹ τ IEEE 802.16無線電模組1〇2可藉由預先協商之週期 f1生離開服務 BS — 段時間(pre_neg〇tiated periodic absence) 來支持共址非802·16(ηοη-802·16)無線電的同時操作,非 802.16無線電即CLC無線電,比如IEEE 802.11、IEEE 802.15.1等’且此時間段的時間樣式可分為多個clc等級 以達到最佳時間及/或頻譜效率。如表2所示,存在三種類 型的CLC等級’依據CLC開始時間、活動週期和活動間 隔的時間單位的不同,三個類型彼此互不相同。CLC活動 間隔是指定用於共址非802.16無線電活動的CLC等級的歷 075 8-A343 30TWF—MTK1-09-Π 3 201016068 時。CLC活動週期是CLC等級重複的活動樣式的時間間 隔。CLC開始時間是CLC等級的開始時間。 表2 : CLC等級參數的時間單位 CLC活動週期 CLC活動間隔 ------ CLC開始時間 類型I 微秒 子訊框 子訊框 類型II 訊框 子訊框 訊框 類型ΙΠ 不適用 超訊框 超訊框 根據本發明的實施例,IEEE 802.16無線電模組i02 可根據共址的非802.16無線電的活動決定CLC活動間隔和 CLC活動週期。行動電子設備100可決定類型I和類型π CLC等級的CLC開始時間。BS可決定類型II和類型in CLC等級的CLC開始時間。推薦類型I CLC等級用於非 802.16無線電活動’其具有低工作週期且不與802.16訊框 邊界對準。不同地,推薦類型II CLC等級用於排程靈活性。 推薦類型III CLC等級用於連續的非802.16無線電活動, 其能夠比期望時間持續更久,比如幾秒。 根據本發明的一個實施例,當共址非802.16無線電模 組的通信狀態已改變時,對於IEEE 802.16 (WiMAX)無線 電模組102及/或CLC無線電管理器1〇4則進入學習階段 (learning phase)以識別對應的CLC無線電模組的無線電特 性’其中共址非802.16無線電模組也稱為CLC無線電模 組,比如IEEE 802.11無線電模組1〇1或IEEE 802.15.1無 線電模組103。根據本發明的一個實施例,介面連接於無 0758-A34330TWF MTKI-09-113 201016068The ARQ block 1422 has a function of processing MAC ARQ. For an enabled ARQ (ARQ-enabled) connection, the ARQ block logically divides the MAC Service Data Unit (SDU) into ARQ blocks and numbers each logical ARQ block. The ARQ block also generates ARQ management messages, such as feedback messages (ACK/NACK messages). According to the scheduling result of the scheduling and resource multiplex block, the split/package block 1423 performs splitting or encapsulation of MAC 0758-A34330TWF MTKI-09-113 201016068 MAC Service Data Units (MSDUs). The MAC PDU format block 1424 constructs a MAC PDU so that the ABS/AMS can transmit user traffic or management messages to the PHY channel. The MAC PDU format block 1424 adds a MAC header and a subheader. Figure 15 is a block diagram of a basic wiMAX frame architecture in accordance with one embodiment of the present invention. Each 20ms super-frame is divided into four 5ms equal size radio frames. If the same Orthogonal Frequency Division Multiple Access (OFDMA) parameter is used for the channel bandwidth of 5 MHz, 10 MHz or 20 MHz, each 5 ms radio frame is further composed of eight sub-frames. The sub frame is used for DL or UL transmission. According to the size of the cycle prefix (Cyeijc prenx), the sub-frames are divided into four categories: 1) type-1 sub-frame, composed of six OFDMA symbols, some of which can be idle pays; 2) type_2 sub-message The box consists of a puncture symbol and five OFDma symbols; 3) a type 3 sub-frame consisting of seven OFDMA symbols (with one symbol added); 4) a type_4 sub-frame consisting of nine OFDMA symbol composition (three symbols added). Referring again to FIG. 1 'According to an embodiment of the present invention, the IEEE 802 16 radio module 102 provides a protocol that supports multiple radio coexistence operations. In one embodiment of the present invention, the 'CLC Radio Manager 1-4 provides interfaces for the radio modules 101, 102, and 103, detects the activity of the radio modules ι〇1, 1〇2, and 103, and coordinates with the co-located radio. Activity-related information is collected into the mobile electronic device 1GG and generates management messages and transmitted to a plurality of radio coexisting processing modules (such as the plurality of radio coexisting functional blocks (4) 9 shown in FIG. 14) in response to corresponding actions, thereby supporting Operation of multiple radios coexisting' information related to co-located radio activities (such as time characteristics and radio characteristics) directly from the corresponding CLC radio module or internal radio 0758-A34330TWF_MTKI-OQ-113 201016068 inter-radio interface . It is noted that the CLC radio manager i 〇 4 can also be implemented within the radio modules 101, 102 and/or 1-3, and the invention is not limited thereto. In accordance with an embodiment of the present invention, the IEEE 802.16 radio module 102 and the base station or relay station (e.g., base station 11〇3 and relay station 11〇2) can communicate with one another via an air interface. 802 The 802.16 radio module 1〇2 can generate management messages to report information related to its co-located radio activity, where the co-located radio activity is obtained directly from the inter-radio interface or the CLC radio manager 1〇4, and the BS Or the RS can generate a management message to respond to the corresponding action of the IEEE 802.16 radio module 102, thereby supporting the operation of multiple radio coexistence. Moreover, a plurality of radio coexistence functional blocks 1419 at the BS or RS can communicate with the scheduling and resource multiplexing function block 1418 to operate in accordance with the reported coexistence coexistence activity. Multiple radio coexistence functions can operate independently of sleep mode to allow for optimal power efficiency while also supporting high level co-location coexistence operations. However, if the sleep mode provides sufficient co-location coexistence support, multiple radio coexistence functions may not be utilized. ❹ τ IEEE 802.16 radio module 1〇2 can support the co-location non-802·16 (ηοη-802·16) radio while pre-negotiating period f1 leaves the pre-neg〇tiated periodic absence Operation, non-802.16 radios are CLC radios, such as IEEE 802.11, IEEE 802.15.1, etc. and the time pattern of this time period can be divided into multiple clc levels to achieve optimal time and/or spectral efficiency. As shown in Table 2, there are three types of CLC levels' depending on the time unit of the CLC start time, the activity period, and the activity interval, and the three types are different from each other. The CLC activity interval is the time 075 8-A343 30TWF-MTK1-09-Π 3 201016068 when the CLC level is specified for co-location of non-802.16 radio activities. The CLC activity period is the time interval of the active style of the CLC level. The CLC start time is the start time of the CLC level. Table 2: Time unit of CLC level parameter CLC activity period CLC activity interval ------ CLC start time type I microsecond sub-frame sub-frame type II frame sub-frame type ΙΠ not applicable super-frame super Block According to an embodiment of the invention, the IEEE 802.16 radio module i02 may determine the CLC active interval and the CLC active period based on the activity of the co-located non-802.16 radio. The mobile electronic device 100 can determine the CLC start time for type I and type π CLC levels. The BS can determine the CLC start time for Type II and Type in CLC levels. The recommended type I CLC level is for non-802.16 radio activity' which has a low duty cycle and is not aligned with the 802.16 frame boundary. Differently, the Type II CLC level is recommended for scheduling flexibility. The Type III CLC rating is recommended for continuous non-802.16 radio activity, which can last longer than expected, such as a few seconds. According to an embodiment of the present invention, when the communication state of the co-located non-802.16 radio module has changed, the learning phase is entered for the IEEE 802.16 (WiMAX) radio module 102 and/or the CLC radio manager 1〇4 (learning phase) To identify the radio characteristics of the corresponding CLC radio module, where the co-located non-802.16 radio module is also referred to as a CLC radio module, such as the IEEE 802.11 radio module 1.1 or the IEEE 802.15.1 radio module 103. According to an embodiment of the present invention, the interface is connected to no 0758-A34330TWF MTKI-09-113 201016068

線電模組101、1〇2和103間的CLC無線電管理器1〇4可 债測每個CLC無線電模組㈣動,錢知曉通信狀態的改 變。舉例來說’通信狀態的改變發生在藍芽模組或WLAN 模組開啟、關或拒絕時、藍芽模組執行查詢過程以發現 附近的設備或執行尋呼(連接)過程從而建立特定鏈接時、 WLAN模組執行存取過程以嘗試與Ap關聯或在不同的通 信模式間改變時、藍芽模組在第9圖所示的監聽模式93〇 和活動模式910之間改變時等。在本發明的一個實施例 中,無線電模組101、1〇2和1〇3可經由硬體接腳將信號引 入CLC無線電管理器104或發出軟體/韌體中斷信號以表 明對應的無線電模組的激活/去活 (activation/deactivation)。在本發明的另一個實施例中,CLC 無線電管理器104也可監視無線電模組101、102及/或1〇3 的無線電信號以根據信號功率估計信號干擾的程度。舉例 來說,若WiMAX模組102的無線電信號的信號品質不斷 降低’則意味著另一個已激活的無線電模組引起了信號干 擾。 在學習階段,WiMAX模組102從服務BS請求離開一 個時間段以支持CLC無線電模組的初始設置或連接設置操 作。第16圖是根據本發明一個實施例的CLC請求的訊息 流交互示意圖。WiMAX模組102可傳輸CLC請求 (CLC_Request)至服務BS以表明CLC無線電模組的激活並 請求離開一個時間段。服務BS在CLC開始時間之前對CLC 請求作出回應。若服務BS接受CLC請求,則在此時間段 期間最好避免服務BS與WiMAX模組間的資料傳輸。也就 0758-A34330TWF_MTK]-O9-11 201016068 疋說,在此時間段期間行動電子設備 100的無線電資源最 好預留用於共址非802.16無線電模組的激活,從而獲得其 無線電特性。根據本發明的一個實施例,CLC無線電模乡且 的無線電特性可包括傳輪功率、接收靈敏度、訊務樣式(比 如第13圖所不的訊務樣式)等。然後,wiMAX模組1〇2及 /或CLC無線電管理器1〇4進一步從已激活/正在激活 (activated/activating)的clC無線電模組中識別所獲得的無 線電特性。WiMAX模組1〇2可傳輸另一 cLc請求至服務 BS以便當摘測到CLC無線電模組已經去活時表明共址非 802.16無線電模組的去活’或者表明cLc無線電模組的初 始设置或連接設置已經完成。其後進行服務The CLC radio manager 1〇4 between the line modules 101, 1〇2 and 103 can measure each CLC radio module (4), and the money knows the change of the communication state. For example, 'changes in communication status occur when the Bluetooth module or WLAN module is turned on, off, or denied, the Bluetooth module performs a query process to discover nearby devices, or performs a paging (connection) process to establish a specific link. When the WLAN module performs an access procedure to attempt to associate with Ap or change between different communication modes, the Bluetooth module changes between the listening mode 93A and the active mode 910 shown in FIG. In one embodiment of the present invention, the radio modules 101, 1〇2, and 1〇3 can introduce signals to the CLC radio manager 104 via a hardware pin or issue a software/firmware interrupt signal to indicate the corresponding radio module. Activation/deactivation. In another embodiment of the invention, the CLC radio manager 104 can also monitor the radio signals of the radio modules 101, 102 and/or 101 to estimate the degree of signal interference based on the signal power. For example, if the signal quality of the radio signal of the WiMAX module 102 is continuously reduced, it means that another activated radio module causes signal interference. During the learning phase, the WiMAX module 102 requests a departure from the serving BS for a period of time to support the initial setup or connection setup operations of the CLC radio module. Figure 16 is a diagram showing the flow of message flows for a CLC request in accordance with one embodiment of the present invention. The WiMAX module 102 can transmit a CLC request (CLC_Request) to the serving BS to indicate activation of the CLC radio module and request to leave for a period of time. The serving BS responds to the CLC request before the CLC start time. If the serving BS accepts the CLC request, it is preferable to avoid data transmission between the serving BS and the WiMAX module during this time period. That is, 0758-A34330TWF_MTK]-O9-11 201016068 ,, during this time period, the radio resources of the mobile electronic device 100 are preferably reserved for the activation of the co-located non-802.16 radio module to obtain its radio characteristics. According to an embodiment of the present invention, the radio characteristics of the CLC radio module may include the transmission power, the reception sensitivity, the traffic pattern (such as the traffic pattern not shown in Fig. 13), and the like. The wiMAX module 1〇2 and/or the CLC radio manager 1〇4 then further identifies the obtained radio characteristics from the activated/activating clC radio module. The WiMAX module 112 can transmit another cLc request to the serving BS to indicate the deactivation of the co-located non-802.16 radio module when the CLC radio module has been deactivated or to indicate the initial setting of the cLc radio module or The connection settings have been completed. Service afterwards

BS 和 WiMAX 模組間的資料傳輸。 在本發明的實施例中’ WiMAX模組102可傳輸CLC 請求訊息以激活、終止或重新配置一個或多個類型j、類型 II或/及類型III CLC等級。表3列出clc請求訊息參數。 表3 : CLC請求訊息參數 管理訊息類型 請求動作 請求動作參數Data transfer between BS and WiMAX modules. In an embodiment of the invention, the WiMAX module 102 may transmit a CLC request message to activate, terminate or reconfigure one or more Type j, Type II or/and Type III CLC levels. Table 3 lists the clc request message parameters. Table 3: CLC Request Message Parameters Management Message Type Request Action Request Action Parameters

