TW200948333A - Automatically displaceable floor-dust collector and object with a sensor arrangement - Google Patents

Automatically displaceable floor-dust collector and object with a sensor arrangement Download PDF

Info

Publication number
TW200948333A
TW200948333A TW098107533A TW98107533A TW200948333A TW 200948333 A TW200948333 A TW 200948333A TW 098107533 A TW098107533 A TW 098107533A TW 98107533 A TW98107533 A TW 98107533A TW 200948333 A TW200948333 A TW 200948333A
Authority
TW
Taiwan
Prior art keywords
vacuum cleaner
article
light
lens
photosensitive element
Prior art date
Application number
TW098107533A
Other languages
Chinese (zh)
Other versions
TWI610650B (en
Inventor
Frank Meyer
Mario Wallmeyer
Daniel Zuber
Harald Windorfer
Martin Meggle
Original Assignee
Vorwerk Co Interholding
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vorwerk Co Interholding filed Critical Vorwerk Co Interholding
Publication of TW200948333A publication Critical patent/TW200948333A/en
Application granted granted Critical
Publication of TWI610650B publication Critical patent/TWI610650B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • G01S17/48Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/009Carrying-vehicles; Arrangements of trollies or wheels; Means for avoiding mechanical obstacles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • G05D1/0248Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means in combination with a laser
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Measurement Of Optical Distance (AREA)
  • Electric Vacuum Cleaner (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

