TW201004205A - Increasing capacity in wireless communications - Google Patents

Increasing capacity in wireless communications Download PDF

Info

Publication number
TW201004205A
TW201004205A TW098119248A TW98119248A TW201004205A TW 201004205 A TW201004205 A TW 201004205A TW 098119248 A TW098119248 A TW 098119248A TW 98119248 A TW98119248 A TW 98119248A TW 201004205 A TW201004205 A TW 201004205A
Authority
TW
Taiwan
Prior art keywords
frame
rate
transmission
current frame
zero
Prior art date
Application number
TW098119248A
Other languages
Chinese (zh)
Other versions
TWI424706B (en
Inventor
Yu-Cheun Jou
Peter J Black
Rashid Ahmed Akbar Attar
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/389,211 external-priority patent/US8743909B2/en
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW201004205A publication Critical patent/TW201004205A/en
Application granted granted Critical
Publication of TWI424706B publication Critical patent/TWI424706B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/44TPC being performed in particular situations in connection with interruption of transmission
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • G10L19/18Vocoders using multiple modes
    • G10L19/24Variable rate codecs, e.g. for generating different qualities using a scalable representation such as hierarchical encoding or layered encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0029Reduction of the amount of signalling, e.g. retention of useful signalling or differential signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • H04W52/58Format of the TPC bits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/7097Direct sequence modulation interference
    • H04B2201/709709Methods of preventing interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link

Abstract

Techniques to increase capacity in a wireless communications system. In an aspect, systematic non-transmission, or "blanking," of minimal-rate frames transmitted in a communications system is provided. In an exemplary embodiment, eighth rate frames in a CDMA 2000 voice communications system are systematically substituted with null-rate frames carrying zero traffic bits. Provisions are nevertheless made for the transmission of certain designated as "critical" by, e.g., a vocoder. The receiver detects the presence of null rate or non-null rate transmissions and processes the received frames accordingly, including updating an outer loop power control only in response to non-null rate frames. Further techniques for changing the pilot transmission gating pattern to assist the receiver in detecting null rate frames are provided. In another aspect, early termination of a signal transmission over a wireless communications link is provided. In an exemplary embodiment, a base station (BS) transmits power control groups (PCG's) for a frame over a forward link (FL) to a mobile station (MS) until accurate reception of the frame is acknowledged by the MS over a reverse link (RL), possibly before all PCG's of the frame are received over the FL. Possible ACK signaling methods are defined for channels associated with a CDMA 2000 wireless communications system. In another exemplary embodiment, techniques for reverse link early termination are also provided.

Description

201004205 六、發明說明: 相關申請 本專利申請案請求享受以下美國臨時申請的優先權: 2008年6月9日提交的、標題名稱爲「Apparatus and201004205 VI. INSTRUCTIONS: RELATED APPLICATIONS This patent application claims priority from the following US provisional application: Submitted on June 9, 2008, titled "Apparatus and

Methods for Increasing Capacity in Wireless Communications」、申請號爲61/060,119的美國臨時申請; 2008年6月10曰提交的、標題名稱爲「Apparatus andMethods for Increasing Capacity in Wireless Communications, US Provisional Application No. 61/060,119; Submitted on June 10, 2008, titled "Apparatus and

Methods for Increasing Communications j 、申請號爲 2008年6月13日提交的Methods for Increasing Communications j, application number submitted on June 13, 2008

Capacity in Wireless 61/060,408的美國臨時申請; 、標題名稱爲「Apparatus andCapacity in Wireless 61/060,408 US Provisional Application; title entitled "Apparatus and

Methods for Communications」Methods for Communications"

Increasing Capacity in Wireless 、申請號爲61/061,546的美國臨時申請。 故以引用方式將這些臨時申請的全部内容併入本申請。 本申請是2009年2月19曰提交的、標題名稱爲「Frame Termination」、申請號爲丨2/389,2 1 1的美國專利申請的部分Increasing Capacity in Wireless, US Provisional Application No. 61/061,546. The entire contents of these provisional applications are hereby incorporated by reference. This application is part of a US patent application filed on February 19, 2009, titled "Frame Termination", application number 丨 2/389, 21 1

延續’該美國專利申請要求享受2008年2月20曰提交的、 申請號爲01/03 0,215的美國臨時申請的優先權,其中上述兩 份申請均已轉讓給本申請的受讓人,故以引用方式將其全部 内容併入本申請。 4 201004205 【發明所屬之技術領域】 概括地說,本發明涉及數位通訊,具體地說,本發明 涉及用於降低發射功率和提高無線數位通訊系統的容量的 技術。 【先前技術】 如7已廣泛地布置無線通訊系統以便提供各種類型的 通訊,例如’語音、封包f料料。這些线可以基於分碼 户工存取(CDMA )、分時多工存取()、分頻多工 存取(FD叫或其他多工存取技術。例如,這些系統可以Continuing the 'US patent application's priority to US Provisional Application No. 01/03 0,215, filed February 20, 2008, the above two applications have been assigned to the assignee of the present application, The entire contents of this application are incorporated by reference. 4 201004205 FIELD OF THE INVENTION The present invention relates generally to digital communication, and more particularly to techniques for reducing transmit power and increasing the capacity of a wireless digital communication system. [Prior Art] A wireless communication system has been widely arranged as in 7 to provide various types of communication, such as 'voice, packet f material. These lines can be based on code division worker access (CDMA), time division multiplex access (), frequency division multiplexing access (FD calling or other multiplex access techniques. For example, these systems can

遵"f盾諸如第^代合作救蚀^ 4 A 夥伴叶剡 2( 3GPP2、或「CDMA 2000」)、 第三代合作夥伴計書彳h _ PP或 W-CDMA」)或長期進化 ( 」)之類的標準。在這些通訊系統的設計中,人們 期望在給定可用資调沾法 、,、的情況下,使容量或者這些系統可以可 靠支援的用戶數量能夠 —曰 勺取大化。一些因素影響著無線通訊系 統的谷垔,下面將描述其中的一些。 在 '"曰通訊系統中,語音合成器(vocoder)通常 使用多種可變編碼速率 ;吊 1 m 迓辜中的一種來對語音傳輸進行編碼。可 ^ . 、時間間隔期間檢測到的語音活動量,來 選擇編碼速率。例, 人上士 ’在CDMA 2000無線通訊系統的語音 合成盜中’可以使用 ^ r 〇R , 王速羊(FR) '半速率(HR)、四分之 一速率(QR)或八分 速率(eighth rate,ER )訊框來發 5 201004205 "傳輸’其中全速率訊框包括最大數量的訊務位元,八 刀之一速率訊框包括最小數量的訊務位元。八分之一速率訊 框通常在靜默時段發送,[通常與語音通訊系統可以實現的 最低速率傳輸相對應。 、雖然在CDMA 2000系統中八分之一速率訊框表示減少 的速率傳輸,❻人分之—速率仍然包含非零數量的訊務位 元。在某些時間間隔’例如沒有語音活動和背景雜訊保持不 變的相對長時間段令,即使人分之—速率訊框傳輸在系統中 也非必要地消耗顯著的發射功率位準。這會提高對其他用戶 造成的干擾位準,從而降低了系統容量,這是人們不期望的。 人們期望的是’提供用於進一步降低語音通訊系統的 傳輸速率的技術’在下面給出了諸如人分之—速率訊框傳輸 之類的最小速率訊框傳輸。Compliance "f shields such as the second generation cooperation mitigation ^ 4 A partner Ye Hao 2 (3GPP2, or "CDMA 2000"), third-generation partner program 彳h _ PP or W-CDMA") or long-term evolution ( Standards such as "). In the design of these communication systems, it is expected that the capacity or the number of users that these systems can reliably support can be maximized given the available tariffs. Some factors influence the valley of wireless communication systems, some of which are described below. In the '"曰 communication system, a speech synthesizer (vocoder) typically uses a variety of variable encoding rates; one of the 1 m 迓辜 is used to encode the speech transmission. The coding rate can be selected by the amount of voice activity detected during the interval. For example, the sergeant 'in the speech synthesis pirate of the CDMA 2000 wireless communication system' can use ^ r 〇R, Wang Suo Yang (FR) 'half rate (HR), quarter rate (QR) or eight rate (eighth rate, ER) frame to send 5 201004205 "Transport' where the full rate frame includes the maximum number of traffic bits, one of the eight-speed rate frame includes a minimum number of traffic bits. The eighth rate frame is usually sent during the silent period [usually corresponding to the lowest rate transmission that the voice communication system can achieve. Although in the CDMA 2000 system, the eighth rate frame indicates a reduced rate transmission, the rate-rate still contains a non-zero number of traffic bits. At certain time intervals, e.g., there is no relatively long period of time during which voice activity and background noise remain unchanged, even if the rate-rate frame transmission is in the system, it does not necessarily consume significant transmit power levels. This can increase the level of interference caused to other users, thereby reducing system capacity, which is undesirable. It is desirable to provide a technique for further reducing the transmission rate of a voice communication system. A minimum rate frame transmission such as a human-rate rate frame transmission is given below.

在無線通訊系統的另一個態樣,兩個單元之間的傳輸 通常使用某種冗餘度,以防範所接收信號中的錯誤。例如, 在CDMA 2_無線通訊系統中的從基地台(bs)到行動站 (MS)的前向鏈路(FL)傳輸中,可以使用諸如部分速率符 號編碼和符號重複之類的冗餘。在CDMa 2_线中,將 編碼的符號分類成多個公知爲功率控制群(pcG )的子段 (SUb-segment),並在空中進行發送,其中固定數量的= 義一個訊框。In another aspect of a wireless communication system, transmission between two units typically uses some redundancy to guard against errors in the received signal. For example, in a forward link (FL) transmission from a base station (bs) to a mobile station (MS) in a CDMA 2_wireless communication system, redundancy such as partial rate symbol encoding and symbol repetition can be used. In the CDMa 2_ line, the coded symbols are classified into a plurality of sub-segments (SUb-segments) known as power control groups (pcGs) and transmitted over the air, where a fixed number of = one frame.

雖热碎如在CDMA 使得在存在錯誤的情況下能準確地恢復出發射的信號,但這 些技術還描繪了當信號接收條件較好時整體系統發射功率 6 201004205 中的額外消耗,這些也降低了系統容量,這也是人們不期望 的0 人們還期望的是,提供高效技術,以便例如當確定接 收機已準確地恢復出與—個訊框相關的資訊,那麼就終止該 訊框的傳輸,從而節省發射功率和增加系統容量。人們還期 望的疋,提供改進的功率控制方案以便適應這些技術。 【發明内容】 本發明的一個態樣提供了一種用於根據多種速率來處 理資訊的方法,所述方法包括:接收包含訊務f訊的當前訊 杧,判斷所述當刖訊框是否屬於一關鍵訊框類型;如果確定 所述S前讯框屬於一關鍵訊框類型,則處理所述訊務資訊以 用於傳輸;如果確定所述當前訊框不屬於一關鍵訊框類型, 則判斷疋否保證所述當前訊框用於傳輸;如果確定不保證所 述當刚訊框用於傳輸,則處理零速率以用於傳輸,其中與所 述訊務資訊相比,所述零速率具有減少的資訊位元率;發射 所處理的結果以用於傳輸。 本發明的另一個態樣提供了一種用於對無線通道上的 傳輸進行功率控制的方法,包括:接收t前訊框,其中所述 訊框被格式化成多個子段;根據實體層協定來處理所接收的 訊框,所述處理包括判斷是否正確地接收了所接收的訊框; 莉斷所接收的當前訊框是否是零速率訊框;如果確定所接收 的當前訊框是零速率訊框’則不管是否正確地接收了所接收 7 201004205 的當則訊框,都不更新外環功率控制演算法。 本發明的另一個態樣提供了一種用於根據多種速率來 處理資訊的裝置。所述裝置包括系統消隱模組’用於:接收 包含訊務資訊的當前訊框;判斷所述當前訊框是否屬於一關 鍵訊框類型;如果確定所述當前訊框屬於一關鍵訊框類型, 則處理訊務資訊以用於傳輸;如果確定所述當前訊框不具有 關鍵訊框類型,則判斷是否保證所述當前訊框用於傳輸;如 果確疋不保證所述當則訊框用於傳輸,則處理零速率以用於 傳輸,其中與所述訊務資訊相比,所述零速率具有減少的資 訊位元率。所述裝置還包括:發射機,用於發射所處理的結 果以用於傳輸。 本發明的另一個態樣提供了一種用於對無線通道上的 傳輸進行功率控制的裝置,所述裝置包括:接收機,用於接 收當前訊框,其中所述訊框被格式化成多個子段;處理器, 用於:根據實體層協定來處理所接收的訊框;判斷是否正確 地接收了所接收的訊框;判斷所接收的當前訊框是否是零速 率訊框,如果確定所接收的當前訊框是零速率訊框,則不管 疋否正確地接收了所接收的當前訊框,都不更新外環功率控 制演算法。 本發明的另一個態樣提供了一種用於根據多種速率來 處理資訊的裝i,所述裝置包# :系統消隱模組,用於處理 包含訊務資訊的當前訊框以用於傳輸;發射機,用於發射所 述處理的結果以用於傳輸。 本發明的另一個態樣提供了一種電腦可讀取儲存媒 8 201004205 體,其儲存用於使電腦根據多種速率來處理資訊的指令,所 述媒體還儲存用於使電腦執行以下操作的指令:接收包含訊 務資訊的當前訊框;判斷所述當前訊框是否屬於一關鍵訊框 . 類型;如果確定所述當前訊框屬於一關鍵訊框類型,則處理 所述訊務資訊以用於傳輸;如果確定所述當前訊框不屬於— 關鍵訊框類型’則判斷是否保證所述當前訊框用於傳輸·,如 果確定不保證所述當前訊框用於傳輸,則處理零速率^用於 傳輸,其中與所述訊務資訊相比,所述i 、 ^通苓速率具有減少的資 訊位元率。 【實施方式】 結合附圖在下文闡述的說明書是對本發明的示例性實 施例的描述’ @不是表示僅在這些實施例中可以實現本發 明。貫穿本說明書使用的術語「示例性的」意味著「用作例 子、例證或說明」,其不應被解釋爲比其他示例性實施例更 ^選或更具優勢。說明書包括用於對本發明的示例 7透徹理解的特t細節。然而,顯而易見的是,對於本領 域的一般技藝人士來說,本發明的 特定細節來實現。在一些實例中,,實知例可以不用這些 示例性實施例的新穎性造成模糊, '見 結構和設備。 方塊圖形式給出公知的 ’應當理解的是,當稱 —個單元時,它可以是 在本說明書和申請專利範圍中 一個單元「連接至」或「孝焉接至」另 9 201004205 直接連接㈣接至另—個單元或者可以存在中間單元。相比 而^當稱-個單元「直接連接至」或「直接純至」另一 個單元時,則不存在中間單元。 通訊系統可以使用單載波頻率或多載波頻率。參見圖 1 ’在無線蜂巢通訊系統100中,標記1〇2A到102G指細胞 服務區,標記160A到160G指基地台,標記1〇6A到106G 才a存取端(AT)。通訊通道包括用於從存取網路(an ) 1 6〇到存取終端(AT ) 1 06進行傳輸的前向鏈路(FL )(也 稱爲下行鏈路)和用於從AT〖〇6到AN〖6〇進行傳輸的反向 鍵路(RL)(也稱爲上行鏈路)^ AT 106還稱爲遠端站、 行動站或用戶站。存取終端(AT) 106可以是移動的或靜止 的。每一個鏈路包括不同數量的載波頻率。此外,存取終端 106可以是通過無線通道或通過有線通道(例如,使用光纖 光纜或同軸電纜)進行通訊的任何資料設備。存取終端1 〇6 還可以是多種類型設備中的任何一種,這些設備包括但不限 於:PC卡、壓縮快閃記憶體、外部或内部數據機、或者無線 或有線電話。 現代通訊系統被設計爲允許多個用戶存取共同的通訊 媒體。衆多多工存取技術在本領域中是公知的’例如,分時 多工存取(TDMA ) '分頻多工存取(FDMA )、分空間多工 存取 '分極多工存取、分碼多工存取(CDMA )和其他類似 的多工存取技術。多工存取概念是允許多個用戶存取共同的 通訊鏈路的一種通道分配方法。依據具體的多工存取技術, 通道分配可以採取不同的形式。舉例而言,在FDMA系統中, 201004205 將全部頻譜劃分爲多個較小 ,. 项▼爲母一個用戶公西? __ 個次頻帶來存取通訊鏈路 蹲路或者,在TDMA系統巾,在周期 迴圈的時槽期間,爲每—個用戶分配全 巧』 系統中,在所有時間都爲每一個 、、纟 + 分配全部的頻譜,此時 通過編碼的使用來區分傳輸。 丁 雖然下文進行描述的本發明 t^^CDMA 2000 #^#" ^ 木扭紹 ^卓的#作’但本領域—般技藝人士應 田解,追些技術也可以容易地應用於其他數位通訊系統。 例如’本發明的技術還可以應用於基於w_cdma (或3Gpp) 無線通訊標準及/或任何其他通訊標準的系統。可以預期的 疋’這些替代的示例性實施例也落入本發明的保護範圍之 内。 'K. 圖2描繪了現有技術中針對語音的信號傳輸路徑 。在圖2巾’將語音信號細&輸入到語音合成器⑽, 語音合成器210用於對語音信號進行編碼以進行傳輸。根據 在任何時間語音信冑鳩的語音内容,語音合成器21〇輸出 的語音訊框210a可以具有多種速率中的一種。在圖2中,多 種速率包括全逮率(FR)、半速率(HR)、四分之一速率(qr) 和八分之-速率(ER)。將語音訊框2心提供給實體層處 =模組220,後者根據系統的實體層協定準備用於發射的語 音訊框資料。本領域的一般技藝人士應當理解,這些協定可 以包括,例如編碼、重複、刪餘(puncturing)、交錯及/或調 制資料。將實體層處理模組220的輸出提供給τχ模組23〇, 以便進行發射。ΤΧ模組230可以執行射頻(RF)操作,例 201004205 如將信號升頻轉換到载波頻率’放大信號以便在天線(未圖 示)上進行發射。 ▲通常來說’語音合成器21G在任何時間選擇的用於編 碼語音信號20Ga的語音訊框21Ga的速率,取決於在語音信 ' &中檢測出的语音活動的等級。例如’可以針對訊框選 擇全速率(FR),在該訊框期間該語音信號2_係包含活 動語音’而同時可針對訊框選擇八分之—速率(er),在該 訊框期間該語音信號義包含靜默。在這種靜默時段期間, ER訊框可以包括用於表示與靜默相關的「背景雜訊」的特徵 的參數。雖然與FR訊框相比,ER訊框包括明顯較少的位元, 但在普通會話期間頻繁地出現靜默時段,從而使得用於發射 ER訊框的總傳輸頻寬是顯著的。 人們期望的是,進一步減少向接收機傳送語音信號 2〇Oa所需要的傳輸頻寬。 圖3描繪了根據本發明針對語音的信號傳輸路徑3〇〇 的不例性實施例。在圖3中,將語音信號2〇〇a輸入到語音合 成器310,該語音合成器310產生用於傳輸的語音訊框310a。 °。曰訊框310a可以具有包括全速率(fr)、半速率(hr)、 四分之一速率(qR )、八分之一速率(ER )和關鍵的() 刀之速率(ER-C )的多種速率中的一種。在一個示例性 的實施例中,對於那些包含以下參數的八分之一速率訊框, 例如與靜默時間間隔中檢測到的背景雜訊的改變相對應的 >數αα a合成器310可以將這些八分之一速率訊框指定爲 「關鍵的」八分之一速率訊樞。 12 201004205 將語音訊框3 10a提供給系統消隱(blanking )模組 3 1 5 ’隨後系統消隱模組3丨5將處理後的語音訊框3丨5a提供 給實體層處理模組220。如下文所進一步描述的,系統消隱 模組3 15通過選擇性地「消隱」語音合成器輸出(即,使用 與八分之一速率訊框相比具有更小資料速率的零速率(NR) 訊框來替代語音合成器輸出31〇a中的某些訊框),來使語音 合成器輸出3 10a的傳輸位元率最小。在示例性實施例中, NR訊框具有零訊務内容,即〇位元/秒(bps )的訊務位元率。 圖4描繪了系統消隱模組3 15可以應用的演算法的示 例性實施例400。 在步驟410,系統消隱模組315從語音合成器31〇接收 訊框3 10 a。 在步驟420,對訊框31〇a進行評估,以判斷其是fr、 HR QR還疋ER_C。對於傳輸而言,這些速率被認爲是關鍵 的’适些速率還可以稱爲關鍵的訊框類型。#果訊框 包括這些關鍵速率中的_種,那麼.直接將訊框㈣提供給實 體層處理模組220來進行傳輸。如果不是,則認爲該簡包 括非關鍵速率,該演算法轉到步驟43〇. 應當注意,示例性指定FR、HR、QR和ER_c爲「 鍵的」僅用於說明目的’這並不意味將本發明的範圍僅限制 框類型指定爲關鍵的那些實施例。在替代的示例 1實施财’可以將其他的訊框類型集指定爲騎的,以便 由糸統消隱模組進行傳輸。可以預期的是,這 性實施例也落入本發明的保護範圍之内。-的不例 13 201004205 在V驟43 0 ’本廣异法評估要發射的當前訊框的訊框編 號’以判否保證當前訊框進行傳輸。纟一個示例性的實 施例中,保證的傳輸可以包括非零速率(例如,非NR)傳 輸。在一個示例性的實施例中,訊框編號可以是分配給每一 個訊框的編號,其對於每一連續的訊框是連續重複的。在所 示的示例性實施例中,將當前訊框編號「訊框編號」加上當 前訊框偏移量「訊框偏移」’將非消隱間隔參數^^與所得結 果(訊框編號+訊框偏移)進行模數運算(m〇d)。如果模數 運算的結果爲0,那麼該演算法轉到步驟44〇。否則,該演 算法轉到步驟4 5 0。 本領域一般技藝人士應當理解,不同於步驟43〇所示 的特定評估的其他技術可以容易地應用於指定保證哪些訊 樞進行傳輸。這些替代的技術可以使用例如不同於當前訊框 編號或當前訊框偏移量的參數或者不同於所述的模數運算 的其他運算。 在步驟450,系統消隱模組3 1 5向實體層處理模組22〇 提供零速率(NR)訊框’以便進行傳輸。在一個示例性的實 施例中,零速率訊框具有〇 bps (位元/秒)的訊務資料速率, 因此消耗最小的訊令頻寬。在發送零速率訊框之後,該演算 法返回步驟4 1 0 ’以便從語音合成器3 1 〇接收下一個語音訊 框 3l〇a 〇 根據上文所述’本領域一般技藝人士應當理解,非消 隱間隔N控制非關鍵訊框多久發射一次,其中N=1與所有非 關鍵訊框的傳輸相對應,較大的N值與非關鍵訊框的較少頻 14 201004205 =的傳輪相對應。在—個示例性的實施例中,N的值可以預 ^為1 ' 4 ’或者例如’通過外部訊令將其指定為 定值(未圖示)。 預 圖5和圖5A分別描繪了由語音合成器31〇和系統消隱 模組315處理的示例性訊框傳輸序列3i〇a*和。" 在圖5中,訊框序列31〇aS)e包括標記爲「er」的八分 之一速率訊框和標記爲rER_c」的關鍵的八分之一速率= 框。這種訊框序列可以在語音會話期間出現,例如,在會話 的一方的靜默期出現。 ° 在圖5A中,訊框傳輸序列315a*與向傳輸序列 應用諸如400之類的選擇性消隱演算法的結果相對應,其中 使用了非消隱間隔Ν=4β在圖5A中,訊框序列3i5a*包括八 分之一速率訊框ER和零速率訊框NR。將訊框編號〇作爲從 語音合成器310接收的訊框(即,ER訊框)直接進行發射。 根據非消隱間隔N=4 ’將訊框編號!和3作爲概訊框來發 射。將由語音合成器指定爲關鍵的八分之一速率訊框 的訊框編號2作爲ER訊框進行發射。如圖所示,對訊框編 號4到13進行類似處理。應當注意,在圖5A中,標記了與 (訊框編號+訊框偏移量mod n ) =〇相對應的訊框。 圖6描繪了用於處理由語音傳輪信號路徑產生的信號 的接收演算法600的示例性實施例,其中語音傳輸信號路徑 使用諸如圖3中所示的3 1 5之類的系統消隱模組。 、 在圖6中,在步驟610,接收(RX)所發射的信號, 並使用例如與圖3中所示的TX操作23〇互補的操作來處理 15 201004205 這些信號。這類RX操作可以包括:例如RF放大、降頻轉換、 濾波等等。 在步驟620 ’使用例如與圖3中所示的實體層τχ操作 220互補的細作,進行實體層接收(Rx )處理。這種實體層 接收處理可以包括:例如,解碼、解交錯、符號組合等等。 在步驟630,演算法6〇〇評估當前接收的訊框是否爲 NR訊框。如果是’則由於對於皿訊框沒有訊務資料需要處 理,所以該演算法返回到步驟61〇,開始接收下一訊框。如 果不是,則該演算法轉到步驟640。 本領域-般技藝人士應當理解,可以使用各種技術來 評估當前接收的訊框是否爲NR訊植。在一個示例性的實施 例中彳以使用$ $ #估演算法來檢測所接收的訊框的訊務 部分中的能量。例如,丨、,、B.丨旦& & 了以測寬與所接收的訊框的訊務部分 相對應的月b I ’並將其與適當縮放的能量門限進行比較。如 果測量的能量小於門限’那麼可以斷言其是訊框,這是Although hot as in CDMA enables accurate recovery of transmitted signals in the presence of errors, these techniques also depict additional consumption in the overall system transmit power 6 201004205 when signal reception conditions are good, which also reduces System capacity, which is also undesirable. It is also desirable to provide efficient techniques to terminate the transmission of the frame, for example, when it is determined that the receiver has accurately recovered the information associated with the frame. Save on transmit power and increase system capacity. It is also expected that an improved power control scheme will be provided to accommodate these technologies. SUMMARY OF THE INVENTION One aspect of the present invention provides a method for processing information according to a plurality of rates, the method comprising: receiving a current message including a traffic message, determining whether the frame belongs to a Key frame type; if it is determined that the S frame belongs to a key frame type, the message information is processed for transmission; if it is determined that the current frame does not belong to a key frame type, then Whether the current frame is guaranteed for transmission; if it is determined that the frame is not guaranteed for transmission, a zero rate is processed for transmission, wherein the zero rate is reduced compared to the traffic information Information bit rate; the result processed by the transmission for transmission. Another aspect of the present invention provides a method for power control of transmissions over a wireless channel, comprising: receiving a t-frame, wherein the frame is formatted into a plurality of sub-segments; processed according to a physical layer protocol The received frame includes: determining whether the received frame is correctly received; whether the received current frame is a zero rate frame; if it is determined that the received current frame is a zero rate frame 'The outer loop power control algorithm is not updated regardless of whether the received frame of 201004205 is received correctly. Another aspect of the present invention provides an apparatus for processing information based on a plurality of rates. The device includes a system blanking module for receiving a current frame including traffic information, determining whether the current frame belongs to a key frame type, and determining that the current frame belongs to a key frame type. And processing the traffic information for transmission; if it is determined that the current frame does not have a key frame type, determining whether the current frame is guaranteed to be used for transmission; if it is determined that the frame is not guaranteed For transmission, a zero rate is processed for transmission, wherein the zero rate has a reduced information bit rate compared to the traffic information. The apparatus also includes a transmitter for transmitting the processed result for transmission. Another aspect of the present invention provides an apparatus for power control of transmissions over a wireless channel, the apparatus comprising: a receiver for receiving a current frame, wherein the frame is formatted into a plurality of sub-segments a processor, configured to: process the received frame according to a physical layer protocol; determine whether the received frame is correctly received; determine whether the received current frame is a zero rate frame, if it is determined to be received The current frame is a zero rate frame, and the outer loop power control algorithm is not updated regardless of whether the received current frame is correctly received. Another aspect of the present invention provides an apparatus for processing information according to a plurality of rates, the apparatus package #: a system blanking module for processing a current frame containing traffic information for transmission; A transmitter for transmitting the result of the processing for transmission. Another aspect of the present invention provides a computer readable storage medium 8 201004205 body that stores instructions for causing a computer to process information at a plurality of rates, the medium also storing instructions for causing a computer to: Receiving a current frame containing the traffic information; determining whether the current frame belongs to a key frame. Type; if it is determined that the current frame belongs to a key frame type, processing the message information for transmission If it is determined that the current frame does not belong to the key frame type, it is determined whether the current frame is guaranteed to be used for transmission. If it is determined that the current frame is not guaranteed for transmission, the processing zero rate is used. Transmission, wherein the i, ^ overnight rate has a reduced information bit rate compared to the traffic information. The descriptions of the exemplary embodiments of the present invention are set forth below with reference to the accompanying drawings, which are not to be construed as limiting the invention. The term "exemplary" is used throughout the specification to mean "serving as an example, exemplification or description" and it should not be construed as being preferred or advantageous over other exemplary embodiments. The description includes specific details for a thorough understanding of the example 7 of the present invention. However, it will be apparent that specific details of the invention are realized by those of ordinary skill in the art. In some instances, the known examples may be obscured without the novelty of these exemplary embodiments, 'see structure and apparatus. The block diagram form is well-known as 'it should be understood that when it is called a unit, it can be a unit in the specification and the patent application scope "connected to" or "filial piety connected" to another 9 201004205 direct connection (four) Connect to another unit or there may be an intermediate unit. In contrast, when a unit is called "directly connected to" or "directly to" another unit, there is no intermediate unit. The communication system can use a single carrier frequency or a multi-carrier frequency. Referring to Fig. 1 'in the wireless cellular communication system 100, the labels 1〇2A to 102G refer to the cell service area, and the labels 160A to 160G refer to the base station, and the labels 1〇6A to 106G are the access terminals (AT). The communication channel includes a forward link (FL) (also referred to as a downlink) for transmission from the access network (an) 16 to the access terminal (AT) 106 and is used for the slave AT. 6 to AN [6] Reverse Link (RL) for transmission (also referred to as uplink) ^ AT 106 is also referred to as a remote station, mobile station or subscriber station. Access terminal (AT) 106 can be mobile or stationary. Each link includes a different number of carrier frequencies. In addition, access terminal 106 can be any data device that communicates over a wireless channel or through a wired channel (e.g., using fiber optic cable or coaxial cable). The access terminal 1 〇 6 can also be any of a variety of types of devices including, but not limited to, a PC card, a compact flash memory, an external or internal data machine, or a wireless or wireline telephone. Modern communication systems are designed to allow multiple users to access a common communication medium. Numerous multiplex access techniques are well known in the art 'eg, time division multiplex access (TDMA) 'frequency division multiplex access (FDMA), space division multiplex access 'division multiplex access, minute Code Multiple Access (CDMA) and other similar multiplex access technologies. The multiplex access concept is a channel allocation method that allows multiple users to access a common communication link. Channel assignments can take different forms depending on the specific multiplex access technology. For example, in an FDMA system, 201004205 divides the entire spectrum into multiple smaller ones. Is the item ▼ a parent user? __ sub-band access to the communication link or, in the TDMA system, during the cycle of the cycle, for each user is assigned a full system", at all times for each, 纟+ All spectrum is allocated, at which point the transmission is differentiated by the use of the code. Although the invention described below t^^CDMA2000 #^#" ^ 木扭绍^卓's #作', but the field of ordinary artisans should solve the problem, chasing some techniques can also be easily applied to other digits Communication system. For example, the techniques of the present invention are also applicable to systems based on the w_cdma (or 3Gpp) wireless communication standard and/or any other communication standard. These alternative exemplary embodiments are also contemplated as falling within the scope of the present invention. 'K. Figure 2 depicts a prior art signal transmission path for speech. The speech signal & is input to the speech synthesizer (10) in Fig. 2, and the speech synthesizer 210 is used to encode the speech signal for transmission. The speech frame 210a output by the speech synthesizer 21 can have one of a plurality of rates based on the speech content of the speech signal at any time. In Figure 2, various rates include full rate (FR), half rate (HR), quarter rate (qr), and octave-rate (ER). The voice frame 2 is provided to the physical layer = module 220, which prepares the audio frame data for transmission according to the physical layer protocol of the system. Those of ordinary skill in the art will appreciate that these protocols may include, for example, encoding, duplicating, puncturing, interleaving, and/or modifying data. The output of the physical layer processing module 220 is provided to the τχ module 23〇 for transmission. The ΤΧ module 230 can perform radio frequency (RF) operations, for example, 201004205, if the signal is upconverted to a carrier frequency 'amplified signal for transmission on an antenna (not shown). ▲ Generally, the rate at which the speech synthesizer 21G selects the speech frame 21Ga for the speech signal 20Ga at any time depends on the level of speech activity detected in the speech message & For example, 'Full Rate (FR) can be selected for the frame. During the frame, the voice signal 2_ contains the active voice' while selecting the eighth-rate (er) for the frame, during the frame. The voice signal meaning contains silence. During this silent period, the ER frame may include parameters for indicating the characteristics of the "background noise" associated with the silence. Although the ER frame includes significantly fewer bits than the FR frame, the silent period occurs frequently during normal sessions, so that the total transmission bandwidth used to transmit the ER frame is significant. It is desirable to further reduce the transmission bandwidth required to transmit the speech signal 2〇Oa to the receiver. Figure 3 depicts an exemplary embodiment of a signal transmission path 〇〇 for speech in accordance with the present invention. In Fig. 3, a speech signal 2A is input to a speech synthesizer 310, which produces a speech frame 310a for transmission. °. The frame 310a may have a full rate (fr), a half rate (hr), a quarter rate (qR), an eighth rate (ER), and a critical () knife rate (ER-C). One of a variety of rates. In an exemplary embodiment, for those eighth rate frames containing the following parameters, for example, the number αα a synthesizer 310 corresponding to the change in background noise detected in the silent time interval may These eighth rate frames are designated as "critical" eighth rate signal hubs. 12 201004205 The voice frame 3 10a is provided to the system blanking module 3 1 5 ' and then the system blanking module 3丨5 provides the processed voice frame 3丨5a to the physical layer processing module 220. As further described below, the system blanking module 3 15 outputs (ie, using a zero rate with a smaller data rate than the eighth rate frame (NR) by selectively "blanking" the speech synthesizer output (ie, using NR). The frame replaces some of the speech synthesizer output 31〇a) to minimize the transmission bit rate of the speech synthesizer output 3 10a. In an exemplary embodiment, the NR frame has zero traffic content, ie, a bit rate per second (bps). FIG. 4 depicts an exemplary embodiment 400 of an algorithm to which the system blanking module 3 15 can be applied. At step 410, system blanking module 315 receives frame 3 10 a from speech synthesizer 31. At step 420, frame 31A is evaluated to determine that it is fr, HR QR, and ER_C. These rates are considered critical for transmission. The appropriate rate can also be referred to as a critical frame type. The # frame contains the _ of these key rates, then the frame (4) is directly provided to the physical layer processing module 220 for transmission. If not, the simplification is considered to include a non-critical rate, and the algorithm proceeds to step 43. It should be noted that the exemplary designations FR, HR, QR, and ER_c are "keys" for illustrative purposes only. This does not mean The scope of the present invention is limited only to those embodiments in which the frame type is designated as critical. In an alternative example 1 implementation, other frame type sets can be designated as riding for transmission by the system blanking module. It is contemplated that this embodiment is also within the scope of the invention. - The exception is 13 201004205 In V, 43 0 'the present method evaluates the frame number of the current frame to be transmitted' to determine whether to guarantee the transmission of the current frame. In an exemplary embodiment, the guaranteed transmission may include a non-zero rate (e.g., non-NR) transmission. In an exemplary embodiment, the frame number may be a number assigned to each frame that is continuously repeated for each successive frame. In the exemplary embodiment shown, the current frame number "frame number" plus the current frame offset "frame offset" will be the non-blanking interval parameter ^^ and the result (frame number) + Frame offset) Performs a modulus operation (m〇d). If the result of the modulo operation is zero, then the algorithm proceeds to step 44. Otherwise, the algorithm proceeds to step 4 50. Those of ordinary skill in the art will appreciate that other techniques than the particular evaluation shown in step 43A can be readily applied to specify which hubs are guaranteed to be transmitted. These alternative techniques may use, for example, parameters that differ from the current frame number or current frame offset or other operations that differ from the modulo operation described. At step 450, the system blanking module 315 provides a zero rate (NR) frame to the physical layer processing module 22 for transmission. In an exemplary embodiment, the zero rate frame has a traffic data rate of 〇 bps (bits per second), thus consuming the smallest command bandwidth. After transmitting the zero rate frame, the algorithm returns to step 4 1 0 ' to receive the next voice frame 3l 〇a from the speech synthesizer 3 1 〇 according to the above description, as will be understood by those of ordinary skill in the art, non The blanking interval N controls how often the non-critical frame is transmitted, where N=1 corresponds to the transmission of all non-critical frames, and the larger N value corresponds to the less frequent frequency of the non-critical frame 14 201004205 = . In an exemplary embodiment, the value of N may be pre-defined as 1 '4' or, for example, 'designated as a fixed value (not shown) by an external command. The exemplary frame transmission sequence 3i〇a* and processed by the speech synthesizer 31 and the system blanking module 315 are depicted in FIG. 5 and FIG. 5A, respectively. " In Figure 5, the frame sequence 31〇aS)e includes an eighth rate frame labeled "er" and a key eighth rate = frame labeled rER_c". This sequence of frames can occur during a speech session, for example, during a silent period of one of the sessions. In Figure 5A, the frame transmission sequence 315a* corresponds to the result of applying a selective blanking algorithm such as 400 to the transmission sequence, where a non-blanking interval Ν = 4β is used in Figure 5A, the frame The sequence 3i5a* includes an eighth rate frame ER and a zero rate frame NR. The frame number 〇 is transmitted directly as a frame (i.e., an ER frame) received from the speech synthesizer 310. Frame the frame according to the non-blanking interval N=4 ’! And 3 are transmitted as an overview box. The frame number 2 of the eighth rate frame designated by the speech synthesizer as the key is transmitted as an ER frame. The frame numbers 4 to 13 are similarly processed as shown. It should be noted that in Fig. 5A, a frame corresponding to (frame number + frame offset mod n ) = 标记 is marked. 6 depicts an exemplary embodiment of a receive algorithm 600 for processing signals generated by a voice pass signal path using a system blanking module such as 3 1 5 as shown in FIG. group. In FIG. 6, at step 610, the transmitted signal is received (RX) and these signals are processed 15 201004205 using, for example, operations complementary to the TX operation 23A shown in FIG. Such RX operations may include, for example, RF amplification, down conversion, filtering, and the like. Physical layer reception (Rx) processing is performed at step 620' using, for example, a refinement complementary to the physical layer τ χ operation 220 shown in FIG. Such physical layer reception processing may include, for example, decoding, deinterleaving, symbol combination, and the like. At step 630, algorithm 6 evaluates whether the currently received frame is an NR frame. If it is ', then since there is no transaction data for the message frame, the algorithm returns to step 61 and starts receiving the next frame. If not, the algorithm proceeds to step 640. Those skilled in the art will appreciate that various techniques can be used to assess whether the currently received frame is an NR message. In an exemplary embodiment, the $$# estimation algorithm is used to detect the energy in the traffic portion of the received frame. For example, 丨,,, B. &&& measures the month b I ' corresponding to the traffic portion of the received frame and compares it to the appropriately scaled energy threshold. If the measured energy is less than the threshold, then it can be asserted that it is a frame, this is