^…請求動作是一資訊位元組。當請求動作欄位的位元#i 又疋為〇」日守,若具有CLC ID=i的CXC等級存在,則表 明WiMAX模組ι〇2已請求終止存在的的 等級。CLC標識符(CLC ID)是一整數(〇〜7)以唯一識別cLC 0758-A34330TWFJVITKI-09-113 ~>6 201016068^... The request action is an information byte. When the bit #i of the requested action field is 〇 〇 日, if the CXC level with CLC ID=i exists, it indicates that the WiMAX module ι〇2 has requested to terminate the existing level. The CLC identifier (CLC ID) is an integer (〇~7) to uniquely identify cLC 0758-A34330TWFJVITKI-09-113 ~>6 201016068

等級。另一方面,當請求動作攔位的位元#i設定為「〗」時, 則表明WiMAX模、组1〇2已請求激活具冑CLC 的CLC 等級。對於存在的CLC m,MS保持其存在配置,並請求 重新配置或取代其存在的CLC等級。請求的動作參數作為 CLC資訊混合物被包含。若WiMAX模組1〇2想要包括多 個CLC ^訊攔位,則這些參數出現不止一次。CLC資訊可 包括CLCID、CLC等級難、訊務樣式、無線電參數發揮 作用的開始時間等。根據本發明的一個實施例,由多達一 ❹子訊框時間單位的高解析度對訊物樣式進行描述,以便提 升時間及/或頻譜效率。描述訊務樣式的方法可包括:位元 映像(bitmap)、並存比(coexistence rati〇)、活動視窗(active window)和非活動視窗(inactjve wind〇w)、即時(快速)回鑛等 (訊務樣式將於後續段落詳述)。表4羅列了 CLC資訊參數 中適用於CLC請求訊息的參數。 表4 : CLC資訊參數中適用於CLC諸灰的糸盤 參數 _註解 — 每個請求的類型Ι、ΙΙ、ΠΙ CLC 等級的參數集 CLCID 排程衝突 開始超訊框數 開始訊框索引 旗標(Flag) ----------—_ 1 —--—-- 0758-A34330TWFJVITKI-09-113 27 201016068 類型I CLC等級的CLC活動 間隔 -——_1 If (旗標==ObOO) 類型I CLC等級的CLC活動 週期 迀(旗標==ObOO) 開始子訊框索引 If (旗標==ObOO) 具有子類型1的類型II CLC 等級的CLC活動間隔 If (旗標==0b01) 具有子類型1的類型II CLC 等級的CLC活動週期 If (旗標=ObOl) 擴展位元映像標識符 If (旗標=Ob 10) CLC活動位元映像 (擴展位元映像標識符==0) 擴展CLC活動位元映像的長 度(k) if (擴展位元映像標識符=1) 擴展位元映像標識符 If (旗標 0b 10) CLC活動位元映像 if (擴展位元映像標識符==0) CLC請求欄位中的參數如下: 參 旗標: b00 :類型ICLC等級; b01 :類型II CLC等級子類型!; blO :類型II CLC等級子類型2或3 ;以及 bll :類型III CLC等級。 排程衝突:grade. On the other hand, when the bit #i of the request action block is set to "〗", it indicates that the WiMAX mode, group 1〇2 has requested to activate the CLC level with the CLC. For the existing CLC m, the MS maintains its presence configuration and requests to reconfigure or replace its existing CLC level. The requested action parameters are included as a CLC information mix. If the WiMAX module 1〇2 wants to include multiple CLC^ blocks, these parameters appear more than once. CLC information can include CLCID, CLC level difficulty, traffic pattern, and the start time of the radio parameters. In accordance with an embodiment of the present invention, a high resolution target pattern of up to one frame time unit is described to increase time and/or spectral efficiency. Methods for describing traffic patterns may include: bitmap, coexistence rati〇, active window and inactive window (inactjve wind〇w), instant (fast) return mining, etc. The style will be detailed in the subsequent paragraphs). Table 4 lists the parameters that apply to the CLC request message in the CLC information parameters. Table 4: Parameters for CLC ash in CLC information parameters_Notes - Type of each request Ι, ΙΙ, ΠΙ CLC level parameter set CLCID Schedule conflict start hyperframe number start frame index flag ( Flag) ----------__ 1 —----- 0758-A34330TWFJVITKI-09-113 27 201016068 Type I CLC level CLC activity interval -——_1 If (flag ==ObOO) Type I CLC level CLC activity period 旗 (flag ==ObOO) Start sub-frame index If (flag ==ObOO) Type II CLC level CLC activity interval If with subtype 1 (flag = = 0b01) CLC active period If with subtype 1 CLC level If (flag = ObOl) Extended bit map identifier If (flag = Ob 10) CLC active bit map (extended bit map identifier = = 0) Length of extended CLC activity bit map (k) if (extension bit map identifier = 1) Extended bit map identifier If (flag 0b 10) CLC active bit map if (extension bit map identifier == 0) The parameters in the CLC request field are as follows: Reference flag: b00: Type ICLC level; b01: Type II CLC level subtype! ; blO : Type II CLC level subtype 2 or 3; and bll: Type III CLC level. Scheduling conflict:

ObOO (默認)=DL和UL分配在CLC活動間隔中均被 0758-A34330TWF ΜΤΚΪ-09-113 28 201016068 • 禁止;ObOO (default) = DL and UL allocation are all in the CLC active interval. 0758-A34330TWF ΜΤΚΪ-09-113 28 201016068 • Prohibited;

ObOl =僅DL分配在CLC活動間隔中被禁止;ObOl = only DL allocation is prohibited in the CLC activity interval;

OblO =僅UL分配在CLC活動間隔中被禁止;以及 Obll =預留。 類型I CLC等級的CLC活動間隔: 類型I CLC等級的CLC活動間隔的子訊框數。 類型I CLC等級的CLC活動週期: 類型I CLC專級的CLC活動週期的微秒數。 參具有子類型1的類型IICLC等級的CLC活動間隔: 類型II CLC等級的CLC活動間隔的子訊框數。 具有子類型1的類型IICLC等級的CLC活動週期CLC: 類型II CLC等級的CLC活動週期的訊框數。 擴展CLC活動位元映像標識符: 表明是否利用擴展CLC活動位元映像欄位。 CLC活動位元映像: δ又疋欄位位元為「1」,表明每個訊框中對應的子 ❿ 框在一 CLC活動間隔中。 ; 擴展CLC活動位元映像: 設定攔位位元為「1」,表明每個CLC活動週期中 應的子訊框在一 CLC活動間隔中。 、 類型III CLC等級的CLC活動間隔:OblO = Only UL allocation is disabled in the CLC active interval; and Obll = Reserved. Type I CLC level CLC activity interval: Type I CLC level CLC activity interval number of subframes. Type I CLC Level CLC Activity Period: Type I The number of microseconds of the CLC activity period of the CLC level. Refer to the CLC activity interval of type IICLC level with subtype 1: Number of sub-frames for CLC activity interval of type II CLC level. CLC Activity Period CLC with Type IICLC Level of Subtype 1: Number of Frames for CLC Activity Period of Type II CLC Level. Extended CLC Activity Bitmap Identifier: Indicates whether the extended CLC activity bitmap field is utilized. CLC activity bit map: δ and 疋 field bit is "1", indicating that the corresponding sub-frame in each frame is in a CLC activity interval. ; Extended CLC activity bit map: Set the block bit to "1", indicating that the sub-frames in each CLC activity cycle are in a CLC activity interval. , Type III CLC level CLC activity interval:

