TW201014787A - Method for fabricating carbon nanotube, wafer for growing carbon nanotube, and carbon nanotube device - Google Patents

Method for fabricating carbon nanotube, wafer for growing carbon nanotube, and carbon nanotube device Download PDF

Info

Publication number
TW201014787A
TW201014787A TW97137729A TW97137729A TW201014787A TW 201014787 A TW201014787 A TW 201014787A TW 97137729 A TW97137729 A TW 97137729A TW 97137729 A TW97137729 A TW 97137729A TW 201014787 A TW201014787 A TW 201014787A
Authority
TW
Taiwan
Prior art keywords
layer
carbon nanotube
substrate
catalyst layer
test piece
Prior art date
Application number
TW97137729A
Other languages
Chinese (zh)
Other versions
TWI474972B (en
Inventor
Li-Chun Wang
Han-Wen Kuo
Yuh Sung
Shiaw-Ruey Lin
Ming-Der Ger
Yih-Ming Liu
Wei-Dar Chang
Original Assignee
Chung Shan Inst Of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Shan Inst Of Science filed Critical Chung Shan Inst Of Science
Priority to TW097137729A priority Critical patent/TWI474972B/en
Publication of TW201014787A publication Critical patent/TW201014787A/en
Application granted granted Critical
Publication of TWI474972B publication Critical patent/TWI474972B/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

The invention discloses a method for fabricating a carbon nanotube, and the method comprises the following steps: providing a substrate; forming a catalyst layer on the substrate; forming a porous capping layer on the catalyst layer to finish a wafer; forming the carbon nanotube on the wafer. By the porous capping layer, the well-aligned carbon nanotube can grow on the wafer through thermal CVD.

Description

201014787 九、發明說明: 【發明所屬之技術領域】 一種能製作高準直性奈米碳管的方法、用以關於 米碳管的試片以及具有高準紐奈米碳管之奈米碳件陵奈 【先前技術】 質、ίί;ίί為J狀:嫉其具有獨特的機械性 巧,、高當;:; 又直仏比的特性。於化學性質方面,碳卜 雷= ”寻导性也很優秀。於電性方面,依據其社 m 有相ί:好 沾 S:,s==素 類ί声合成*出辅助奈米碳f成長。由於觸媒的種 6 201014787 生成冋品質奈米碳管的目的。 舉例而言,上述觸媒製備方法可包含·· 於試(di ϊίΐ避=以=或錄作為把材共同濺鑛 的效果,可的;聚 碳管的成長。 運步利於早壁奈米 ❹ ❹ (2)粉末載體法,利用載體(例如氧化鋁、氧务 與含有過渡金屬鹽類之溶液混合,並進^弗石等) 及還原等步驟以於载體上獲得過渡金屬的觸媒、。、同溫燒結以 ^多層觸媒法··依序於石夕基材上濺鑛銘以狀 加熱過程易與氧氣反應形成氧化鋁;金屬‘ 形成=層 於奈米碳管成長的金屬石夕化物。 秘,皿下形成不利201014787 IX. Description of the invention: [Technical field of invention] A method for producing a high collimated carbon nanotube, a test piece for a carbon nanotube, and a nano carbon member having a high-precision carbon nanotube Lingnai [previous technology] quality, ίί; ίί is J-shaped: 嫉 it has a unique mechanical skill, high;;; and the characteristics of direct ratio. In terms of chemical properties, carbon bray = "conductivity is also very good. In terms of electrical properties, according to its social m have a good: S: S:, s = = prime ί sound synthesis * out of the auxiliary nano carbon f Growth. Due to the type of catalyst 6 201014787, the purpose of producing 冋 quality carbon nanotubes. For example, the above catalyst preparation method can include: (di ϊ ΐ ΐ = = = or recorded as a common splash of the material The effect is good; the growth of the polycarbon tube. The step is beneficial to the early wall nano ❹ ❹ (2) powder carrier method, using a carrier (such as alumina, oxygen and a solution containing a transition metal salt mixed, and into the stone Etc.) and reduction steps to obtain a transition metal catalyst on the carrier, and sintering at the same temperature to multi-layer catalyst method · sequentially on the stone substrate, splashing with the shape of the heating process is easy to react with oxygen Formation of aluminum oxide; metal formation = metallization of the metal layer grown in the carbon nanotubes.