因爲在自不例性的實施例中,發射機不期望在舰訊框的 訊務部分中發射信號。這種能量評估演算法還可以使用關於 發射機所使用的系統消隱演算法和非消隱間隔N的資訊,來 進—步幫助檢測NR訊框。 應田注晷,上面給出的對於可能的NR檢測演算法的指 述僅用於說明目& ^^ ^ 的其並不思味將本發明的範圍限制於任作 特定的NR檢測演算法。 ’ ν驟640,可以使用所接收的非 ,1 ^ ^ AV aTU /fli »Ί Ψ- W 5 新接收機處的i t 的外%功率控制(OLPC )演算法。在一個示{ 201004205Because in an exemplary embodiment, the transmitter does not expect to transmit a signal in the traffic portion of the carrier. This energy estimation algorithm can also use the information about the system blanking algorithm used by the transmitter and the non-blanking interval N to further assist in detecting the NR frame. According to Ying Tian, the above description of the possible NR detection algorithm is only used to illustrate the objective & ^^ ^ which does not contemplate limiting the scope of the invention to any particular NR detection algorithm. . ν hr 640, the received external non-power control (OLPC) algorithm for the i t at the new receiver of 1 ^ ^ AV aTU /fli »Ί Ψ-W 5 can be used. In a show { 201004205

的實施例中’所接收的非N 邙Μ σ所4t 的參數可以包括:例如,The parameters of the received non-N 邙Μ σ 4t in the embodiment may include: for example,

訊框扣質指示符(FQI) W a不、s .風„ 針對所接收訊框的CRC) 疋否通過。口質檢驗的結果。 〇u>c m 本7員域—般技藝人士應當理解, 虏鼻法可以用於,例如 信號與干擾比(SIR)設置點…f所接收訊框的適當的 收機之間對於發射的指導發射機和接 從 1柩道山。 的功率控制反饋機制。通過將 純導出的品質檢驗結果排除,可以例如僅使用針對 算:具有顯著發射能量的訊框,來正確地更新。LPC演 65〇 t驟㈣,對語音訊框進行解碼以得到語音輸出 ’次异法600返回到步驟61〇,以便接收下一個訊框。 _ 7_了根據本發明針對語音的信號傳輸路徑· :替代的示例性實施例。在圖7中,將語音信號2〇〇a輸入到 吾音合成器710 ’其中語音合成器71〇產生用於傳輸的語音 則匡71〇&。語音訊框71〇a可以具有包括全速帛(FR)、半 速率(HR)、四分之-速率(QR)、八分之-速率(ER) 和香音合成器零速率(VNR)的多種速率中的—種。當語音 合成器710沒有新資訊要發送時,該語音合成器產生丽 Ή (也稱爲合成器零速率訊框或語音合成器空訊 框)。在-個不例性的實施例中,vnr訊框可以僅僅是不包 含資料的空白訊框。 、將語音訊框71〇a提供給系統消隱模組715,隨後系統 消隱模組715向實體層處理模組22〇提供處理後的語音訊框 715a如下文進一步描述的,系統消隱模組7丨5通過使用具 17 201004205 有較少或沒有資料内容的零速率(NR)或零速率指示符 (NRID)訊框來選擇性地替代語音合成器輪出7i〇a中的某 些訊框,使語音合成器輸出7 1 〇a的傳輸位 圖8描繪了可以由系統消隱模組715 一個示例性實施例8 〇 〇。 元率最小。 應用的演算法的 在步驟81〇,系統消隱模組715從語音合成器71〇接收 訊框7 10a。 在步驟820,對訊框710a進行評估,以判斷其是否爲 FR、HR、QR《ER。對於傳輸而言這些速率被認爲是關鍵 的。如果訊框710a包含這些關鍵速率中的一種,那麼 框提供給實體層處理模組22〇,以便在步驟84〇A進行傳 輸。如果沒有’則認爲該訊框包含非關鍵速率,該演算法轉 到步驟830。 在步驟830,該演算法評估傳輸的當前訊框編號,以判 斷是否應當進行非零傳輸。在所示的示例性實施例中,將當 前訊框編號「訊框編號」加上當前訊框偏移量「訊框偏移」, 利用㈣隱間隔參數N與所得結果(訊框編號+訊框偏移) =行模數運算(mod)。如果模數運算的結果爲〇,那麽該演 异法轉到步驟835。否貝1卜該演算法轉到步驟850。 在步驟835,發射零速率指示符(NRID)訊框。該訊 框與接收機可識別的骸的訊框或指示符相對應,由於該訊 框,包括新資訊’因此也稱爲包括零訊務資料的訊框。零訊 務貝料可以包括接收方語音合成器不使用的位元圖樣,因此 接收方語音合成器將丟棄零訊務資料。在一個態樣,例如, 18 201004205 預定的零訊框或指示符可以是已知的具有㈣㈣㈣ u-kbps訊框。在另—個態樣,例如,預定的訊框或指示符 可以重複最後發㈣i錫ps訊框,從而指示零訊務資料。 在步驟850,系統消隱模組715向實體層處理模組22〇 提供零速率(NR)訊框,以便進行傳輸。在—個示例性的實 施例中’零速率訊框不包含訊務位元,因此其消耗最小的訊 令頻寬。在發射零速率訊框之後,該演算法返回到步驟“卜 以便從語音合成器710接收下一個語音訊框71〇&。 “圖9和圖9A分別描繪了由語音合成器71〇和系統消隱 模組715處理的示例性訊框傳輸序列71〇a*和7i5a*。 在圖9中,訊框序列71〇a*包括標記爲「er」的八分 之一速率訊框和由語音合成器71G所產生的標記爲「vnr」 的語音合成器零速率訊框。 在圖9A中,訊框傳輸序列715a*與向傳輸序列7ι〇&* 應用諸如800之類的選擇性消隱演算法的結果相對應,其中 使用了非消隱間隔N=4。在圖9A中,訊框序列715a*包括八 分之一速率訊框ER和零速率訊框NRe將訊框編號〇作爲從 語音合成器710所接收的訊框(即,ER訊框)直接進行發射。 根據非消隱間隔N=4,將訊框編號i到3作爲NR訊框進行 發射,將訊框編號4作爲NRID訊框進行發射。應當注意, 發射NRID訊框以保證周期的非零速率訊框傳輸,如參見演 异法800所描述的。對於本領域一般技藝人士來說,依據上 文描述,可以容易地理解訊框編號5到丨3的處理。 圖10描繪了根據本發明用於系統消隱的方法1〇〇〇的 19 201004205 示例性實施例。應當 _ 的,豆光尤立+ 示出的方法1000僅用於嘹明口 的,其並不意味將本 值用夂說明目 法。 的釭圍限制於任何示出的特定方 在圖10中,在步驟1〇 判斷,其中新訊務資訊包括在广否存在新訊務資訊進行 輸的訊框卜 在用於在無線通訊鏈路上進行傳 在步驟1020,決中伊z 在步騾、 定步驟1〇10的判斷結果。 在艾驟1030,如罢为士*z 士 ^主ύ 果存在新訊務資訊,那麼向訊框中添 加包括表示新訊務資訊的資料的訊務部分。 " r斜處在步驟1G4G,如果不存在新訊務f訊,那麼除非各气 框=應於用於保證進行傳輸的訊框,否則不發射新訊框。在 此清況下’產生保證用於值於沾—k♦Frame buckle indicator (FQI) W a no, s. wind „ CRC for the received frame 疋 No. The result of the stomata test. 〇u>cm This 7-member field - the average person should understand, The snorting method can be used, for example, for signal-to-interference ratio (SIR) setpoints...f to receive appropriate frames between the receivers for the transmit guidance transmitter and the power control feedback mechanism from 1 柩山. By excluding the purely derived quality check results, for example, only the frame with significant emission energy can be used to update correctly. The LPC performs the process of decoding the voice frame to obtain the voice output. The different method 600 returns to step 61A to receive the next frame. _ 7_ The signal transmission path for speech according to the present invention: an alternative exemplary embodiment. In Fig. 7, the speech signal 2〇〇a Input to the Mysynthesis Synthesizer 710 'where the speech synthesizer 71 generates speech for transmission 匡 71 〇 & The speech frame 71 〇 a may have full speed 帛 (FR), half rate (HR), quarter Rate-rate (QR), octave-rate (ER) Among the various rates of the scent synthesizer zero rate (VNR). When the speech synthesizer 710 has no new information to send, the speech synthesizer produces a ray (also known as a synthesizer zero rate frame or speech synthesizer). In an exemplary embodiment, the vnr frame may simply be a blank frame that does not contain data. The voice frame 71〇a is provided to the system blanking module 715, and then the system is eliminated. The hidden module 715 provides the processed voice frame 715a to the physical layer processing module 22, as described further below. The system blanking module 7丨5 uses zero rate with less or no data content with the item 17 201004205 ( NR) or zero rate indicator (NRID) frame to selectively replace certain frames in the speech synthesizer wheel 7i〇a, so that the speech synthesizer outputs 7 1 〇a transmission bit The system blanking module 715 is an exemplary embodiment 8. The element rate is the smallest. At step 81 of the applied algorithm, the system blanking module 715 receives the frame 7 10a from the speech synthesizer 71. In step 820 , the frame 710a is evaluated to determine whether it is FR HR, QR "ER. These rates are considered critical for transmission. If frame 710a contains one of these critical rates, then the box is provided to the physical layer processing module 22" for step 84A. The transmission is performed. If there is no 'then the frame is considered to contain a non-critical rate, the algorithm proceeds to step 830. At step 830, the algorithm evaluates the current frame number of the transmission to determine if a non-zero transmission should be made. In the exemplary embodiment shown, the current frame number "frame number" is added to the current frame offset "frame offset", and the (four) implicit interval parameter N is used to obtain the result (frame number + frame). Offset) = row modulo operation (mod). If the result of the modulo operation is 〇, then the algorithm proceeds to step 835. No. 1 The algorithm proceeds to step 850. At step 835, a zero rate indicator (NRID) frame is transmitted. The frame corresponds to a frame or indicator that the receiver can recognize, since the frame includes new information' and is therefore also referred to as a frame including zero traffic data. The zero message feed can include a bit pattern that is not used by the receiver speech synthesizer, so the receiver speech synthesizer will discard the zero message data. In one aspect, for example, 18 201004205 a predetermined zero frame or indicator may be known to have a (four) (four) (four) u-kbps frame. In another aspect, for example, a predetermined frame or indicator may repeat the last (four) i tin ps frame to indicate zero traffic information. At step 850, system blanking module 715 provides a zero rate (NR) frame to physical layer processing module 22 for transmission. In an exemplary embodiment, the 'zero rate frame' does not contain traffic bits, so it consumes the least amount of command bandwidth. After transmitting the zero rate frame, the algorithm returns to step "to receive the next speech frame 71 from the speech synthesizer 710." "Figure 9 and Figure 9A depict the speech synthesizer 71 and the system, respectively. The exemplary frame transmission sequences 71〇a* and 7i5a* processed by the blanking module 715. In Fig. 9, the frame sequence 71A* includes an eighth rate frame labeled "er" and a speech synthesizer zero rate frame labeled "vnr" produced by the speech synthesizer 71G. In Fig. 9A, the frame transmission sequence 715a* corresponds to the result of applying a selective blanking algorithm such as 800 to the transmission sequence 7ι〇&*, where a non-blanking interval N=4 is used. In FIG. 9A, the frame sequence 715a* includes an eighth rate frame ER and a zero rate frame NRe to directly frame the frame number as a frame (ie, an ER frame) received from the speech synthesizer 710. emission. According to the non-blanking interval N=4, the frame numbers i to 3 are transmitted as the NR frame, and the frame number 4 is transmitted as the NRID frame. It should be noted that the NRID frame is transmitted to ensure periodic non-zero rate frame transmission as described in Algorithm 800. For those of ordinary skill in the art, the processing of frame numbers 5 through 3 can be readily understood in light of the above description. Figure 10 depicts an exemplary embodiment of a method for system blanking in accordance with the present invention 19 201004205. Method 1000, which should be _, Bean Light, is only used for 嘹明口, it does not mean that this value is used to illustrate the method. The limitation is limited to any particular party shown in Figure 10. In step 1 〇, the new traffic information includes the presence of new traffic information in the broadcast frame for transmission on the wireless communication link. The process proceeds to step 1020, where the determination result is determined by step 〇10. In Ai 1030, if there is new information on the news, then the message part including the information indicating the new information is added to the message box. " r is oblique in step 1G4G. If there is no new traffic, then the new frame will not be transmitted unless the frame = should be used to guarantee the transmission. Under this condition, the production guarantee is used for the value of the dip-k♦

傳輸的包括零訊務資料的訊框,A 中接收語音合成器可將焚1 t, u 八 j將零5fl務資料識別成零資料速率。For the transmission of the frame including the zero-traffic data, the receiving speech synthesizer in A can identify the data to zero data rate by burning 1 t, u 八 j.