類型III CLC等級的CLC活動間隔的子訊框數。 根據本發明的一個實施例,wiMAX模組可將CLC請 求傳輸至服務B S ’從而請求離開一個長時間段以支持學習 階段’其中CLC請求具有設定為類型m的CLC等級。CLC 0758-A34330TWF_MTKI-09-l 13 29 201016068 等級可用如上所述的旗標欄位指定。根據本發明的另一個 實施例’ WiMAX模組也可傳輸CLC請求至服務BS以直 接請求用於學習階段的一學習時間段。第17圖是根據本發 明一個實施例的學習階段中C L C請求的訊息流的交互示意 圖。偵測CLC無線電活動後,WiMAX模組102將不具有 CLC參數的CLC請求傳輸至服務BS,以請求一學習時間 段。在學習時間段期間,行動電子設備1〇〇的無線電資源 最好預留用於激活CLC無線電模組,以便獲取其無線電特 性。根據本發明的一個實施例,在此期間最好避免服務BS 和WiMAX模組1〇2之間的資料傳輸。然而,若服務Bs 有必要將資料傳輸至WiMAX模組102,服務BS可增強通 信可靠性。根據本發明的實施例’服務BS可利用更穩健 的下行鏈路調變及編碼方案(modulation and coding scheme, MCS)、增加下行鏈路資料突發傳輸功率、允許在下行鏈路 和上行鏈路中利用ARQ或HARQ進行更多重發 (retransmission)。舉例來說,服務Bs可通過減少MCS次 序或減少碼率或其他方式來利用更穩健的下行鏈路MCS, 其中減少MCS次序比如用qPSK取代先前用於資料或(子 MAP)MAP調變的16-QAM。若在此幾近超時(time_〇ut)的 時間段内CLC無線電模組不能獲取所有對應的無線電特 性,則WiMAX模組102可傳輸另一 CLC請求以開始另一 學習階段或延長該學習階段。服務BS可用CLC回應訊息 對WiMAX模組1〇2作出回應,其中該CLC回應訊息包^ 確認延長學習階段或拒絕相應的請求。獲取已激活無 線電模組的無線電特性後,WiMAX模組1〇2及/或CLC無 0758-A34330TWFMTKI-09-113 .〇 201016068 線電管理器104可相應地決定與CLC無線電模組對應的 CLC類型和CLC參數。 獲取且確認CLC無線電模組對應的無線電特性後, WiMAX模乡且1 〇2進入協商階段(neg〇tiati〇I1 phase)以描述獲 取的CLC無線電活動樣式並將其遞送至服務bs。CLC無 線電活動樣式包括參數,用於描述在學習階段中獲取的或 從預定義配置中獲取的CLC無線電活動。CLC無線電活動 可參考第6圖、第8圖、第1〇圖和第π圖的描述。舉例 ® 來說,已激活CLC無線電模組的CLC無線電活動樣式可 包括有關傳輸功率、接收靈敏度、開始時間、歷時、收發 類型等的資訊。根據本發明的一個實施例,用於DL和UL 資料訊務排程的WiMAX模組1〇2的訊務樣式可進一步根 據獲取的CLC無線電模組的訊務樣式所產生,從而協調 CLC無線電模組和wiMAX模組1〇2的操作。產生的訊務 樣式可描述用於WiMAX模組1〇2的多個推薦下行鏈路及/ @ 或上型鏈路訊務分配。因此,可協調行動電子設備100的 一個或多個無線電資源以避免信號干擾或收發衝突。在協 商階段,WiMAX模組102可根據產生的訊務樣式請求離開 服務BS —個或多個時間段來支持共址非8〇216無線電的 操作。根據本發明的一個實施例,WiMAX模組102將具有 產生的訊務樣式的CLC請求傳輸至服務BS,其中產生的 訊務樣式用於WiMAX模紐1〇2某個CLC等級。第18圖 是根據本發明—個實施例的協商階段中CLC請求的訊息流 的交互示意圖。有關CLC請求訊息參數的詳細資料可參考 表3、表4及其相應段落。 0758-A34330TWF—MTK1-09-113 201016068 如前所述,在本發明的實施例中,訊務樣式有多達一 _ 子訊框時間單位的高解析度,以便提升時間及/或頻譜效 率、。描述訊務樣式的方法可包括:位元映像、並存比、活 動視窗和非活動視窗、即時(快速)回饋等。位元映像是包 括多個位元資訊的位元序列’以利用位元的不同邏輯位準 描述訊務樣式。舉例來說,若將位元設為第一邏輯位準, 則意味著由於CLC無線電模組在此時間間隔期間有無線電 活動因此推薦BS在對應的時間間隔期間不服務wiMAX 模組102。右將位兀設為第二邏輯位準,則在對應的時間春 間隔期間B S對W i M A X模組丨〇 2自由分配下行鍵路或上行 鍵路訊務。舉㈣說,CLC無線電訊務樣式是―子訊框位 元映像(用於類型H CLC等級),用以通過—個位元描述每 個子訊框的訊務樣式。子訊框位元映像中位元的第一邏輯 位準表明在對應的子訊框時間間隔期間推薦BS不對 WiMAX模組1〇2分配下行鏈路或上行鏈路訊務,位元的第 二邏輯位準表明在對應的子訊框時間間隔期間Bs對 WiMAX模組1〇2自由分配下行鏈路或上行鏈路訊務。因 參 此,位元映像的1位元組可包括一個訊框的訊務資訊,其 中每個位元用於描述一個子訊框。舉例來說,也能夠利用 两個位元映像分別描述DL訊務樣式和UL訊務樣式。舉另 一個例子’也可以通過一個位元資訊描述每個訊框的訊務 樣式。因此’位元映像中4個位元可用於描述一個超訊框 的訊務資訊。並存比利用百分比表示CLC無線電模組的預 留時間。例如’ 30%的並存比表示推薦BS確保最好為CLC 無線電活動預留30%的預設時間間隔。並存比適用於非週 0758-A34330TWF_MTKI-09-113 32 201016068 $ M cu:無線u動。活動視窗與非活動視窗指定開始 $訊框、、喃或子訊框數,以及clc無線電活動的活動歷 日寸和非活動歷時。視窗可根據CLC類型利用毫秒、超訊框、 訊框或子訊框時間單位。即時(快速)回饋是回饋通道或服 務BS分派的專用UL資源,以允許wiMAx模組在後續訊 汇中報σ其無線電 > 源喜好(ρπ&πηα)。即時(快速)回饋 適於具有動態訊務樣式的CLC無線電。 接收CLC無線電活動樣式後,服務bs用具有CLC ® 回應訊息的確認碼(confirmation code)對WiMAX模組102 作出回應’以表明CLC請求是否已被接受。在bs負載已 改變時若需要或更新CLC無線電活動樣式,服務BS則進 一步決定是否修改CLC參數。基於接收到的CLC無線電 活動樣式,根據從CLC請求訊息處獲取的WiMAX模組102 的推薦訊框樣式,服務BS對下行鏈路和上行鏈路wiMAX 訊務分配進行排程。排程的下行鏈路和上行鏈路WiMAX 訊務分配可在對應的下行鏈路MAP訊息和上行鏈路MAP ® 訊息(DL_MAP和UL_MAP)中指定,其中對應的下行鏈路 和上行鏈路MAP訊息由服務BS週期性廣播。根據CLC 無線電活動樣式的認可,WiMAX模組和CLC無線電模組 的後續資料傳輸和接收交錯以避免傳輸衝突。 根據本發明的一個實施例,若已激活CLC無線電模組 的通信狀態或無線電特性已改變,WiMAX模組102則進一 步更新CLC參數,其中改變例如WLAN模組進入或離開 PS模式、藍芽設備建立或釋放SCO、eSCO或ACL鏈路等。 第19圖是根據本發明一個實施例CLC請求的訊息流用於 0758-A34330TWF MTKI-09-113 33 201016068 更新/刪除/創建CLC參數的交互示意圖。若clc無線電特 性已改變、或CLC無線電已去活(deactivated)、或偵測到 新的CLC無線電活動,WiMAX模組1 〇2可傳輸CLC請求 以更新CLC參數、刪除先前CLC請求或創建新的CLC請 求。服務BS可根據接收的CLC請求修改DL和UL WiMAX 訊務分配’並用具有CLC回應訊息的碟認碼對WiMAX模 組102作出回應,以表明CLC請求是否已通過空氣介面被 接受。隨後,服務BS根據修改的下行鏈路和上行鏈路 WiMAX訊務樣式對WiMAX資料訊務排程。 · 根據本發明的實施例,無線電模組可包括訊務樣式產 生器(Traffic Pattern Generator, TPG),用於產生對應的訊務 樣式’ CLC無線電管理器104包括同步資訊產生器 (Synchronization Information Generator, SIG),用於協調從 不同的無線電模組中獲取的訊務樣式。如第1圖所示,IEEE 802.11無線電模組1〇1可包括TPG 3(H,IEEE 802.16無線 電模組102可包括TPG 302,IEEE 802.15.1無線電模組103 可包括TPG 3〇3,CLC無線電管理器104可包括SIG 304。 參 SIG 304可根據參考時鍾協調不同無線電模組的訊務樣 式,其中參考時鍾與服務BS同步並接收自IEEE 802.16無 線電模組102。舉例來說,TPG 303可根據學習階段獲取的 無線電特性產生藍芽HV3訊務樣式並將藍芽HV3訊務樣 式傳輸至SIG 304。如前所述,描述訊務樣式的方法包括: 位元映像、並存比、活動視窗和非活動視窗、即時(快速) 回饋等。例如,TPG301可用丨150#,625〆375一丨描述藍芽HV3 訊務樣式,其中第一參數代表HV3訊務的開始時間,第二 〇758-A3433〇TWF_MTKI-09-113 34 201016068 參數代表HV3訊務的長度,第三參數代表HV3訊務的重 複週期。也就是說,藍芽HV3訊務樣式所承載的資訊表明 長度為625/zs的HV3訊務在150/^後開始,且HV3訊務 每3750/zs重複一次。舉例來說,TPG 303可通過比HV3 訊務的開始早150/z s來輸出HV3無線電活動。SIG 304進 一步從WiMAX模組102接收原始的DL_MAP和 UL—MAP、訊框時鍾和子訊框時鍾,並產生wiMAx訊務 樣式’ WiMAX訊務樣式根據HV3訊務樣式、原始的 ❿ DL—MAP和UL_MAP描述推薦的下行鏈路及/或上行鏈路 訊務分配。Number of sub-frames for CLC activity intervals for Type III CLC levels. In accordance with an embodiment of the present invention, the wiMAX module can transmit the CLC request to the service B S ' to request to leave a long period of time to support the learning phase' where the CLC request has a CLC level set to type m. CLC 0758-A34330TWF_MTKI-09-l 13 29 201016068 Levels can be specified using the flag field as described above. According to another embodiment of the present invention, the WiMAX module can also transmit a CLC request to the serving BS to directly request a learning period for the learning phase. Figure 17 is a diagram showing the interaction of a message flow of a C L C request in a learning phase in accordance with an embodiment of the present invention. After detecting the CLC radio activity, the WiMAX module 102 transmits a CLC request without the CLC parameter to the serving BS to request a learning period. During the learning period, the radio resources of the mobile electronic device 1 are preferably reserved for activating the CLC radio module in order to obtain its radio characteristics. In accordance with an embodiment of the present invention, data transfer between the serving BS and the WiMAX module 102 is preferably avoided during this time. However, if the service Bs needs to transmit data to the WiMAX module 102, the serving BS can enhance the reliability of the communication. The serving BS can utilize a more robust downlink modulation and coding scheme (MCS), increase downlink data burst transmission power, and allow downlink and uplink in accordance with an embodiment of the present invention. Use ARQ or HARQ for more retransmissions. For example, the service Bs may utilize a more robust downlink MCS by reducing the MCS order or reducing the code rate or other means, wherein reducing the MCS order, such as replacing the previously used data or (sub-MAP) MAP modulation with qPSK 16 -QAM. If the CLC radio module cannot acquire all the corresponding radio characteristics during the time period of the near timeout period, the WiMAX module 102 can transmit another CLC request to start another learning phase or extend the learning. stage. The serving BS can respond to the WiMAX module 1〇2 with a CLC response message, wherein the CLC response message packet confirms the extension of the learning phase or rejects the corresponding request. After obtaining the radio characteristics of the activated radio module, the WiMAX module 1〇2 and/or CLC has no 0758-A34330TWFMTKI-09-113. 〇201016068 The line manager 104 can determine the CLC type corresponding to the CLC radio module accordingly. And CLC parameters. After obtaining and confirming the radio characteristics corresponding to the CLC radio module, the WiMAX module enters the negotiation phase (neg〇tiati〇I1 phase) to describe the obtained CLC radio activity pattern and deliver it to the service bs. The CLC radio activity pattern includes parameters that describe the CLC radio activity acquired during the learning phase or obtained from a predefined configuration. CLC Radio Activity Refer to the descriptions in Figure 6, Figure 8, Figure 1 and Figure π. For example ® , the CLC radio activity pattern of an activated CLC radio module can include information about transmission power, reception sensitivity, start time, duration, type of transmission and reception, and so on. According to an embodiment of the present invention, the traffic pattern of the WiMAX module 112 for DL and UL data traffic scheduling can be further generated according to the acquired traffic pattern of the CLC radio module, thereby coordinating the CLC radio mode. Group and wiMAX module 1〇2 operation. The resulting traffic pattern can describe multiple recommended downlink and/or uplink traffic assignments for WiMAX module 1〇2. Thus, one or more radio resources of the mobile electronic device 100 can be coordinated to avoid signal interference or to send and receive collisions. In the negotiation phase, the WiMAX module 102 can request to leave the serving BS for one or more time periods based on the generated traffic pattern request to support the operation of the co-located non-8 216 216 radio. In accordance with an embodiment of the present invention, the WiMAX module 102 transmits a CLC request with the generated traffic pattern to the serving BS, wherein the generated traffic pattern is used for a certain CLC level of the WiMAX module. Figure 18 is a diagram showing the interaction of a message flow of a CLC request in a negotiation phase in accordance with an embodiment of the present invention. For details on the CLC request message parameters, refer to Table 3, Table 4, and their corresponding paragraphs. 0758-A34330TWF—MTK1-09-113 201016068 As described above, in an embodiment of the present invention, the traffic pattern has a high resolution of up to one subframe time unit in order to improve time and/or spectral efficiency, . Methods for describing traffic patterns may include: bit maps, coexistence ratios, active windows and inactive windows, instant (fast) feedback, and the like. A bit map is a sequence of bits comprising a plurality of bit information to describe the traffic pattern using different logical levels of the bits. For example, setting the bit to the first logic level means that the BS does not service the wiMAX module 102 during the corresponding time interval because the CLC radio module has radio activity during this time interval. If the right bit is set to the second logic level, B S can freely assign the downlink key or uplink traffic to the W i M A X module 丨〇 2 during the corresponding time interval. (4) The CLC radio service pattern is a sub-frame bit map (for type H CLC level) that describes the message pattern of each sub-frame by a bit. The first logical level of the bit in the sub-frame bit map indicates that the recommended BS does not allocate downlink or uplink traffic to the WiMAX module 1 在 2 during the corresponding subframe interval, the second bit The logic level indicates that Bs freely allocates downlink or uplink traffic to WiMAX module 1〇2 during the corresponding subframe interval. As a result, a 1-byte of a bitmap can include a frame of traffic information, where each bit is used to describe a sub-frame. For example, it is also possible to describe the DL traffic pattern and the UL traffic pattern separately using two bit maps. Another example can also describe the message style of each frame by a bit information. Therefore, 4 bits in the 'bit map' can be used to describe the traffic information of a hyperframe. The coexistence ratio represents the retention time of the CLC radio module. For example, a 30% coexistence ratio indicates that the recommended BS ensures that a preset time interval of 30% is best reserved for CLC radio activity. The coexistence ratio applies to non-weekly 0758-A34330TWF_MTKI-09-113 32 201016068 $ M cu: Wireless u move. The active window and the inactive window specify the start of the $frame, the number of frames, or the number of subframes, as well as the calendar duration and inactivity duration of the clc radio activity. The window can utilize milliseconds, hyperframes, frames, or subframe time units based on the CLC type. The immediate (fast) feedback is a dedicated UL resource assigned by the feedback channel or the serving BS to allow the wiMAx module to report its radio > source preference (ρπ & πηα) in subsequent communications. Instant (fast) feedback Suitable for CLC radios with dynamic traffic patterns. After receiving the CLC radio activity pattern, the service bs responds to the WiMAX module 102 with a confirmation code with a CLC® response message to indicate whether the CLC request has been accepted. If the CLC radio activity pattern is needed or updated when the bs load has changed, the serving BS further decides whether to modify the CLC parameters. Based on the received CLC radio activity pattern, the serving BS schedules the downlink and uplink wiMAX traffic assignments based on the recommended frame pattern of the WiMAX module 102 obtained from the CLC request message. Scheduled downlink and uplink WiMAX traffic assignments can be specified in the corresponding downlink MAP messages and uplink MAP® messages (DL_MAP and UL_MAP), with corresponding downlink and uplink MAP messages Periodically broadcast by the serving BS. Based on the recognition of the CLC radio activity pattern, subsequent data transmission and reception of WiMAX modules and CLC radio modules are interleaved to avoid transmission collisions. According to an embodiment of the present invention, if the communication state or radio characteristics of the activated CLC radio module have changed, the WiMAX module 102 further updates the CLC parameters, wherein the change, for example, the WLAN module enters or leaves the PS mode, and the Bluetooth device is established. Or release SCO, eSCO or ACL links. Figure 19 is a diagram showing the interaction of a CLC requested message stream for 0758-A34330TWF MTKI-09-113 33 201016068 update/delete/create CLC parameters in accordance with one embodiment of the present invention. If the clc radio characteristics have changed, or the CLC radio has been deactivated, or a new CLC radio activity is detected, WiMAX Module 1 〇 2 can transmit CLC requests to update CLC parameters, delete previous CLC requests, or create new ones. CLC request. The serving BS can modify the DL and UL WiMAX traffic assignments based on the received CLC request and respond to the WiMAX module 102 with the disc identification code with the CLC response message to indicate whether the CLC request has been accepted through the air interface. The serving BS then schedules WiMAX data traffic based on the modified downlink and uplink WiMAX traffic patterns. According to an embodiment of the invention, the radio module may include a Traffic Pattern Generator (TPG) for generating a corresponding traffic pattern. The CLC radio manager 104 includes a Synchronization Information Generator (Synchronization Information Generator). SIG) for coordinating traffic patterns obtained from different radio modules. As shown in FIG. 1, the IEEE 802.11 radio module 101 may include TPG 3 (H, the IEEE 802.16 radio module 102 may include a TPG 302, and the IEEE 802.15.1 radio module 103 may include a TPG 3〇3, a CLC radio. The manager 104 can include a SIG 304. The reference SIG 304 can coordinate the traffic patterns of different radio modules according to a reference clock, wherein the reference clock is synchronized with the serving BS and received from the IEEE 802.16 radio module 102. For example, the TPG 303 can be The radio characteristics acquired during the learning phase produce the Bluetooth HV3 traffic pattern and transmit the Bluetooth HV3 traffic pattern to the SIG 304. As mentioned earlier, the methods for describing the traffic pattern include: Bitmap, Coexistence Ratio, Active Window, and Non- Active window, instant (fast) feedback, etc. For example, TPG301 can use 丨150#, 625〆375 to describe the Bluetooth HV3 traffic pattern, where the first parameter represents the start time of HV3 traffic, and the second 〇 758-A3433〇 TWF_MTKI-09-113 34 201016068 The parameter represents the length of the HV3 traffic, and the third parameter represents the repetition period of the HV3 traffic. That is, the information carried by the Bluetooth HV3 traffic pattern indicates that the HV3 is 625/zs in length. Start after 150/^, and HV3 traffic repeats every 3750/zs. For example, TPG 303 can output HV3 radio activity 150/zs earlier than the start of HV3 traffic. SIG 304 further from WiMAX module 102 receives the original DL_MAP and UL_MAP, the frame clock and the subframe clock, and generates a wiMAx traffic pattern. The WiMAX traffic pattern describes the recommended downlink according to the HV3 traffic pattern, the original DL DL-MAP, and the UL_MAP. / or uplink traffic assignment.