The invention relates to an automatically displaceable floor-dust collector (1) with electromotive wheels (3), a housing, a dust collection container and a cover (6), wherein the floor-dust collector (1) is provided with an obstacle recognition system. Further the invention relates to a device with a horizontal and / or ver-tical extension, wherein a sensor arrangement (9) is provided. The obstacle rec-ognition system or the sensor arrangement (9) is an optical triangulation system (T) with a light source (10, 10') and a receiver device (E) with an optical element in the form of a receiver lens (12) for the reflected light beams and a light-sensitive element (11). In order to improve such floor-dust collector or such device in view of a remote range distance measurement, it is proposed that the light beams are influenced such that the beams being focused by the receiver lens (12) greater distances of the hitting light beams onto the light-sensitive element (11) occurs at least in view of actual greater distances to the obstacles (13, 13').

Description

200948333 六、發明說明: 【發明所屬之技術領域】 本發明係有關一種自走式吸塵器,其包括電動馬達驅動的 輪子、吸塵器殼體、集塵容器、及吸塵器罩體,該吸塵器具 有一個障礙物辨識裝置,其為一個光學三角測量系統,包括 一個光源及一個接收單元’而該接收單元包含一個反射光束 接收透鏡及一個光敏元件。 本發明尚有關一種具有水平及/或垂直長度的物件,該物 件上設有一個感測裝置,以偵測障礙物,而該感測裝置為一 個光學三角測量系統,包括一個光源及一個接收單元,該接 收單元則包含一個反射光束接收透鏡及一個光敏元件。 【先前技術】 此種吸塵器為習知型式,例如參閱DE 10242 257 A卜其 障礙物辨識裝置之工作方式及技術完全包含於本案中。 此種δ又有感測裝置以偵測障礙物的物件同樣為習知型 式此處之物件例如為可行駛的物件,其感測襄置可及時偵 則到障礙⑱而避免^擊該障礙物。此種物件亦可為機動式 物件’該感測裝置可偵測到接近物件的障礙物。此種物件尚 可為將其定位於一空間中之測量裝置。 該物件為可在-空間中行駛的自走式吸麵時,需可卿 ^間界限’而騎的避開。此處之障礙物_-般多使用走 學距離感測器。辨識出吸塵器路徑上—障礙物時,光學感測 098107533 200948333 器之接收信號被一微處理器處理,而該微處理器停止輪子之 轉動,或使吸塵器採取其他適當反應。 阳 三角測量系統為習知,-光點以不同的距離被—接 構成的光學元件成像在綠元件之不同位置。由元件的輸= .信號可求出距離。此種光學三角測量系統主要用於近距離之 測量,其較不適用於遠距離之測量,因為,障礙物與物件或 吸塵器的轉增加時’求取麟之雜曲線會騎化,而無 ❹法準確求出障礙物的距離。 …、 【發明内容] X ^發^之目的在於提供—種自走式吸塵器及—種具感測 、之件,改良其光學三角測量系統之障礙物距離測量, 使其在遠距離範圍亦可準確測量距離。 本目的由申請專利範圍第1項及第2項之標的物達成’光 束在接收單元中受到影響,使得,至少實際距離較遠的障礙 ❹物之光束’在被接收透鏡聚束後,以較大間距射入光敏元 故至少在遠距離範圍,亦即’與障礙物實際距離較遠的 •範圍,相較於先前技術,得到較陡的特性曲、線,而可準確求 •㈣距離_之障礙物。