圖11描繪了根據本發明用於識別零速率訊框傳輪的弓I 導頻閘控方案的示例性實施例。應當注意,給出的引導頻閘 控方案僅用於制目的,其並不意味將本發明的範圍限制於 閘控引導頻傳輸必須伴隨零速率訊框傳輸的系統。 、 在圖11中,隨同引導頻部分1120 一起示出了 Τχ傳輸 的訊務部分mo。可以觀察到,與傳輸非零速率訊框期間= 比,引導頻部分1120在傳輸零速率訊框期間具有不同的圖 樣。例如,如圖η所示,用於零訊框的引導頻問控圖樣對 應於開啓引導頻的2個子段或PCG (由圖11中的「卩」^出) 與斷開引導頻的2個子段或PCG相交替。在零訊框傳輸期間 使用不同的引導頻閘控圖樣可以進一步幫助接收機判斷當 20 201004205 前接收的訊框是否是零訊框。這可以在例如圖6中的零速率 判斷步驟630期間使用。 本領域一般技藝人士應當理解,根據本發明,可以容 易地導出替代的引導頻閘控圖樣,以便發信號表示存在零訊 框。例如,引導頻閘控圖樣可以包括每隔一個子段或pCG的 引導頻傳輸或者使用任何其他圖樣。可以預期的是,這些替 代的技術也落入本發明的保護範圍之内。 在本發明的另一個態樣,爲了進一步減少系統的信號 傳輪,可以降低系統的前向鏈路及/或反向鏈路的功率控制速 率。在一個示例性的實施例中,例如通過僅在與閘控的反向 鏈路引導頻傳輸相對應的PCG_ (即使在反向鏈路引導頻 部分是連續的(即,非閘控的)訊框中)僅發送前向鏈路功 率控制命令,行動站可以減少其向基地台發送的前向鏈路功 率控制命令的數量。在另一個示例性實施例中,基地台可以 按降低的速率(例如,每隔—個功率控制群)來發射反向鍵 路功率控制命令。此外’接收這些反向鏈路功率控制命令的 仃動站可以㈣每-個命令來控制非零訊框的傳輸,對於零 訊框’例如’當如上文料對反向鏈⑻丨導頻料進行閉控 時’可以使用數量減少白勺(例如,小於全部的)從基地台接 收的功率控制命令來控制行動站的零訊框傳輸。參見圖η 到圖14纟進一步描述這些示例性的功率控制技術。 圖12描繪了根據本發明的速率降低的功率控制方案的 示例性實施例1200’該方案用於控制前向鏈路(fl)傳輸的 21 201004205 在圖12中’連同行動站傳輸(ms ΤΧ) 1220 —起示出 了基地台傳輸(BS ΤΧ) 1210。由行動站發送的包含前向鏈 路(FL)功率控制(PC)命令的pcG被示爲122〇中具有陰 影的PCG。右上箭頭源自於每一具有陰影的pcG,其指向基 地台發射的前向鏈路PCG,其中這些基地台在發射前向鏈路 PCG時應用了所接收的FL pc命令。例如,基地台在發射 FL PCG#4時應用了行動站在紅PCG#3中發送的FL PC命 令等等。 應當注意,在圖12中,根據圖】!中示出的閘控引導 頻方案1100 ’ 1220中具有陰影的PCG與開啓RL TX引導頻 的RL PCG相對應。同時,如122〇所示,行動站僅發送與具 有陰影的PCG相對應的RL PCG中的fl PC命令。行動站不 發送非陰影的RL PCG中的FL PC命令。因此,這些fl PC 命令僅在那些在閘控引導頻方案期間也發射的RL pCG中進 行發射,而不管對於特定的訊框是否使用了閘控引導頻圖樣 (例如,不管特定的訊框是零速率訊框還是不是零速率訊 框)。本領域一般技藝人士應當理解,雖然這降低了 FL PC 處理的複雜度’但也降低了整體FL PC速率。 圖13描繪了根據本發明的速率降低的功率控制方案的 示例性實施例,該方案用於控制反向鏈路(RL)連續引導頻 傳輸的功率。 在圖13中,將基地台發送的包含前向鏈路(RL)功率 控制(PC)命令的PCG示爲1310中具有陰影的PCG。右下 箭頭源自於每—具有陰影的PCG,其指向由使用相應接收的 22 201004205 RL PC命令的行動站所發射的反向鏈路PCG。例如,行動站 在發射RL PCG#4時應用了基地台在FL PCG#3中發送的RL PC命令等等。 在圖13中,如1310所示,基地台僅在與具有陰影的 PCG相對應的FL PCG中發送RLPC命令。基地台不在非陰 影的PCG中發送RL PC命令。 圖14描繪了根據本發明的速率降低的功率控制方案的 示例性實施例,該方案用於控制反向鏈路(RL )閘控引導頻 傳輸的功率。 在圖14中,將基地台發送的包含前向鏈路(RL)功率 控制(PC)命令的PCG示爲1410中具有陰影的PCG。實線 右下箭頭源自於具有陰影的PCG,其指向由使用相應接收的 RL PC命令的行動站所發射的反向鏈路PCG。在另一態樣, 源自於具有陰影PCG的虛線箭頭指示基地台發射的RL PC 命令,其中相應RL PCG指向的MS沒有應用基地台發射的 此RL PC命令。基地台僅在與具有陰影的PCG相對應的FL PCG中發送RL PC命令。基地台不在非陰影的PCG中發送 RL PC命令。 例如,行動站在發射RL PCG#3時應用了基地台在FL PCG#1中發送的RL PC命令等等。在另一態樣,行動站在發 射RL PCG#4時沒有應用基地台在FL PCG#2中發送的RL PC 命令。作爲替代,在一個示例性的實施例中,行動站可以維 持與用於先前PCG (例如,在所描述的示例中的rl PCG#3 ) 相同的功率位準。在本發明的一個態樣’這可以用於簡化行 23 201004205 動站對RL PC命令的處理過程。 ♦ 圖15描繪了根據本發明的一種功率控制方法1500。應 田主意,不出的方法1500僅用於說明目的,其並不意味限 制本發明的範圍。 在步驟1510,接收當前訊框,其中該訊框被格式化成 多個子段。 在步驟1520,根據實體層協定來處理所接收的訊框。 在步驟1 530,接收在指定根據第一閘控引導頻圖樣進 行傳輸的子段中所接收的功率控制命令。 在步驟1 540,根據所接收的功率控制命令,對跟在指 定子段之後的TX子段的發射功率進行調整,其中τχ子段 根據第二閘控引導頻圖樣進行發射。 根據本發明的另一個態樣,提供了用於在無線通訊系 統中提前終止前向鏈路及/或反向鏈路傳輸的技術,以省電和 增加容量。 圖16描繪了現有技術中用於由通訊系統中的發射機處 理資訊位元1600b的訊框處理方案。在某些示例性的實施例 中,所示的訊框處理方案可以用在無線通訊系統的前向鏈路 • 或反向鏈路傳輸中。圖16A描繪了圖ι6中所示的操作進行 的資料處理的狀態。 應當注意’示出的訊框處理方案僅用於說明目的,其 並不意味將本發明的範圍限制於所示的任何特定處理方 案。本發明的替代的示例性實施例可以採用替代的訊框處理 方案,這些替代的訊框處理方案可以例如對圖16中示出的 24 201004205 方案步驟進行重新排序及/或向所示的方案中添加一些步驟 或從所示的方案中删除一些步驟。可以預期的是,這些替代 的示例性實施例也落入本發明的保護範圍之内。 在圖16中’資訊源按選定的速率r來產生資訊位元 1600b。每訊框產生的資訊位元16〇〇b的數量取決於所選定 的速率R。例如’在CDMA 2〇〇〇系統中,可以是每2〇毫秒 訊框172個資訊位元(「全速率」)、每訊框8〇位元(「半 速率」)、每訊框40位元(「四分之一速率」)或每訊框 16位兀(「八分之一速率」)。在圖16A中,一個訊框的資 訊位元1600b由變數办共同地表示。 在步驟1600,可以產生訊框品質指示符(FQI),並將 其添加到訊框的資訊位元l6〇〇b。例如,FQI可以是本領域 一般技藝人士所公知的循環冗餘檢查(CRC) ^還如圖16A 所不,信號1600a表示資訊位元i6〇〇b和FQI的組合。 在步驟1610,可以將編碼器尾部(tail)位元添加到信 號1600a。例如,編碼器尾部位元表示用於卷積編碼器的固 定數量的零值尾部位元。還如圖16A所示,信號161〇&表示 信號1 600a與編碼器尾部位元的組合。 在步驟1620,對信號1610a進行編碼和重複(或刪餘)。 如先前所述,編碼可以包括卷積編碼和丁urb〇編碼,重複可 以用於進一步增加(或在删餘情況下減少)與每一個符號相 關的發射旎里。應當注意,編碼可以使用本領域一般技藝人 士所公知的其他技術’例如塊編碼或其他類型的編碼,Z碼 技術不受到本發明中所明確描述的編碼的限制。還如圖ΜΑ 25 201004205 所不^號l62Ga表示信號蘭a 餘後)版本。 π ’设$里後便(或刪 踩沾外:驟I630,對信號162〇a進行交錯,例如以提高編 碼的付號沿撰渥沾 D編 、、號維度的分集。在一個示例性的實現 中,可以隨時間來交 見 * _ _ _ •符旒。還如圖i6A所示,信號ι63〇 表不^唬I620a的交錯版本。 在步驟1640, ^ 還如圖16A所示,將信號1630a的交笋 後符號映射到預宕盖& _ 乂錯 的訊框格式。訊框格式可以將訊框指定 成由多個子段组点。 訊框沿給定的维声Γl 丁仅Μ疋 & (例如,時間、頻率、代碼或任何其他維 幻鄰近的任何部分…個訊框可以包括固絲量的多個子 ί又’母一個子與· 八 匕括刀配給該訊框的全部數量符號的一部 刀。例如’在根據W_CDMA標準的示例性實施例中,可以 將一個子段定義成-個時槽。在根據cdma 2嶋標準的示 例性實施例中,可 7亡 字一個子段定義成一個功率控制群11 depicts an exemplary embodiment of a bow I pilot gating scheme for identifying a zero rate frame transmission in accordance with the present invention. It should be noted that the pilot pilot control scheme is provided for illustrative purposes only and is not meant to limit the scope of the present invention to systems in which the gated pilot transmission must be accompanied by zero rate frame transmission. In Fig. 11, the traffic portion mo of the transmission is shown along with the pilot frequency portion 1120. It can be observed that the pilot frequency portion 1120 has a different pattern during transmission of the zero rate frame than when the non-zero rate frame is transmitted. For example, as shown in FIG. n, the pilot frequency control pattern for the null frame corresponds to two sub-segments of the pilot frequency or PCG (from "卩" in FIG. 11) and two sub-destination pilots. The segments or PCG alternate. Using different pilot-frequency gated patterns during zero-frame transmission can further help the receiver determine if the frame received before 20201004205 is a zero frame. This can be used during, for example, zero rate decision step 630 in FIG. One of ordinary skill in the art will appreciate that in accordance with the present invention, an alternate pilot tone control pattern can be readily derived to signal the presence of a zero frame. For example, the pilot tone control pattern may include pilot transmission of every other sub-segment or pCG or use of any other pattern. It is contemplated that these alternative techniques are also within the scope of the invention. In another aspect of the invention, to further reduce signal routing of the system, the power control rate of the forward link and/or reverse link of the system can be reduced. In an exemplary embodiment, for example, by only transmitting PCG_ corresponding to the gated pilot transmission of the reverse link (even if the reverse link pilot portion is continuous (ie, non-gated)) In the box) only the forward link power control command is sent, and the mobile station can reduce the number of forward link power control commands it sends to the base station. In another exemplary embodiment, the base station may transmit a reverse link power control command at a reduced rate (e.g., every other power control group). In addition, the 'station station that receives these reverse link power control commands can (4) control the transmission of non-zero frames every command, for the zero frame 'for example' when the reverse chain (8) is used as the pilot material. When performing closed-loop control, the number of reduced (eg, less than all) power control commands received from the base station can be used to control the zero-frame transmission of the mobile station. These exemplary power control techniques are further described with reference to Figures η through 14A. 12 depicts an exemplary embodiment 1200 of a rate reduced power control scheme in accordance with the present invention. This scheme is used to control forward link (fl) transmission. 21 201004205 In FIG. 12 'together with mobile station transmission (ms ΤΧ) 1220 shows the base station transmission (BS ΤΧ) 1210. The pcG containing the forward link (FL) power control (PC) command sent by the mobile station is shown as a PCG with a shadow in 122 inches. The upper right arrow is derived from each shaded pcG that points to the forward link PCG transmitted by the base station, where these base stations apply the received FL pc command when transmitting the forward link PCG. For example, the base station applies the FL PC command sent by the mobile station in the red PCG #3 when transmitting the FL PCG #4, and the like. It should be noted that in Figure 12, according to the figure]! The shaded PCG in the gated pilot scheme 1100' 1220 shown in the above corresponds to the RL PCG that turns on the RL TX pilot. Meanwhile, as shown at 122, the mobile station transmits only the fl PC command in the RL PCG corresponding to the shaded PCG. The mobile station does not send FL PC commands in the non-shadowed RL PCG. Therefore, these fl PC commands are transmitted only in those RL pCGs that are also transmitted during the gated pilot scheme, regardless of whether a gated pilot pattern is used for a particular frame (eg, regardless of whether the particular frame is zero or not) The rate frame is still not a zero rate frame). One of ordinary skill in the art will appreciate that while this reduces the complexity of FL PC processing', it also reduces the overall FL PC rate. Figure 13 depicts an exemplary embodiment of a rate reduced power control scheme for controlling the power of a reverse link (RL) continuous pilot transmission in accordance with the present invention. In Fig. 13, a PCG containing a forward link (RL) power control (PC) command transmitted by a base station is shown as a PCG having a shadow in 1310. The lower right arrow is derived from each of the shaded PCGs that point to the reverse link PCG transmitted by the mobile station using the corresponding received 201004205 RL PC command. For example, the mobile station applies the RL PC command sent by the base station in FL PCG #3 when transmitting RL PCG #4, and the like. In Figure 13, as shown at 1310, the base station transmits RLPC commands only in the FL PCG corresponding to the shaded PCG. The base station does not send RL PC commands in the non-shadowed PCG. Figure 14 depicts an exemplary embodiment of a rate reduced power control scheme for controlling the power of a reverse link (RL) gating pilot transmission in accordance with the present invention. In Fig. 14, a PCG containing a forward link (RL) power control (PC) command transmitted by a base station is shown as a PCG having a shadow in 1410. The solid-line lower right arrow is derived from the shaded PCG, which points to the reverse link PCG transmitted by the mobile station using the corresponding received RL PC command. In another aspect, the dashed arrow originating from the shaded PCG indicates the RL PC command transmitted by the base station, wherein the MS pointed to by the corresponding RL PCG does not apply the RL PC command transmitted by the base station. The base station transmits RL PC commands only in the FL PCG corresponding to the shaded PCG. The base station does not send RL PC commands in the non-shadowed PCG. For example, the mobile station applies the RL PC command sent by the base station in FL PCG #1 when the RL PCG #3 is transmitted. In another aspect, the mobile station does not apply the RL PC command sent by the base station in FL PCG #2 when transmitting RL PCG #4. Alternatively, in an exemplary embodiment, the mobile station can maintain the same power level as used for the previous PCG (e.g., rl PCG #3 in the depicted example). In one aspect of the invention, this can be used to simplify the processing of the RL PC commands by the line 23 201004205. ♦ Figure 15 depicts a power control method 1500 in accordance with the present invention. The method 1500 is not intended to be illustrative, and is not intended to limit the scope of the invention. At step 1510, a current frame is received, wherein the frame is formatted into a plurality of sub-segments. At step 1520, the received frame is processed according to a physical layer protocol. At step 1 530, a power control command received in a sub-segment that specifies transmission according to the first gating pilot pattern is received. At step 1540, the transmit power of the TX sub-segment following the finger stator segment is adjusted based on the received power control command, wherein the τ χ sub-segment is transmitted according to the second gating pilot frequency pattern. In accordance with another aspect of the present invention, techniques for prematurely terminating forward link and/or reverse link transmissions in a wireless communication system are provided to save power and increase capacity. Figure 16 depicts a prior art frame processing scheme for processing information bits 1600b by a transmitter in a communication system. In some exemplary embodiments, the illustrated frame processing scheme can be used in a forward link or reverse link transmission of a wireless communication system. Fig. 16A depicts the state of data processing by the operation shown in Fig. 6. It should be noted that the illustrated frame processing scheme is for illustrative purposes only and is not intended to limit the scope of the invention to any particular processing shown. Alternative exemplary embodiments of the present invention may employ alternative frame processing schemes that may, for example, reorder the 24 201004205 scheme steps illustrated in Figure 16 and/or into the illustrated scheme Add some steps or remove some steps from the scenario shown. It is contemplated that these alternative exemplary embodiments are also within the scope of the invention. In Figure 16, the 'information source' generates the information bit 1600b at the selected rate r. The number of information bits 16 〇〇 b produced by each frame depends on the selected rate R. For example, in a CDMA 2〇〇〇 system, it can be 172 information bits per 2 〇 millisecond frame (“full rate”), 8 frames per frame (“half rate”), 40 bits per frame. Yuan ("Quarter Rate") or 16 frames per frame ("Eight Rate"). In Fig. 16A, the information bits 1600b of one frame are collectively represented by the variables. At step 1600, a frame quality indicator (FQI) can be generated and added to the information bit 16b of the frame. For example, the FQI can be a cyclic redundancy check (CRC) as is known to those of ordinary skill in the art. Also, as shown in Figure 16A, signal 1600a represents a combination of information bits i6〇〇b and FQI. At step 1610, an encoder tail bit can be added to signal 1600a. For example, the encoder tail portion element represents a fixed number of zero-value tail position elements for the convolutional encoder. As also shown in Figure 16A, signal 161 〇 & represents the combination of signal 1 600a and the encoder tail location element. At step 1620, signal 1610a is encoded and repeated (or punctured). As previously described, the encoding may include convolutional coding and squaring, and the repetition may be used to further increase (or reduce in the case of puncturing) the transmissions associated with each symbol. It should be noted that the encoding may use other techniques known to those of ordinary skill in the art, such as block coding or other types of encoding, and the Z-code technique is not limited by the encodings explicitly described in this disclosure. Also as shown in Fig. 25 201004205, no ^ l62Ga indicates the signal blue after the) version. After π 'set $, then (or delete the touch: I630, interleave the signal 162〇a, for example to improve the coding of the sign along the D-division, the dimension of the dimension. In an exemplary In the implementation, you can see * _ _ _ • symbols over time. As shown in Figure i6A, the signal ι63〇 does not describe the interleaved version of I620a. At step 1640, ^ also shows the signal as shown in Figure 16A. 1630a's post-shooting symbol is mapped to the pre-capped & _ 乂 frame format. The frame format can be used to specify the frame as a group of sub-segments. The frame is along the given dimension. & (for example, time, frequency, code, or any other part of a virgin neighborhood... a frame can include multiple sub-curves of the amount of wire and the total number of frames that the parent and the octagonal knife are assigned to the frame. A knife of a symbol. For example, in an exemplary embodiment according to the W_CDMA standard, a sub-segment may be defined as a time slot. In an exemplary embodiment according to the cdma 2 standard, a sub-word may be deleted. Segment defined as a power control group

(PCG)。 在某』不例性的實施例中,可以將交錯後的符號映射 ’頻率代碼或用於信號傳輸的任何其他維度中。此 d卜訊框格式還可以指定包括例如控制符號(未圖示)和信 \630a的交錯後符號。這些控制符號可以包括例如功率控 制符號、訊框格式資訊符號等等。還如圖16A戶斤示,信號 64〇a表示符號與訊框映射的步冑—ο的輸出。(PCG). In an exemplary embodiment, the interleaved symbols can be mapped to 'frequency codes' or any other dimension used for signal transmission. The d-frame format may also specify interlaced symbols including, for example, control symbols (not shown) and letter \630a. These control symbols may include, for example, power control symbols, frame format information symbols, and the like. As also shown in Fig. 16A, the signal 64 〇 a represents the output of the symbol-frame mapping step ο.

、在步驟1650 ’將信號16術調制到例如一或多個載波 波形上。在某些示例性實施例中,調制可以採用例如QAM 26 201004205 正又巾田度調制)、QPSK (正交相移鍵控)等#。還如圖 16A所不,4號165〇a表不信號164〇a的調制版本。在圖“A 中,k號1650a還由變數^:來表示。 在步驟1660,調制信號165〇a被進一步處理、在空中 發射、由接收機進行接收。步驟166〇產生所接收的符號 1700a’其在圖16A中用變數^來表示。應當注意的是,本 領域-般技藝人士應當料,用力處理在空中發射和接收的 k號1650a的技術是公知的,其在本申請中沒有進一步描 述。包含在少中的符號可以如下所述的進一步處理。 圖17描繪了現有技術中與用於CDMA 2〇〇()的前向鏈 路信號發送方案相關的時間圖。 在圖17中,在17〇〇 ,基地台(BS )在前向基本通道 (F-FCH TX)上向行動站(Ms)發射—連串訊框。在所示 的不例性實施例中’子段與功率控制群(pcG )相對應,每 :個訊框由16個PCG (編號〇到15)構成。在發射與第一 Λ框TX讯框#0相對應的所有16個1>(:(5後,^開始發射下 一個訊框ΤΧ訊框#1。在一個示例性的實施例中,可以如本 申明先别參見圖1 6和圖i 6 Α所述的來處理所發射的資料。 在MS方在171〇,MS接收所發射的PCG。在接收與 TX汛框#0相對應的Rx訊框#〇的最後一個pcG (即, PCG#15)之後,Ms使用所有接收的pcG開始對rx訊框糾 解碼。解碼的資訊在解碼時間TD之後可用。在—個示例性 的實施例中’可以如下文參見圓18所述的進行解碼。應當 /主思,雖然MS正對丁χ訊框#〇解碼,但同時接收到訊 27 201004205 框#1的PCG。 圖1 8描繪了現有技術中用於從接收的符號丫中恢復出 估計的資訊位元b,的方法丨8〇〇。 在步驟1805 ’接收整個訊框的符號少或n〇〇a。 在步驟1810,對符號少或1700a進行解調、解析和解 交錯,以產生符號少’,其還表示爲信號181〇a。本領域一般 技藝人士應當理解,在步驟181〇執行的操作可以與例如圖 1 6中所示的發射機執行的操作的逆操作相對應。 在步驟1820,假定已知速率R的情況下’對符號〆進 行解碼和組合。在一種實現中,速率R可以指示在接收的訊 框中存在多少位元,速率R可以由例如解碼器使用,以確定 在接收的符號序列中的哪個點終止解碼及/或從解碼後的序 列中去除尾部位元。在步驟182〇,還可以去除解碼後序列的 尾部位元(例如,如在圖16的步驟161〇所添加的)。步驟 1820的結果是輸出信號i82〇a。 在步驟1830,檢驗FQI (例如,如在圖16的步驟i6〇〇 所添加的),並且也從資訊位元中將其去除。在一種實現中, 邱檢驗的結果可以識別解碼是成功還是失敗的。步驟mo 連同FQI結果-起產生恢復的f訊位元(表示爲b,),其中 FQI結果指示成功還是失敗。 ' 在步驟1 8 4 0 ’該方法可以推彡-z, 進行到下一訊框,並針對下 訊框重複上文所述的步驟。 根據本發明,如下面所拋;+、& & 術 田迷的k前訊框解碼和終止技 可以允許整體通訊系統1 00更古 i 文阿政地操作和節省發射功 28 201004205 率,從而增加蜂巢容量。Signal 16 is modulated onto, for example, one or more carrier waveforms at step 1650'. In some exemplary embodiments, modulation may employ, for example, QAM 26 201004205 plus towel modulation, QPSK (Quadrature Phase Shift Keying), and the like. Also as shown in Fig. 16A, the 4th 165〇a indicates the modulation version of the signal 164〇a. In Figure "A, k number 1650a is also represented by a variable ^:. At step 1660, modulated signal 165a is further processed, transmitted over the air, and received by the receiver. Step 166 produces a received symbol 1700a' It is represented by a variable ^ in Figure 16A. It should be noted that those skilled in the art will recognize that the technique of forcibly processing the transmission and reception of k1650a over the air is well known and is not further described in this application. The symbols contained in the lesser can be further processed as described below. Figure 17 depicts a time diagram associated with the forward link signaling scheme for CDMA 2() in the prior art. 17〇〇, the base station (BS) transmits a series of frames to the mobile station (Ms) on the forward basic channel (F-FCH TX). In the exemplary embodiment shown, 'subsection and power control The group (pcG) corresponds, each frame consists of 16 PCGs (numbered to 15). All 16 1> (: (after 5) are transmitted corresponding to the first frame TX frame #0. ^ Start transmitting the next frame frame #1. In an exemplary embodiment, it may be as It is stated that the transmitted data is processed as described above with reference to Figure 166 and Figure 1-6. The MS receives the transmitted PCG at 171 MS, and receives the Rx frame corresponding to TX frame #0. After the last pcG of #〇 (ie, PCG#15), Ms begins to decode the rx frame using all received pcGs. The decoded information is available after the decoding time TD. In an exemplary embodiment, 'may be The decoding is performed as described below with reference to circle 18. It should be considered that although the MS is decoding the D-frame, it also receives the PCG of the frame 27 of 201004205. Figure 18 depicts the prior art. The method for recovering the estimated information bit b from the received symbol 丫 is 〇〇 8 '. In step 1805 'the symbol of the entire frame is received less or n〇〇a. In step 1810, the symbol is less or 1700a is performed. Demodulation, parsing, and deinterleaving to produce less symbols, which are also represented as signal 181a. It will be understood by those of ordinary skill in the art that the operations performed at step 181 can be performed with, for example, the transmitter shown in FIG. The inverse of the operation corresponds to. In step 1820, the assumption is known The symbol 〆 is decoded and combined in the case of rate R. In one implementation, the rate R may indicate how many bits are present in the received frame, and the rate R may be used by, for example, a decoder to determine the sequence of symbols received. Which point in the end terminates decoding and/or removes the tail part from the decoded sequence. In step 182, the tail part of the decoded sequence can also be removed (eg, as added in step 161 of Figure 16) The result of step 1820 is the output signal i82 〇 a. At step 1830, the FQI is checked (e.g., as added at step i6 of Figure 16) and also removed from the information bits. In one implementation, the results of the Qiu test can identify whether the decoding succeeded or failed. Step mo, along with the FQI result, results in a recovered f-signal (denoted as b,), where the FQI result indicates success or failure. ' At step 1 8 4 0 ', the method can push -z to proceed to the next frame and repeat the steps described above for the next frame. According to the present invention, as described below, the k-frame decoding and termination technique of the +, && field operator can allow the overall communication system to operate and save the transmission work 28 201004205 rate, Thereby increasing the honeycomb capacity.