第20圖是根據本發明產生推薦wiMAX訊務樣式的方 法流程圖。從CLC無線電模組接收訊務樣式(步驟S2〇01) 後,SIG 304根據WiMAX模組1〇2的參考時鍾對訊務樣式 進行變換(步驟S2002)。舉例來說,sig 304根據WiMAX 模組102的訊框時鍾及/或子訊框時鐘對CLC訊務樣式進 行變換,以表徵WiMAX訊框或子訊框時間單位中的clc ® 訊務樣式。需要注意,由於CLC無線電模組可利用具有時 序特性的參考時鐘,這不同於WiMAX模組1〇2,因此SIG 304需要步驟S2002中的變換以將CLC無線電模組時序所 表徵的訊務樣式變換為WiMAX時序所描述的clc訊務樣 式。最終,SIG 304根據變換的CLC訊務樣式產生推薦的 WiMAX訊務樣式(步驟S2003)»注意在本發明的實施例 中,CLC無線電管理器104可由軟體/韌體模組來實現。然 而,為了精確時序,CLC無線電管理器1〇4的一些功能(比 如SIG 304)也可由硬體設備實現以快速回應且本發明不限 0758-A34330TWF MTK1-09-113 35 201016068 於此。此外,SIG 304或CLC無線電管理器i〇4也可在 WiMAX模組102内部實現。因此,在本發明的一些實施例 中’WiMAX模組102或TPG 302也可接收CLC訊務樣式、 變換CLC訊務樣式並相應地產生推薦WiMAX訊務樣式, 且本發明不限於此。 第21圖是根據本發明一個實施例的訊務樣式架構 圖。在此實施例中,CLC訊務是藍芽HV3訊務且WiMAX 訊務樣式由子訊框位元映像所描述。第22圖是根據本發明 一個實施例產生子訊框位元映像的方法流程圖。根據 WiMAX模組102的訊框時鍾和子訊框時鍾變換CLC訊務 樣式後,SIG 304或WiMAX模組1〇2根據變換的CLC訊 務樣式決定對於後續WiMAX子訊框是否有任一 CLC無線 電活動(步驟S2201)。若在對應的後續子訊框中存在任何 CLC無線電活動,則將與子訊框對應的位元設定為第一邏 輯位準(步驟S2202)。舉例來說,邏輯「〇」意味在對應的 子訊框時間間隔期間推薦BS不對WiMAX模組102分哮下 行鏈路或上行鏈路訊務’若在對應的後續子訊框中沒有 CLC無線電活動’則將與子訊框對應的位元設定為第二邏 輯位準(步驟S2203)。舉例來說,邏輯r丨」意味在對應的 子訊框時間間隔期間BS對WiMAX模組102自由分配下行 鏈路或上行鏈路訊務。接著,SIG 3〇4或wiMAX模組1〇2 進一步決定子訊框位元映像中所有的位元是否都已設定 (步驟S2204)。若子訊框位元映像中所有的位元都已設定, 則SIG 304或WiMAX模組ι〇2輸出推薦的wiMAX訊務 樣式(步驟S2205)。若否’過程返回至步驟S2201。根據本 0758-A34330TWF_MTKI-09-l 13 , 201016068 發明的一個實施例’子訊框/訊框位元映像的長度係根據 CLC無線電訊務重複週期和WiMAX子訊框/訊框間隔的最 小公倍數(Least Common Multiple, LCM)所決定。以藍芽 HV3訊務樣式{iso#,625辦,375_}為例,子訊框位元映像的長度 通過 LCM(3750, 5000)/5000 獲取,即 LCM(3750, 5000)/5000=3 位元組。因此,SIG 304 或 WiMAX 模組 102 可產生長度為3位元組的子訊框位元映像,以描述3個訊 框(即24個子訊框)的推薦WiMAX訊務樣式,且每三個訊 〇 框重新使用子訊框位元映像。 第23圖是根據本發明一個實施例的訊務樣式架構 圖。在此實施例中’活動視窗和非活動視窗用於描述WLAN 模組101的信標訊框間隔。信標訊框的重複週期是 102.4ms。若802.16訊框落入CLC活動視窗,則在對應的 訊框時間間隔期間推薦BS不對WiMAX模組102分配下行 鏈路或上行鏈路訊務。若8〇216訊框落入CLC非活動視 ©窗’則在對應的訊框時間間隔期間BS對WiMAX模組102 自由分配下行鏈路或上行鏈路訊務。第24圖是根據本發明 一個實施例的訊務樣式架構圖。在此實施例中,即時(快速) 回饋用於描述WLAN模組1〇1的信標訊框間隔。即時(快 速)回饋承載訊框位元映像以表明8〇2.11信標的CLC無線 電活動。在本實施例中,由於有輸入信標,因此利用位元 映像中的邏輯「〇」表明在對應的訊框時間間隔期間推薦 BS不對WiMAX模組1〇2分配下行鏈路或上行鏈路訊務, 位元映像中的邏輯「1」表明在對應的訊框時間間隔期間推 薦BS對WiMAX模組1〇2自由分配下行鏈路或上行鏈路訊 〇758-A34330TWF_MTKI-09-l 13 37 201016068 務。 根據本發明的實施例,產生推薦的WiMAX訊務樣式 後,CLC無線電管理器104可產生承載著推薦的WiMAX 訊務樣式的管理訊息至多個無線電並存處理模組,以用相 應的動作作出回應來支持多個無線電並存運作,其中推薦 的WiMAX訊務樣式例如第21圖所示的WiMAX DL/UL子 訊框位元映像、第23圖所示的活動/非活動視窗或第24圖 所示的即時(快速)回饋;多個無線電並存處理模組例如第 14圖所示的多個無線電並存功能區塊1419。如前所述, WiMAX模組102也可直接產生推薦的WiMAX訊務樣式, 且本發明不限於此。接著,在如前所述的協商階段中, WiMAX模組102的多個無線電並存處理模組產生CLC請 求至服務BS,其中,CLC請求用以表徵獲取的訊務樣式。 對於頻分雙工(Frequency Division Duplex,FDD)WiMAX 需 要兩個訊務樣式(即DL和UL訊務樣式),對於時分雙工 (Time Division Duplex,TDD)WiMAX 來說,可將 DL 和 UL 訊務樣式分別傳輸至服務BS或者在傳輸到服務BS之前合 併到一個訊務樣式中。服務BS接收訊務樣式後,服務BS 的排程與資源多工區塊1418相應地對DL和UL訊務排 程,服務BS的控制信號發送區塊1415根據排程結果產生 新的DL_MAP和UL_MAP。WiMAX模組1〇2接收服務BS 產生的新的DL JVIAP和UL_MAP後,WiMAX模組102分 配DL和UL訊務以相應地從服務BS接收資料訊框或傳輸 資料訊框至服務B S。根據本發明的實施例,由於基於推薦 的WiMAX訊務樣式產生新的DL_MAP和ULJMAP,因此Figure 20 is a flow diagram of a method for generating a recommended wiMAX traffic pattern in accordance with the present invention. After receiving the traffic pattern from the CLC radio module (step S2〇01), the SIG 304 transforms the traffic pattern according to the reference clock of the WiMAX module 1〇2 (step S2002). For example, the sig 304 converts the CLC traffic pattern according to the frame clock and/or the sub-frame clock of the WiMAX module 102 to characterize the clc® traffic pattern in the WiMAX frame or subframe time unit. It should be noted that since the CLC radio module can utilize the reference clock with timing characteristics, which is different from the WiMAX module 1〇2, the SIG 304 needs the transformation in step S2002 to transform the traffic pattern represented by the CLC radio module timing. The clc message style described for WiMAX timing. Finally, the SIG 304 generates the recommended WiMAX traffic pattern based on the transformed CLC traffic pattern (step S2003). * Note that in an embodiment of the invention, the CLC radio manager 104 can be implemented by a software/firmware module. However, for precise timing, some of the functions of the CLC Radio Manager 1 (e.g., SIG 304) may also be implemented by a hardware device for quick response and the present invention is not limited to 0758-A34330TWF MTK1-09-113 35 201016068. In addition, the SIG 304 or CLC radio manager i〇4 can also be implemented within the WiMAX module 102. Thus, in some embodiments of the invention, the WiMAX module 102 or the TPG 302 may also receive the CLC traffic pattern, transform the CLC traffic pattern, and accordingly generate the recommended WiMAX traffic pattern, and the invention is not limited thereto. Figure 21 is a diagram of a traffic pattern architecture in accordance with one embodiment of the present invention. In this embodiment, the CLC traffic is Bluetooth HV3 traffic and the WiMAX traffic pattern is described by the subframe frame image. Figure 22 is a flow diagram of a method of generating a sub-frame bit map in accordance with one embodiment of the present invention. After converting the CLC traffic pattern according to the frame clock and the subframe clock of the WiMAX module 102, the SIG 304 or WiMAX module 1〇2 determines whether there is any CLC radio activity for the subsequent WiMAX subframe according to the transformed CLC traffic pattern. (Step S2201). If any CLC radio activity exists in the corresponding subsequent subframe, the bit corresponding to the subframe is set to the first logic level (step S2202). For example, the logical "〇" means that the recommended BS does not snar the downlink or uplink traffic to the WiMAX module 102 during the corresponding subframe interval. 'If there is no CLC radio activity in the corresponding subsequent subframe. 'The bit corresponding to the subframe is set to the second logic level (step S2203). For example, the logic "r" means that the BS freely allocates downlink or uplink traffic to the WiMAX module 102 during the corresponding subframe interval. Next, the SIG 3〇4 or the wiMAX module 1〇2 further determines whether all of the bits in the sub-frame bit map have been set (step S2204). If all of the bits in the subframe bit map have been set, the SIG 304 or WiMAX module ι 2 outputs the recommended wiMAX traffic pattern (step S2205). If no, the process returns to step S2201. According to the embodiment of the present invention, the length of the subframe/frame symbol image is based on the CLX radio signal repetition period and the least common multiple of the WiMAX subframe/frame interval ( Least Common Multiple, LCM). Take the Bluetooth HV3 traffic style {iso#, 625, 375_} as an example. The length of the sub-frame bitmap is obtained by LCM (3750, 5000)/5000, ie LCM (3750, 5000)/5000=3 digits. Tuple. Therefore, the SIG 304 or WiMAX module 102 can generate a 3-byte sub-frame bit map to describe the recommended WiMAX traffic patterns for 3 frames (ie, 24 sub-frames), and every three messages. The frame re-uses the sub-frame bit map. Figure 23 is a diagram of a traffic pattern architecture in accordance with one embodiment of the present invention. In this embodiment, the 'active window' and the inactive window are used to describe the beacon frame interval of the WLAN module 101. The repetition period of the beacon frame is 102.4 ms. If the 802.16 frame falls into the CLC active window, the recommended BS does not assign downlink or uplink traffic to the WiMAX module 102 during the corresponding frame time interval. If the 8 〇 216 frame falls into the CLC inactive view window, the BS freely allocates downlink or uplink traffic to the WiMAX module 102 during the corresponding frame time interval. Figure 24 is a diagram of a traffic pattern architecture in accordance with one embodiment of the present invention. In this embodiment, instant (fast) feedback is used to describe the beacon interval of the WLAN module 101. The bearer bit map is fed back (fast) to indicate the CLC radio activity of the 8〇2.11 beacon. In this embodiment, because of the input beacon, the logic "〇" in the bit map indicates that the recommended BS does not assign downlink or uplink information to the WiMAX module 1〇2 during the corresponding frame time interval. The logical "1" in the bit map indicates that the recommended BS is free to allocate downlink or uplink signals to the WiMAX module 1〇2 during the corresponding frame time interval. 758-A34330TWF_MTKI-09-l 13 37 201016068 Business. According to an embodiment of the present invention, after generating the recommended WiMAX traffic pattern, the CLC radio manager 104 can generate a management message carrying the recommended WiMAX traffic pattern to multiple radio coexistence processing modules to respond with corresponding actions. Support multiple radio coexistence operations, where the recommended WiMAX traffic style is, for example, the WiMAX DL/UL sub-frame bit map shown in Figure 21, the active/inactive window shown in Figure 23, or Figure 24 Instant (fast) feedback; multiple radio coexistence processing modules such as the plurality of radio coexistence functional blocks 1419 shown in FIG. As mentioned above, the WiMAX module 102 can also directly generate the recommended WiMAX traffic pattern, and the invention is not limited thereto. Next, in the negotiation phase as described above, the plurality of radio coexistence processing modules of the WiMAX module 102 generate a CLC request to the serving BS, wherein the CLC request is used to characterize the acquired traffic pattern. For Frequency Division Duplex (FDD) WiMAX, two traffic patterns (ie DL and UL traffic patterns) are required. For Time Division Duplex (TDD) WiMAX, DL and UL can be used. The traffic patterns are transmitted to the serving BS respectively or merged into a traffic pattern before being transmitted to the serving BS. After the serving BS receives the traffic pattern, the scheduling of the serving BS and the resource multiplex block 1418 respectively schedule the DL and UL traffic, and the control signal transmitting block 1415 of the serving BS generates new DL_MAP and UL_MAP according to the scheduling result. . After the WiMAX module 1〇2 receives the new DL JVIAP and UL_MAP generated by the serving BS, the WiMAX module 102 allocates the DL and UL messages to receive the data frame or the data frame from the serving BS to the service Bs accordingly. According to an embodiment of the present invention, since new DL_MAP and ULJMAP are generated based on the recommended WiMAX traffic pattern,