Dem熱t裂Ϊ化學氣相沈積法(Thennal Chemieal 高、、為傳、_來生成奈米碳管的方法,其係以 二·會於基材上透過_粒子的催化而沈 f解化二i述各種製備方法所製備出之觸媒,以熱 ίίΐΓ if 制奈米碳管的管徑或是奈米碳管的 成長迷度,因此可剌具有紐縣度管觀之奈米碳管。 準首熱裂解化學氣相沈積法所成長之奈米碳管,其 用領域中。,因此,其不適用於要求準直性的奈米碳管應 201014787 【發明内容】 發明之-麟在於提供_種製作奈米破管的方 t可利解化學氣她餘生成具有高準紐的g 石反&,以解決先前技術之問題。 ’丁、水 根據一具體實施例,本發明之製 媒?ί基板丄形成觸媒層====== ❿ m :s層中化奈树管。於本 具有高準直性的ί米碳ί,相沈積法可於試片上形成 本發明之另-範4在於提供—種用以 :奈=熱裂解化學氣相沈積法於其上生成i有高 根據一具體實施例,本發明之用 1含,板、觸媒層以及多孔性覆蓋層U 上,多孔性覆蓋層則形成於觸媒層上。於基板 試片處於高溫時(熱裂解化學氣柏 ;,/、體實施例中, 蓋層可防止觸錄子;賊形敍刺“ m其^孔性覆 登層之孔洞具有準直性,因此所生孔, 長度管徑比並且具有高準直性。”未反有很尚的 本發明之另-範.在於提供 具有高準直性的奈米碳管。 用不未奴官7〇件,其上 根據一具體實施例,本發 觸媒層、多孔性覆蓋層以及奈米碳;J 包含基板、 學氣相沈積法成長於S 則中,於進行熱裂解化學氣相沈積法 201014787 防止觸媒粒子凝聚形成大型顆粒 =且有= 附圖精神可以藉由,創作詳述及所 【實施方式】 製作方例之 之製作奈米碳管的方法包含下丨牛 丫、本具體實施例 基板;於步驟S12,於基板上形成^觸,於::S10,提供-媒層上形成纽性覆蓋層二成d广,,於觸 S16’於試片上形成奈米碳管。 。片,以及,於步驟 矽=本=實t例中,步驟S10之基板可為,但不受限於 氧化物’以濺鍍或是其他適合製程形成^屬 ,步驟S14之多孔性覆蓋層於實務中成可為,=方 乳化鋅、氧化舞、氧化石夕、氧化銘蔡1J, 氧或其他適合的物質;氮化物,例如乳以 Ϊ適物:如氮氧化銘或其他適合=質 專 鍍膜或化千次置方式形成於觸媒層上。 、 於具體倾狀_叙厚度可為,但不受限 I。1〜10奈米。另—方面,覆蓋層之厚度可為(U〜1〇奈 碳管#^^=3^_法於試片上形成奈米 、夕孔丨生覆盍層於進行熱裂解化學氣相沈積 9 201014787 時可限制觸媒層因受熱凝聚成的觸媒粒子之大小, 出之奈米碳管不會因過大的觸媒粒子而且有 =^ 外,多孔性覆蓋層之孔洞可具有高準直性',使 J蓋觸媒層’其可於進行熱裂解化學氣相沈積時保 f?(amT0US carbon)*^b^^5 未石反官的成長速率以及獲得長度大體上相同的奈米碳管曰。力不、 請參閱圖二,圖二係緣示根據本發明之另一 ❿ 鲁 if ί成長奈米碳管之試片2的示意圖。於實務ϊ,ΐ片2 具體實闕之方秘°圖—製備而成。i圖 所=’減片2包含基板20、觸媒層22以及 24。其中,觸媒層22係形成於基板2 24係形成於觸媒層22之上。多孔 上^巧蓋層 Ϊ十2二3 L各孔洞240均準直於石&日成長;向?’因ifDem thermal t-cracking chemical vapor deposition method (Thennal Chemieal high, 为, _ to form a carbon nanotubes, which is based on the catalysis of the _ particles on the substrate to solve the problem The catalyst prepared by various preparation methods is used to heat the diameter of the carbon nanotubes or the growth of the carbon nanotubes, so that the carbon nanotubes of the New County tube can be obtained. The carbon nanotubes grown by the pyrolysis chemical vapor deposition method are used in the field. Therefore, it is not suitable for the carbon nanotubes requiring collimation. 201014787 [Invention] The invention is provided by The method of making the nano tube can be used to solve the problem of the prior art by solving the chemical gas, and the solution of the present invention is based on a specific embodiment. ? 丄 substrate 丄 formation of catalyst layer ====== ❿ m : s layer in the naphthalene tube. In this high-collimation ί m carbon ί, phase deposition method can form the invention on the test piece Another-Fan 4 is to provide a kind of use: Nai = thermal cracking chemical vapor deposition method on which i is high according to a specific implementation In the present invention, the plate, the catalyst layer and the porous cover layer U are formed on the catalyst layer. When the substrate test piece is at a high temperature (thermal cracking chemical arbor;; In the embodiment, the cap layer can prevent the toucher; the thief-shaped spurs "the hole of the hole-covering layer has collimation, so the hole, the length-to-diameter ratio and the high collimation." A further embodiment of the present invention is to provide a carbon nanotube having high collimation. The device is not ruined, and according to a specific embodiment, the catalyst layer is porous. Cover and nano carbon; J contains substrate, vapor deposition method is grown in S, and thermal cracking chemical vapor deposition method 201014787 is used to prevent the condensation of catalyst particles to form large particles = and there is a The method for producing a carbon nanotube according to the production method includes a sirloin sir, the substrate of the specific embodiment; in step S12, a touch is formed on the substrate, at::S10 , providing a coating layer on the media layer, forming a cover layer of two, and measuring it at S16' Forming a carbon nanotube on the sheet, and, in the step 本=本=实例, the substrate of step S10 can be, but is not limited to, the oxide' is formed by sputtering or other suitable processes. The porous covering layer of step S14 can be formed in practice: = emulsified zinc, oxidized dance, oxidized stone, oxidized Ming Cai 1J, oxygen or other suitable substance; nitride, such as milk as Ϊ aptamer: such as nitrogen Oxidation or other suitable = quality coating or thousands of times on the catalyst layer. In the specific tilting _ thickness can be, but not limited to I. 1 ~ 10 nm. Another aspect, coverage The thickness of the layer can be (U~1〇奈carbon tube#^^=3^_ method to form a nano- and a hole-forming layer on the test piece for thermal cracking chemical vapor deposition 9 201014787 to limit the catalyst layer The size of the catalyst particles agglomerated by heat, the carbon nanotubes are not caused by excessive catalyst particles and the holes of the porous cover layer can have high collimation, so that the J cover catalyst layer 'It can be used to carry out thermal cracking chemical vapor deposition to maintain f?(amT0US carbon)*^b^^5 Substantially the same length of said carbon nanotubes. Referring to Figure 2, Figure 2 is a schematic diagram showing another test piece 2 of a ruthenium-like carbon nanotube according to the present invention. In the practice of ϊ ΐ ΐ ΐ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 i = = minus 2 includes substrate 20, catalyst layers 22 and 24. The catalyst layer 22 is formed on the substrate 2 and is formed on the catalyst layer 22 . Porous on the ^ Qiao cover layer Ϊ 10 2 2 3 L holes 240 are all aligned with the stone & day growth; to?