19騎了對於根據CDMA 2_標準的系統操作, :於提^止^鏈路傳輸的方案的㈣i性實施例。庫,、、主 :太Γ出的此示例性實施例僅用於說明目的,其並不二 將本發明的範圍限制於基於CDMA 2000的系統。本領2 =人士還應當理解,本申請提到的特定的P 的其並不忍味限制本發明的保護範圍。 在圖19中’在1900,基地台(BS)向行動站(叫 發射-連串訊框。在—個示例性的實施例中’這些傳輸可以 在基本前向通道(F_FCHTX)上進行。如上文所描述的,圖 19中不出的每—子段可以與CDMA 2000 t的功率控制群 (PCG)相對應。Bs卩τχ訊框#〇的pcG#〇開始傳輸,連 續發射PCG直到在PCG#8之後從Ms接收到ack信號we 爲止MS發射ACK信號以通知BS , MS根據已接收的pcG 對整個TX訊框#0成功地解碼。 在接收到ACK 1945之後,BS停止與TX訊框#0相對 應的PCG的傳輸’在發射新訊框TX訊框# 1的PCG之前, 進订等待直到開始下一個訊框(TX訊框# 1 )爲止。應當注 意,在與接收和處理ACK信號1945相關的有限時間段期間, BS已經開始發射TX訊框#〇的PCG#9。 標記19 1 〇到1940描繪了 MS所採取的動作的時間, MS執行這些動作來產生發向BS的ACK信號1945,以使得 BS提前終止TX訊框傳輸。 在1910 ’ Ms分別將τχ訊框#〇和TX訊框#1的pcg 29 201004205 接收作爲RX訊框#0和RX訊框# 1。 在1920,在接收到RX訊框#〇的每一個PCG時,Ms 都嘗試對RX訊框#0解碼,而不用等待接收到分配給Rx訊 框#0的所有16個PCG。在一個示例性的實施例中,爲了完 成這種以每一 PCG爲基礎的解碼,MS可以使用諸如下面猶 後參見圖20描述的2000之類的每子段(per_sub_segement)解 碼演算法》 在1 925,在接收到PCG#7之後,如通過例如檢驗與所 接收的位元相關的CRC而確定的,MS成功地解碼了 Rx訊 框#〇。MS宣告解碼成功,並轉到aCk傳輸193〇β 在1930,在1925處宣告解碼成功之後,在與反向鏈路 的PCG#8相關的傳輸部分期間,则向BS發射则ACqt 號 1945 。 在個不例性的實施例中,在緊跟著確定解碼成功的 pCG之後的PCG期間,或在確定解碼成功的之後的任 何PCG期間,Ms可以僅發射Ack信號。在諸如目μ中所 ^的替代的示例性實施例中,ACK遮罩蘭可以控制似 'ϋ 945傳輸的0夺ACK㉟罩用於指定何時可以發射或 何夺不可以發射ACK信號。提供這種ACK遮罩可以限制發 送確認訊息所使用的通訊鏈路容量。 在圖19中,ACK遮罩的特點在於指定爲「1」的時間 間隔,在此期間,分社+ g Γ 卉在反向鏈路上進行ACK傳輸。在指定 爲 〇」的時間間隔期問不分 ^ 』間不允卉進行ACK傳輸。在一個示例19 rides on the system operation according to the CDMA 2_ standard: (4) an embodiment of the scheme for improving the transmission of the link. The library, , and the main exemplary embodiment of the present invention are for illustrative purposes only and are not intended to limit the scope of the present invention to a CDMA 2000-based system. Skill 2 = Person should also understand that the specific P mentioned in this application does not endure the scope of protection of the present invention. In Figure 19, 'at 1900, the base station (BS) to the mobile station (called a transmit-serial frame. In an exemplary embodiment) these transmissions can be made on the basic forward channel (F_FCHTX). As described, each sub-segment not shown in Figure 19 can correspond to the CDMA 2000 t power control group (PCG). The PCG#〇 of the Bs卩τχ frame#〇 starts transmitting, and the PCG is continuously transmitted until it is in the PCG. After receiving the ack signal we from Ms, the MS transmits an ACK signal to notify the BS, and the MS successfully decodes the entire TX frame #0 according to the received pcG. After receiving the ACK 1945, the BS stops and the TX frame # 0 corresponding PCG transmission 'Before transmitting the PCG of the new frame TX frame #1, the subscription waits until the next frame (TX frame #1) is started. It should be noted that the ACK signal is received and processed. During the limited time period associated with 1945, the BS has begun transmitting the PCG#9 of the TX frame #〇. The flags 19 1 〇 to 1940 depict the time of the action taken by the MS, and the MS performs these actions to generate an ACK signal to the BS. 1945, so that the BS terminates the TX frame transmission in advance. At 1910 'Ms, respectively, τ χ #〇 and TX frame #1 pcg 29 201004205 Receive as RX frame #0 and RX frame # 1. In 1920, when receiving each PCG of RX frame #〇, Ms tries to RX frame #0 decoding without waiting to receive all 16 PCGs assigned to Rx frame #0. In an exemplary embodiment, in order to accomplish such PCG-based decoding, the MS may use such as below Referring to Figure 20, each sub-segment (per_sub_segement) decoding algorithm of 2000 is determined at 1 925, after receiving PCG #7, as determined by, for example, checking the CRC associated with the received bit, MS The Rx frame is successfully decoded. The MS declares that the decoding is successful, and transfers to aCk transmission 193 〇 β at 1930, after the decoding is successful at 1925, during the transmission part associated with the PCG #8 of the reverse link, Then the ACqt number 1945 is transmitted to the BS. In an exemplary embodiment, Ms may only transmit Ack during the PCG immediately following the determination of the successfully decoded pCG, or during any PCG after determining that the decoding is successful. Signal in an alternative exemplary embodiment such as The ACK mask blue can control the 0 ACK 35 hood of the 'ϋ 945 transmission to specify when it can transmit or not to transmit an ACK signal. Providing such an ACK mask can limit the communication link capacity used to send the acknowledgment message. In Figure 19, the ACK mask is characterized by a time interval designated "1" during which the branch + g 卉 进行 transmits ACK on the reverse link. In the interval specified as 〇", the ACK transmission is not allowed. In an example

性的實施例中,诵;丹胺A r γ彳由A β 傳輸限制於僅在門限PCG之後 30 201004205 的時間間隔,ACK遮罩可以確保當處理了接收的訊框的足約 部分時才嘗試進行解碼。根據本發明,Ms可以在緊跟成功 解碼之後的由ACK遮罩指定爲…的下—時間段發射似 訊息。 應當注意,本申請示出的特定的ACK遮罩配置僅用於 說明目的,其並不意味將本發明的範圍限制於示出的任何 ACK遮罩。本領域一般技藝人士應當理解,可以容易地提供 替代的ACK遮罩配置,以允許在與所示的那些子段或 1 不同的子段或pCG部分期間進行ACK傳輸。可以預期的是, 這些替代的示例性實施例也落入本發明的保護範圍。 在一個示例性的實施例中,由ACK遮罩圖樣所指定的 PCG可以與用於發信號通知NR訊框傳輸的RL閘控引導頻 圖樣的圖樣所規定的相同PCG (例如,本申請先前參見圖i J 所描述的)重疊® 在一個示例性的實施例中,BS TX還可以包括引導頻 傳輸(未圖示)’在接收到MS ACK 1945之後,引導頻傳輸 可以從連續發射的引導頻信號轉換到閘控引導頻信號,其中 根據閘控引導頻圖樣來發射閘控引導頻信號。 圖20描繪了根據本發明的每一子段解碼方案的示例性 實施例。應當注意’示出的方法2000僅用於說明目的,其 並不旨在將本發明的範圍限制於所示的任何特定的示例性 實施例。 在圖20中’在步驟2001 ’將子段索引η初始化爲n = 〇。 在步驟2005,該方法接收針對子段η的符號%。 31 201004205 在步驟2010’針對直到子段 η,該方法對接收到的所有μ厂/括田則贿的子段 们所有付谠少二進行解調 錯H可以包㈣和解乂 所有訊務符號。步驟2〇1〇的結果表示爲少,L。接收的 在步驟2 0 2 0,該方、土并 Λ故 ^ #付唬少’^^進行解碼和組合。本 領域-般技藝人士應當理解,雖然符號, 機針對整個訊框所分配@^ 、 ' 的全部付唬X的一部分相對應,但仍 然通過僅使㈣號以„來嘗試對整個訊框進行「提前」解 碼。這種提前解碼嘗試具有很好的解碼成功的機會,這是由 於例如,部分速率編碼及/或重複(例如,圖16的步驟刪) 所引入的符號X中的冗修^ 的几餘及/或通過圖16的步驟163〇處的交 錯實現的時間或其他維度分集造成的。 在步驟2020’還可以從解碼後的位元序列中去除編碼 的尾部位元,以產生信號2020a。 在步驟2_,該方法從信號義&中檢驗叩,從當 前訊框直到η的累積接收的子段中產生吻結果期a。 在步驟腕’該方法評估FQI結果是否指示成功。如 果是,則該方法轉到步驟2040,在步驟2〇4〇,宣告解碼成 功該方法進订ACK訊息產生,以便能夠提前終止前向鍵路 傳輸。下一個可用的機會可以是例如由參見圖5所述的ACK 遮罩所指定的。如果沒有,則該方法轉到步驟2〇37。 在步驟2037,該方法將11增!,判斷在該訊框中是否 還有其他剩餘的子段要接收。如果有,則該方法返回到步驟 2〇〇5。如果沒有,則該方法轉到步驟2〇6〇 ,宣告針對該訊框 32 201004205 的解碼不成功。 在步驟2070,解碼器繼續評估下一個訊框。 圖21描繪了現有技術中根據CDMA 2000標準針對無 * 、線配置4 (RC4)的前向鏈路符號路徑的實現方式2100,以 .及根據本發明的前向鏈路符號路徑的示例性實施例2ΐι〇。在 實現方式2100中,訊柩〇暂社- L t 質心不符包括根據訊框符號速率 添加到訊框的位元中的具有長度6、6、8或12的㈣。在 根據本發明的示例性實施例211〇中,訊框品質指示符包括 添加到訊框的位元中的具有增加的長度12、12、12或^的 CRC。使用增加長度的CRC提高了根據本發明的提前解碼方 案的性能,使得例如對於根據本發明的提前解碼技術能更準 確地檢測解碼成功。應當注意,本申請示出的特定c R C長度 僅用於說明目的’其並不意味將本發明的範圍限制於所示出 的任何特定的CRC長度。 如實現方式2100中所進一步示出的,根據訊框符號速 率’符號刪餘速率是1/5、!/9、無和無。在根據本發明的示 例性實施例2110中,根據訊框符號速率,符號刪餘速率是 ' 1/3、1/5、1/25和無。本領域一般技藝人士應當理解,示例 -性實施例211〇中提高的删餘可以用於適應由示例性實施例 2110所要求的增加長度的CRC。 圖22描綠了一種信號發送方案22〇〇的示例性實施 例’該信號發送方案用於在反向鏈路上發送ACK訊息’以便 提前終止前向鏈路傳輸。在圖22中,通過調制器2214,使 用開關鍵控(OOK)將反向ACK通道(R_ACKCH) 221〇調 33 201004205 制到沃爾什(Walsh)編碼W(64,l6)2212上。對結果信號應用 相對通道增益2216,並將其結果提供給加法器22ij/ ^ 在圖22中,使用調制器2224將具有每2〇毫秒Μ% 符號的速率的反向基本通道(R_FCH) 222〇調制到沃爾什函 數W(16,4) 2222上。對結果信號應用相對通道增益2226,並 將其結果提供給加法器22⑴可以在向Bs進行反向鍵路傳 輸的正交⑼通道2228上提供加法器的輸出。在所示的示 例性實施例中,還提供了包括反向引導頻通道(R_picH)223〇 的同相(I)通道2234。 應當注意’所給出的參見圖22 *出的反向鏈路ACK 發送方案的示例性實施例僅用於說明目的,其並不意味將本 發明的範圍限制於ACK發送方案的任何特定實施例;本領域 -般技藝人士應當㈣’根據本發明可以容易料出用於在 反向鏈路上發送ACK的替代技術,這包括應用不同形式的調 制和在不同於所示通道的替代通道上發送Ack訊息。可以預 期的是,這些替代的示例性實施例也落入本發明的保護範 圍。 — 圖23描繪了對於根據CDMA 2_標準的系統操作, -用於提前終止反向鏈路傳輸的方案2300的示例性實施例。 應當注意,所示出的示例性實施例僅用於說明目的,其並不 將本發明的範圍限制於所示出的任何特定的反向、鏈路 提前終止方案。本領域一般技藝人士應當理解,本申請提到 的特定的PCG和訊框編號僅用於說明目的。 在圖23中,在2300,行動站(MS)向基地台( 34 201004205 發射一連串訊框。在一個示例性的實施例中,這些訊框可以 在反向基本通道(R_FCH TX)上發射。在圖23中,示出的 每一子段與一個功率控制群(PCG)相對應。MS在PCG#0 開始發射TX訊框#〇,連續發射pcG直到在PCG#8之後從 BS接收到ACK信號2345爲止。在接收到ACK 2345之後, MS停止發射與TX訊框#〇相對應的pcG,等待直到開始下 一個訊框(TX訊框#1)爲止,以便開始發射與τχ訊框#1 相對應的PCG。 標記2310到23 40描繪了 BS所採取的動作的時間,BS 執行這些動作來產生發向MS的ACK信號2345,以允許MS 提前終止反向鏈路訊框傳輸。 在2310,BS分別將τχ訊框#〇和τχ訊框#1的pcg 接收作爲RX訊框# 0和RX訊框# 1。 在2320,當接收到每一個單獨的pCG,BS就嘗試對 RX訊框#0解碼,而不用等待接收完分配給RX訊框#〇的所 有16個PCG。在一個示例性的實施例中,爲了完成這種以 每一 PCG爲基礎的解碼,Bs可以使用諸如先前參見圖描 述的2 0 0 0之類的每子段解碼演算法。 在2325 ’在接收到PCG#5之後,BS宣告解碼成功, 並轉到ACK發射步驟2330以產生BS ACK τχ信號。 在2330,在步驟2325處宣告解碼成功之後,在與前向 鏈路的PCG#8相關的發射部分期間,Bs發射ack俨號 2345 »發送ACK信號2345期間的發射部分可以由相^的 ACK遮罩2340來規定。 35 201004205 在一個示例性的實施例中’如本申請先前參見圖19所 描述的’ ACK遮罩圖樣使得僅在一些pCG期間進行ack傳 輸,其中在這些PCG中,在前向鏈路(FL )上發送功率控制 命令以控制反向鏈路(RL )功率傳輸。 在圖23中,2350還描繪了根據反向鏈路提前終止方案 的示例性實施例,由MS發射反向鏈路引導頻信號。在步驟 2350,在MS在PCG#8從BS接收到aCK信號2345之後, MS在任一 PCG停止發射RL引導頻信號。如圖所示,更適 合的是,針對選定的PCG ’ RL引導頻信號傳輸可以是閘控 關閉的。這可以用於爲剩餘的PCG保留RX引導頻信號發射 功率,以及向BS提供另外的ACK發送機制。在一個示例性 的實施例中,針對剩餘PCG的RL閘控引導頻圖樣可以與(例 如,先前參見圖11所描述的)用於以信號形式發送nr訊框 傳輸的圖樣相對應。 在所示的示例性實施例中,RL引導頻信號在pcG 9、 10、13和14期間是閘控關閉的。通常來說,Ri^引導頻信號 在發射了 ACK信號之後的交替的兩個pCG組中是閘控關閉 的,直到提前終止的訊框結束爲止。還應當注意的是,因爲 使用NR訊框的引導頻閘控,所以針對提前終止的訊框進行 引導頻閘控可以使用各種方案,例如:—個功率控制群開啓 之後跟著-個功率控制群關閉;兩個功率控制群開啓之後跟 著兩個功率控制群關閉;可用於減少發射功率的任何其他圖 樣。 圖24描緣了現有技術中反向鏈路符號路徑的實現方式 36 201004205 2400以及本發明中反向鏈路符號路徑的示例性實施例 2410。在實現方式2400中,根據訊框符號速率,將長度爲6、 6、8或12的CRC添加到訊框的位元。在根據本發明的示例 性實施例2410中,將具有增加的長度爲12、12、12或12 的CRC添加到訊桓的位元。如圖21中所示的前向鍵路處理 的情況,使用增加長度的CRC提高了根據本發明的提前解瑪 方案的性能,使得例如對於提前料技術更準確地檢測解瑪 成功。應當注意’本申請示出的特定CRc長度僅用於說明目 的,其並不意味將本發明㈣圍限制於所示出的任何特定的 CRC長度。 如實現方式2400中所進一步示出的,根據訊框符號速 率,符號删餘速率是1/5、1/9、無和無。在根據本發明的示 例性實施例繼中,根據訊框符號速率,符號删餘速率是 "3、"5、"25和無。本領域一般技藝人士應當理解,示例 性實施例2 4 1 〇中使用描萬的勘丨你a r便用杈间的删餘可以適應在示例性實施例 2410中也存在的具有增加長度的cRc ^ 、兩在一個示例性的實施例中,可以通過在前向鍵路訊務 ^帛代(删餘)具有預定位置的一個位元及/或在預定的 位置使用開關鍵控(00K)來提供由BS發向则❸ACK尸 ^以便向MS發送ACK或職(否定確認)信號。在二 固示例性的實施例中,預定的 开円槎⑼位置叮以根據預定的僞隨機位 中叮母—聽爲基礎進行變化。在-個神丨性的實施例 ^以將ACK位元與反向鍵路功率控制位 (TDM的)多工處理。 4卞螂 37 201004205 應當注意’上面所述的訊框提前終止方案不僅可應用 於CDMA 2000通訊鏈路的基本通道,而且還可應用於「高 資料速率」補充通道。例如’在替代的示例性實施例(未圖 示)中,前向鏈路上的ACK信號發送機制可以用於使一或多 個MS能夠提前終止在一或多個相應的反向補充通道上的傳 輸。 例如’在一個示例性的實施例(未圖示)中,一或多 個MS可以同時在相應的反向補充通道上發射訊框。如果bs 在反向補充通道上從MS成功地接收到一個訊框,那麼bs 就在前向共用確認通道的相應前向共用確認子通道上發射 ACK,其中母個刖向共用確認通道的1 一個子通道被指定用於 控制一個反向補充通道.據此,可以在單個前向共用確認通 道上多工來自多個MS的前向共用確認子通道。例如,在一 個示例性的實施例中’根據BS和一或多個MS均已知的預 定圖樣,可以在單個共用確認通道上對多個子通道進行時間 多工處理。這種預定圖樣可以通過外部信號發送形式(未圖 示)來指出。 BS可以支援在一或多個前向共用確認通道上的操作。 在一個示例性的實施例中,如本申請先前所述的,可以由 ACK遮罩來指示針對反向補充通道可以發射前向共用確認 通道的子段或PCG。 在一個替代的示例性實施例中,對於根據cDMA 2〇〇〇 標準的系統操作來說,提供了反向鏈路上的ACK信號發送機 制,以便控制前向基本通道和一或多個前向補充通道上的傳 38 201004205 輸。圖25描繪了一種信號發送方案2500的示例性實施例, 信號發送方案2500用於在反向鏈路上以信號形式發送ACK 訊息,以便提前終止前向基本通道(F-FCH)及/或多達兩個 前向補充通道(F-SCH1和F-SCH2 )。 在圖25中,通過調制器2524使用二元相移鍵控(BPSK) 將反向ACK通道(R-ACKCH ) 2520調制到沃爾什函數 W(64,16) 25 22上。在一個示例性的實施例中,R-ACKCH 2520 可以向BS發信號,以終止前向基本通道(F-FCH)上的傳輸。 對此結果信號應用相對通道增益2526,並將其結果提供給加 法器2518 。 在圖25中’通過調制器2514使用二元相移鍵控(BPSK) 將第二反向ACK通道(R-ACKCH) 2510調制到沃爾什函數 W(16,12) 2512上。在一個示例性的實施例中,ACKCH 2510 可以向BS發信號,以終止第一前向補充通道(f-SCHI )上 的傳輸。對此結果信號應用相對通道增益25丨6,並將其結果 提供給加法器2518。 如圖25進一步所示,可以將兩個R_ACK通道與反向基 本通道(R-FCH)組合到RL信號的正交(Q)分量上qR_fch 具有每20毫秒1536符號的速率’還使用調制器2534將 R-FCH調制到沃爾什函數W(1M) 2^上。對此結果信號應 用相對通道增益2536,並將其結果提供給加法器2518。可 以在反向鍵路傳輸的正交⑼通道⑽上將加法器的輸出 提供給B S。 如圖25進—步所示,通過調制器2554使用開關鍵控 39 201004205 (OOK)將第三反向ACK通道(R_ACK⑻2別調制到沃 爾什函數W(16,8) 2552上。在一個示例性的實施例中, ACKCH 255G可以向Bs發信號,以終止第二前向補充通道 (CH2 )上的傳輸。對此結果信號應用相對通道增益 2556’並將其結果提供給加法器2548。可以使用加法器 來組合R-ACKCH 2550與反向引導頻通道(R picH ) 254〇, 以產生同相(I)反向鏈路信號2544。 本領域-般技藝人士應當理解,上面給出的針對前向 鏈路的特定ACK信號發送方案的例子僅用於說明目的,其並 不意味將本發明6^®限制於針對前向通道和反向通道的 任何特定ACK信號發送方案。 圖26描繪了根據本發明的一種方法26〇〇的示例性實 施例。應當注意,示出的方法2600僅用於說明目的,其並 不意味將本發明的範圍限制於任何特定的方法。 在步驟2610,接收語音訊框。 ^在步驟2620,該方法嘗試對接收到的語音訊框進行提 前解碼。在-個示例性的實施例中,可以在接收完該訊框的 所有子段之前,嘗試進行提前解碼。 在步驟2630,該方法判斷嘗試進行的語音訊框解竭是 否成功ϋ示例㈣實施例中,W檢驗諸> crc之類 的訊框品質指示符,以判斷訊框解碼是否成功。 在步驟2640’發射確認信號(acK),以終止語音訊 枢傳輸。 本發明的提前終止技術可以容易地應用於一些情形 201004205 在這些情形中,行動站處於「軟交遞」,即:在軟交遞中, MS在前向鏈路及/或反向鏈路上同時與多個Bs進行通訊。 例如,當MS處於兩個BS之間的軟交遞時,在兩個則 中的每一個都可以接收到MS進行的反向鏈路傳輸,這兩個 BS中的任何一個或二者都可以向MS (不是必須同時的)發 回ACK信號以停止MS傳輸。在一個示例性的實施例中,回 應於在反向鏈路訊框傳輸内接收到多於一個的ack信號的 情況,MS在接收到第一 ACK信號之後停止當前訊框的傳 輸。此外,提前終止可以類似地應用於控制由兩個bs發向 一個MS的前向鏈路傳輸。例如,回應於對從兩個bs同時 接收的訊框進行的成功提前解碼,河8可以發射ack信號, 以停止兩個BS在前向鏈路上的傳輸。可以預期的是,這些 替代的示例性實施例也落入本發明的保護範圍之内。 本領域一般技藝人士應當理解,資訊和信號可以使用 任何多種不同的技術和方法來表示。例如,在貫穿上面的描In an exemplary embodiment, 诵; 丹amine A r γ 彳 is limited by A β transmission to a time interval of 30 201004205 only after the threshold PCG, and the ACK mask can ensure that the ACK mask is attempted when the received portion of the received frame is processed. Decode. In accordance with the present invention, Ms can transmit a message like the next time period specified by the ACK mask as ... immediately following successful decoding. It should be noted that the particular ACK mask configuration shown herein is for illustrative purposes only and is not meant to limit the scope of the invention to any of the ACK masks shown. One of ordinary skill in the art will appreciate that alternative ACK mask configurations can be readily provided to allow for ACK transmission during sub-segments or pCG portions that are different from those shown. It is contemplated that these alternative exemplary embodiments are also within the scope of the invention. In an exemplary embodiment, the PCG specified by the ACK mask pattern may be the same as the PCG specified for the pattern of the RL Gating Pilot Pattern used to signal the NR frame transmission (eg, as previously described in this application) iJ described in Figure iJ. In an exemplary embodiment, the BS TX may also include piloted transmission (not shown). After receiving the MS ACK 1945, the pilot transmission may be from a continuously transmitted pilot frequency. The signal is converted to a gated pilot frequency signal, wherein the gated pilot frequency signal is transmitted according to the gated pilot frequency pattern. Figure 20 depicts an exemplary embodiment of each sub-segment decoding scheme in accordance with the present invention. It should be noted that the method 2000 is shown for illustrative purposes only, and is not intended to limit the scope of the invention to any particular exemplary embodiment shown. In Fig. 20, the sub-segment index η is initialized to n = 〇 at step 2001. At step 2005, the method receives the symbol % for the sub-segment η. 31 201004205 In step 2010', for the sub-segment η, the method demodulates all the sub-segments that have been received by all μ factories/sands. The error H can package (4) and solve all the traffic symbols. The result of step 2〇1〇 is expressed as less, L. Received In step 2 0 2 0, the party, the soil and the ^ ^ ^ 唬 ’ less ^ ^ ^ for decoding and combination. It should be understood by those skilled in the art that although the symbol corresponds to a portion of all the copies of @^, ' assigned to the entire frame, it is still attempted to "when the entire frame is made by "(4)". Decode in advance. This early decoding attempt has a good chance of successful decoding due to, for example, partial rate coding and/or repetition (e.g., step deletion of Figure 16). Or caused by the time or other dimensional diversity of the interleaving implemented at step 163 of FIG. The encoded tail portion element can also be removed from the decoded bit sequence at step 2020' to produce signal 2020a. In step 2_, the method checks the 叩 from the signal sense &, and produces a kiss result period a from the current frame until the cumulative reception of η. At step wrist, the method evaluates whether the FQI result indicates success. If so, the method passes to step 2040 where it is declared that the decoding succeeds in the method of ordering the ACK message generation so that the forward keyway transmission can be terminated early. The next available opportunity may be, for example, specified by the ACK mask described with reference to FIG. If not, the method proceeds to step 2〇37. At step 2037, the method will increase by 11! , to determine if there are other remaining sub-segments to be received in the frame. If so, the method returns to step 2〇〇5. If not, the method proceeds to step 2〇6〇, announcing that the decoding for the frame 32 201004205 is unsuccessful. At step 2070, the decoder continues to evaluate the next frame. 21 depicts an implementation 2100 of a forward link symbol path for a no-wire, line configuration 4 (RC4) according to the CDMA 2000 standard in the prior art, and an exemplary implementation of a forward link symbol path in accordance with the present invention. Example 2 ΐι〇. In implementation 2100, the mediation-L t centroid mismatch includes (4) having a length of 6, 6, 8, or 12 in the bit added to the frame based on the frame symbol rate. In an exemplary embodiment 211, in accordance with the present invention, the frame quality indicator includes a CRC having an increased length of 12, 12, 12 or ^ added to the bits of the frame. The use of an increased length CRC improves the performance of the early decoding scheme according to the present invention such that, for example, the early decoding technique according to the present invention can more accurately detect the decoding success. It should be noted that the specific c R C lengths shown herein are for illustrative purposes only and are not intended to limit the scope of the invention to any particular CRC lengths shown. As further shown in implementation 2100, the symbol puncturing rate is 1/5 based on the frame symbol rate. /9, no and no. In an exemplary embodiment 2110 according to the present invention, the symbol puncturing rate is '1/3, 1/5, 1/25, and none according to the frame symbol rate. One of ordinary skill in the art will appreciate that the increased puncturing in the example embodiment 211 can be used to accommodate the increased length of CRC required by the exemplary embodiment 2110. Figure 22 depicts an exemplary embodiment of a signaling scheme 22' for transmitting an ACK message on the reverse link to prematurely terminate the forward link transmission. In Fig. 22, the reverse ACK channel (R_ACKCH) 221 is adjusted to the Walsh code W (64, 16) 2212 by the modulator 2214 using the on-off key control (OOK). The relative channel gain 2216 is applied to the resulting signal and the result is provided to the adder 22ij/^. In Figure 22, the inverse basic channel (R_FCH) 222 having a rate of 2% milliseconds Μ% symbol is used using the modulator 2224. Modulation onto the Walsh function W(16,4) 2222. Applying the relative channel gain 2226 to the resulting signal and providing the result to adder 22(1) provides the output of the adder on the quadrature (9) channel 2228 that performs reverse key transmission to Bs. In the exemplary embodiment shown, an in-phase (I) channel 2234 including a reverse pilot channel (R_picH) 223A is also provided. It should be noted that the exemplary embodiment of the reverse link ACK transmission scheme described with reference to FIG. 22 is for illustrative purposes only, and is not meant to limit the scope of the present invention to any particular embodiment of the ACK transmission scheme. Those skilled in the art should (4) 'Alternative techniques for transmitting ACKs on the reverse link can be readily derived in accordance with the present invention, including applying different forms of modulation and transmitting Acks on alternate channels other than the channels shown. message. It is contemplated that these alternative exemplary embodiments also fall within the scope of the present invention. - Figure 23 depicts an exemplary embodiment of a scheme 2300 for early termination of reverse link transmission for system operation in accordance with the CDMA 2_ standard. It should be noted that the exemplary embodiments shown are for illustrative purposes only and are not intended to limit the scope of the invention to any particular reverse, link premature termination scheme shown. Those of ordinary skill in the art will appreciate that the specific PCG and frame numbers referred to herein are for illustrative purposes only. In Figure 23, at 2300, the mobile station (MS) transmits a series of frames to the base station (34 201004205. In an exemplary embodiment, these frames can be transmitted on the reverse basic channel (R_FCH TX). In Figure 23, each sub-segment shown corresponds to a power control group (PCG). The MS starts transmitting a TX frame #〇 at PCG #0, continuously transmitting pcG until an ACK signal is received from the BS after PCG #8. After 2345. After receiving the ACK 2345, the MS stops transmitting the pcG corresponding to the TX frame #〇, and waits until the next frame (TX frame #1) is started, so as to start transmitting with the τ frame #1 Corresponding PCG. The flags 2310 to 2340 depict the time of action taken by the BS, which performs these actions to generate an ACK signal 2345 to the MS to allow the MS to terminate the reverse link frame transmission early. At 2310, BS The pcg of the τχ 框 box and the χ # frame #1 are respectively received as the RX frame # 0 and the RX frame # 1. At 2320, when each individual pCG is received, the BS attempts to the RX frame #0. Decode without waiting for all 16 PCGs assigned to the RX frame #〇 to be received. In an exemplary In an embodiment, in order to perform such PCG-based decoding, Bs may use a sub-segment decoding algorithm such as 2000 described previously with reference to the figure. After 2325 ' after receiving PCG #5 The BS announces that the decoding was successful and proceeds to the ACK transmission step 2330 to generate the BS ACK τ χ signal. At 2330, after the decoding is successful at step 2325, the Bs is transmitted during the transmission portion associated with the PCG #8 of the forward link. The ack number 2345 » the transmit portion during the transmission of the ACK signal 2345 may be specified by the ACK mask 2340. 35 201004205 In an exemplary embodiment 'the ACK mask as previously described with reference to FIG. 19 as hereinbefore described The pattern is such that ack transmissions are only made during some pCGs, in which power control commands are sent on the forward link (FL) to control reverse link (RL) power transmission. In Figure 23, 2350 also depicts According to an exemplary embodiment of the reverse link early termination scheme, the reverse link pilot signal is transmitted by the MS. At step 2350, after the MS receives the aCK signal 2345 from the BS at PCG #8, the MS stops at either PCG. Transmitting RL Frequency signal. As shown, it is more appropriate that the pilot signal transmission for the selected PCG 'RL can be gate-closed. This can be used to reserve the RX pilot frequency signal transmit power for the remaining PCG and provide the BS with the transmit power. Additional ACK transmission mechanism. In an exemplary embodiment, the RL Gating Pilot Pattern for the remaining PCGs can be used (eg, as previously described with reference to Figure 11) to signal the pattern of the nr frame transmission. Corresponding. In the exemplary embodiment shown, the RL pilot signal is gate-closed during pcG 9, 10, 13, and 14. In general, the Ri^ pilot signal is gate-closed in the alternate two pCG groups after the ACK signal is transmitted until the end of the pre-terminated frame. It should also be noted that because the pilot frequency gating of the NR frame is used, the pilot frequency gating for the pre-terminated frame can use various schemes, for example: a power control group is turned on and then followed by a power control group. Two power control groups are turned on followed by two power control groups; any other pattern that can be used to reduce transmit power. Figure 24 depicts an implementation of a reverse link symbol path in the prior art 36 201004205 2400 and an exemplary embodiment 2410 of a reverse link symbol path in the present invention. In implementation 2400, a CRC of length 6, 6, 8, or 12 is added to the bits of the frame based on the frame symbol rate. In an exemplary embodiment 2410 in accordance with the present invention, a CRC having an increased length of 12, 12, 12 or 12 is added to the bits of the signal. As in the case of forward link processing as shown in Fig. 21, the use of an increased length CRC improves the performance of the advance disintegration scheme according to the present invention, so that, for example, for the advance processing technique, the solution success is more accurately detected. It should be noted that the particular CRc lengths shown in this application are for illustrative purposes only and are not meant to limit the invention to any particular CRC length shown. As further shown in implementation 2400, the symbol puncturing rate is 1/5, 1/9, none and none, depending on the frame symbol rate. In accordance with an exemplary embodiment of the present invention, the symbol puncturing rate is "3, "5, "25 and none, depending on the frame symbol rate. It will be understood by those of ordinary skill in the art that the exemplary embodiment of the present invention can be adapted to the cRc with increasing length also present in the exemplary embodiment 2410 using the snippet of the arbitrarily. 2, in an exemplary embodiment, may be provided by using a bit key having a predetermined position in the forward link traffic (puncturing) and/or using a keying control (00K) at a predetermined location. The ACK or ACK (negative acknowledgment) signal is sent to the MS by the BS. In the exemplary embodiment of the second solid, the predetermined opening (9) position is varied based on the predetermined pseudo-random position in the pseudo-random position. In a sacred embodiment, the ACK bit and the reverse link power control bit (TDM) are multiplexed. 4卞螂 37 201004205 It should be noted that the above-mentioned frame premature termination scheme can be applied not only to the basic channel of the CDMA 2000 communication link, but also to the "high data rate" supplementary channel. For example, in an alternative exemplary embodiment (not shown), an ACK signaling mechanism on the forward link can be used to enable one or more MSs to prematurely terminate on one or more corresponding reverse supplemental channels. transmission. For example, in an exemplary embodiment (not shown), one or more MSs can simultaneously transmit frames on respective reverse supplemental channels. If bs successfully receives a frame from the MS on the reverse supplemental channel, then bs transmits an ACK on the corresponding forward shared acknowledgement subchannel of the forward shared acknowledgement channel, where the parent turns to one of the shared acknowledgement channels. The subchannel is designated to control a reverse supplemental channel. Accordingly, the forward shared acknowledgement subchannel from multiple MSs can be multiplexed on a single forward shared acknowledgement channel. For example, in an exemplary embodiment, multiple sub-channels may be time multiplexed on a single common acknowledgment channel based on predetermined patterns known to the BS and one or more MSs. This predetermined pattern can be indicated by an external signal transmission form (not shown). The BS can support operations on one or more forward shared acknowledgement channels. In an exemplary embodiment, as previously described herein, an ACK mask may be used to indicate that a sub-segment or PCG that can transmit a forward shared acknowledgement channel for a reverse supplemental channel. In an alternative exemplary embodiment, for system operation in accordance with the cDMA 2 standard, an ACK signaling mechanism on the reverse link is provided to control the forward base channel and one or more forward supplements Pass on the channel 38 201004205 lost. 25 depicts an exemplary embodiment of a signaling scheme 2500 for signaling an ACK message on the reverse link to prematurely terminate the forward base channel (F-FCH) and/or up to Two forward supplemental channels (F-SCH1 and F-SCH2). In Figure 25, a reverse ACK channel (R-ACKCH) 2520 is modulated by modulator 2524 using binary phase shift keying (BPSK) onto a Walsh function W(64, 16) 25 22 . In an exemplary embodiment, R-ACKCH 2520 may signal the BS to terminate transmission on the forward base channel (F-FCH). A relative channel gain 2526 is applied to this resulting signal and the result is provided to adder 2518. The second reverse ACK channel (R-ACKCH) 2510 is modulated onto the Walsh function W(16, 12) 2512 by the modulator 2514 using binary phase shift keying (BPSK) in FIG. In an exemplary embodiment, ACKCH 2510 may signal the BS to terminate transmission on the first forward supplemental channel (f-SCHI). A relative channel gain of 25 丨 6 is applied to the resulting signal, and the result is supplied to the adder 2518. As further shown in FIG. 25, two R_ACK channels and a reverse fundamental channel (R-FCH) can be combined onto the quadrature (Q) component of the RL signal. qR_fch has a rate of 1536 symbols per 20 milliseconds'. Modulator 2534 is also used. The R-FCH is modulated onto the Walsh function W(1M) 2^. The resulting signal is applied to the resulting channel gain 2536 and the result is provided to adder 2518. The output of the adder can be provided to B S on the quadrature (9) channel (10) of the reverse link transmission. As shown in the second step of Figure 25, the third reverse ACK channel (R_ACK(8)2 is modulated onto the Walsh function W(16,8) 2552 by the modulator 2554 using the on-off key 39 201004205 (OOK). In an example In an exemplary embodiment, ACKCH 255G may signal Bs to terminate transmission on the second forward supplemental channel (CH2). The resulting signal is applied with a relative channel gain of 2556' and the result is provided to adder 2548. An adder is used to combine the R-ACKCH 2550 with the reverse pilot channel (R picH ) 254 〇 to produce an in-phase (I) reverse link signal 2544. Those skilled in the art will appreciate that the above is given for the former The example of a particular ACK signaling scheme for a link is for illustrative purposes only and is not meant to limit the invention to any particular ACK signaling scheme for the forward and reverse channels. Figure 26 depicts An exemplary embodiment of a method 26 of the present invention. It should be noted that the illustrated method 2600 is for illustrative purposes only and is not meant to limit the scope of the present invention to any particular method. In step 2610, a speech is received. In step 2620, the method attempts to decode the received voice frame in advance. In an exemplary embodiment, early decoding may be attempted before all sub-segments of the frame have been received. In step 2630, the method determines whether the attempted speech frame decommissioning is successful. In the fourth embodiment, the frame quality indicator such as > crc is checked to determine whether the frame decoding is successful. 'Acknowledgment signal (acK) to terminate the voice signal transmission. The early termination technique of the present invention can be easily applied to some situations 201004205 In these cases, the mobile station is in "soft handover", ie: in soft handover The MS communicates with multiple Bs simultaneously on the forward link and/or the reverse link. For example, when the MS is in soft handoff between two BSs, each of the two can receive Reverse link transmission by the MS, either or both of the two BSs may send back an ACK signal to the MS (not necessarily simultaneously) to stop the MS transmission. In an exemplary embodiment, in response to In the reverse In the case where more than one ack signal is received in the frame transmission, the MS stops the transmission of the current frame after receiving the first ACK signal. In addition, the early termination can be similarly applied to control from two bs to one MS. Forward link transmission. For example, in response to successful early decoding of frames received simultaneously from two bs, River 8 may transmit an ack signal to stop transmission of the two BSs on the forward link. It is to be understood that these alternative exemplary embodiments are also within the scope of the invention. It will be understood by those of ordinary skill in the art that the information and signals can be represented by any of a variety of different techniques and methods. For example, in the above description