0758-A34330TWF_MTK!-09-l 13 3S 201016068 依據新接收的DL一MAP和UL_MAP,能夠較好協調 UL訊務分配並由此避免傳輸和接收衝突, 推 的0758-A34330TWF_MTK!-09-l 13 3S 201016068 According to the newly received DL-MAP and UL_MAP, it can better coordinate the UL traffic assignment and thus avoid transmission and reception conflicts.

WiMAX訊務樣式的產生與IEEE 802.16無線電模組的無線 電活動以及共址非802.16無線電模組的無綠電活動相'對 應。然而,當存在任何CLC活動時,若服務Bs需要傳輸 資料至WiMAX模組102,如前所述,服務Bs可^強通/ 可靠性。舉例來說’服務bs可利用更穩健的下0行鍵ς MCS、增加下行鏈路穩健的傳輸功率、允許在下行鍵路和 ❹ 上行鏈路中利用ARQ或HARQ重新傳輸等。 上述之實施例僅用來例舉本發明之實施態樣,以及閣 釋本發明之技術特徵’並非用來限制本發明之範_。任何 熟悉此技術者可輕易完成之改變或均等性之安排均屬於本 發明所主張之範圍,本發明之權利範圍應以申請專利範圍 為準。 【圖式簡單說明】 ❿ 結合附圖並參照後續詳細描述及示例,可更加理解本 發明,其中: 第1圖是根據本發明一個實施例的多個無線電通#系 統的架構不意圖; 第2圖是IEEE 802.11掃瞄、認證與關聯過程的示範 示意圖; 第3圖是傳遞WLAN模組將進入省電模式的資訊的交 互示意圖; 第4圖是MAC訊框格式的一個實施例的架構示音圖; 0758-A34330TWF_MTK1-09-113 39 201016068The generation of WiMAX traffic patterns corresponds to the radio activity of IEEE 802.16 radio modules and the green-free activity of co-located non-802.16 radio modules. However, when there is any CLC activity, if the service Bs needs to transmit data to the WiMAX module 102, as described above, the service Bs can be enhanced/reliable. For example, service bs may utilize a more robust lower row key ς MCS, increase downlink robust transmission power, allow ARQ or HARQ retransmission in downlink and 上行 uplinks, and the like. The above-described embodiments are merely illustrative of the embodiments of the present invention, and the technical features of the present invention are not intended to limit the scope of the present invention. Any changes or equivalents that can be easily made by those skilled in the art are within the scope of the invention, and the scope of the invention should be determined by the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS The present invention may be further understood by reference to the accompanying drawings and drawings, wherein: FIG. 1 is a schematic diagram of a plurality of radio communication systems in accordance with one embodiment of the present invention; The figure is an exemplary schematic diagram of the IEEE 802.11 scanning, authentication and association process; the third figure is an interactive diagram of the information conveying the WLAN module to enter the power saving mode; FIG. 4 is a schematic display of an embodiment of the MAC frame format Figure; 0758-A34330TWF_MTK1-09-113 39 201016068

意圖; 第9圖為ACL鏈接的示範連接狀態示意圖. 第10圖顯示了監聽定錯點的示意圖; 第11圖為在主設備和從設備之間資料傳輪的示意圖; 第12a圖到第12c圖是多個無線電並存場景的示範示 @ 意圖; 第13圖是傳輸和接收訊框分配的訊務樣式架構示音 \Si · 圍, 第14圖是IEEE 802.16m協定架構的方塊示意圖; 第15圖是根據本發明一個實施例的基本WiMAX訊框 架構示意圖; 第16圖是根據本發明一個實施例的CLC請求的訊息 ❹ 流交互示意圖; 第17圖是根據本發明一個實施例的學習階段中CLC 請求的訊息流的交互示意圖; 第18圖是根據本發明一個實施例的協商階段中CLC 請求的訊息流的交互示意圖; 第19圖是根據本發明一個實施例CLC請求的訊息流 用於更新/刪除/創建CLC參數的交互示意圖; 第20圖是根據本發明一個實施例產生WiMAX訊務樣 0758-A34330TWF MTKI-09-113 40 201016068 式的方法流程圖; 第21圖疋根據本發明〜個實施例的訊務樣式架構圖; 第22圖是根據本發明—個實施例產生子訊框位元映 像的方法流程圖; 第23圖是根據本發明〜個實施例的訊務樣式架構圖; 第24圖是根據本發明〜個實施例的訊務樣式架構圖; 表1列出無線通#服務的分類; 表2列出CLC等級參數的時間單位; ❹ 表3列出CLC請求訊息參數;以及 表4列出CLC資訊參數中適用於CLC請求訊息的參 數。 【主要元件符號說明】 100〜行動電子設備; 101〜IEEE 802.11無線電模組; * 102〜IEEE 802.16無線電模組; ❹ 103〜IEEE 802.15.1無線電模組; 104〜共址並存無線電管理器; 201 〜IEEE 802.11 設備; 202〜IEEE 802.16 設備丨 203〜IEEE 802.15.1無線電模組; 210、240〜802.15.1 訊框; 220、230〜802.16 訊框; 301、302、303〜TPG ; 304〜SIG ; 0758-A34330TWF MTKI-09-113 41 201016068 400〜MAC資料; 410〜訊框控制欄位; 420〜功率管理位元; 430〜資料位元; 440〜訊框類型位元; 450〜訊框子類型位元; 460〜訊框實體欄位; 610〜信標訊框; 620〜PS-Poll 請求; φ 630、650〜ACK ; 640〜緩衝的訊框; 910〜活動模式; 930〜監聽模式; 1100〜行動電話; 1101〜藍芽耳機; 1102〜中繼站; 1103〜基地台; ⑩ 1200〜膝上型設備; 1401〜收傲子層; 1402〜無線電資源管理區塊; 1403〜行動性管理區塊; 1404〜入網管理區塊; 1405〜位置管理區塊; 1406〜閑置模式管理區塊; 1407〜安全管理區塊; 0758-A34330TWF MTK1-09-113 42 201016068 1408〜系統配置管理區塊; 1409〜群播廣播服務區塊; 1410〜服務流與連接管理區塊; 1411 ~繼電功能區塊, 1412〜自組織區塊; 1413〜多載波區塊; 1414〜實體層控制區塊; 1415〜控制信號發送區塊; 參 1416〜睡眠模式管理區塊; 1417〜服務品質區塊; 1418〜排程與資源多工區塊; 1419〜多個無線電並存區塊; 1420〜資料前送區塊; 1421〜干擾管理區塊; 1422〜ARQ區塊; 1423〜分割/封裝區塊; ❿ 1424〜MAC PDU資訊區塊; S2001 〜S2003、S2201 〜S2205 :步驟 0758-A34330TW ΜΤΚ1-09-Π3 43Intent; Figure 9 is a schematic diagram of the exemplary connection state of the ACL link. Figure 10 shows a schematic diagram of the interception error point; Figure 11 is a schematic diagram of the data transfer between the master device and the slave device; 12a to 12c The figure is an exemplary representation of multiple radio coexistence scenarios; Figure 13 is a traffic pattern architecture of the transmission and reception frame assignments, and the block diagram of the IEEE 802.16m protocol architecture; 1 is a schematic diagram of a basic WiMAX frame structure according to an embodiment of the present invention; FIG. 16 is a schematic diagram of a message stream interaction of a CLC request according to an embodiment of the present invention; FIG. 17 is a stage of learning according to an embodiment of the present invention. FIG. 18 is a schematic diagram of interaction of a message flow of a CLC request in a negotiation phase according to an embodiment of the present invention; FIG. 19 is a flow of a message requested by a CLC according to an embodiment of the present invention for updating/ An interactive diagram for deleting/creating CLC parameters; Figure 20 is a diagram for generating a WiMAX traffic sample 0758-A34330TWF MTKI-09-113 40 201016068 according to an embodiment of the present invention. FIG. 21 is a flow chart diagram of a traffic pattern according to an embodiment of the present invention; FIG. 22 is a flowchart of a method for generating a subframe number bitmap according to an embodiment of the present invention; Figure 12 is a traffic pattern architecture diagram according to an embodiment of the present invention; Table 1 lists the classification of the wireless communication # service; Table 2 lists the time of the CLC level parameter; Units; ❹ Table 3 lists the CLC request message parameters; and Table 4 lists the parameters applicable to the CLC request message in the CLC information parameters. [Main component symbol description] 100~ mobile electronic device; 101~IEEE 802.11 radio module; *102~IEEE 802.16 radio module; ❹103~IEEE 802.15.1 radio module; 104~ co-location coexisting radio manager; 201 ~ IEEE 802.11 device; 202 to IEEE 802.16 device 丨 203 to IEEE 802.15.1 radio module; 210, 240 to 802.15.1 frame; 220, 230 to 802.16 frame; 301, 302, 303 to TPG; ; 0758-A34330TWF MTKI-09-113 41 201016068 400 ~ MAC data; 410 ~ frame control field; 420 ~ power management bit; 430 ~ data bit; 440 ~ frame type bit; 450 ~ frame subtype Bit; 460~ frame entity field; 610~beacon frame; 620~PS-Poll request; φ 630, 650~ACK; 640~ buffered frame; 910~active mode; 930~listing mode; ~ mobile phone; 1101 ~ Bluetooth headset; 1102 ~ relay station; 1103 ~ base station; 10 1200 ~ laptop device; 1401 ~ arse sub-layer; 1402 ~ radio resource management block; 1403 ~ mobile management block; 1404~Incoming network management block ; 1405 ~ location management block; 1406 ~ idle mode management block; 1407 ~ security management block; 0758-A34330TWF MTK1-09-113 42 201016068 1408 ~ system configuration management block; 1409 ~ multicast broadcast service block; 1410~ service flow and connection management block; 1411 ~ relay function block, 1412~ self-organizing block; 1413~multi-carrier block; 1414~ physical layer control block; 1415~ control signal sending block; ~ sleep mode management block; 1417 ~ service quality block; 1418 ~ scheduling and resource multiplex block; 1419 ~ multiple radio coexisting block; 1420 ~ data forwarding block; 1421 ~ interference management block; 1422 ~ ARQ block; 1423~ split/package block; ❿ 1424~MAC PDU information block; S2001~S2003, S2201~S2205: Step 0758-A34330TW ΜΤΚ1-09-Π3 43

Claims (1)