以向,,致使奈米碳管I 洞240之數量端看所使用之多孔‘ 不限於本說明書所列舉之具體實施例。的材科而疋,並 化風亡具體實施例之製作奈米碳管的方法之埶裂解 :: 抽真空至κγ2τ〇γγ的雨溫f中、,並將高溫爐 溫;當高溫爐内溫度升Γ成長碳管戶^^^並^高,升 3處;外待長C炭源^^ ;了而運用於其他元件’亦可與試片本身〜:成奈米ΐίΐ 201014787 於實務中’上述熱裂解化學氣相沈積法之高溫爐加 率可為3〜30°C/min,較佳的可為5〜1(rc/min,並且 奈米碳管之溫度可為65〇〜85(rc,較佳的可為,〜8〇〇: C。另外,碳源氣體於實務中可使用甲烷、乙烷、丙燒、乙 seem ° =、乙炔或上述各韻、氣體之混合氣體,並且,其流量 30〜600 seem,較佳的可為8〇〜18〇 ’、、、 一夫意;i述熱裂解化學氣相沈積法之各種參數係提供 古ϋ =實際應用時仍可根據所需之奈米碳管結構以及 可進行鋪解化學氣械積法之設備狀況進行 參數調整,並稀雜本酬書·舉之具财關。仃 方法ΐίΐ表―,表—係標示彻本發明之製作奈米碳管之 型態。⑼翻以及细試片成長㈣奈米碳管 管,裂解化,氣相沈積法成長奈米碳 魯 其碳源氣體,並以鐵銘合金作驾』 ί衝層材料多孔性覆蓋層 材料In the meantime, the number of the carbon nanotube I holes 240 is considered to be the end of the use of the porous 'not limited to the specific examples listed in the present specification. The material of the material, and the method of making the carbon nanotubes in the specific embodiment of the cracking:: vacuuming to the rain temperature f of κγ2τ〇γγ, and the temperature of the high temperature furnace; Γ Γ growth carbon tube household ^ ^ ^ and ^ high, rise 3; outside long C carbon source ^ ^; and used for other components 'can also be with the test piece itself ~: Cheng Nai ΐ ΐ ΐ 201014787 in practice ' The high temperature furnace addition rate of the above pyrolysis chemical vapor deposition method may be 3 to 30 ° C / min, preferably 5 to 1 (rc / min, and the temperature of the carbon nanotubes may be 65 ~ 85) Rc, preferably 〜8〇〇: C. In addition, carbon source gas can be used in methane, ethane, propylene, B, or acetylene or a mixture of gases and gases. The flow rate is 30~600 seem, preferably 8〇~18〇',,, and one; the various parameters of the pyrolysis chemical vapor deposition method provide the ancient ϋ = actually can be used according to the needs The carbon nanotube structure and the condition of the equipment that can be used for the chemical gasification method are adjusted, and it is rare to pay for it. Table-, Table-- indicates the type of carbon nanotubes produced by the present invention. (9) Turning and fine test piece growth (4) Nano carbon tube, cracking, vapor deposition, growth of nanocarbon, carbon source gas And use the iron alloy to drive the 』 rush layer material porous cover material