述中提及的資料、指令、命令、資訊、信號、位元、符號和 碼片可以用電壓、電流、電磁波、磁場或粒子、光場或粒子 或者其任意組合來表示。 一本領域一般技藝人士還應當明白,結合本申請所公開 的不例性實施例描述的各種示例性的邏輯區塊、模組、電路 L决算法步驟均可以實現成電子硬體、電腦軟體或二者的組 爲了清楚地表示硬體和軟體之間的可交換性,上面對各 種示例性的部件、方塊、模組、電路和步驟均圍繞其功能進 仃了總體描述。至於這種功能是實現成硬體還是實現成軟 41 201004205 體’取決於特定的應用和對整個系統所施加的設計約束條 件。熟練的技藝人士可以針對每個特定應用,以變通的方式 實現所描述的功能’但是,這種實現決策不應解釋爲背離本 發明的示例性實施例的保護範圍。 用於執订本申請所述功能的通用處理器、數位信號處 理器(DSP)專用積體電路(ASIC)、現場可程式問陣列 ( )或其他可程式邏輯器件、個別閘fl或者電晶體邏輯 器件:個別硬體元件或者其任意組合,可以實現或執行結合 本申請所公開示例性實施例描述的各種示例性的邏輯區塊 圖、模組和電路。通用處理器可以是微處理器,或者,該處 理器也可以是任何常規的處理器、控制器、微控制器或者狀 態機。處理n還可以實現爲計算設備的組合,例如,庸和 微處理器的組合、多個微處理器、一或多個微處理器與DSP 内核的結合,或者任何其他此種結構。 卜、、σ σ本申凊所公開的示例性實施例描述的方法 或者演算法的步驟可直接體現爲硬體、由處理器執行的軟體 模組或二者組合》軟體模組可以位於隨機存取記憶體 (RAM )、快閃記憶體、唯讀記憶體(ROM )、電子可程式 ROM ( EPROM )、電可讀寫 pR〇M ( EEpR〇M)、暫存器、 硬碟、可移除磁碟、CD_RC)M或者本領域已知的任何其他形 式的儲存媒體中。—種示例儲存媒體㈣至處理器,從而使 處理器能夠從該儲存媒體讀取資訊,且可向該儲存媒體寫入 資訊。或者’儲存媒體也可以是處理器的組成部分。處理器 和儲存媒體可以位於ASIC t。該ASIC可以位於用戶終端 42 201004205 中。當然’處理器和儲存媒體也可以作爲個別元件存 戶終端中。 用 在—或多個示例性的實施例中,本申請所述功能可以 用硬體敕體、韌體或其任意組合來實現。當使用軟體實現 時’可以將這些功能作爲—或多個指令或代碼儲存在電腦可 讀取媒體中或者作爲電腦可讀取媒體上的—或多個指令或 代碼進行傳輸。電腦可讀取媒體包括電腦儲存媒體和通訊媒 巾通訊媒體包括便於從一個地方向另—個地方傳送電 腦程式的任何媒體。儲存媒體可以是電腦能夠存取的任何可 :媒體。通過示例而不是限制的方式,這種電腦可讀取媒體 可以包括RAM、ROM、EEPROM、CD_R〇M或其他光碟儲存、 磁片儲存媒體或其他磁碟儲存裝置、或者能夠用於攜帶或儲 存期望的指令或資料結構形式的程式碼並能夠由電腦進行 存取的任何其他媒體。此外,任何連接可以適當地稱作電腦 可讀取媒體。例如,如果軟體是使用同軸電纜、光纖光纜、 雙絞線、數位用戶線(DSL)或者諸如紅外線、無線和微波 之類的無線技術從網站、伺服器或其他遠端源傳輸的,那麼 同軸電缓、光纖錢、雙絞線、DSL或者諸如紅外線、無線 和微波之類的無線技術包括在所述媒體的定義中。如本申請 所使用的,磁片(disk)和光碟(disc)包括壓縮光碟(CD)、 雷射光碟、光碟、數位多功能光碟(DVD)、軟碟和藍光光碟, 其中磁片(disk)通常磁性地重製資料,而光碟((11^)則用鐳射 來光學地重製資料。上面的組合也應當包括在電腦可讀取媒 體的保護範圍之内。 、 43 201004205 爲使本領域任何-般技藝人士能夠實現或者使用本發 明’上面圍繞所公開的示例性實施例進行了描述。對於本 領域一般技藝人士爽兮,、上 _ D 對延些不例性實施例的各種修改 是顯而易見的,並且,太由, 亚且本申凊定義的總體原理也可以在不 脫離本發明的精神或伴1 甲飞保姜範圍的基礎上適用於其他示例 性實施例。因此,本發明甘T K日+ 人J· + 桊發明並不限於本申請所給出的這些示 例性實施例,而是盥太φ往 喷A開的原理和新穎性特徵的最 廣範圍相一致。 【圖式簡單說明】 圖1描繪了現有技術中的一種無線通訊系統。 圖2描繪了現有技術中的一種針對語音的信號傳輸路 徑。 圖3描繪了根據本發明的一種針對語音的信號傳輸路 徑的示例性實施例。 圖4描繪了 一種可以由系統消隱模組應用的演算法的 示例性實施例。 圖5和圖5Α描繪了由語音合成器和系統消隱模組處理 的示例性訊框傳輸序列。 圖6描繪了 一種接收演算法的示例性實施例,所述接 收演算法用於處理由諸如圖3中所示的語音信號傳輸路徑所 產生的系統消隱的信號。 圖7描繪了根據本發明的一種針對語音的信號傳輸路 44 201004205 徑的另一示例性實施例。 圖8描繪了可以由系統消隱模組應用的演算法的示例 性實施例。 圖9和圖9A描繪了由語音合成器和系統消隱模組處理 的示例性訊框傳輸序列。 圖10描繪了根據本發明用於進行系統消隱的方法的示 例性實施例。 圖11描繪了根據本發明的一種引導頻閘控方案的示例 性實施例。 圖12描繪了根據本發明的一種速率減少的功率控制方 案的示例性實施例’該方案用於控制前向鏈路(FL )傳輸的 功率。 圖13描繪了根據本發明的一種速率減少的功率控制方 案的示例性實施例,該方案用於控制反向鏈路(RL )連續引 導頻傳輸的功率。 、 圖14描繪了根據本發明的一種速率減少的功率控制方 案的示例性實施例,該方案用於控制反向鏈路(RL )閘控引 導頻傳輸的功率。 圖1 5描繪了根據本發明的一種功率控制方法。 圖1 6描繪了現有技術中用於在通訊系統中由發射機處 理資訊位元的訊框處理方案。 圖17描繪了現有技術中與針對Cdma 2000的前向鏈 路信號發送方案相關的時間圖。 圖1 8描繪了現有技術中用於從接收的符號少中恢復出 45 201004205 估計的資訊位元b,的方法。 圖19描繪了對於根據CDMA 2000標準的系統操作, 用於提前終止前向鏈路傳輸的方案的示例性實施例。 圖20描繪了根據本發明的每一子段解碼方案的示例性 實施例。 圖2 1描繪了現有技術中根據CDMA 2000標準針對無 線配置4 ( RC4 )的前向鏈路符號路徑的實現,以及根據本 發明的前向鏈路符號路徑的示例性實施例。 圖22摇繪了 一種信號發送方案的示例性實施例,該信 號發送方案用於在反向鏈路上發送ACK訊息,以便提前終止 調制器。 圖23描繪了對於根據CDMA 2〇〇〇標準的系統操作, 用於提前終止反向鏈路傳輸的方案的示例性實施例。 圖24描繪了現有技術中反向鏈路符號路徑的實現以及 根據本發明的反向鏈路符號路徑的示例性實施例。 圖2 5描繪了一種信號發送方案的示例性實施例,該信 $發送方案用於在反向鏈路上發送ACK訊息,以便提前終止 月?1向基本通道(F-FCH)及/或多達兩個前向補充通道(F_SCH1 和 F-SCH2)。 圖26描繪了根據本發明的—種方法的示例性實施例。 【主要元件符號說明】 1 細胞服務區 46 201004205 1 0 6存取終端 160基地台 210a語音訊框 200a語音信號 2 1 0語音合成器 220實體層處理 23 0 TX模組 3 1 0語音合成器 3 10a語音訊框 3 1 5系統消隱 3 15a語音訊框 710語音合成器 7 1 5系統消隱The materials, instructions, commands, information, signals, bits, symbols and chips mentioned in the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, light fields or particles or any combination thereof. One of ordinary skill in the art will also appreciate that the various exemplary logic blocks, modules, and circuit steps described in connection with the exemplary embodiments disclosed herein can be implemented as electronic hardware, computer software, or Groups of the two are generally described in terms of their functions, and the various components, blocks, modules, circuits, and steps are described above in order to clearly represent the interchangeability between the hardware and the software. Whether this function is implemented as a hardware or as a soft 41 201004205 body depends on the specific application and the design constraints imposed on the overall system. A person skilled in the art can implement the described functions in a modified manner for each particular application. However, such implementation decisions should not be interpreted as a departure from the scope of the exemplary embodiments of the present invention. General purpose processor, digital signal processor (DSP) dedicated integrated circuit (ASIC), field programmable array ( ) or other programmable logic device, individual gate fl or transistor logic for performing the functions described herein Devices: Individual hardware components, or any combination thereof, may implement or perform various exemplary logic block diagrams, modules, and circuits described in connection with the exemplary embodiments disclosed herein. The general purpose processor may be a microprocessor, or the processor may be any conventional processor, controller, microcontroller or state machine. Process n can also be implemented as a combination of computing devices, e.g., a combination of a microprocessor and a microprocessor, a plurality of microprocessors, a combination of one or more microprocessors and a DSP core, or any other such structure. The method or algorithm step described in the exemplary embodiment disclosed by the present application can be directly embodied as a hardware, a software module executed by a processor, or a combination of the two. The software module can be located in a random memory. Memory (RAM), flash memory, read only memory (ROM), electronically programmable ROM (EPROM), electrically readable and writable pR〇M (EEpR〇M), scratchpad, hard disk, removable In addition to disk, CD_RC) M or any other form of storage medium known in the art. An example storage medium (4) to a processor, such that the processor can read information from the storage medium and can write information to the storage medium. Or 'the storage medium can also be part of the processor. The processor and storage media can be located in the ASIC t. The ASIC can be located in the user terminal 42 201004205. Of course, the processor and storage medium can also be used as individual component storage terminals. In use, or in various exemplary embodiments, the functions described herein can be implemented with a hard body, a firmware, or any combination thereof. When implemented in software, these functions can be transferred as - or multiple instructions or codes stored on computer readable media or as computer readable media - or multiple instructions or code. Computer readable media, including computer storage media and communication media, includes any media that facilitates the transfer of computer programs from one location to another. The storage medium can be any media that the computer can access: media. By way of example and not limitation, such computer-readable media may include RAM, ROM, EEPROM, CD_R〇M or other optical disk storage, disk storage media or other disk storage device, or can be used to carry or store desired The code of the instruction or data structure and any other media that can be accessed by the computer. In addition, any connection may be appropriately referred to as computer readable media. For example, if the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, wireless, and microwave, then coaxial Slow, fiber money, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the definition of the media. As used herein, a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disc, and a Blu-ray disc, among which a magnetic disc (disk). Usually the material is magnetically reproduced, and the disc ((11^) uses laser to optically reproduce the data. The above combination should also be included in the scope of computer readable media., 43 201004205 To make any of the fields The present invention has been described above with respect to the disclosed exemplary embodiments. It will be apparent to those skilled in the art that various modifications of the exemplary embodiments are obvious. And the general principles defined by the present invention can also be applied to other exemplary embodiments without departing from the spirit of the invention or with the scope of the Aifeibao. Therefore, the present invention is a TK The day + person J· + 桊 invention is not limited to the exemplary embodiments given in the present application, but the principle of the 盥太 φ to the spray A is consistent with the widest range of novel features. Figure 1 depicts a wireless communication system in the prior art. Figure 2 depicts a signal transmission path for speech in the prior art. Figure 3 depicts an exemplary embodiment of a signal transmission path for speech in accordance with the present invention. An exemplary embodiment of an algorithm that can be applied by a system blanking module is depicted in Figure 4. Figures 5 and 5B depict an exemplary frame transmission sequence processed by a speech synthesizer and a system blanking module. 6 depicts an exemplary embodiment of a receiving algorithm for processing a system blanking signal produced by a voice signal transmission path such as that shown in Figure 3. Figure 7 depicts a signal blanking in accordance with the present invention. Another exemplary embodiment of a signal transmission path 44 201004205 for speech. Figure 8 depicts an exemplary embodiment of an algorithm that can be applied by a system blanking module. Figures 9 and 9A depict a speech synthesizer An exemplary frame transmission sequence processed by the system blanking module. Figure 10 depicts an exemplary embodiment of a method for system blanking in accordance with the present invention. 1 depicts an exemplary embodiment of a pilot frequency control scheme in accordance with the present invention. Figure 12 depicts an exemplary embodiment of a rate reduced power control scheme in accordance with the present invention for controlling a forward link ( FL) Power transmitted. Figure 13 depicts an exemplary embodiment of a rate reduced power control scheme for controlling the power of a reverse link (RL) continuous pilot transmission in accordance with the present invention. An exemplary embodiment of a rate-reduced power control scheme for controlling the power of a reverse link (RL) gating pilot transmission in accordance with the present invention. Figure 15 depicts a power control in accordance with the present invention. Method Figure 16 depicts a prior art frame processing scheme for processing information bits by a transmitter in a communication system. Figure 17 depicts a time diagram associated with a forward link signaling scheme for Cdma 2000 in the prior art. Figure 18 depicts a method for recovering the information bit b estimated from the 2010 2010205 205 from the received symbols. 19 depicts an exemplary embodiment of a scheme for early termination of forward link transmission for system operation in accordance with the CDMA 2000 standard. Figure 20 depicts an exemplary embodiment of each sub-segment decoding scheme in accordance with the present invention. Figure 21 depicts an implementation of a forward link symbol path for a wireless configuration 4 (RC4) in accordance with the CDMA 2000 standard in the prior art, and an exemplary embodiment of a forward link symbol path in accordance with the present invention. Figure 22 depicts an exemplary embodiment of a signaling scheme for transmitting an ACK message on the reverse link to prematurely terminate the modulator. Figure 23 depicts an exemplary embodiment of a scheme for early termination of reverse link transmission for system operation in accordance with the CDMA 2 standard. Figure 24 depicts an implementation of a reverse link symbol path in the prior art and an exemplary embodiment of a reverse link symbol path in accordance with the present invention. Figure 25 depicts an exemplary embodiment of a signaling scheme for transmitting an ACK message on the reverse link to prematurely terminate the month 1 to the base channel (F-FCH) and/or up to Two forward supplemental channels (F_SCH1 and F-SCH2). Figure 26 depicts an exemplary embodiment of a method in accordance with the present invention. [Main component symbol description] 1 Cell service area 46 201004205 1 0 6 Access terminal 160 Base station 210a Voice frame 200a Voice signal 2 1 0 Speech synthesizer 220 Physical layer processing 23 0 TX module 3 1 0 speech synthesizer 3 10a voice frame 3 1 5 system blanking 3 15a voice frame 710 voice synthesizer 7 1 5 system blanking