201016068 包括 七、申請專利範圍: 2 _ 3 焉{言 -第-無線電夢,用,提供—第—無線通信服務並 Λ々傲〆第一通信設備通信; 依據一第一協疋” m ^ 一第二無線電槔縝,'’、第二無線通信服務並 依據-第二協定與〆第,通=通信;以及 -丘址並存無線電官理⑤’料_所述第—無線電 模組的活動,鮮所遂第且獲取-第-訊務樣 式,以及根據所述第,訊務^生所述第二無線電模組 的-第二訊務樣式,以協調所述第一無線電模組與所述第 二益線電模組的如,其中所述第—訊務樣式描述所述第 -無線電模組Μ 一路及/或上打鏈路訊務分配’ 其中所述第;訊務樣式描述用於所述第二無線電模 组的多個子訊框的推薦下行鍵路及/或上行鏈路訊務分 配,以及其中所述第二協定定義的每個子訊框包括多個正 交頻分多工符號。 、2如申請專利範圍第1項所述之通信裝置中所述 第二無線電模組進一步傳輸所述第二訊務樣式\所^第二 通信設備,餘所以二通信設備㈣—下行鏈Ρ或 上行鏈路MAP,以及根據所述下打鏈路ΜΑ?或上仃鏈路 從所述第〉通信設備接收資料訊框或將拖傳 輸至所述第二通信設備,其中所述;^鏈路^㈡行鍵 路MAP由所述第二通信設備根據所述弟二訊務式所產 生 3.如 申請專刺範圍》1項所述之通信裝置’其中’所 44 0758-A34330TWF_MTKI-09-11:> 201016068 述第二訊務樣式是一子訊框位元映像,用於利用一位元序 列描述用於所述多個子訊框的推薦下行鏈路及/或上 路訊務分配。 4’如申請專利範圍第3項所述之通信裝置,其中所述 子訊框位元映像的每個位元設定為一第一邏輯位準,用於 表示在對應的子訊框期間推薦所述第二通信設備不對所述 第二無線電模組分配下行鏈路或上行鏈路訊務;所述子訊 框位元映像的每個位元設定為一第二邏輯位準’用於表示 在對應的子訊框期間推薦所述第二通信設備對所述第二無 線電模組自由分配下行鏈路或上行鏈路訊務。 5.一種通信裝置,包括: 一第一無線電模組,用於提供一第一無線通信服務並 依據一第一協定與一第一通信設備通信;以及 ❹ 一第二無線電模組,用於提供一第二無線通信服務並 依據一第二協定與一第二通信設備通信,並進入一學習階 段以及將一第一請求訊息傳輸至所述第二通信設備以請求 離開個4間段來支持所述第一無線電模組的/初始1^置 或連接設置操作。 6. 如申請專利範圍第5項所述之通信裝置,, 第二無線電模組進—步在所述學f階段識別所述第 電模組的多個無線電特性,以及所述無線電特#拉傳= 功率、接收靈敏度以及—第一訊務樣式,其中殊述第… 務樣式用於描述從所述第—無線電模组獲取_述第〜、 線電模組的了行鏈路及/或上行鏈蹲訊務分配。 汾 7. 如申请專利範圍第5項所迷之通信衫,其中’濟 〇758-A34330TWF_MTKI-09-i ] 3 45 201016068 在所述學習階段傳輸資料至所述第二無線電模組時,所述 第二通信設備進一步增強傳輸穩定性。 8. 如申請專利範圍第7項所述之通信裝置,其中所述 傳輸穩定性係通過利用比先前所用調變及編碼方案更穩健 的一下行鏈路調變及編碼方案所增強。 9. 如申請專利範圍第7項所述之通信裝置,其中所述 傳輸穩定性係通過增加下行鏈路突發傳輸功率所增強。 10. 如申請專利範圍第7項所述之通信裝置,其中所述 傳輸穩定性係通過在下行鏈路強和上行鏈路訊務中利用自 @ 動重傳請求或混合自動重傳請求進行更多重發所增強。 11. 如申請專利範圍第5項所述之通信裝置,其中所述 第二無線電模組進一步傳輸一第二請求訊息至所述第二通 信設備,以便當所述第一無線電模組的初始設置或連接設 置操作未完成且先前請求的時間段幾近超時的時候開始另 一個學習階段。 12. 如申請專利範圍第5項所述之通信裝置,其中所述 第二無線電模組進一步從所述第二通信設備接收一回應訊 ⑩ 息,其中所述回應訊息包括確認延長所述學習階段或拒絕 所述請求。 13. 如申請專利範圍第5項所述之通信裝置,其中當所 述第一無線電模組執行一查詢過程以發現附近設備或執行 一尋呼過程以在所述第一無線電模組和所述第一無線通信 服務之間建立一鏈接的時候,所述第二無線電模組進入所 述學習階段。 14. 如申請專利範圍第5項所述之通信裝置,其中當所 0758-A34330TWF MTKI-09-113 46 201016068 述第一無線電模組執行一存取過程以嘗試與一存取點關聯 時,所述弟二無線電模組進入所述學習階段。 15·如申請專利範圍第5項所述之通信裝置,其中當所 述第一無線電模組開啟、關閉或拒絕時,所述第二無線電 模組進入所述學習階段。 16.如申請專利範圍第5項所述之通信裝置,其中當所 述第一無線電模組在不同的通信模式間改變時,所述第二 無線電模組進入所述學習階段。 ❹ 17.一種回應行動電子設備共址並存請求的方法,由一 基地台所執行,所述行動電子設備包括一第一無線電模組 和一第二無線電模組,所述方法包括: 從所述行動電子設備接收所述共址並存請求,用以 求訊務的一個時間段給所述第二無線電模組,以防止金清 述第一無線電模組運作間的干擾;以及 〃所 當在請求的時間段傳輸資料至所述 時,增強傳輸穩定性。 …、線電模組 © 18.如申請專利範圍第Π項所述之方法,其中所 輸穩定性係通過利用比先前所用調變及編碼方案更:得 一下行鏈路調變及蝙碼方案所增強。 ^健的 19. 如申請專利範圍第17項所述之方法,其中 輸穩定性係通過增加下行鏈路突發傳輸功率所增強。述傳 20. 如申請專利範圍第17項所述之方法,其中 輸穩定性係通過在下行鏈路和上行鏈路訊務中利用自^傳 傳請求或混合自動重傳請求進行更多重發所增強。動重 0758-A34330TWF^MTKI-09-113 47201016068 Including seven, the scope of application for patents: 2 _ 3 焉{言-第-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- The second radio, '', the second wireless communication service and according to the second agreement with the first, the communication = communication; and - the coexistence of the radio protocol 5' material_the first radio module activity, And the first-to-be-traffic style, and according to the first, the second radio module-second traffic pattern of the second radio module, to coordinate the first radio module with the The second power line module, wherein the first message pattern describes the first radio module, and/or the uplink link traffic assignment, wherein the first message mode description is used for a recommended downlink key and/or uplink traffic assignment of a plurality of subframes of the second radio module, and wherein each subframe defined by the second protocol includes a plurality of orthogonal frequency division multiplexing symbols 2, as in the communication device described in claim 1 The second radio module further transmits the second communication device to the second communication device, and the remaining two communication devices (4) - a downlink link or an uplink MAP, and according to the downlink link or Receiving a data frame from the communication device or transmitting the data to the second communication device, wherein the link (2) line key MAP is used by the second communication device according to the The second communication mode is a sub-frame position. The communication device described in the first paragraph is as follows: 1. The communication device described in item 1 of the scope of the application is 44 0758-A34330TWF_MTKI-09-11: > 201016068 a meta-image for describing a recommended downlink and/or an uplink traffic assignment for the plurality of sub-frames using a one-bit sequence, wherein the communication device of claim 3, wherein Each bit of the subframe bit map is set to a first logic level for indicating that the second communication device is not assigned a downlink or the downlink to the second radio module during the corresponding subframe. Uplink traffic; the sub-frame bit image Each bit is set to a second logic level 'is used to indicate that the second communication device is recommended to freely allocate downlink or uplink traffic to the second radio module during the corresponding subframe. A communication device comprising: a first radio module for providing a first wireless communication service and communicating with a first communication device in accordance with a first protocol; and a second radio module for Providing a second wireless communication service and communicating with a second communication device according to a second protocol, and entering a learning phase and transmitting a first request message to the second communication device to request to leave the 4 segments to support The initial setting or connection setting operation of the first radio module. 6. The communication device of claim 5, wherein the second radio module further identifies, in the learning f phase, a plurality of radio characteristics of the first electrical module, and the radio Pass = power, receive sensitivity, and - first traffic pattern, wherein the special style is used to describe the acquisition of the line from the first radio module, and/or the line module and/or Uplink traffic distribution.汾 7. A communication shirt as disclosed in claim 5, wherein 'Ji 758-A34330TWF_MTKI-09-i 3 3 2010 2010068 when transmitting data to the second radio module during the learning phase, The second communication device further enhances transmission stability. 8. The communication device of claim 7, wherein the transmission stability is enhanced by utilizing a downlink modulation and coding scheme that is more robust than previously used modulation and coding schemes. 9. The communication device of claim 7, wherein the transmission stability is enhanced by increasing downlink burst transmission power. 10. The communication device of claim 7, wherein the transmission stability is performed by utilizing a self-retransmission request or a hybrid automatic repeat request in downlink strong and uplink traffic. Multiple hair enhancements. 11. The communication device of claim 5, wherein the second radio module further transmits a second request message to the second communication device for initial setting of the first radio module Or another learning phase begins when the connection setup operation is not completed and the time period of the previous request is nearly timed out. 12. The communication device of claim 5, wherein the second radio module further receives a response message from the second communication device, wherein the response message comprises confirming extending the learning phase Or reject the request. 13. The communication device of claim 5, wherein the first radio module performs a query process to discover nearby devices or perform a paging process to be in the first radio module and the When a link is established between the first wireless communication services, the second radio module enters the learning phase. 14. The communication device of claim 5, wherein when the first radio module performs an access procedure to attempt to associate with an access point, 0758-A34330TWF MTKI-09-113 46 201016068 The second radio module enters the learning phase. The communication device of claim 5, wherein the second radio module enters the learning phase when the first radio module is turned on, off, or rejected. 16. The communication device of claim 5, wherein the second radio module enters the learning phase when the first radio module changes between different communication modes. ❹ 17. A method of responding to a mobile device co-location coexistence request, executed by a base station, the mobile electronic device comprising a first radio module and a second radio module, the method comprising: from the action Receiving, by the electronic device, the co-location coexistence request for requesting a time period of the communication to the second radio module to prevent the gold from clearing the interference between the operations of the first radio module; and Enhance transmission stability when transferring data to the above. ..., line module © 18. The method of claim 2, wherein the transmission stability is achieved by utilizing a modulation and coding scheme that is previously used: a line modulation and a bar code scheme Enhanced. The method of claim 17, wherein the transmission stability is enhanced by increasing the downlink burst transmission power. The method of claim 17, wherein the transmission stability is performed by using a self-passing request or a hybrid automatic repeat request in the downlink and uplink traffic for more retransmissions. Enhanced. Moving weight 0758-A34330TWF^MTKI-09-113 47
TW098129854A 2008-09-05 2009-09-04 Methods for responding to co-located coexistence (clc) request from a mobile electronic device and communications apparatuses TWI397338B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US9454208P 2008-09-05 2008-09-05
US12/552,427 US8730853B2 (en) 2008-09-05 2009-09-02 Methods for responding to co-located coexistence (CLC) request from a mobile electronic device and communications apparatuses capable of controlling multi-radio coexistence

Publications (2)

Publication Number Publication Date
TW201016068A true TW201016068A (en) 2010-04-16
TWI397338B TWI397338B (en) 2013-05-21

Family

ID=41796754

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098129854A TWI397338B (en) 2008-09-05 2009-09-04 Methods for responding to co-located coexistence (clc) request from a mobile electronic device and communications apparatuses

Country Status (6)

Country Link
US (2) US8730853B2 (en)
EP (4) EP2981149B1 (en)
JP (1) JP5149994B2 (en)
CN (2) CN101919302A (en)
TW (1) TWI397338B (en)
WO (1) WO2010025678A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI456925B (en) * 2011-10-25 2014-10-11 Apple Inc Data transfer using the bluetooth low energy standard