校正係在光束到達綠元件之前進 行,亦即’在設有光學元件的接收單元巾。此處並不使用昂 貴的電子裝置以處理光敏元件發出的信號,如此對吸塵器特 有j因為&種吸塵器通常具有有限的體積。本發明使 得距紅號之力析較為簡單,且不Μ干擾。接收單元對光 098107533 5 200948333 束的影響較佳局限於遠距離範圍,故可使_離_之特性 曲線配合近距離範圍之特性曲線。該影響亦可涵蓋整個測量 範圍,亦即’近距離與遠距離範圍。故可藉接收單元對光束 的影響而影響障礙物距離與光敏元件光束定位之正比關係 特性曲、線。為反比關係特性曲線日夺,該影響至少可校正曲 線’使得’兩遠距轉礙物實際間距可被綠元件上接收器 所測得光點之間距表示出來。光敏元件之錢除了求出與物 體之距離外,尚可提供物體表面特性及反射度之資料,而可 配合光敏元件上的絲,求出產生的電流。 、明本發明之其他特徵,其主要依據申請專利範圍 第1或2項之標的物或其他巾請專利範圍之特徵。其亦可只 依據申%專利範㈣〗或2項或其他申請 項特徵或為獨立。 固心早獨 ^明-較佳實施方式中,光敏元件人射光之較大間距, 所反射的光束:==::=量障礙物 ::rr,先束折射, 範圍之距二====曲線被修正,使得,遠距離 線更陡。在另—實施巧=準確性。純正魏使得特性曲 外,尚設有另-透鏡。接於除了接收透鏡及校正透鏡之 098107533 透鏡設作聚光透鏡時,該透鏡可 200948333 使反射光聚束。由於此設計,光束之聚光及聚束分開由前後 兩透鏡達成。校正透鏡設在聚束透鏡之後方。 —為使聚束及通過校正透鏡之光點特別良好地成像在光敏 -元件y本發明—較佳實施方式中,接收單元包含一光圈。 接收單70亦可包含多個此種光圈。該光圈料束方向來看位 在第-透鏡(亦即,接收透鏡)之前方,並位在兩透鏡(例如, 接收透鏡與;kiEif鏡)、或最後-透鏡(例如,校正透鏡) ❹ 敏元件之間。 亦為有利的疋,使接收單元包含一個濾光元件。該濾光元 件對測量所❹光束之波長具最大透雜,非屬該光束之波 長則會被濾光元件濾除。藉此減少其他光源(例如,環境光) 之干擾,而提咼光敏元件之效率。濾光元件可選擇設置在第 一透鏡前方、兩透鏡之間、或最後一透鏡與光敏元件之間。 在另一貫施方式中,可使光敏元件或一個光學元件,例如, ❹透鏡或光圈,被塗佈或染色,以過濾反射光,該塗佈或染色 則與濾光元件的功能相同。 - 視與欲測量物體或欲偵測障礙物之距離及其表面特性(反 • 射度)而定,反射到光敏元件之光量會使其達到光電飽和。 此時之信號分析為無意義,會出現測量誤差。該問題尤其會 出現在上述之吸塵器,因為,該處之材料具寬光譜(例如, 淡色反光壁紙、或深色不反光織物)且光變化強烈(例如, 夏曰直接的太陽光、及陰暗的空間),其皆不得干擾光敏元 098107533 7 200948333 件。為解決該賴,本發明修正接收單元之至少—個透鏡。 該修正為使透鏡之光傳輸主動面光學純化。亦即,使其不讓 光通過。飽和的問題主要出現在近距離範圍,由於三角測量 系統之結構’該處被接收單元接收的光量多於遠距離範圍。 在-較佳實施方式巾,光學純化係彻透鏡之機械切割。光 學鈍化亦可藉塗佈-層阻光或不透光層而達成。透鏡亦可被 梯度染色,使得’近距離範_林主動面之顏色較深,遠 距離範圍則具有最大光傳輸。只有在近距離範圍為光學主動 遠距離範圍無光傳輸的透鏡部分進行光學鈍化,才有意義。 故,遠距離範圍得到高光強度,近距離範圍則可避免飽和。 亦可使近距離範圍的部分不完全鈍化,例如,以塗佈進行修 正,使得,只有一部分的光能量可以通過。最理想是使光敏 元件遠距離範圍的亮度分佈為100%,近距離範圍則例如為 20至90% ’尤其例如為5〇%。 除了一般光學用途之全透鏡外,在本發明另一實施方式 中,亦可使用菲涅爾透鏡(Fresnel lens)。此種菲涅爾透鏡相 較於一般之全透鏡具有較小的厚度、重量及體積。亦可使用 全息透鏡(holographic lens)。 為進一步降低光敏元件對干擾光(例如,環境光)之敏感 度,本發明一實施方式中,三角測量系統之光源另設一分開 的光感測器。光敏元件後方的分析電子裂置,在啟動光源後 由分開的光感測器得到一信號’光源之信號曲線可被與光敏 098107533 8 200948333 元件之信號曲線同步化。