11 20101478711 201014787

太乎=例—以及對照例二係以先前括^ 魯 ❹ 5層之氧化層)作為其緩衝層 無準i'i,例-所成長之奈米碳管呈現彎曲狀而 例,長 平均長度亦同樣大約為呈現準直性,其 層相當厚的非微l奈米碳管表面具有- 只施例一、實施例二以及實施例三係分別以 扣 =鋁以及氧化鎂作為其多孔性覆蓋層。如表—所示,實乳 二所成長之奈米碳管部分呈現彎曲狀部分則呈現準直性,= 平均長度大約為5微米,並且表面已無非晶碳膜形成。實^ 12 201014787 ^所成長之奈米碳管呈現高準直性, ^然而其管徑略粗。實施例三所成長s 〇 度準直性,並且其平均長度可達到官呈現高 米碳;=會示表一之實施例三所成長出之夺 所成長H^ 層 ❹ =步此形 解 成長速率,並非晶碳毒化而增加奈米碳管 ;ΐί制爾植,_綱蝴碳管呈現ί 述本實it詳述,係希望能更加清楚描 :=::士加以限【===實 月6 範 變及具相等性的安排於本剌所;申請::利 據上Ϊ:說明=寬=:2申請之專利範圍的範轉應該根 變以及具相卿’贿織蓋财可能的改 13 201014787 【圖式簡單說明】 圖一係繪示根據本發明之—具體實施例之製作奈米碳管 的方法的示意圖。 圖二係繪示根據本發明之另—具體實施例之用以成長 米碳管之試片的示意圖。Too = for example - and the second example of the comparative example is the oxide layer of the 5 layers of the previous layer; the buffer layer is inaccurate i'i, for example, the grown carbon nanotubes are curved, for example, the long average length It is also about to exhibit collimation, and its layer is relatively thick on the surface of the non-micro-n carbon nanotubes - only the first example, the second embodiment and the third embodiment are respectively made of buckled aluminum and magnesium oxide as its porous cover. Floor. As shown in the table, the portion of the nanotube that grows in the second emulsion exhibits collimation, and the average length is about 5 μm, and the surface has no amorphous carbon film.实^ 12 201014787 ^The carbon nanotubes that are grown exhibit high collimation, but their diameter is slightly thicker. In the third embodiment, the growth s is collimated, and the average length can reach the height of the carbon of the official; = the growth of the third embodiment of the first embodiment is shown in the growth of H^ layer ❹ = step by step to grow Rate, and carbonization of amorphous carbon to increase the carbon nanotubes; ΐ 制 制 ,, _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The change of the 6th month and the equality of the arrangement in this office; Application:: According to the captain: Description = Width =: 2 The scope of the patent scope of the application should be rooted and the relationship may be MODIFICATION 13 201014787 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a method of fabricating a carbon nanotube according to an embodiment of the present invention. Fig. 2 is a schematic view showing a test piece for growing a carbon nanotube according to another embodiment of the present invention.

圖三係繪示表一之實施例三所成長出之奈米碳管膜 SEM 圖。 、J ❹ 【主要元件符號說明】 S10〜S16 :流程步驟 2 =試片 22 =觸媒 240 :孔洞 2〇 .基板 24 :多孔性覆蓋層Figure 3 is a SEM image of the carbon nanotube film grown in Example 3 of Table 1. , J ❹ [Description of main component symbols] S10~S16: Process step 2 = Test piece 22 = Catalyst 240 : Hole 2 〇 . Substrate 24 : Porous cover layer

1414

Claims (1)