Families Citing this family (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9258833B2 (en) * 2006-02-09 2016-02-09 Altair Semiconductor Ltd. LTE/Wi-Fi coexistence
JP5078778B2 (en) * 2008-06-30 2012-11-21 パナソニック株式会社 Radio base station, radio communication terminal, and radio communication system
US8059622B2 (en) * 2008-09-04 2011-11-15 Intel Corporation Multi-radio platform and method for coordinating activities between a broadband wireless access network transceiver and co-located transceiver
US8730853B2 (en) 2008-09-05 2014-05-20 Mediatek Inc. Methods for responding to co-located coexistence (CLC) request from a mobile electronic device and communications apparatuses capable of controlling multi-radio coexistence
KR101487562B1 (en) 2008-11-11 2015-01-30 엘지전자 주식회사 Method for relaying data in wireless communication system based on tdd
KR101497153B1 (en) 2008-12-22 2015-03-02 엘지전자 주식회사 Procedure for Basic Service Set(BSS) load management for a WLAN system
US9048932B2 (en) * 2009-02-06 2015-06-02 Google Technology Holdings LLC Method and apparatus for co-existence of an OFDMA transmitter with a synchronous frame-based transmitter
US9397876B2 (en) * 2009-02-20 2016-07-19 Broadcom Corporation Synchronization and frame structure determination of a base station
US20100246464A1 (en) * 2009-03-23 2010-09-30 Texas Instruments Incorporated Power conservation through bi-directional association of multiple devices
US8848676B1 (en) * 2009-03-30 2014-09-30 Marvell International Ltd. Apparatus and method for coexistent wireless and bluetooth communication employing interruption of arbitration requests to allocate use of a shared antenna
US8190200B2 (en) * 2009-04-03 2012-05-29 Researc In Motion Limited System and method for automatically scheduling radios on a mobile device
CN101860429B (en) * 2009-04-03 2014-05-28 Lg电子株式会社 Method for transmitting signal in wireless communication system
US8509124B2 (en) * 2009-04-03 2013-08-13 Lg Electronics Inc. Method for transceiving a signal in wireless communication system
US8553592B2 (en) * 2009-04-17 2013-10-08 Intel Corporation Multi-radio communication device and method for enabling coexistence between a bluetooth transceiver and a wimax transceiver operating in FDD mode
KR101253191B1 (en) 2009-04-30 2013-04-10 엘지전자 주식회사 Method and apparatus for supporting Co-Located Coexistence mode
US20100278088A1 (en) * 2009-05-01 2010-11-04 Gregory Goldman Method and system for using power management bits in acknowledgment (ack) frames received from wireless access points
US8462695B2 (en) * 2009-05-18 2013-06-11 Intel Corporation Apparatus and methods for multi-radio coordination of heterogeneous wireless networks
US8787468B2 (en) * 2009-06-19 2014-07-22 Motorola Mobility Llc Method and apparatus for multi-radio coexistence
US20110075596A1 (en) * 2009-09-25 2011-03-31 Nokia Corporation Resource Overbooking
US8942633B2 (en) 2009-10-26 2015-01-27 Mediatek Inc. Systems and methods for activity coordination in multi-radio terminals
US8626067B2 (en) 2009-10-26 2014-01-07 Mediatek Inc. System and methods for enhancing coexistence efficiency for multi-radio terminals
US20110110289A1 (en) * 2009-11-06 2011-05-12 Muthaiah Venkatachalam Distributed control architecture for relays in broadband wireless networks
WO2011113198A1 (en) * 2010-03-17 2011-09-22 Qualcomm Incorporated Apparatus and method for interference mitigation
US9420599B2 (en) * 2010-03-24 2016-08-16 Mediatek Inc. Synchronized activity bitmap generation method for co-located coexistence (CLC) devices
JP2011211612A (en) * 2010-03-30 2011-10-20 Nec Access Technica Ltd Wireless lan terminal, wireless lan access point and wireless lan system
US20120113906A1 (en) * 2010-03-30 2012-05-10 Qualcomm Incorporated Method and apparatus to facilitate support for multi-radio coexistence
US10911961B2 (en) * 2010-03-31 2021-02-02 Qualcomm Incorporated Method and apparatus to facilitate support for multi-radio coexistence
US8451776B2 (en) * 2010-03-31 2013-05-28 Qualcomm Incorporated Method and apparatus to facilitate support for multi-radio coexistence
US8838046B2 (en) 2010-06-18 2014-09-16 Mediatek Inc. System and method of hybrid FDM/TDM coexistence interference avoidance
CN106411350A (en) * 2010-06-18 2017-02-15 联发科技股份有限公司 System and method for coordinating multiple radio transceivers
WO2012010095A1 (en) * 2010-07-20 2012-01-26 Mediatek Inc. Systems and methods for activity coordination in multi-radio terminals
US9030971B2 (en) * 2010-07-20 2015-05-12 Qualcomm Incorporated Simultaneous operation of short range wireless systems with a mobile wireless broadband system
US8842546B2 (en) 2010-07-22 2014-09-23 Mediatek Inc. Method for wireless communication in a device with co-existence radio
CN102348050A (en) * 2010-08-03 2012-02-08 国基电子(上海)有限公司 Digital photographing device and method of acquiring geotag
US8737924B2 (en) 2010-08-12 2014-05-27 Mediatek Inc. Method to trigger in-device coexistence interference mitigation in mobile cellular systems
KR101822688B1 (en) * 2010-08-13 2018-03-08 인터디지탈 패튼 홀딩스, 인크 In-device interference mitigation
WO2012023734A2 (en) 2010-08-16 2012-02-23 엘지전자 주식회사 Method of avoiding idc interference in a wireless communication system and apparatus for same
CN102421103B (en) * 2010-09-27 2015-08-12 电信科学技术研究院 Avoid report method and the equipment of interference in equipment
BR112013007320A2 (en) * 2010-09-28 2019-09-24 Fujitsu Ltd method and base station, user equipment, and system to enable coexistence work mode
CN102448127A (en) * 2010-09-30 2012-05-09 中国移动通信集团公司 Interference information processing method and device
US8873480B2 (en) * 2010-10-01 2014-10-28 Intel Corporation Techniques for dynamic spectrum management, allocation, and sharing
KR101480373B1 (en) * 2010-10-01 2015-01-09 블랙베리 리미티드 Method and apparatus for avoiding in-device coexistence interference
KR101480371B1 (en) * 2010-10-01 2015-01-12 블랙베리 리미티드 Method and apparatus for avoiding in-device coexistence interference
US8780880B2 (en) 2010-10-01 2014-07-15 Mediatek Singapore Pte, Ltd. Method of TDM in-device coexistence interference avoidance
PL2625801T3 (en) * 2010-10-04 2021-09-20 Samsung Electronics Co., Ltd. Method and apparatus for handling in-device co-existence interference in a wireless communication enviroment
US8780961B2 (en) * 2010-10-29 2014-07-15 Broadcom Corporation Mixed-mode wireless device operation
WO2012064248A1 (en) * 2010-11-12 2012-05-18 Telefonaktiebolaget L M Ericsson (Publ) Multi-standard radio network node configuration data handling for network operation
US10123345B2 (en) * 2010-12-22 2018-11-06 Google Technology Holdings LLC Interference mitigation in a device supporting multiple radio technologies communicating in overlapping time periods
US8804510B2 (en) 2010-12-29 2014-08-12 Electronics And Telecommunications Research Institute System and method for managing resource in communication system
US8737207B2 (en) * 2010-12-29 2014-05-27 Electronics And Telecommunications Research Institute System and method for managing resource in communication system
US9019910B2 (en) 2010-12-29 2015-04-28 Electronics And Telecommunications Research Institute System and method for managing resource in communication system
US8755275B2 (en) * 2010-12-29 2014-06-17 Electronics And Telecommunications Research Institute System and method for managing resource in communication system
CN102573038A (en) * 2010-12-31 2012-07-11 中国移动通信集团公司 Coexistence method of a plurality of communication modules in communication equipment and communication equipment
KR101931194B1 (en) 2011-01-06 2018-12-21 알테어 세미콘덕터 엘티디. Lte/wi­fi coexistence
US8908656B2 (en) 2011-01-10 2014-12-09 Qualcomm Incorporated Support for multi-radio coexistence during connection setup
US9413395B2 (en) 2011-01-13 2016-08-09 Google Technology Holdings LLC Inter-modulation distortion reduction in multi-mode wireless communication terminal
US9578649B2 (en) 2011-01-20 2017-02-21 Qualcomm Incorporated Method and apparatus to facilitate support for multi-radio coexistence
US8805303B2 (en) 2011-02-18 2014-08-12 Blackberry Limited Method and apparatus for avoiding in-device coexistence interference with preferred frequency notification
WO2012118311A2 (en) * 2011-03-01 2012-09-07 Lg Electronics Inc. Method of transmitting and receiving data in a wireless communication system and apparatus therefor
US9160503B2 (en) 2011-03-04 2015-10-13 Qualcomm Incorporated Method and apparatus supporting improved wide bandwidth transmissions
US9161288B2 (en) * 2011-03-30 2015-10-13 Lg Electronics Inc. Method and device for transmitting data through client cooperation in wireless communication system
US9088924B2 (en) 2011-04-01 2015-07-21 Mediatek Inc. Signaling design to support in-device coexistence interference avoidance
GB2486926B (en) * 2011-06-02 2013-10-23 Renesas Mobile Corp Frequency hopping in license-exempt/shared bands
US8675605B2 (en) 2011-06-02 2014-03-18 Broadcom Corporation Frequency hopping in license-exempt/shared bands
JP6069309B2 (en) * 2011-06-06 2017-02-01 テレフオンアクチーボラゲット エルエム エリクソン(パブル) General-purpose multi-radio access technology
US9204460B2 (en) 2011-06-06 2015-12-01 Telefonaktiebolaget L M Ericsson (Publ) Methods and systems for a generic multi-radio access technology
EP2719249B1 (en) * 2011-06-06 2018-08-08 Telefonaktiebolaget LM Ericsson (publ) Generic multi-radio access technology
JP5932026B2 (en) 2011-06-12 2016-06-08 アルタイル セミコンダクター リミテッド Mitigation of interference between TD-LTE communication terminals
EP2727261A4 (en) * 2011-06-28 2015-02-18 Hewlett Packard Development Co Method of associating a client with an access point in a wireless local area network
US9173228B2 (en) * 2011-06-28 2015-10-27 Qualcomm Incorporated Bluetooth packet scheduling rules for LTE coexistence
US8750783B2 (en) * 2011-09-16 2014-06-10 Broadcom Corporation Efficient enablement for wireless communication on license-exempt bands
US9560630B2 (en) * 2011-08-12 2017-01-31 Qualcomm Incorporated Devices for reduced overhead paging
US9560632B2 (en) 2011-08-12 2017-01-31 Qualcomm Incorporated Devices for title of invention reduced overhead paging
US9521632B2 (en) 2011-08-15 2016-12-13 Google Technology Holdings LLC Power allocation for overlapping transmission when multiple timing advances are used
JP5895225B2 (en) * 2011-08-24 2016-03-30 パナソニックIpマネジメント株式会社 Device control system, radio control apparatus, and radio control apparatus program
US8879445B2 (en) * 2011-10-26 2014-11-04 Qualcomm Incorporated Mitigating impact of power imbalance on remote data rate in wireless local area network
US9591612B2 (en) 2011-12-05 2017-03-07 Qualcomm Incorporated Systems and methods for low overhead paging
RU2627734C2 (en) 2011-12-05 2017-08-11 Самсунг Электроникс Ко., Лтд. Method and system of processing co-existence interferences inside device of user equipment
US9002282B1 (en) 2011-12-15 2015-04-07 Marvell International Ltd. Method and apparatus for priority based coexistence arbitration
US9699667B2 (en) * 2012-01-09 2017-07-04 Qualcomm Incorporated Systems and methods to transmit configuration change messages between an access point and a station
US20130176864A1 (en) * 2012-01-09 2013-07-11 Qualcomm Incorporated Rate and power control systems and methods
EP2632071A1 (en) * 2012-02-21 2013-08-28 Thomson Licensing Method for assessing quality of a radio transmission channel, and residential gateway using the method
IL218527A0 (en) 2012-03-07 2012-04-30 Mariana Goldhamer Collaborative measurements in cellular networks
US9433003B2 (en) 2012-03-07 2016-08-30 Qualcomm Incorporated Multi-radio coexistence via timing controls for radios using the same radio access technology
US9820158B2 (en) 2012-03-07 2017-11-14 Qualcomm Incorporated Multi-radio interference mitigation via frequency selectivity
JP5649602B2 (en) * 2012-03-16 2015-01-07 株式会社東芝 Wireless communication device, wireless communication system
US9497797B2 (en) 2012-04-02 2016-11-15 Intel Deutschland Gmbh Radio communication devices and methods for operating radio communication devices
US10034329B2 (en) 2012-04-02 2018-07-24 Intel Deutschland Gmbh Radio communication device and method for operating a radio communication device
US9781701B2 (en) 2012-04-02 2017-10-03 Intel Deutschland Gmbh Radio communication device and method for operating a radio communication device
US9094999B2 (en) 2012-04-02 2015-07-28 Intel Deutschland Gmbh Radio communication device and method for operating a radio communication device
US9516698B2 (en) 2012-04-02 2016-12-06 Intel Deutschland Gmbh Radio communication devices and methods for operating radio communication devices
US9942887B2 (en) * 2012-04-12 2018-04-10 Futurewei Technologies, Inc. System and method for downlink transmission in a wireless network
WO2013160523A1 (en) 2012-04-25 2013-10-31 Nokia Corporation Network discovery in wireless network
WO2013165202A1 (en) * 2012-05-03 2013-11-07 Lg Electronics Inc. Method and apparatus for transmitting message in wireless communication system
KR20130125276A (en) * 2012-05-08 2013-11-18 한국전자통신연구원 Short probe rosponse
CN103583078A (en) * 2012-05-30 2014-02-12 华为终端有限公司 Communication method and device
KR101353585B1 (en) * 2012-06-11 2014-02-11 강릉원주대학교산학협력단 wireless sensor network system and node, sensing message prosess method
CN104756597A (en) 2012-08-06 2015-07-01 美国博通公司 Apparatuses, methods and computer program products related to improvements in autonomous denial prohibition mechanisms
CN102905349A (en) * 2012-09-29 2013-01-30 清华大学 Method for enhancing association decision of wireless access points
US9544848B2 (en) 2012-10-24 2017-01-10 Qualcomm Incorporated Methods and apparatus for communicating short paging messages in a wireless communication network
JP2014090380A (en) * 2012-10-31 2014-05-15 Toshiba Corp Radio communication device, radio communication system and radio communication method
US9801157B2 (en) * 2012-10-31 2017-10-24 Qualcomm, Incorporated System and method of identifying a lower power paging mode
US8842549B2 (en) 2012-12-17 2014-09-23 Litepoint Corporation System and method for parallel testing of multiple data packet signal transceivers
US8842552B2 (en) * 2012-12-17 2014-09-23 Litepoint Corporation Method of facilitating testing of multiple time-division-duplex (TDD) data packet signal transceivers
US9531524B2 (en) * 2013-01-18 2016-12-27 Lg Electronics Inc. Method and apparatus for wireless communication on heterogeneous networks
US9485777B2 (en) 2013-03-14 2016-11-01 Qualcomm Incorporated Systems and methods for scheduling wireless communications
US9094835B2 (en) 2013-03-15 2015-07-28 Intel Mobile Communications GmbH Radio communication device and method for operating a radio communication device
EP2974186B1 (en) 2013-03-15 2023-06-28 Robert Bosch GmbH Method and system for robust real-time wireless industrial communication
US20140328271A1 (en) * 2013-05-06 2014-11-06 Mediatek Inc. Methods for preventing in-device coexistence interference and communications apparatus utilizing the same
TW201519596A (en) 2013-07-11 2015-05-16 Interdigital Patent Holdings Systems and methods for smart HARQ for WiFi
CN103391546B (en) * 2013-07-12 2017-03-15 杭州华三通信技术有限公司 A kind of wireless attack detection and defence installation and its method
US9307487B2 (en) 2013-08-30 2016-04-05 Qualcomm Incorporated Methods and systems for improved utilization of a wireless medium
US20150071259A1 (en) * 2013-09-12 2015-03-12 Ralink Technology Corp. Scheduling method and electronic device using the same
IN2013CH04707A (en) * 2013-10-18 2015-04-24 Samsung India Software Operations Pvt Ltd
US9467276B2 (en) * 2013-10-22 2016-10-11 Acer Incorporated Communication method for performing dynamic radio dormant mechanism
US9521619B2 (en) * 2014-04-14 2016-12-13 Qualcomm Incorporated Systems and methods for implementing WLAN power saving using an alternate wireless protocol
JP5976259B2 (en) * 2014-05-22 2016-08-23 三菱電機株式会社 Wireless communication system and communication method
KR102476909B1 (en) * 2014-11-06 2022-12-13 삼성전자주식회사 Efficient operation of lte cells on unlicensed spectrum
US20160135148A1 (en) * 2014-11-06 2016-05-12 Samsung Electronics Co., Ltd. Efficient operation of lte cells on unlicensed spectrum
US10575284B2 (en) * 2014-12-26 2020-02-25 Newracom, Inc. Systems and methods for multi-user transmission
US10063292B2 (en) * 2015-02-02 2018-08-28 Qualcomm Incorporated Multi-user operation management
US9958948B2 (en) 2015-02-06 2018-05-01 Google Llc Systems and methods for altering a state of a system using a remote device that processes gestures
US10204505B2 (en) * 2015-02-06 2019-02-12 Google Llc Systems and methods for processing coexisting signals for rapid response to user input
US10182426B2 (en) 2015-03-13 2019-01-15 Qualcomm Incorporated Scheduling of downlink transmissions based on exchanges of pre-scheduling and scheduling messages
RU2608559C2 (en) * 2015-05-12 2017-01-23 Фудзицу Лимитед Method and base station, user device and system for cooperation mode activation
US20160337061A1 (en) * 2015-05-13 2016-11-17 Qualcomm Incorporated Access point synchronization in shared spectrum
JP6675943B2 (en) * 2016-07-06 2020-04-08 アルプスアルパイン株式会社 Communication device
CN109756246B (en) * 2017-11-02 2020-10-27 展讯通信(上海)有限公司 Method and device for inhibiting GSM (global system for mobile communications) from interfering with Bluetooth and mobile terminal
US20190289543A1 (en) * 2018-03-15 2019-09-19 Qualcomm Incorporated Sniff early termination indication to reduce power consumption for wireless devices
US11570632B1 (en) * 2018-03-20 2023-01-31 Amazon Technologies, Inc. Algorithm for improving zigbee reliability and latency in a multi-radio system
CN110407040B (en) 2018-04-27 2023-04-14 奥的斯电梯公司 Wireless signaling device, system and method for elevator service requests
US10499407B1 (en) 2018-10-04 2019-12-03 Cypress Semiconductor Corporation Devices, systems and methods for increasing data throughput in wireless device with shared medium
US10999789B2 (en) * 2019-03-13 2021-05-04 Ademco Inc. Systems and methods for reducing interference in a TDMA based wireless network
CN110825639B (en) * 2019-11-08 2023-01-31 西安雷风电子科技有限公司 Tamper-resistant time software License verification method
US11121820B2 (en) * 2019-11-12 2021-09-14 Qualcomm Incorporated Media access controller with a codec error model
US11659487B2 (en) * 2020-09-22 2023-05-23 Mediatek Inc. Wireless device and associated wireless communication method
CN113783758B (en) * 2021-11-11 2022-04-15 荣耀终端有限公司 Method for configuring monitoring period and corresponding electronic equipment