Claims (1)

201004205 七、申請專利範圍: 1、一種用於根據多種速率來處理資訊的方法 括以下步驟: X万法包 接收一包含訊務資訊的當前訊框; 判斷該當前訊框是否屬於—關鍵訊框類型; 如果確^該當前訊框屬於—關鍵訊框 務資訊以用於傳輸; 】慝理該a 如果確定該當前訊框不屬於一 ^ ^ ^ ^ ^ 、關鍵訊框類型,則判斷是 否保e丘該虽月丨』訊框用於傳輸; 如果#不保證該當前訊㈣於傳輸,則處理零速率以 用於傳輸,其中與該部務杳 該减資δΚ相比’該零速率具有-減少的 資訊位7G率; 發射該處理的結果以用於傳輸。 2、根據請求項】之方法 在一數據機處接收來自一 接收該當前訊框包括: 語音合成器的該當前訊框 3、根據請求項丨之方法,還包括: 則處理該訊務資訊 如果確定保證該當前訊框用於傳輪 以用於傳輸。 4、根據請求項3 構成的組中選出的__ 之方法,該訊務資訊具有從由以下各項 種訊框類型:全速率、半速率、四分之 48 201004205 一速率或八分之—速率訊框類型。 5、根據請求項 半速率、四分之— 4之方法,該關鍵訊框類型包括全速率 速率和關冑n之—料訊框類型。 根據4求項3之方法,針對傳輸來進行的處理包括: 使用一實體層訊框格式對要發射的資料進行格式化。 7、根據請求項3之方法,判斷是否保證該當前訊框用於 傳輸之步驟包括: 判斷(訊框編號+訊框偏移)量對N進行模數運算是否等 了零’其中訊框編號是該當前訊框的—序列編號,訊框偏移 是一偏移量’ N是一非消隱間隔。 8、 根據請|項3之方&,處理該冑速率以用於傳輸之步 驟包括· 使用一閘控引導頻圖樣來減少一引導頻信號傳輸速率。 9、 根據請求項8之方法,每—訊框包括多個子段,該閘 控引導頻圖樣規定在該訊框的每隔一個子段中進行傳輸。 10、 根據請求項9之方法,每一訊框包括多個子段,該 閘控引導頻圖樣規定在具有兩個連續子段的群組期間不進 行傳輸。 49 201004205 11、根據請求項8 汽万法,還白并. 僅在根據該閘控引導 . 射一功率控制指示 用於傳輪的子段中發 12、根據請求項 元率 3之方法, 該零速率具有〇bps的訊務位 13、根據請求項3夕士、+ 關的資料,該資科具有零速率包含與該零速率相 、頁大於〇 bps的訊務位元率。 二、根據請求項1之方法,還包括: 果確定保證該當前訊㈣㈣ 广用於傳輸中該零速率指示符具有非零資訊2 '根據請求項14> ^ Θ 14之方法,與該零速率相關的資料封包 、有1.8 kbps位元率的先前發射的訊框。 種用於對無線通道上的傳輸進行功率控制的方 '’包括以下步驟: I t —當剛紙框’其中將該訊框格式化成多個子段; 根據實體層協定來處理所接收的訊框,其中該處理包括 50 201004205 判斷是否正確地接收了所接收的訊框; 判斷所接收的當前訊框是否是一零速率訊框; 如果確定所接收的當前訊框是一零速率訊框,則不管是 否正確地接收了所接收的當前訊框,都不更新一外環功率控 制演算法。 I 、一種用於根據多種速率來處理資訊的裝置,該裝置 包括: ~ 系統消隱模組,用於·· 接收一包含訊務資訊的當前訊框; 判斷該當前訊框是否屬於一關鍵訊框類型; 如果確定該當前訊框屬於一關鍵訊框類型,則處理該 訊務資訊以用於傳輸; θ如果確定該當前訊框不屬於一關鍵訊框類型,則判斷 是否保證該當前訊框用於傳輸; 如果確定不保證該當前訊框用於傳輸,則處理一零速 率以用於傳輸,其中與該訊務眘沖a 六丁畀邊訊糈貧汛相比,該零速率具有 —減少的資訊位元率; 該裝置還包括: 發射機,用於發射該處理的結果以用於傳輸 51 201004205 19、㈣請求項17之裝置,智慧的消隱模組還用於·· 如果確疋保邊該當前訊框用於傳輸,則處理該訊務資訊 以用於傳輸。 根據°月求項19之裝置,該訊務資訊具有從以下各項 構成的-群財選出的—種訊框類型:全速率、半速率、四 刀之速率或八分之一速率訊框類型。 、, 根據叫求項20之裝置,該關鍵訊框類型包括全速率、 半速率、四分之—速率和關鍵的八分之一速率訊框類型。 广根據請求項20之裝置,該智慧的消隱模組用於通過 執仃以下㈣來判斷是否保證該當前訊框用於傳輸: 、判斷(訊框編號+訊框偏移)量對N進行模數運算是否等 :零’其中訊框編號是該當前訊框的序列編號,訊框偏移是 一偏移量,N是一非消隱間隔。 23、根據請求項21之裝置’該裂置用於通過執行以下操 作來處理零速率以用於傳輸: 使用閘控引導頻圖樣來減少該發射機的一引導頻信號 傳輸速率。 ° ; 24、根據請求項23之裝置’每一訊框包括多個子段,該 閘控弓丨導頻圖樣規定在該訊框的每隔一個子段中進行傳輸。 52 201004205 25、根據請求項24之裝置 閘控引導頻圖樣規定在具有兩 行傳輸。 每一訊框包括多個子段,該 個連續子段的群組期間不進 26、根據請求項23之裝置, 僅在根據該閘控引導頻圖樣 射一功率控制指示符。 該發射機還用於: 來指定用於傳輸的子段中發 27、根據請求項1 8之裝置 務位元率。 該零速率具有_ 〇 bps的訊 29、《請求項17之裝置,該智慧的消隱模組還用於: 如果確定保證該當前訊框用於傳輸,則處理一零速率 示付以用於傳輪,盆φ蜂愛坤玄杜__ η ^ 其中这苓逮率指不符具有非零資訊付一 农 „ ' ° 1-2-70 30、根據請求項28之裝置 括: 與5亥零速率相關的資料封包 具有1.8 kbps位元率的先前發射的訊框。 53 201004205 31 —種用於對—無線通道上的傳輸進行功率控制的类 置,包括: 利π裒 接收機’用於接收一當前訊框,其中將該訊框格式化 成多個子段; 一處理器,用於: 根據實體層協定來處理所接收的訊框; 判斷是否正確地接收了所接收的訊框; 判斷所接收的當前訊框是否是一零速率訊框; β如果確定所接收的當前訊框是一零速率訊框,則不管 確地接收了所接收的當前訊框,都不更新一外 功率控制演算法。 32 包括: 種用於根據多種速率來處理資訊的裝置,該裝置 系統消隱模組 以用於傳輸; 用於:處理一包含訊務資訊的當前訊框 發射機’用於:發射該處理的結果以甩於傳輸。 33:根據請求項32之裝置,該裝置包括: 用於使用一閘控引導頻圖樣來發射引導頻信 ’其儲存用於使電腦根據 體還儲存用於使電腦執行 34、一種電腦可讀取儲存媒體 多種速率來處理資訊的指令,該媒 54 201004205 以下操作的指令: 接收一包含訊務資訊的當前訊框; 判斷δ玄當前訊框是否屬於一關鍵訊框類型; 如果確定該當前訊框屬於一關鍵訊框類型,則處理 務資訊以用於傳輸; Λ 5 訊框類型’則判斷是 果確疋該當前訊框不屬於一關鍵 否保證該當前訊框用於傳輸; 、如果確定不保證該當前訊框用於傳輸,則處理— 以用於傳輸’其中與該、、 的資訊位元率。 ⑯貢訊4零斜相比具有-減少 35、根據請求 存用於使電腦執行以下2%可讀取儲存媒體,該媒體還儲 研1仃以下才呆作的指令: 如果破定俾< —& · 以用於傳輪。…“訊框用於傳輸,則處理該訊務資訊 55201004205 VII. Patent application scope: 1. A method for processing information according to multiple rates includes the following steps: X-French package receives a current frame containing traffic information; determines whether the current frame belongs to - key frame Type; if it is determined that the current frame belongs to - key frame information for transmission; 】 handle the a if it is determined that the current frame does not belong to a ^ ^ ^ ^ ^, key frame type, then determine whether to protect If the # does not guarantee that the current message (4) is transmitted, then the zero rate is processed for transmission, wherein the zero rate has - reduced information bit 7G rate; the result of the process is transmitted for transmission. 2. The method according to the request item is received at a data machine from a current frame including: a speech synthesizer. The method according to the request item further includes: processing the information information if It is determined that the current frame is used for the transfer for transmission. 4. According to the method of __ selected in the group consisting of claim 3, the traffic information has the following types of frame: full rate, half rate, quarter 04 201004205 a rate or eight points - Rate frame type. 5. According to the requirements of the semi-rate, quarter--4 method, the key frame type includes the full rate rate and the type of the frame. According to the method of 4, the processing for the transmission includes: formatting the data to be transmitted by using a physical layer frame format. 7. According to the method of claim 3, the step of determining whether to ensure that the current frame is used for transmission comprises: determining whether the amount of frame number + frame offset is modulo for N is zero. Is the sequence number of the current frame, the frame offset is an offset 'N is a non-blanking interval. 8. According to the party of <3>, the step of processing the rate for transmission includes: using a gated pilot pattern to reduce the rate of a pilot signal transmission. 9. The method of claim 8, wherein each frame comprises a plurality of sub-segments, and the gating pilot pattern is specified to be transmitted in every other sub-segment of the frame. 10. The method of claim 9, wherein each frame comprises a plurality of sub-segments, the gating pilot pattern specification not being transmitted during a group having two consecutive sub-segments. 49 201004205 11, according to the request item 8 steam method, also white and only in accordance with the gate control. Shooting a power control indication for the sub-segment for the transmission wheel 12, according to the method of requesting the item rate 3, the zero rate The traffic bit 13 with 〇bps, according to the data of the request item 3, +, the zero-rate includes a traffic bit rate corresponding to the zero rate and the page is greater than 〇bps. 2. The method of claim 1, further comprising: determining to ensure that the current message (4) (4) is widely used in the transmission, the zero rate indicator has a non-zero information 2 ' according to the method of request item 14 > ^ Θ 14, with the zero rate Related data packets, previously transmitted frames with a bit rate of 1.8 kbps. A method for power control of transmissions on a wireless channel includes the following steps: I t - when the paper frame 'forms the frame into a plurality of sub-segments; processes the received frame according to the physical layer protocol The processing includes 50 201004205 determining whether the received frame is correctly received; determining whether the received current frame is a zero rate frame; if it is determined that the received current frame is a zero rate frame, then An outer loop power control algorithm is not updated regardless of whether the received current frame is received correctly. I. A device for processing information according to a plurality of rates, the device comprising: ~ a system blanking module, configured to: receive a current frame containing traffic information; determine whether the current frame belongs to a key message If the current frame is determined to belong to a key frame type, the message information is processed for transmission; θ, if it is determined that the current frame does not belong to a key frame type, it is determined whether the current frame is guaranteed. For transmission; if it is determined that the current frame is not guaranteed for transmission, a zero rate is processed for transmission, wherein the zero rate has - compared to the traffic cautiousness The reduced information bit rate; the device further comprises: a transmitter for transmitting the result of the processing for transmitting 51 201004205 19, (4) the device of claim 17, the intelligent blanking module is also used for If the current frame is used for transmission, the traffic information is processed for transmission. According to the device of item 19 of the month, the traffic information has a type of frame selected from the group consisting of: full rate, half rate, four-blade rate or one-eighth rate frame type. . According to the device of claim 20, the key frame type includes a full rate, a half rate, a quarter rate, a rate, and a key eighth rate frame type. According to the device of claim 20, the smart blanking module is configured to determine whether the current frame is used for transmission by performing the following (4): determining (frame number + frame offset) amount for N Whether the modulo operation is equal: zero 'where the frame number is the sequence number of the current frame, the frame offset is an offset, and N is a non-blanking interval. 23. Apparatus according to claim 21 'This split is used to process the zero rate for transmission by performing the following operations: Using a gated pilot pattern to reduce a pilot signal transmission rate of the transmitter. 24. The device according to claim 23, wherein each frame comprises a plurality of sub-segments, the gating pilot pattern is specified to be transmitted in every other sub-segment of the frame. 52 201004205 25. According to the device of claim 24, the gated pilot frequency pattern is specified to have two lines of transmission. Each frame includes a plurality of sub-segments, and the group of consecutive sub-segments does not enter 26. According to the apparatus of claim 23, only one power control indicator is sampled according to the gating pilot pattern. The transmitter is further configured to: specify a sub-segment for transmission 27, according to the device bit rate of the request item 18. The zero rate has _ bps message 29, the device of claim 17, the smart blanking module is further configured to: if it is determined that the current frame is used for transmission, process a zero rate indication for use Passing the wheel, the pot φ bee love Kun Xuan Du __ η ^ where the catch rate means that there is a non-zero information to pay a farmer „ ' ° 1-2-70 30, according to the requirements of the device 28: with 5 Hai zero The rate-dependent data packet has a previously transmitted frame with a bit rate of 1.8 kbps. 53 201004205 31 - A type of power control for transmission over a wireless channel, including: a π 裒 receiver 'for receiving a current frame, wherein the frame is formatted into a plurality of sub-segments; a processor, configured to: process the received frame according to a physical layer protocol; determine whether the received frame is correctly received; Whether the current frame is a zero rate frame; if it is determined that the received current frame is a zero rate frame, the external power control algorithm is not updated regardless of whether the received current frame is received. 32 included : means for processing information according to a plurality of rates, the device system blanking module for transmission; for: processing a current frame transmitter containing traffic information 'for: transmitting the result of the processing 33. According to the device of claim 32, the device comprises: for transmitting a pilot message using a gated pilot pattern, the storage for causing the computer to be stored according to the body for causing the computer to execute 34, a The computer can read the storage medium at various rates to process the information. The medium 54 201004205 instructions for: operating a current frame containing the traffic information; determining whether the current frame of the δ Xuan belongs to a key frame type; The current frame belongs to a key frame type, and the processing information is used for transmission; Λ 5 frame type 'determines whether the current frame does not belong to a key or whether the current frame is used for transmission; If it is determined that the current frame is not guaranteed for transmission, then processing - for transmitting the information bit rate of the ', and the information. 16 Gongxun 4 zero skew Compared with the -reduced 35, according to the request to enable the computer to execute the following 2% readable storage media, the media also stores the instructions to stay below 1 :: If 破 俾 — <—& · for Passing the wheel.... "The frame is used for transmission, then the traffic information is processed 55
TW098119248A 2008-06-09 2009-06-09 Increasing capacity in wireless communications TWI424706B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US6011908P 2008-06-09 2008-06-09
US6040808P 2008-06-10 2008-06-10
US6154608P 2008-06-13 2008-06-13
US12/389,211 US8743909B2 (en) 2008-02-20 2009-02-19 Frame termination
US12/424,019 US9408165B2 (en) 2008-06-09 2009-04-15 Increasing capacity in wireless communications

Publications (2)

Publication Number Publication Date
TW201004205A true TW201004205A (en) 2010-01-16
TWI424706B TWI424706B (en) 2014-01-21

Family

ID=41400273

Family Applications (3)

Application Number Title Priority Date Filing Date
TW098119244A TW201004257A (en) 2008-06-09 2009-06-09 Increasing capacity in wireless communications
TW098119248A TWI424706B (en) 2008-06-09 2009-06-09 Increasing capacity in wireless communications
TW098119243A TW201004256A (en) 2008-06-09 2009-06-09 Increasing capacity in wireless communications

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW098119244A TW201004257A (en) 2008-06-09 2009-06-09 Increasing capacity in wireless communications

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW098119243A TW201004256A (en) 2008-06-09 2009-06-09 Increasing capacity in wireless communications

Country Status (14)

Country Link
US (3) US9014152B2 (en)
EP (3) EP2289192B1 (en)
JP (4) JP5254439B2 (en)
KR (4) KR101192458B1 (en)
CN (3) CN102057606B (en)
AU (3) AU2009257607A1 (en)
BR (3) BRPI0914970A2 (en)
CA (3) CA2724718A1 (en)
ES (1) ES2440552T3 (en)
HK (3) HK1157969A1 (en)
IL (3) IL209316A0 (en)
MX (3) MX2010013493A (en)
TW (3) TW201004257A (en)
WO (3) WO2009152132A1 (en)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8693383B2 (en) 2005-03-29 2014-04-08 Qualcomm Incorporated Method and apparatus for high rate data transmission in wireless communication
US9071344B2 (en) * 2005-08-22 2015-06-30 Qualcomm Incorporated Reverse link interference cancellation
US8630602B2 (en) * 2005-08-22 2014-01-14 Qualcomm Incorporated Pilot interference cancellation
US8611305B2 (en) * 2005-08-22 2013-12-17 Qualcomm Incorporated Interference cancellation for wireless communications
US8743909B2 (en) 2008-02-20 2014-06-03 Qualcomm Incorporated Frame termination
US9014152B2 (en) 2008-06-09 2015-04-21 Qualcomm Incorporated Increasing capacity in wireless communications
US8594252B2 (en) * 2005-08-22 2013-11-26 Qualcomm Incorporated Interference cancellation for wireless communications
CN101534474B (en) * 2008-03-14 2015-06-03 中兴通讯股份有限公司 Method for configuring single frequency network multicast broadcast frame
US9277487B2 (en) 2008-08-01 2016-03-01 Qualcomm Incorporated Cell detection with interference cancellation
US9237515B2 (en) 2008-08-01 2016-01-12 Qualcomm Incorporated Successive detection and cancellation for cell pilot detection
US9270423B2 (en) * 2008-10-22 2016-02-23 Zte (Usa) Inc. Reverse link acknowledgment signaling
US9160577B2 (en) 2009-04-30 2015-10-13 Qualcomm Incorporated Hybrid SAIC receiver
CN102422569B (en) 2009-05-08 2015-04-15 中兴通讯(美国)公司 Reverse link signaling techniques for wireless communication systems
US8787509B2 (en) 2009-06-04 2014-07-22 Qualcomm Incorporated Iterative interference cancellation receiver
US8831149B2 (en) 2009-09-03 2014-09-09 Qualcomm Incorporated Symbol estimation methods and apparatuses
CN102473159A (en) * 2009-11-04 2012-05-23 华为技术有限公司 System and method for media content streaming
US9509452B2 (en) 2009-11-27 2016-11-29 Qualcomm Incorporated Increasing capacity in wireless communications
US9673837B2 (en) 2009-11-27 2017-06-06 Qualcomm Incorporated Increasing capacity in wireless communications
US9686048B2 (en) * 2010-04-06 2017-06-20 Qualcomm Incorporated Delayed automatic repeat request (ARQ) acknowledgment
US8774074B2 (en) * 2011-11-02 2014-07-08 Qualcomm Incorporated Apparatus and method for adaptively enabling discontinuous transmission (DTX) in a wireless communication system
US9686815B2 (en) * 2011-11-02 2017-06-20 Qualcomm Incorporated Devices and methods for managing discontinuous transmission at a wireless access terminal
US9564920B2 (en) * 2012-02-23 2017-02-07 Qualcomm Incorporated Method and apparatus for mitigation of false packet decodes due to early decoding
US20130223364A1 (en) * 2012-02-24 2013-08-29 Qualcomm Incorporated Ack channel design for early termination of r99 uplink traffic
US20130223412A1 (en) * 2012-02-24 2013-08-29 Qualcomm Incorporated Method and system to improve frame early termination success rate
WO2013127322A1 (en) * 2012-02-27 2013-09-06 Qualcomm Incorporated Method and system for early termination of transmissions in response to ack of early decoding
US9473271B2 (en) * 2012-05-31 2016-10-18 Mediatek Inc. Telecommunications methods for increasing reliability of early termination of transmission
WO2014005258A1 (en) * 2012-07-02 2014-01-09 Qualcomm Incorporated Methods and apparatuses for enabling fast early termination of voice frames on the uplink
CN104471973B (en) * 2012-07-02 2019-03-01 高通股份有限公司 For realizing the method and apparatus of speech frame quickly terminated in advance on uplink
US20140080537A1 (en) * 2012-09-14 2014-03-20 Qualcomm Incorporated Apparatus and method for biasing power control towards early decode success
US8923171B2 (en) 2012-09-20 2014-12-30 Qualcomm Incorporated Apparatus and method for reducing UE's power consumption by controlling early decoding boundary
JP5284527B1 (en) * 2012-10-16 2013-09-11 パナソニック株式会社 Wireless communication apparatus and wireless communication system
US9036526B2 (en) 2012-11-08 2015-05-19 Qualcomm Incorporated Voice state assisted frame early termination
US9258781B2 (en) * 2012-12-03 2016-02-09 Qualcomm Incorporated Method and apparatus for early termination of an RX chain
WO2014100972A1 (en) * 2012-12-25 2014-07-03 华为技术有限公司 Data transmitting method, receiving method and device
US9468036B2 (en) * 2013-06-18 2016-10-11 Qualcomm Incorporated Reduced circuit-switched voice user equipment current using discontinuous transmissions on dedicated channels
US20150094113A1 (en) * 2013-09-27 2015-04-02 Mediatek Inc. Methods used in telecommunications system having early termination capability
US20150131428A1 (en) * 2013-11-12 2015-05-14 Electronics And Telecommunications Research Institute Method and apparatus for recovering error in rdm protocol
CN104601284B (en) * 2015-01-13 2019-02-12 哈尔滨海能达科技有限公司 A kind of method, apparatus and system of data information transfer
AU2015403585B2 (en) * 2015-07-27 2019-06-13 Telefonaktiebolaget Lm Ericsson (Publ) Blanking pattern indication for resource utilization in cellular radio communication
US10812216B2 (en) 2018-11-05 2020-10-20 XCOM Labs, Inc. Cooperative multiple-input multiple-output downlink scheduling
US10659112B1 (en) 2018-11-05 2020-05-19 XCOM Labs, Inc. User equipment assisted multiple-input multiple-output downlink configuration
US10756860B2 (en) 2018-11-05 2020-08-25 XCOM Labs, Inc. Distributed multiple-input multiple-output downlink configuration
US10432272B1 (en) 2018-11-05 2019-10-01 XCOM Labs, Inc. Variable multiple-input multiple-output downlink user equipment
KR20210087089A (en) 2018-11-27 2021-07-09 엑스콤 랩스 인코퍼레이티드 Non-coherent cooperative multiple input/output communication
US10756795B2 (en) 2018-12-18 2020-08-25 XCOM Labs, Inc. User equipment with cellular link and peer-to-peer link
US11063645B2 (en) 2018-12-18 2021-07-13 XCOM Labs, Inc. Methods of wirelessly communicating with a group of devices
US11330649B2 (en) 2019-01-25 2022-05-10 XCOM Labs, Inc. Methods and systems of multi-link peer-to-peer communications
US10756767B1 (en) 2019-02-05 2020-08-25 XCOM Labs, Inc. User equipment for wirelessly communicating cellular signal with another user equipment
US10686502B1 (en) 2019-04-29 2020-06-16 XCOM Labs, Inc. Downlink user equipment selection
US10735057B1 (en) 2019-04-29 2020-08-04 XCOM Labs, Inc. Uplink user equipment selection
US11411778B2 (en) 2019-07-12 2022-08-09 XCOM Labs, Inc. Time-division duplex multiple input multiple output calibration
US11411779B2 (en) 2020-03-31 2022-08-09 XCOM Labs, Inc. Reference signal channel estimation
CN116906125B (en) * 2023-09-06 2023-12-29 四川高速公路建设开发集团有限公司 Soft rock tunnel safety monitoring method and system based on data synchronous transmission algorithm