201014787 十、申請專利範圍: 1、 一種製作一奈米碳管之方法,包含下列步驟: 提供一基板; 形成一觸媒層於該基板上; 形成夕孔性覆蓋層於該觸媒層上以完成一試片;以及 於該試片上形成該奈米碳管。 2、 料利範圍第1項所述之方法,其中該觸媒層係由一金 屬或其氧化物所構成。 3、 ^申請專利範圍第2項所述之方法,其中該金屬包含選自由 鐵、鈷、鎳、铑、鈀、鉑以及其合金所組成群組中之至少 4、201014787 X. Patent application scope: 1. A method for manufacturing a carbon nanotube, comprising the steps of: providing a substrate; forming a catalyst layer on the substrate; forming a mask layer on the catalyst layer A test piece is completed; and the carbon nanotube is formed on the test piece. 2. The method of claim 1, wherein the catalyst layer is composed of a metal or an oxide thereof. 3. The method of claim 2, wherein the metal comprises at least 4 selected from the group consisting of iron, cobalt, nickel, rhodium, palladium, platinum, and alloys thereof. 6 圍第1項所述之方法,其中該多孔性覆蓋層係 ^自f氧鱗、氧倾、氮切、氮健、氮氧化铭、氧 ,、氧化紹、氧化鎮、氧化紀以及鑭鋁氧所組成群 至少一材料所構成。 ίίΪ專魏圍第1項所述之方法,其中該多孔性覆蓋層伟 轉由鍍膜或化學浸置方式設置於該觸媒層上。 層係 ΪΓϊί利範圍第1項所述之方法,其巾奈米碳管係以埶裂 解化予氣相沈積法形成於該試片上。 *、 〜種用以成長一奈米碳管之試片,包含: —基板; 觸媒層’形成於該基板上;以及 一多孔性覆蓋層,形成於該觸媒層上; "中該奈米碳管係成長於該多孔性覆蓋層上。 15 201014787 8、如申請專利範圚笛 金 屬或其氧化物所^項所述之試片,其中該觸媒層係由 項所述之試片’其中該金屬包含選自由 —。 趣、翻以及其合金所組成群組中之至少 圍,所述之試片,其中該多孔性覆蓋層係 魯 % 性讓係 12、熱裂 、—種奈米碳管元件,包含: 一基板; 一觸媒層,形成於該基板上; 一多礼性覆蓋層,形成於該觸媒層上;以及 奈米奴管層,形成於該多孔性覆蓋層上。 14、 =請專利範圍第13項所述之奈米碳管元件 係由-金屬或其氧化物所構成。 ^ ’媒層 15、 ^巾請專聰圍第M項所述之奈米碳管元件,1巾 二鐵、鈷、鎳、铑、鈀、翻以及其合金所組成群t 16、 如申請專利範圍第13項所述之奈米碳管元件,其中該多孔性 16 201014787 ίί層ί二5自=鋅:氧化鈣、氮切、氮化銘、氮氧 群財之至少一 化鎮、氧化記以及雜呂氧所組成 17、 ίΓίίΐ11圍第13項所述之奈米碳管元件,料該多孔性 覆盍層係藉由鑛膜或化學浸置方式設置於該^媒層中上^錄 18、 ΐ3ίΓ=13項所述之奈米碳管元件,其中該奈米碳 I層係猎由熱裂解化學氣相沈積法形成於該多孔性覆蓋廣 髻 m 176 The method of claim 1, wherein the porous covering layer is derived from f oxyscale, oxidizing, nitrogen cutting, nitrogen nurturing, nitrogen oxidizing, oxygen, oxidizing, oxidizing, oxidizing, and strontium aluminum. The oxygen group is composed of at least one material. The method of claim 1, wherein the porous cover layer is disposed on the catalyst layer by coating or chemical immersion. The method of claim 1, wherein the towel carbon nanotubes are formed on the test piece by splitting and vapor deposition. *, a test piece for growing a carbon nanotube, comprising: - a substrate; a catalyst layer formed on the substrate; and a porous cover layer formed on the catalyst layer; The carbon nanotube system is grown on the porous cover layer. 15 201014787 8. A test piece as claimed in the patent specification Fansei Metal or Oxide thereof, wherein the catalyst layer is the test piece described in the item, wherein the metal comprises a material selected from the group consisting of. At least the circumference of the group consisting of fun, flip and alloys thereof, wherein the porous cover layer is a heat-resistant layer 12, a hot crack, a carbon nanotube component, comprising: a substrate a catalyst layer formed on the substrate; a multi-layered cover layer formed on the catalyst layer; and a nanotube layer formed on the porous cover layer. 14. The carbon nanotube component described in item 13 of the patent scope is composed of a metal or an oxide thereof. ^ 'Media layer 15, ^ towel, please use the carbon nanotube component described in item M, 1 towel, iron, cobalt, nickel, ruthenium, palladium, turn and its alloy group t 16 , such as patent application The carbon nanotube component described in the thirteenth aspect, wherein the porosity 16 201014787 ίί layer ί 2 5 from = zinc: calcium oxide, nitrogen cut, nitrided, nitrogen oxide group at least one town, oxidation record And the nano carbon tube component according to Item 13, wherein the porous coating layer is disposed in the medium layer by a mineral film or chemical immersion method. , ΐ3ίΓ=13 of the carbon nanotube component, wherein the nanocarbon I layer is formed by thermal cracking chemical vapor deposition on the porous cover wide m 17
TW097137729A 2008-10-01 2008-10-01 Method for fabricating carbon nanotube, wafer for growing carbon nanotube, and carbon nanotube device TWI474972B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097137729A TWI474972B (en) 2008-10-01 2008-10-01 Method for fabricating carbon nanotube, wafer for growing carbon nanotube, and carbon nanotube device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097137729A TWI474972B (en) 2008-10-01 2008-10-01 Method for fabricating carbon nanotube, wafer for growing carbon nanotube, and carbon nanotube device