分開的光感測器在此處為光源之分 開組件,但,光感測器亦可整合在光源中,故,在另一較佳 實施方式中’光源為整合有監測二極體的雷射二極體。 為利用光學三角測量系統達到自走式吸塵器及可行駛物 件之導航’其中’導航只使用一個感測裝置,可使三角測量 系統對一蚕直軸旋轉,以避免死角。故,只藉一個三角測量 系統或一個感測裝置’即可偵測吸塵器或物件整個周圍的障 ❺礙物。三角測量系統對垂直軸的旋轉較佳為360。以上。在 一實施方式中’三角測量系統設在一個可相對於固定的吸塵 器殼體對一垂直軸旋轉的板體上。該板體例如為覆蓋吸塵器 底盤的罩體。亦可使覆蓋底盤的整個罩體構成一個轉盤。除 了可連續旋轉的三角測量系統之外,亦可使該三角測量系 統、或承載三角測量系統的轉盤進行擺動’而掃描一給定角 度之範圍。藉擺動裝置之適當設計,亦可使擺動角度達到 ❹ 360。以上。使用一個以上的三角測量系統時,角度可小於 360。。 • 在一較佳實施方式中,轉盤的驅動係利用一個分開的電動 * 馬達,而該電動馬達係設在吸塵器或物件中。電動馬達可經 由齒輪或牽引傳動裝置而驅動轉盤旋轉。有利的是,使轉盤 的驅動連結輪子的驅動。故,玎使吸塵器的動作與周圍環境 的掃描相結合。該結合例如為利用齒輪或牽引傳動裝置。 旋轉或擺動的轉盤及放置於其上的二角測量系統,被一個 098107533 9 200948333 罩體所覆蓋。旋轉件於是被隱藏而不受外界影響。為確保三 角測量系統之功能正常,蓋板或罩體至少部分為透明。並設 有可發出光束及接收光束的部分。轉盤之三角測量系統設在 罩體透明部分。在另一實施方式中,罩體透明部分被設作成 光圈及/或滤光元件,例如,利用透明部分之適當塗層。該 罩體透明部分之處理,可改良光點在光敏元件上的成像及/ 或減少干擾'例如5環境光。 轉盤上可設置多個三角測量系統,其均予分佈在轉盤圓周 上。此外,轉盤除了三角測量系統之外,尚可設置其他監控 元件,例如,超音波感測器或照相機系統。 設置可旋轉或擺動的三角測量系統時,可對其供電。並可 將距離資料傳輸至吸塵器或物件。此處,轉盤上三角測量系 統之供電,係利用集電圈/電刷。電刷可設在轉盤上,集電 圈則設在相對於轉盤為固定的吸塵器上。但亦可相反設置。 供電亦可利用轉盤與吸塵器殼體之相對運動。此處,轉盤與 吸塵器殼體構成一個發電機,例如,使吸塵器之一固定軸構 成一定子,而設有極性交替變換的永久磁鐵或電磁鐵,轉盤 則構成一轉子而設有線圈。轉盤旋轉時,線圈感應產生電 流,而對三角測量系統供電。此種發電方式與同步發電機之 作用方式相同。亦可使用其它發電原理,例如,非同步發電 機。 不只使用轉盤,使用固定的三角測量系統時,三角測量系 098107533 10 200948333 統對吸塵器或物件的資料傳輸亦可利用一個光學系統,而該 光學系統可傳輸光敏元件接收到的信號。此處,例如,可使 轉盤具有一個光源,其藉交替開啟及關閉而發出數位編碼信 號。吸塵器或物件中則設置接收單元,以接收光信號,並將 其傳送至吸塵器之控制裝置或一個分析電子裝置。除了光學 傳輸之外,距離資料亦可以無線電傳輸,例如,在轉盤上設 置發送天線,而在吸塵器或物件上設置接收天線。光敏元件 ❹信號之傳輸亦可為感應式,尤其是,配合承裁三角測量系統 之轉盤,此處,轉盤及相對固定的吸塵器殼體上各設有一線 圈,其係以一狹窄氣隙彼此分離。轉盤之線圈通過交流電 時,吸塵器之線圈感應而產生交流電,故可進行信號傳輸。 轉盤上二角測量系統之供電利用集電圈/電刷時,其可同時 被利用於編碼信號之傳輸,例如,使供電與一高頻交流電壓 疊加。 ❿ 本發明另一實施方式中,债測三角測量系統對固定之吸塵 器殼體的旋轉角度,係利用—個感測器。三角測量系統與吸 塵器或物件縱軸之角度,被一角度測量系統所測量。故,此 -處設有可旋轉或擺動的三角測量系統的吸塵器,可連續掃描 周遭裱境,而藉助於角度感測器,利用所得到的周遭環境資 料調整定位’故’可對吸塵器進行導航。角度感測器可使用 不同的原理’例如’光學感知n,如具有壓花板的叉形光栅、 電位器'簧片繼電器、霍耳感測器,或三角測量系統及轉盤 098107533 11 200948333 與固定吸塵器構件之間一或多個角度位置上的接點。 在一較佳實施方式中’三角測量系統之光敏元件為一度空 間元件,如設作成線形,被障礙物反射且經光學元件聚束及 校正的光束投射至該光敏線,而線形的光敏元件之末端被定 義作為零點。