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI98675B (en) 1995-02-17 1997-04-15 Nokia Telecommunications Oy Allocation of time intervals in a mobile communication system
JP3607632B2 (en) 2001-03-29 2005-01-05 株式会社東芝 Wireless communication apparatus and wireless communication control method
JP4108495B2 (en) * 2003-01-31 2008-06-25 松下電器産業株式会社 Station discovery processing method and wireless communication apparatus
JP2004320153A (en) 2003-04-11 2004-11-11 Sony Corp Radio communication system and power control method thereof
WO2005050885A1 (en) * 2003-11-21 2005-06-02 Matsushita Electric Industrial Co., Ltd. Multi-antenna receiving apparatus, multi-antenna receiving method, multi-antenna transmitting apparatus, and multi-antenna communication system
CN100592648C (en) 2004-03-09 2010-02-24 桥扬科技有限公司 Methods and apparatus for random access in multi-carrier communication systems
KR20060012849A (en) 2004-08-04 2006-02-09 삼성전자주식회사 Apparatus and method of processing massage in portable internet system
JP4447416B2 (en) * 2004-09-22 2010-04-07 株式会社エヌ・ティ・ティ・ドコモ Multiband mobile communication system and transmitter
US7352691B2 (en) * 2004-12-10 2008-04-01 Texas Instruments Incorporated Double difference phase detection
KR100850912B1 (en) 2005-06-15 2008-08-07 삼성전자주식회사 Apparatus and method for power-saving in wireless communication system
US20060292987A1 (en) * 2005-06-27 2006-12-28 Lior Ophir Method of wireless local area network and Bluetooth network coexistence in a collocated device
US8169980B2 (en) 2005-07-11 2012-05-01 Qualcomm Incorporated Methods and apparatuses for interworking
CN101253735A (en) 2005-07-11 2008-08-27 高通股份有限公司 Coordinating communication for multiple wireless communication protocols co-located in a single electronic device
US7675888B2 (en) 2005-09-14 2010-03-09 Texas Instruments Incorporated Orthogonal frequency division multiplexing access (OFDMA) ranging
US8412097B2 (en) * 2005-09-16 2013-04-02 Sony Ericsson Mobile Communications Ab Methods, electronic devices, and computer program products for coordinating bluetooth and wireless local area network communication
KR20070040995A (en) * 2005-10-13 2007-04-18 삼성전자주식회사 Method for map size estimation in a wideband wireless access communication system
EP1780949B1 (en) * 2005-10-27 2018-12-26 Google Technology Holdings LLC Apparatus and method for responding to unlicensed network failure
US8094631B2 (en) 2005-12-09 2012-01-10 Marvell World Trade Ltd. Coexistence system and method for wireless network devices
US8160001B2 (en) 2006-05-25 2012-04-17 Altair Semiconductor Ltd. Multi-function wireless terminal
US8326276B2 (en) * 2006-06-30 2012-12-04 At&T Intellectual Property I, Lp Proximity based call management
US7720485B2 (en) * 2006-07-14 2010-05-18 Qualcomm Incorporated Methods and apparatus related to assignment in a wireless communications system
CN101132215B (en) 2006-08-25 2012-01-11 上海贝尔股份有限公司 Evolutionary multimedia broadcast multi-broadcasting business base station, user device and method thereof
US8159983B2 (en) 2006-11-06 2012-04-17 Mitsubishi Electric Research Laboratories, Inc. Communicating packets in a wireless multi-user multi-hop relay networks
US20090003257A1 (en) * 2007-06-27 2009-01-01 Motorola, Inc. Apriori proactive retransmissions
US8315234B2 (en) 2007-09-24 2012-11-20 Wi-Lan, Inc. Time multiplexing for coexistence within multiple communication systems
US7986980B2 (en) * 2007-09-28 2011-07-26 Nokia Corporation Multiradio power management
US20090141692A1 (en) * 2007-11-30 2009-06-04 Mika Kasslin Optimized ad hoc networking
KR101467782B1 (en) 2008-02-25 2014-12-03 엘지전자 주식회사 Method for supporting coexistence in a mobile station
US8619732B2 (en) 2008-02-28 2013-12-31 Broadcom Corporation Method and apparatus for enabling coexistence of plurality of communication technologies on communication device
US8149804B2 (en) * 2008-04-04 2012-04-03 Intel Corporation Multi-transceiver wireless communication device and methods for operating during device discovery and connection establishment
IL190659A0 (en) 2008-04-07 2008-12-29 Mariana Goldhamer Wireless communication network with relay stations
US8265017B2 (en) 2008-04-11 2012-09-11 Apple Inc. Methods and apparatus for network capacity enhancement for wireless device coexistence
CN101646245A (en) 2008-06-16 2010-02-10 美国博通公司 Method and system for bluetooth and wimax coexistence
CN101621324A (en) 2008-07-01 2010-01-06 联想(北京)有限公司 Coordination method for communication resources and Bluetooth communication terminal
KR101481586B1 (en) 2008-09-04 2015-01-12 엘지전자 주식회사 Method for communcation time allocation of multiple radio
US8059622B2 (en) * 2008-09-04 2011-11-15 Intel Corporation Multi-radio platform and method for coordinating activities between a broadband wireless access network transceiver and co-located transceiver
US8730853B2 (en) 2008-09-05 2014-05-20 Mediatek Inc. Methods for responding to co-located coexistence (CLC) request from a mobile electronic device and communications apparatuses capable of controlling multi-radio coexistence
CN102905349A (en) * 2012-09-29 2013-01-30 清华大学 Method for enhancing association decision of wireless access points

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI456925B (en) * 2011-10-25 2014-10-11 Apple Inc Data transfer using the bluetooth low energy standard

Also Published As

Publication number Publication date
EP2981149A1 (en) 2016-02-03
EP2330864A2 (en) 2011-06-08
JP5149994B2 (en) 2013-02-20
CN105827372B (en) 2019-03-12
EP2330864A3 (en) 2013-07-03
US8730853B2 (en) 2014-05-20
EP2981149B1 (en) 2018-11-07
EP3001769B1 (en) 2020-01-01
EP2324681A1 (en) 2011-05-25
US20140219216A1 (en) 2014-08-07
CN101919302A (en) 2010-12-15
EP2324681A4 (en) 2013-06-26
EP3001769A1 (en) 2016-03-30
EP2324681B1 (en) 2016-08-17
CN105827372A (en) 2016-08-03
US9265056B2 (en) 2016-02-16
EP2330864B1 (en) 2016-04-27
US20100061326A1 (en) 2010-03-11
TWI397338B (en) 2013-05-21
WO2010025678A1 (en) 2010-03-11
JP2011530251A (en) 2011-12-15

Similar Documents

Publication Publication Date Title
TWI397338B (en) Methods for responding to co-located coexistence (clc) request from a mobile electronic device and communications apparatuses
JP6972095B2 (en) Channel set allocation in frequency-multiplexed communication in a high-density wireless environment
US9420599B2 (en) Synchronized activity bitmap generation method for co-located coexistence (CLC) devices
US8160001B2 (en) Multi-function wireless terminal
JP5538716B2 (en) Coordinating communications for multiple wireless communication protocols located very close together in one electronic device
KR100831189B1 (en) Asynchronous inter-piconet routing
JP2010503286A (en) Simultaneous operation in multiple wireless local area networks
JP2014504467A (en) Method and apparatus for wireless direct link operation
TW201044815A (en) Systems for the coexistence of a wireless local area network (WLAN) and another type of wireless transmission and for WLAN transmission and methods thereof
Kamruzzaman et al. Energy efficient cognitive radio MAC protocol for battlefield communications
WO2023065362A1 (en) Power control method, device, and storage medium
한종훈 Cooperative System Design and Implementation of Bluetooth and Wi-Fi
WO2023192751A1 (en) Bluetooth low energy coexistence link configuration