Publications (2)

Publication Number Publication Date
TW201014787A true TW201014787A (en) 2010-04-16
TWI474972B TWI474972B (en) 2015-03-01

Family

ID=44829779

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097137729A TWI474972B (en) 2008-10-01 2008-10-01 Method for fabricating carbon nanotube, wafer for growing carbon nanotube, and carbon nanotube device

Country Status (1)

Country Link
TW (1) TWI474972B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9142376B2 (en) 2012-08-22 2015-09-22 National Defense University Method for fabricating field emission cathode, field emission cathode thereof, and field emission lighting source using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7378075B2 (en) * 2002-03-25 2008-05-27 Mitsubishi Gas Chemical Company, Inc. Aligned carbon nanotube films and a process for producing them
TWI299032B (en) * 2004-11-17 2008-07-21 Univ Nat Chiao Tung Method for controlling the tube number density of carbon nanotubes and method for manufacturing carbon nanotubes
TWI365168B (en) * 2005-06-24 2012-06-01 Hon Hai Prec Ind Co Ltd A method of fabricating carbon nanotubes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9142376B2 (en) 2012-08-22 2015-09-22 National Defense University Method for fabricating field emission cathode, field emission cathode thereof, and field emission lighting source using the same

Also Published As

Publication number Publication date
TWI474972B (en) 2015-03-01

Similar Documents

Publication Publication Date Title
Nam et al. Hydrogen separation by Pd alloy composite membranes: introduction of diffusion barrier
Hofmann et al. Effects of catalyst film thickness on plasma-enhanced carbon nanotube growth
JP6366305B2 (en) Method for producing graphene
JP4658947B2 (en) Method for controlling the diameter of carbon nanotubes using chemical vapor deposition and method for manufacturing field effect transistors
JP3743628B2 (en) Method for producing single-walled carbon nanotube
CN105027202B (en) Include the magnetic heap in TiN X intermediate layers
WO2010147193A1 (en) Method for producing carbon nanotube assembly having high specific surface area
TW200846105A (en) A gas separation membrane system and method of making thereof using nanoscale metal material
Marichy et al. Labeling and monitoring the distribution of anchoring sites on functionalized CNTs by atomic layer deposition
JP2009184906A (en) Carbon nanotube structure and manufacturing method thereof
JP6335561B2 (en) Method for growing vertically aligned carbon nanotubes on a diamond substrate
TW201527241A (en) Glass-ceramics substrates for graphene growth
JP2008230957A (en) Carbon nanotube film structure and its production method
US9199204B2 (en) Hydrogen-separation-membrane protection layer and a coating method therefor
JP2009120771A (en) Sliding member and method for manufacturing the same
WO2019049983A1 (en) Hydrogen reduction catalyst for carbon dioxide and method for producing same, hydrogen reduction method for carbon dioxide, and hydrogen reduction device for carbon dioxide
JP2009214021A (en) Catalyst for producing carbon nanocoil, its manufacturing method, and method for producing carbon nanocoil
JP6860174B2 (en) Method for producing catalyst carrier and fibrous carbon nanostructure
TW201014787A (en) Method for fabricating carbon nanotube, wafer for growing carbon nanotube, and carbon nanotube device
JP2009119414A (en) Substrate for cnt (carbon nanotube) growth and method of manufacturing cnt
JP4983042B2 (en) Carbon nanostructure manufacturing method and catalytic reaction vessel
JP6972627B2 (en) Method for manufacturing carbon nanotube composite and laminated body
JP6783722B2 (en) Boron Nitride Film Growth Device and Method
JP2007268443A (en) Catalyst member and its manufacturing method
JP4099360B2 (en) Method for producing amorphous silica porous material