Family Cites Families (341)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US134656A (en) * 1873-01-07 Improvement in hemp-harvesters
US240400A (en) * 1881-04-19 Ooooood
US125037A (en) * 1872-03-26 Improvement in air-pumps
US212816A (en) * 1879-03-04 Improvement in bed-bottoms
GB233417A (en) 1924-02-06 1925-05-06 Peter William Willans Improvements in radio receiving apparatus
US5173703A (en) 1980-12-29 1992-12-22 Raytheon Company All weather strike system (AWTSS) and method of operation
US5173702A (en) 1980-12-29 1992-12-22 Raytheon Company All weather tactical strike system (AWTSS) and method of operation
US5185608A (en) 1980-12-29 1993-02-09 Raytheon Company All weather tactical strike system (AWISS) and method of operation
US5172118A (en) 1980-12-29 1992-12-15 Raytheon Company All weather tactical strike system (AWISS) and method of operation
FR2578703B1 (en) 1985-03-05 1987-06-26 Europ Agence Spatiale SELF-ADAPTIVE AND HYBRID DATA TRANSMISSION METHOD, PARTICULARLY FOR SPATIAL TELECOMMUNICATION
US4718065A (en) * 1986-03-31 1988-01-05 Tandem Computers Incorporated In-line scan control apparatus for data processor testing
JPS62239735A (en) 1986-04-11 1987-10-20 Iwatsu Electric Co Ltd Data transmission system
FR2616604B1 (en) 1987-06-15 1989-09-22 Lespagnol Albert EQUIPMENT FOR RECONSTRUCTING AND MULTIPLEXING FRAMES OF VARIOUS ORIGINS CONSISTING OF PACKETS OF FIXED LENGTH IN VARIABLE NUMBER
GB8910255D0 (en) 1989-05-04 1989-06-21 Stc Plc Data stream frame synchronisation
US7008439B1 (en) * 1990-09-21 2006-03-07 Datascope Investments Corp. Device and method for sealing puncture wounds
US5267249A (en) 1991-05-09 1993-11-30 Codex Corporation Device and method for asynchronous cyclic redundancy checking for digital receivers
ZA947317B (en) 1993-09-24 1995-05-10 Qualcomm Inc Multirate serial viterbi decoder for code division multiple access system applications
FR2713855B1 (en) 1993-12-15 1996-01-19 Alcatel Telspace Method for detecting a carrier recovery dropout and for determining the EB / NO ratio of a digital transmission link and device implementing this method.
FI107854B (en) 1994-03-21 2001-10-15 Nokia Networks Oy A method for eliminating interference in a CDMA cellular network
US5774496A (en) 1994-04-26 1998-06-30 Qualcomm Incorporated Method and apparatus for determining data rate of transmitted variable rate data in a communications receiver
TW271524B (en) 1994-08-05 1996-03-01 Qualcomm Inc
US5774450A (en) * 1995-01-10 1998-06-30 Matsushita Electric Industrial Co., Ltd. Method of transmitting orthogonal frequency division multiplexing signal and receiver thereof
US6147543A (en) 1996-01-19 2000-11-14 Motorola, Inc. Method and apparatus for selecting from multiple mixers
US5721745A (en) 1996-04-19 1998-02-24 General Electric Company Parallel concatenated tail-biting convolutional code and decoder therefor
US6067292A (en) 1996-08-20 2000-05-23 Lucent Technologies Inc Pilot interference cancellation for a coherent wireless code division multiple access receiver
US5751725A (en) 1996-10-18 1998-05-12 Qualcomm Incorporated Method and apparatus for determining the rate of received data in a variable rate communication system
FI105517B (en) 1996-10-18 2000-08-31 Nokia Networks Oy Reception method and receiver
US5960361A (en) 1996-10-22 1999-09-28 Qualcomm Incorporated Method and apparatus for performing a fast downward move in a cellular telephone forward link power control system
US5983383A (en) 1997-01-17 1999-11-09 Qualcom Incorporated Method and apparatus for transmitting and receiving concatenated code data
US5933768A (en) 1997-02-28 1999-08-03 Telefonaktiebolaget L/M Ericsson Receiver apparatus, and associated method, for receiving a receive signal transmitted upon a channel susceptible to interference
FI102866B1 (en) 1997-04-09 1999-02-26 Nokia Telecommunications Oy Reduction of interference in the mobile communication system
US6396867B1 (en) 1997-04-25 2002-05-28 Qualcomm Incorporated Method and apparatus for forward link power control
FI105306B (en) 1997-06-10 2000-07-14 Nokia Networks Oy Radio
US5894500A (en) 1997-06-13 1999-04-13 Motorola, Inc. Method and apparatus for canceling signals in a spread-spectrum communication system
FI103618B1 (en) 1997-07-04 1999-07-30 Nokia Telecommunications Oy Interpreting the received signal
DE19733120A1 (en) 1997-07-31 1999-02-18 Siemens Ag Method and radio station for data transmission
US5930366A (en) 1997-08-29 1999-07-27 Telefonaktiebolaget L M Ericsson Synchronization to a base station and code acquisition within a spread spectrum communication system
US7224962B1 (en) 1997-10-03 2007-05-29 Karen Jeanne Kite Remote operational screener
US5887035A (en) 1997-10-31 1999-03-23 Ericsson, Inc. Method for joint equalization and detection of multiple user signals
US6574211B2 (en) 1997-11-03 2003-06-03 Qualcomm Incorporated Method and apparatus for high rate packet data transmission
US6411799B1 (en) 1997-12-04 2002-06-25 Qualcomm Incorporated Method and apparatus for providing ternary power control in a communication system
US6274720B1 (en) * 1997-12-31 2001-08-14 Incyte Genomics, Inc. Human preproneurotensin/neuromedin N
US6545989B1 (en) * 1998-02-19 2003-04-08 Qualcomm Incorporated Transmit gating in a wireless communication system
JP2965202B1 (en) 1998-04-07 1999-10-18 日本電気株式会社 Multi-user receiving apparatus and CDMA communication system
US20030112370A1 (en) 2001-12-18 2003-06-19 Chris Long Adaptive expanded information capacity for communications systems
GB2337417A (en) 1998-05-15 1999-11-17 Motorola Ltd Comparison of received signals from a mobile
GB2339120B (en) 1998-06-30 2003-03-19 Nec Technologies Channel estimation device for digital telecommunications stations
KR100339034B1 (en) 1998-08-25 2002-10-11 삼성전자 주식회사 Reverse-loop closed-loop power control device and method in control-split state of code division multiple access communication system
US6798736B1 (en) * 1998-09-22 2004-09-28 Qualcomm Incorporated Method and apparatus for transmitting and receiving variable rate data
US6259730B1 (en) 1998-11-10 2001-07-10 Lucent Technologies, Inc. Transmit diversity and reception equalization for radio links
US6363086B1 (en) 1998-12-03 2002-03-26 Telefonaktiebolaget L M Ericsson (Publ) Method for combining signals on a digital interface
US6590881B1 (en) 1998-12-04 2003-07-08 Qualcomm, Incorporated Method and apparatus for providing wireless communication system synchronization
AU750979B2 (en) 1998-12-07 2002-08-01 Samsung Electronics Co., Ltd. Device and method for gating transmission in a CDMA mobile communication system
US6765531B2 (en) * 1999-01-08 2004-07-20 Trueposition, Inc. System and method for interference cancellation in a location calculation, for use in a wireless location system
JP3386738B2 (en) 1999-03-09 2003-03-17 株式会社エヌ・ティ・ティ・ドコモ Frame synchronization circuit and frame timing extraction method
KR100291039B1 (en) 1999-03-12 2001-05-15 윤종용 Method for synchronizing radio port and radio interface unit in wireless local loop
US6480558B1 (en) 1999-03-17 2002-11-12 Ericsson Inc. Synchronization and cell search methods and apparatus for wireless communications
US6169759B1 (en) * 1999-03-22 2001-01-02 Golden Bridge Technology Common packet channel
KR100374336B1 (en) 1999-04-12 2003-03-04 삼성전자주식회사 Apparatus and method for gated transmission in a cdma communications system
CN1186893C (en) 1999-04-12 2005-01-26 三星电子株式会社 Apparatus and method for gated transmission in CDMA communication system
WO2000070791A1 (en) 1999-05-12 2000-11-23 Samsung Electronics Co., Ltd. Method of providing burst timing for high-speed data transmission in a base station transceiver system of a mobile communication system
US6633601B1 (en) 1999-05-28 2003-10-14 Koninklijke Philips Electronics N.V. Method and device for frame rate determination using correlation metrics and frame quality indicators
EP1214808B1 (en) 1999-05-31 2004-03-10 Samsung Electronics Co., Ltd. Apparatus and method for gated transmission in cdma communication system
JP3210915B2 (en) 1999-06-14 2001-09-25 株式会社ワイ・アール・ピー移動通信基盤技術研究所 Direct spread receiver
PT1357673E (en) 1999-06-25 2006-10-31 Samsung Electronics Co Ltd APPARATUS AND METHOD FOR CODING AND MULTIPLEXING OF CHANNELS IN A CDMA COMMUNICATION SYSTEM
US6765894B1 (en) 1999-07-05 2004-07-20 Matsushita Electric Industrial Co, Ltd. Communication terminal apparatus and base station apparatus
JP2001257626A (en) 2000-03-13 2001-09-21 Matsushita Electric Ind Co Ltd Communication unit and communication method
JP4231593B2 (en) 1999-07-21 2009-03-04 株式会社日立コミュニケーションテクノロジー Communication system and communication method thereof
US6496706B1 (en) 1999-07-23 2002-12-17 Qualcomm Incorporated Method and system for transmit gating in a wireless communication system
US6603752B1 (en) 1999-07-29 2003-08-05 Ahmed Saifuddin Method and system for controlling transmission energy in a variable rate gated communication system
CN1118200C (en) 1999-08-10 2003-08-13 信息产业部电信科学技术研究院 Baseband processing method based on intelligent antoma and interference cancel
US6208699B1 (en) 1999-09-01 2001-03-27 Qualcomm Incorporated Method and apparatus for detecting zero rate frames in a communications system
JP2001078252A (en) 1999-09-07 2001-03-23 Japan Radio Co Ltd Cdma base station device
JP3573039B2 (en) 1999-12-10 2004-10-06 株式会社日立製作所 Wireless terminal position measuring method, terminal device using the same, and terminal position management station device
US7010001B2 (en) 2000-01-10 2006-03-07 Qualcomm, Incorporated Method and apparatus for supporting adaptive multi-rate (AMR) data in a CDMA communication system
JP2001267987A (en) 2000-01-14 2001-09-28 Matsushita Electric Ind Co Ltd Radio base station device and radio communication method
US7003114B1 (en) 2000-01-20 2006-02-21 Qualcomm Incorporated Method and apparatus for achieving crypto-synchronization in a packet data communication system
JP4316761B2 (en) 2000-02-09 2009-08-19 株式会社日立コミュニケーションテクノロジー Mobile communication system and radio base station apparatus
FR2805688A1 (en) 2000-02-28 2001-08-31 Mitsubishi Electric France METHOD FOR BALANCING TRANSPORT CHANNELS WITHIN A COMPOSITE CHANNEL, CORRESPONDING BASE DEVICE AND STATION
KR100319830B1 (en) 2000-02-29 2002-01-09 조정남 Apparatus and method for detecting a desired signal in CDMA receiver
JP3844934B2 (en) 2000-03-03 2006-11-15 株式会社日立コミュニケーションテクノロジー Base station apparatus, mobile communication system, and transmission power control method
EP1589456A1 (en) 2000-03-14 2005-10-26 Kabushiki Kaisha Toshiba Mri system center and mri system
EP1681775A3 (en) 2000-03-15 2008-12-03 Interdigital Technology Corporation Multi-user detection using an adaptive combination of joint detection and successive interference cancellation
US6744814B1 (en) 2000-03-31 2004-06-01 Agere Systems Inc. Method and apparatus for reduced state sequence estimation with tap-selectable decision-feedback
US6954800B2 (en) * 2000-04-07 2005-10-11 Broadcom Corporation Method of enhancing network transmission on a priority-enabled frame-based communications network
US6285682B1 (en) 2000-05-01 2001-09-04 Motorola, Inc. Method and apparatus for determining the frame rate of a frame
SE517039C2 (en) 2000-05-31 2002-04-02 Bjoern Ottersten Device and method for channel interference suppression
JP4330767B2 (en) 2000-06-26 2009-09-16 株式会社エヌ・ティ・ティ・ドコモ Communication method and base station apparatus performing automatic retransmission request
KR100516686B1 (en) 2000-07-08 2005-09-22 삼성전자주식회사 Hybrid automatic repeat request method for cdma mobile system
US6907092B1 (en) 2000-07-14 2005-06-14 Comsys Communication & Signal Processing Ltd. Method of channel order selection and channel estimation in a wireless communication system
US7006794B1 (en) * 2000-07-25 2006-02-28 Endwave Corporation Wireless point to multi-point communication apparatus and method
US7042869B1 (en) 2000-09-01 2006-05-09 Qualcomm, Inc. Method and apparatus for gated ACK/NAK channel in a communication system
US6977888B1 (en) 2000-09-14 2005-12-20 Telefonaktiebolaget L M Ericsson (Publ) Hybrid ARQ for packet data transmission
JP3522678B2 (en) 2000-09-27 2004-04-26 松下電器産業株式会社 Communication terminal device and demodulation method
US7051268B1 (en) 2000-09-29 2006-05-23 Qualcomm Incorporated Method and apparatus for reducing power consumption of a decoder in a communication system
CA2323164A1 (en) 2000-10-11 2002-04-11 Ramesh Mantha Method, system and apparatus for improving reception in multiple access communication systems
EP1204219B1 (en) 2000-10-11 2008-04-09 Samsung Electronics Co., Ltd. Apparatus and method for controlling transmit antenna array for physical downlink shared channel in a mobile communication system
WO2002033876A1 (en) 2000-10-21 2002-04-25 Samsung Electronics Co., Ltd Harq device and method for mobile communication system
WO2002033877A1 (en) 2000-10-21 2002-04-25 Samsung Electronics Co., Ltd Data transmitting/receiving method in harq data communication system
EP1806890B1 (en) 2000-11-01 2010-12-15 NTT DoCoMo, Inc. Adaptive equalization apparatus and method
JP3795743B2 (en) 2000-11-17 2006-07-12 株式会社エヌ・ティ・ティ・ドコモ Data transmission method, data transmission system, transmission device and reception device
US7167502B1 (en) 2000-11-22 2007-01-23 Skyworks Solutions, Inc. Zero-overhead symbol rate adaptation system for OVSF code
US6985516B1 (en) 2000-11-27 2006-01-10 Qualcomm Incorporated Method and apparatus for processing a received signal in a communications system
US6931030B1 (en) 2000-11-30 2005-08-16 Arraycomm, Inc. Training sequence with a random delay for a radio communications system
US6750818B2 (en) * 2000-12-04 2004-06-15 Tensorcomm, Inc. Method and apparatus to compute the geolocation of a communication device using orthogonal projections
US7746832B2 (en) * 2001-01-05 2010-06-29 Qualcomm Incorporated Method and apparatus for supporting adaptive multi-rate (AMR) data in a CDMA communication system
US7930170B2 (en) 2001-01-11 2011-04-19 Sasken Communication Technologies Limited Computationally efficient audio coder
US8014473B2 (en) 2001-01-26 2011-09-06 Qualcomm Incorporated Method and apparatus for detecting messages with unknown signaling characteristic
US6865394B2 (en) 2001-01-31 2005-03-08 Hitachi, Ltd Location detection method, location detection system and location detection program
JP3714910B2 (en) 2001-02-20 2005-11-09 株式会社エヌ・ティ・ティ・ドコモ Turbo receiving method and receiver thereof
US6470047B1 (en) 2001-02-20 2002-10-22 Comsys Communications Signal Processing Ltd. Apparatus for and method of reducing interference in a communications receiver
US8189556B2 (en) * 2001-03-21 2012-05-29 Lg Electronics Inc. Packet transmitting method in mobile communication system
RU2003131393A (en) 2001-03-28 2005-04-20 Квэлкомм Инкорпорейтед (US) DEVICE AND METHOD OF CHANNEL MANAGEMENT FOR "POINT-MULTI-POINT" SERVICES IN THE COMMUNICATION SYSTEM
EP1255368A1 (en) 2001-04-30 2002-11-06 Siemens Information and Communication Networks S.p.A. Method to perform link adaptation in enhanced cellular communication systems with several modulation and coding schemes
US6628707B2 (en) 2001-05-04 2003-09-30 Radiant Networks Plc Adaptive equalizer system for short burst modems and link hopping radio networks
US7170924B2 (en) * 2001-05-17 2007-01-30 Qualcomm, Inc. System and method for adjusting combiner weights using an adaptive algorithm in wireless communications system
US6741661B2 (en) 2001-05-22 2004-05-25 Qualcomm Incorporated Method and apparatus for peak-to-average power reduction
JP3875042B2 (en) 2001-05-25 2007-01-31 株式会社エヌ・ティ・ティ・ドコモ Interference cancellation system and interference cancellation method
KR100736476B1 (en) 2001-06-02 2007-07-06 엘지전자 주식회사 Method for generating indication code of rate indicator channel in a mobile communication and apparatus thereof
US6771934B2 (en) 2001-06-19 2004-08-03 Telcordia Technologies, Inc. Methods and systems for reducing interference across coverage cells
CN1448039A (en) 2001-06-21 2003-10-08 三菱电机株式会社 Wireless communication base station system, method, program and recording medium
US20030004784A1 (en) * 2001-06-29 2003-01-02 International Business Machines Corporation Methods and apparatus for automatic replenishment of inventory using embedded sensor system and electronic marketplace
US6798647B2 (en) 2001-07-16 2004-09-28 Hewlett-Packard Development Company, L.P. Portable computer with integrated PDA I/O docking cradle
JP3394530B2 (en) 2001-08-07 2003-04-07 松下電器産業株式会社 Cell search apparatus and cell search method
US6956893B2 (en) 2001-08-20 2005-10-18 Motorola, Inc. Linear minimum mean square error equalization with interference cancellation for mobile communication forward links utilizing orthogonal codes covered by long pseudorandom spreading codes
US6983166B2 (en) 2001-08-20 2006-01-03 Qualcomm, Incorporated Power control for a channel with multiple formats in a communication system
US6934264B2 (en) 2001-08-30 2005-08-23 Qualcomm, Incorporated Method and apparatus for acknowledging a reception of a data packet in a CDMA communication system
WO2003021905A1 (en) 2001-08-31 2003-03-13 Fujitsu Limited Receiver and receiving method for cdma communication system
US7031411B2 (en) 2001-09-19 2006-04-18 Telefonaktiebolaget L.M. Ericsson Methods and apparatus for canceling co-channel interference in a receiving system using spatio-temporal whitening
US7346126B2 (en) 2001-11-28 2008-03-18 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for channel estimation using plural channels
US7006795B2 (en) 2001-12-05 2006-02-28 Lucent Technologies Inc. Wireless communication system with interference compensation
JP4339692B2 (en) 2001-12-05 2009-10-07 クゥアルコム・インコーポレイテッド System and method for adjusting quality of service in a communication system
KR100426623B1 (en) 2001-12-22 2004-04-13 한국전자통신연구원 Apparatus and Method for Receiver for Cancelling Interference Pilot Signals from Neighboring Basestations
JP3840412B2 (en) 2001-12-28 2006-11-01 株式会社日立製作所 Wireless terminal device
KR100547793B1 (en) 2001-12-29 2006-02-01 삼성전자주식회사 Method for controlling reverse data transmission in wireless telecommunication system
KR100403728B1 (en) 2002-01-14 2003-10-30 삼성전자주식회사 Outer loop power control apparatus in mobile communication system and control method thereof
US7092436B2 (en) 2002-01-25 2006-08-15 Mitsubishi Electric Research Laboratories, Inc. Expectation-maximization-based channel estimation and signal detection for wireless communications systems
US7031742B2 (en) * 2002-02-07 2006-04-18 Qualcomm Incorporation Forward and reverse link power control of serving and non-serving base stations in a wireless communication system
JP3926641B2 (en) 2002-02-13 2007-06-06 株式会社エヌ・ティ・ティ・ドコモ Multi-input multi-output turbo receiver
JP4105567B2 (en) 2002-03-13 2008-06-25 株式会社エヌ・ティ・ティ・ドコモ MIMO receiver and receiving method thereof
US7406065B2 (en) 2002-03-14 2008-07-29 Qualcomm, Incorporated Method and apparatus for reducing inter-channel interference in a wireless communication system
EP1347611A1 (en) 2002-03-20 2003-09-24 Siemens Information and Communication Networks S.p.A. Data aided frequency synchronisation
FI113130B (en) 2002-04-17 2004-02-27 Nokia Corp Portable, foldable electronic device with telephone and camera functions
US7006439B2 (en) 2002-04-24 2006-02-28 Freescale Semiconductor, Inc. Method and apparatus for determining an upper data rate for a variable data rate signal
US7428278B2 (en) 2002-05-09 2008-09-23 Interdigital Technology Corporation Method and apparatus for parallel midamble cancellation
US6920504B2 (en) 2002-05-13 2005-07-19 Qualcomm, Incorporated Method and apparatus for controlling flow of data in a communication system
US20030223396A1 (en) 2002-05-31 2003-12-04 Tsai Shiau-He Shawn Method of indicating the forward link serving sector in high data rate CDMA systems
US7123663B2 (en) 2002-06-04 2006-10-17 Agence Spatiale Europeenne Coded digital modulation method for communication system
US7356005B2 (en) 2002-06-07 2008-04-08 Nokia Corporation Apparatus and associated method, by which to facilitate scheduling of data communications in a radio communications system
US7139340B2 (en) 2002-06-28 2006-11-21 Hitachi, Ltd. Robust OFDM carrier recovery methods and apparatus
US7881711B2 (en) 2002-07-08 2011-02-01 Qualcomm Incorporated Feedback system using dynamic decoding
JP3972755B2 (en) 2002-07-11 2007-09-05 株式会社日立製作所 Position measuring method, and terminal device and server used therefor
TWI335735B (en) 2002-07-19 2011-01-01 Interdigital Tech Corp Groupwise successive interference cancellation for block transmission with reception diversity
JP3471785B1 (en) 2002-07-31 2003-12-02 松下電器産業株式会社 Communication device and data retransmission control method
JP4116619B2 (en) 2002-08-01 2008-07-09 ノキア コーポレイション Transmission of multiple interleaved data flows
US7349379B2 (en) 2002-08-13 2008-03-25 Texas Instruments Incorporated Channel normalization
GB2403112B (en) 2002-08-16 2005-08-10 Toshiba Res Europ Ltd Channel estimation and training sequence determination
US7016327B2 (en) 2002-08-21 2006-03-21 Qualcomm Incorporated Method and system for communicating content on a broadcast services communication system
US7630321B2 (en) 2002-09-10 2009-12-08 Qualcomm Incorporated System and method for rate assignment
US8504054B2 (en) 2002-09-10 2013-08-06 Qualcomm Incorporated System and method for multilevel scheduling
JP2004112094A (en) 2002-09-13 2004-04-08 Matsushita Electric Ind Co Ltd Mobile station apparatus and method for controlling cell searching
US20040116122A1 (en) 2002-09-20 2004-06-17 Interdigital Technology Corporation Enhancing reception using intercellular interference cancellation
KR101011942B1 (en) 2002-09-23 2011-01-31 램버스 인코포레이티드 Method and apparatus for selectively applying interference cancellation in spread spectrum systems
JP4412926B2 (en) 2002-09-27 2010-02-10 株式会社エヌ・ティ・ティ・ドコモ Adaptive equalization apparatus and program thereof
US8165619B2 (en) 2002-10-02 2012-04-24 Qualcomm Incorporated Power allocation for power control bits in a cellular network
GB2394389B (en) 2002-10-15 2005-05-18 Toshiba Res Europ Ltd Equalisation apparatus and methods
US8213390B2 (en) 2002-10-24 2012-07-03 Qualcomm Incorporated Reverse link automatic repeat request
US8320301B2 (en) 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US7023880B2 (en) * 2002-10-28 2006-04-04 Qualcomm Incorporated Re-formatting variable-rate vocoder frames for inter-system transmissions
US7020484B2 (en) 2002-10-29 2006-03-28 Qualcomm Incorporated Controlling multiple modems in a wireless terminal using energy-per-bit determinations
US7333457B2 (en) * 2002-11-06 2008-02-19 Lucent Technologies Inc. High speed dedicated physical control channel for use in wireless data transmissions from mobile devices
US7460611B2 (en) 2002-11-28 2008-12-02 Sony Corporation Communication system, transmitting apparatus and transmitting method, receiving apparatus and receiving method, unbalance code mixing method and multiple code decoding method
JP3712070B2 (en) 2002-11-28 2005-11-02 ソニー株式会社 COMMUNICATION SYSTEM, TRANSMITTING APPARATUS AND TRANSMITTING METHOD, RECEIVING APPARATUS AND RECEIVING METHOD, CODE MULTIPLEXING METHOD, AND MULTICODE DECODING METHOD
CA2415105A1 (en) * 2002-12-24 2004-06-24 Voiceage Corporation A method and device for robust predictive vector quantization of linear prediction parameters in variable bit rate speech coding
CN100438640C (en) 2002-12-30 2008-11-26 Nxp股份有限公司 Sampling method and its device for down synchronous tracking in TDD radio communication
KR100606008B1 (en) 2003-01-04 2006-07-26 삼성전자주식회사 Apparatus for transmitting/receiving uplink data retransmission request in code division multiple access communication system and method thereof
US7280467B2 (en) 2003-01-07 2007-10-09 Qualcomm Incorporated Pilot transmission schemes for wireless multi-carrier communication systems
US8218573B2 (en) 2003-01-21 2012-07-10 Qualcomm Incorporated Power boosting in a wireless communication system
US7783312B2 (en) 2003-01-23 2010-08-24 Qualcomm Incorporated Data throughput improvement in IS2000 networks via effective F-SCH reduced active set pilot switching
US7627021B2 (en) 2003-01-30 2009-12-01 The Mitre Corporation Interference canceling CDMA mobile station receiver
US7187736B2 (en) 2003-02-13 2007-03-06 Motorola Inc. Reducing interference in a GSM communication system
US8391249B2 (en) 2003-02-18 2013-03-05 Qualcomm Incorporated Code division multiplexing commands on a code division multiplexed channel
US7200172B2 (en) 2003-02-27 2007-04-03 Nokia Corporation Method and apparatus for determining components of a channel impulse response for use in a SAIC equalizer
US7346103B2 (en) 2003-03-03 2008-03-18 Interdigital Technology Corporation Multi user detection using equalization and successive interference cancellation
US7123590B2 (en) 2003-03-18 2006-10-17 Qualcomm Incorporated Method and apparatus for testing a wireless link using configurable channels and rates
JP4121407B2 (en) 2003-03-20 2008-07-23 富士通株式会社 Receiver for demodulating OFDM symbols
US7295636B2 (en) 2003-03-28 2007-11-13 Texas Instruments Incorporated Linear single-antenna interference cancellation receiver
US7414989B2 (en) 2003-05-07 2008-08-19 Motorola, Inc. ACK/NACK determination reliability for a communication device
US7254158B2 (en) 2003-05-12 2007-08-07 Qualcomm Incorporated Soft handoff with interference cancellation in a wireless frequency hopping communication system
US7408913B2 (en) 2003-05-12 2008-08-05 Lucent Technologies Inc. Method of real time hybrid ARQ
SE0301447D0 (en) 2003-05-14 2003-05-14 Ericsson Telefon Ab L M A method in a telecommunication system
KR100526542B1 (en) * 2003-05-15 2005-11-08 삼성전자주식회사 Apparatus for transmitting/receiving data using transmit diversity scheme with multiple antenna in mobile communication system and method thereof
US7889804B2 (en) 2003-05-30 2011-02-15 Mohammad Jaber Borran Partially coherent constellations for multiple-antenna systems
US7466666B2 (en) * 2003-06-18 2008-12-16 Telefonaktiebolaget Lm Ericsson (Publ) Forward ACK/NACK channel for CDMA system
US8971913B2 (en) 2003-06-27 2015-03-03 Qualcomm Incorporated Method and apparatus for wireless network hybrid positioning
CN1864076A (en) * 2003-07-31 2006-11-15 日本电气株式会社 Terminal position identification method and system thereof
US7315527B2 (en) 2003-08-05 2008-01-01 Qualcomm Incorporated Extended acknowledgement and rate control channel
US8489949B2 (en) 2003-08-05 2013-07-16 Qualcomm Incorporated Combining grant, acknowledgement, and rate control commands
US7346314B2 (en) 2003-08-15 2008-03-18 Telefonaktiebolaget Lm Ericsson (Publ) Forward link transmit power control based on observed command response
US7564867B2 (en) * 2003-08-19 2009-07-21 Alcatel-Lucent Usa Inc. Enhanced uplink data transmission
JP4247532B2 (en) 2003-08-20 2009-04-02 国立大学法人東京工業大学 MIMO-OFDM reception system and receiver with high-precision timing recovery
KR100678182B1 (en) 2003-08-20 2007-02-02 삼성전자주식회사 Method and apparatus for uplink packet data service in asynchronous wcdma system
WO2005025088A1 (en) 2003-09-11 2005-03-17 Telefonaktiebolaget Lm Ericsson (Publ) Transmission time interval alignment in wcdma systems
US7724701B2 (en) 2003-09-30 2010-05-25 Qualcomm Incorporated Method and apparatus for controlling reverse link data rate of a mobile station in a communication system with reverse link common rate control
UA83256C2 (en) 2003-10-02 2008-06-25 Квелкомм Инкорпорэйтед Systems and methods for communication control data for multiple data channels using a single control channel (variants)
US6944245B2 (en) * 2003-10-17 2005-09-13 Motorola, Inc. Multi-pass interference reduction in a GSM communication system
KR20050040988A (en) 2003-10-29 2005-05-04 삼성전자주식회사 Communication method for frequency hopping ofdm based cellular system
ATE510363T1 (en) 2003-10-31 2011-06-15 Ericsson Telefon Ab L M MULTIPLE ACCESS DISRUPTION SUPPRESSION
US7058378B2 (en) 2003-11-18 2006-06-06 Interdigital Technology Corporation Method and apparatus for automatic frequency correction of a local oscilator with an error signal derived from an angle value of the conjugate product and sum of block correlator outputs
US20050111408A1 (en) 2003-11-25 2005-05-26 Telefonaktiebolaget Lm Ericsson (Publ) Selective interference cancellation
US7302009B2 (en) 2003-12-17 2007-11-27 Qualcomm Incorporated Broadcast transmission with spatial spreading in a multi-antenna communication system
US20050185364A1 (en) 2004-01-05 2005-08-25 Jory Bell Docking station for mobile computing device
KR100640352B1 (en) 2004-01-08 2006-10-30 삼성전자주식회사 Method for Minimizing Inter-cell Interference concerning BFN Offset Set-up in a GPS Supporting UTRAN System
KR100547723B1 (en) 2004-01-14 2006-01-31 삼성전자주식회사 Apparatus and Method for Recognizing Adjacent Cell Boundaries in Mobile Communication Systems
US7308056B2 (en) 2004-01-14 2007-12-11 Nokia Corporation Joint channel estimator for synchronous and asynchronous interference suppression in SAIC receiver
US7298806B1 (en) 2004-01-15 2007-11-20 Hellosoft Inc. Method and system for data-aided timing offset estimation for frequency selective fading channels
US7565111B2 (en) 2004-02-26 2009-07-21 Texas Instruments Incorporated Single-antenna interference cancellation receiver in time slot communication system
US20050220042A1 (en) 2004-02-26 2005-10-06 Samsung Electronics Co., Ltd. Method and apparatus for transmitting scheduling grant information using a transport format combination indicator in Node B controlled scheduling of an uplink packet transmission
US7339980B2 (en) 2004-03-05 2008-03-04 Telefonaktiebolaget Lm Ericsson (Publ) Successive interference cancellation in a generalized RAKE receiver architecture
BRPI0418600A (en) 2004-03-09 2007-05-02 Thomson Licensing rake type receiver / hybrid equalizer for spectral spreading systems.
CN1934838B (en) 2004-03-25 2011-09-07 棕榈公司 Method and communication device for interference cancellation in a cellular communication system
US7450924B1 (en) * 2004-03-25 2008-11-11 At&T Mobility Ii Llc Interference cancellation and receive diversity for single-valued modulation receivers
DE602004010301T2 (en) 2004-03-30 2008-09-18 Mitsubishi Denki K.K. MOBILE COMMUNICATION SENDING DEVICE AND RADIO COMMUNICATION SYSTEM
KR100724989B1 (en) 2004-04-14 2007-06-04 삼성전자주식회사 Apparatus and method for control transmission power in a communication system using orthogonal frequency division multiple access scheme
US20050232174A1 (en) 2004-04-19 2005-10-20 Texas Instruments Incorporated Linear interference cancellation receiver for edge systems
KR100646799B1 (en) 2004-05-06 2006-11-24 삼성전자주식회사 Method and apparatus for determining rate matching parameters for a transport channel in a mobile telecommunication system
US7724832B2 (en) 2004-05-27 2010-05-25 Texas Instruments Incorporated MIMO decoding
US7539917B2 (en) 2004-06-02 2009-05-26 Nokia Corporation Acknowledgement signaling for automatic repeat request mechanisms in wireless networks
US7979072B2 (en) 2004-06-04 2011-07-12 Nortel Networks Limited Method and system for soft handoff in mobile broadband systems
US7711377B2 (en) 2004-06-10 2010-05-04 Qualcomm Incorporated Efficient paging in a wireless communication system
CN101027850B (en) 2004-06-30 2011-09-28 高通股份有限公司 Method for canceling pilot interference in a wireless communication system
JP2006081126A (en) 2004-09-13 2006-03-23 Matsushita Electric Ind Co Ltd Mobile station device, and up-link transmission rate control method
KR100715910B1 (en) 2004-09-20 2007-05-08 삼성전자주식회사 Apparatus and method for cell search in mobile communication system using multiple access scheme
US20060068852A1 (en) 2004-09-30 2006-03-30 Doyle Matthew J System for reducing power consumption of a wireless terminal and increasing capacity of a wireless communication system
US7801248B2 (en) 2004-11-19 2010-09-21 Qualcomm Incorporated Interference suppression with virtual antennas
US7764726B2 (en) 2004-12-01 2010-07-27 Qualomm Incorporated Systems, methods, and apparatus for jammer rejection
KR100600817B1 (en) 2004-12-09 2006-07-18 한국전자통신연구원 Apparatus and method for timing error detection using implementation of cyclic correlator
JP2006180266A (en) 2004-12-22 2006-07-06 Sanyo Electric Co Ltd Radio base station, transmission power control method, and transmission power control program
US8442441B2 (en) * 2004-12-23 2013-05-14 Qualcomm Incorporated Traffic interference cancellation
US8422955B2 (en) 2004-12-23 2013-04-16 Qualcomm Incorporated Channel estimation for interference cancellation
US8406695B2 (en) 2004-12-23 2013-03-26 Qualcomm Incorporated Joint interference cancellation of pilot, overhead and traffic channels
US7706262B2 (en) 2005-09-30 2010-04-27 Alcatel-Lucent Usa Inc. Identifying data and/or control packets in wireless communication
US7454225B2 (en) 2004-12-28 2008-11-18 Lucent Technologies Inc. Method and apparatus for reducing transmitted energy in power-controlled systems based on early decoding
US7330524B2 (en) 2004-12-30 2008-02-12 Atheros Communications, Inc. Joint synchronization and impairments estimation using known data patterns
US20060146953A1 (en) 2004-12-30 2006-07-06 Balaji Raghothaman Method and apparatus for estimating transmit weights for multiple antennas
JP2006191279A (en) 2005-01-05 2006-07-20 Matsushita Electric Ind Co Ltd Radio communication device
US7508864B2 (en) 2005-02-14 2009-03-24 Intel Corporation Apparatus and method of canceling interference
US7706430B2 (en) 2005-02-25 2010-04-27 Nokia Corporation System, apparatus, and method for adaptive weighted interference cancellation using parallel residue compensation
US7529297B2 (en) 2005-03-01 2009-05-05 Broadcom Corporation Equalizer training method using re-encoded bits and known training sequences
US7512199B2 (en) 2005-03-01 2009-03-31 Broadcom Corporation Channel estimation method operable to cancel a dominant disturber signal from a received signal
CN100518153C (en) 2005-03-01 2009-07-22 美国博通公司 Method and device for carrying out balanced treatment for RF pulse
US20060203793A1 (en) 2005-03-09 2006-09-14 Lucent Technologies, Inc. Method for increasing capacity in a wireless communications system
WO2006096865A2 (en) 2005-03-09 2006-09-14 Sabeus, Inc. Multivariable control system with state feedback
US7567635B2 (en) 2005-03-10 2009-07-28 Comsys Communication & Signal Processing Ltd. Single antenna interference suppression in a wireless receiver
WO2006098665A1 (en) 2005-03-14 2006-09-21 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for improved handover by muting interfering nodes
KR100704355B1 (en) 2005-03-16 2007-04-09 가부시키가이샤 엔.티.티.도코모 Mobile station, mobile communication system, and mobile communication method
US9014192B2 (en) * 2005-03-21 2015-04-21 Qualcomm Incorporated Method and apparatus for improving data transmission reliability in a wireless communications system
JP4192956B2 (en) 2005-04-04 2008-12-10 日本電気株式会社 CDMA radio base station apparatus and encoding / decoding processing method
US7346011B2 (en) 2005-04-28 2008-03-18 Telefonaktiebolaget Lm Ericsson (Publ) Scheduling calls based on frame-offset selection
GB2427097B (en) 2005-05-03 2007-03-21 Ipwireless Inc Method and apparatus for transmitting uplink signalling information
EP1727307B1 (en) 2005-05-25 2011-05-04 Mitsubishi Electric R&D Centre Europe B.V. Coding matrix in a MIMO system
US8126066B2 (en) 2005-06-09 2012-02-28 Telefonaktiebolaget Lm Ericsson (Publ) Time and frequency channel estimation
US8199865B2 (en) 2005-06-28 2012-06-12 Telefonaktiebolaget L M Ericsson (Publ) Method and device for synchronization and channel estimation in a radio receiver
US7330737B2 (en) 2005-07-19 2008-02-12 Sony Ericsson Mobile Communications Ab Mobile phone multi-media cradle
US8493942B2 (en) 2005-08-01 2013-07-23 Qualcomm Incorporated Interference cancellation in wireless communication
US8611305B2 (en) 2005-08-22 2013-12-17 Qualcomm Incorporated Interference cancellation for wireless communications
US9071344B2 (en) 2005-08-22 2015-06-30 Qualcomm Incorporated Reverse link interference cancellation
US9014152B2 (en) 2008-06-09 2015-04-21 Qualcomm Incorporated Increasing capacity in wireless communications
US8743909B2 (en) 2008-02-20 2014-06-03 Qualcomm Incorporated Frame termination
US8594252B2 (en) 2005-08-22 2013-11-26 Qualcomm Incorporated Interference cancellation for wireless communications
US8630602B2 (en) 2005-08-22 2014-01-14 Qualcomm Incorporated Pilot interference cancellation
US7610197B2 (en) 2005-08-31 2009-10-27 Motorola, Inc. Method and apparatus for comfort noise generation in speech communication systems
WO2007029958A1 (en) 2005-09-05 2007-03-15 Electronics And Telecommunications Research Institute Apparatus for generating down link signal, and method and apparatus for cell search in cellular system
KR100767312B1 (en) 2005-09-05 2007-10-17 한국전자통신연구원 Apparatus for generating down link signal, and method and apparatus for cell search in cellular system
CN100433579C (en) 2005-09-13 2008-11-12 浙江华立通信集团有限公司 Estimiting method of signal interference ratio of forward basic service channel in FDD mode CDMA system
US7724816B2 (en) * 2005-09-13 2010-05-25 Freescale Semiconductor, Inc. Dynamic switching between maximum likelihood sequence estimation (MLSE) and linear equalizer for single antenna interference cancellation (SAIC) in a global system for mobile communications (GSM) system
US20070071145A1 (en) 2005-09-23 2007-03-29 Yona Perets Method and apparatus to correct channel quality indicator estimation
US7526304B2 (en) 2005-09-29 2009-04-28 Alcatel-Lucent Usa Inc. Method of increasing the capacity of enhanced data channel on uplink in a wireless communications system
WO2007045101A2 (en) 2005-10-21 2007-04-26 Nortel Networks Limited Multiplexing schemes for ofdma
US8489128B2 (en) 2005-10-31 2013-07-16 Qualcomm Incorporated Efficient transmission on a shared data channel for wireless communication
US8207914B2 (en) 2005-11-07 2012-06-26 Global Oled Technology Llc OLED display with aging compensation
US7924753B2 (en) 2005-11-15 2011-04-12 Qualcomm Incorporated Method and system for decoding
GB2432484B (en) 2005-11-22 2007-12-27 Ipwireless Inc Cellular communication system and method for broadcast communication
US7545893B2 (en) 2005-11-28 2009-06-09 Telefonaktiebolaget L M Ericsson (Publ) Single antenna interference cancellation via complement subspace projection in spatial-temporal expansion of noise estimation
US8396141B2 (en) * 2005-11-29 2013-03-12 Telefonaktiebolaget L M Ericsson (Publ) Efficient cell selection
US7539272B2 (en) 2005-11-30 2009-05-26 Freescale Semiconductor, Inc. Frequency error estimation and correction in a SAIC linear equalizer
US20070127608A1 (en) 2005-12-06 2007-06-07 Jacob Scheim Blind interference mitigation in a digital receiver
KR100715204B1 (en) 2005-12-09 2007-05-07 삼성전자주식회사 Apparatus and method for communicating high speed shared control channel in wideband wireless communication system
CN100586052C (en) 2005-12-17 2010-01-27 华为技术有限公司 Method and system for transmitting data
WO2007092887A2 (en) 2006-02-08 2007-08-16 Agere Systems Inc. Mac-hs processing in an hsdpa-compatible receiver in a 3g wireless network
US8884972B2 (en) 2006-05-25 2014-11-11 Qualcomm Incorporated Graphics processor with arithmetic and elementary function units
EP2036237A2 (en) 2006-06-30 2009-03-18 QUALCOMM Incorporated Ack/nack slot positioning/complexity codes for quick decoding
TW200807965A (en) 2006-07-21 2008-02-01 Benq Corp Receiving of data with adaptive code rate over wireless network
US7599454B2 (en) 2006-07-24 2009-10-06 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for symbol alignment in diversity signal reception
JP2008053889A (en) 2006-08-23 2008-03-06 Matsushita Electric Ind Co Ltd Handover method, base station, terminal station, program recording medium and integrated circuit
WO2008027192A2 (en) 2006-08-25 2008-03-06 Thomson Licensing Methods and apparatus for reduced resolution partitioning
US20080080406A1 (en) 2006-09-29 2008-04-03 Motorola, Inc. Method and device for increasing capacity of tdd wireless communication systems
US8259773B2 (en) 2006-10-31 2012-09-04 Alcatel Lucent Method and apparatus for multiplexing code division multiple access and single carrier frequency division multiple access transmissions
KR101319877B1 (en) 2006-11-01 2013-10-18 엘지전자 주식회사 Method For Allocating Resource, And Method For Transmitting Resource Allocating Information
JP5098329B2 (en) 2006-12-26 2012-12-12 富士通株式会社 Mobile communication device
JP2008199493A (en) 2007-02-15 2008-08-28 Seiko Epson Corp Pulse detection circuit, envelope detection circuit, electronic device, and pulse detection method
EP2138004B1 (en) 2007-03-12 2013-07-03 Nokia Corporation Techniques for reporting and simultaneous transmission mechanism to improve reliability of signaling
US8332710B2 (en) 2007-03-21 2012-12-11 Qualcomm Incorporated Packet-asynchronous hybrid-ARQ
US7852915B2 (en) 2007-03-21 2010-12-14 Freescale Semiconductor, Inc. Adaptive equalizer for communication channels
JP4697172B2 (en) 2007-04-04 2011-06-08 ソニー株式会社 Communication method
JP2008278338A (en) 2007-05-01 2008-11-13 Matsushita Electric Ind Co Ltd Mimo receiver
US7961782B2 (en) 2007-06-04 2011-06-14 Infineon Technologies Ag Interference suppression processing unit and a method of suppressing interference in wireless data communication
US7796698B2 (en) 2007-06-04 2010-09-14 Telefonaktiebolaget Lm Ericsson (Publ) Interference suppression in a multicarrier receiver
US8259848B2 (en) 2007-06-08 2012-09-04 Qualcomm Incorporated Hierarchical modulation for communication channels in single-carrier frequency division multiple access
JP5019966B2 (en) 2007-06-19 2012-09-05 株式会社エヌ・ティ・ティ・ドコモ User apparatus, base station apparatus, and channel state information communication method
US7907685B2 (en) * 2007-08-23 2011-03-15 Freescale Semiconductor, Inc. GMSK-receiver with interference cancellation
KR20070104633A (en) 2007-08-24 2007-10-26 텔레폰악티에볼라겟엘엠에릭슨(펍) Method and apparatus for protecting a core network
US7912113B2 (en) 2007-10-05 2011-03-22 Motorola Mobility, Inc. Techniques for estimating received signal strength and carrier to interference and noise ratio in OFDM systems
US8717979B2 (en) * 2007-10-25 2014-05-06 Telefonaktiebolaget Lm Ericsson (Publ) Multiplexing multiple unsolicited grant service (UGS) users onto a same radio resource
US7649839B2 (en) 2007-11-21 2010-01-19 Motorola, Inc. Method and device for managing data rate in a communication system
US8059767B2 (en) 2007-12-12 2011-11-15 Harris Corporation Communications device and related method that detects symbol timing
EP2071785B1 (en) 2007-12-14 2021-05-05 Vodafone Holding GmbH Blind channel estimation
CN101465689A (en) 2007-12-21 2009-06-24 鼎桥通信技术有限公司 Method and device for transmitting, sending and receiving control information
US7933256B2 (en) 2008-02-27 2011-04-26 Qualcomm Incorporated Coherent single antenna interference cancellation for GSM/GPRS/EDGE
US8787384B2 (en) 2008-05-05 2014-07-22 Qualcomm Incorporated Pre-emptive acknowledgement for data transmission in a communication system
US20100046660A1 (en) 2008-05-13 2010-02-25 Qualcomm Incorporated Interference cancellation under non-stationary conditions
GB2461253B (en) 2008-05-23 2012-11-21 Ingenia Holdings Ltd Linearisation of scanned data
US9277487B2 (en) 2008-08-01 2016-03-01 Qualcomm Incorporated Cell detection with interference cancellation
US9237515B2 (en) 2008-08-01 2016-01-12 Qualcomm Incorporated Successive detection and cancellation for cell pilot detection
US8031762B2 (en) 2008-08-04 2011-10-04 Redpine Signals, Inc. Stream weight estimation and compensation in SIMO/MIMO OFDM receivers
US8503591B2 (en) 2008-08-19 2013-08-06 Qualcomm Incorporated Enhanced geran receiver using channel input beamforming
US8509293B2 (en) 2008-08-19 2013-08-13 Qualcomm Incorporated Semi-coherent timing propagation for GERAN multislot configurations
EP2328670B1 (en) 2008-08-26 2017-04-12 Huawei Technologies Co., Ltd. System and method for wireless communications
KR101100226B1 (en) 2008-09-05 2011-12-28 엘지전자 주식회사 Method of transmitting and receving frame in a wireless communication system
WO2010035969A2 (en) 2008-09-23 2010-04-01 Lg Electronics Inc. Apparatus and method of transmitting and recieving data in soft handoff of a wireless communication system
US20100097955A1 (en) 2008-10-16 2010-04-22 Qualcomm Incorporated Rate determination
US8428109B2 (en) 2009-01-21 2013-04-23 Via Telecom Inc. Adaptive acknowledging and power control
US9160577B2 (en) 2009-04-30 2015-10-13 Qualcomm Incorporated Hybrid SAIC receiver
US8787509B2 (en) 2009-06-04 2014-07-22 Qualcomm Incorporated Iterative interference cancellation receiver
US8619928B2 (en) 2009-09-03 2013-12-31 Qualcomm Incorporated Multi-stage interference suppression
US8831149B2 (en) 2009-09-03 2014-09-09 Qualcomm Incorporated Symbol estimation methods and apparatuses
US9673837B2 (en) 2009-11-27 2017-06-06 Qualcomm Incorporated Increasing capacity in wireless communications
US9509452B2 (en) 2009-11-27 2016-11-29 Qualcomm Incorporated Increasing capacity in wireless communications
US8588119B2 (en) 2010-01-21 2013-11-19 Robert Bosch Gmbh Asynchronous low-power multi-channel media access control
US8473804B2 (en) 2010-04-26 2013-06-25 Via Telecom, Inc. Enhanced wireless communication with HARQ
US8396440B2 (en) 2010-06-22 2013-03-12 Qualcomm Incorporated Signal reception method and apparatus for non-stationary channels

Also Published As

Publication number Publication date
CA2725792A1 (en) 2009-12-17
KR101192458B1 (en) 2012-10-17
EP2289192A1 (en) 2011-03-02
BRPI0914970A2 (en) 2015-10-20
EP2289192B1 (en) 2013-11-20
US9408165B2 (en) 2016-08-02
AU2009257607A1 (en) 2009-12-17
WO2009152135A1 (en) 2009-12-17
WO2009152138A2 (en) 2009-12-17
TW201004257A (en) 2010-01-16
CN102057605A (en) 2011-05-11
TW201004256A (en) 2010-01-16
CA2724706C (en) 2016-08-09
US9014152B2 (en) 2015-04-21
CA2724706A1 (en) 2009-12-17
KR101214184B1 (en) 2012-12-21
WO2009152132A1 (en) 2009-12-17
JP2014096799A (en) 2014-05-22
CN102057605B (en) 2015-07-22
IL209359A0 (en) 2011-01-31
MX2010013495A (en) 2010-12-21
MX2010013496A (en) 2010-12-21
KR20110017435A (en) 2011-02-21
JP2011523842A (en) 2011-08-18
KR101192529B1 (en) 2012-10-17
ES2440552T3 (en) 2014-01-29
CA2724718A1 (en) 2009-12-17
HK1157969A1 (en) 2012-07-06
EP2289194B1 (en) 2013-03-27
HK1157967A1 (en) 2012-07-06
US20090303968A1 (en) 2009-12-10
KR20110017436A (en) 2011-02-21
JP2011523841A (en) 2011-08-18
BRPI0915011B1 (en) 2020-11-10
TWI424706B (en) 2014-01-21
MX2010013493A (en) 2010-12-21
IL209316A0 (en) 2011-01-31
HK1157968A1 (en) 2012-07-06
BRPI0915012A2 (en) 2015-10-27
JP5254439B2 (en) 2013-08-07
JP5868928B2 (en) 2016-02-24
CN102057606A (en) 2011-05-11
EP2289194A2 (en) 2011-03-02
WO2009152138A3 (en) 2010-02-04
JP2011524150A (en) 2011-08-25
EP2289193A1 (en) 2011-03-02
KR20110016499A (en) 2011-02-17
US20090303976A1 (en) 2009-12-10
CN102057607B (en) 2016-02-03
AU2009257604A1 (en) 2009-12-17
IL209357A0 (en) 2011-01-31
AU2009257601A1 (en) 2009-12-17
KR101266070B1 (en) 2013-05-21
KR20120098896A (en) 2012-09-05
BRPI0915011A2 (en) 2015-10-27
US20090304024A1 (en) 2009-12-10
JP5345684B2 (en) 2013-11-20
CN102057607A (en) 2011-05-11
US8995417B2 (en) 2015-03-31
CN102057606B (en) 2016-03-02
AU2009257604B2 (en) 2013-10-17

Similar Documents

Publication Publication Date Title
TW201004205A (en) Increasing capacity in wireless communications
EP2245780B1 (en) Increasing capacity in wireless communications
RU2487480C2 (en) Increasing capacity in wireless communication