由出現在線形光敏元件上的光點與零點之間的 - 距離,利用適當的分析電子裝置,可求出三角測量系統與障 . 礙物之距離,而光點與零點之距離增加時,吸塵器與障礙物 之距離亦增加。此外,在另一較佳實施方式中,光敏元件為 ❹ 一度空間元件,其為平面狀,此處之零點由二度空間元件之 個垂直於測量不同距離時所出現光點移動方向的邊緣或 邊緣部分所構成。 光敏元件為一 p§D (Position Sensitive Device)元件。此種 PSD凡件為線形或平面狀。亦可使用所謂的照相晶片(CCD 或CMOS元件)。此種光學感測器可設計成一度空間之線形 或二度空間之平面狀。 〇 在一實施方式中,光源發出可見光。但,亦可使用發出非 可見光的光源,例如,紅外線光,原則上可使用的光源例如 - 為雷射—極體或一般的發光二極體。本發明標的物一實施方 '光源發出一種波長之光,即所謂的單色光。但,亦可使 光_出光譜範圍中多種波長之光。故,能可靠地求出具有 不同表面特性或顏色的障礙物之距離。使用單色光的風險在 '欲測量與吸塵器之距離的障礙物,正好不易反射該波 098107533 12 200948333 長。此時可能出現測量誤差。使用一種以上光譜成分之光, 可避免此種測量誤差。尤其有利於此處所述之自走式吸塵 器,因為其係使用於家中,而該處正存在具有不同顏色及表 面特性的材料。 欲擴大測量範圍時,可使用兩個或多個光源。該兩個光源 可測量兩個較短的測量範圍,其構成一個整體較長的測量範 圍。如此而提高三角測量系統之效率。亦可設二或多個光敏 φ 元件,其與一或多個光源具有不同的距離。設多個光源或光 敏元件時,重要的是,信號分析須已知欲測量的物體位在哪 個測量範圍中,否則無法進行測量。此處,在一較佳實施方 式中,感測器或光源被彼此同步化,只有在分析電子裝置確 認為相應的光敏元件或光源時,才可進行測量及發出光信 號。 只設一個光敏元件,但設一個以上的光源時,亦可使光源 G 發出具有不同波長的光,而有利地解決同步的問題。使用一 個可偵測入射光波長的光敏元件時,其係用於測量。 在另一實施方式中,光源發出光譜範圍之光時,除了光學 • 元件之外,尚可增設一個色散元件。此種色散元件是一個光 學元件,其配合所使用的光而具有不同的折射力,例如,為 一光學稜鏡。此處有利的是,使用具有一個以上波長的光進 行距離測量。光被色散元件分成光譜各成分,而被折射到光 敏元件的不同位置上。尚為有利的是,將光敏元件染色而達 098107533 13 200948333 到色散故’藉測量非光敏元件上之一或多個波長的位置, 可類似於習知的距離三角剩量,而求出與障礙物之距離。 設成一度空間(亦即,線形的)光敏元件時,須對準所使用 的光子元件,例如,透鏡及光敏元件,以便準福地進行測量。 :角測里系統之所有光學元件須精準校正,以使光斑出現在 光敏兀件上。此處,—般使用圓形剖面的光束,故接收器 上圓形光斑須與線形光敏元件上重疊。為儘量避免或最簡化 需要的校正’本發明二度空間地增大了出現在光敏元件上的 光斑,尤其是在垂直方向上,亦即,垂直於—度空間光敏元 牛長度方向古支至少簡化了垂直方向上的校正。光斑的增 大可利用光的成形,例如,使用特殊的輔助光學元件,及/ 或在接收範圍設置諸如特殊的所謂柱形透鏡。除了在垂直於 線形光敏元件的方向上增大光斑之外,亦可使用-個二度空 間光敏元件。此處所需之校正大為簡化。其對此處所述之自 走式吸塵器尤其騎利。振動,例如,由門欄等所產生,會 導致測量誤差’因為,會接收到垂直偏移的光點。 〃習知的測量距離之光學三角測量⑽的問題在於,近距離 範圍光敏元件上的光量高於遠距離範圍。如此會使得近距離 範圍出現光敏元賴和’而無法㈣。為解決關題,本發 明使光敏元件屬於近距離範圍的部分聚焦小於屬於遠距離 範圍的部分。其可_適#的平移及/錢轉絲元件而達 成’故’遠赫範圍聚焦充分,而對光敏元件產生高能量傳 098107533 200948333 藉由使光敏 $達到連續的信 輸,近距離範圍則聚焦較差,即能量傳輪斡差200948333 VI. Description of the Invention: [Technical Field] The present invention relates to a self-propelled vacuum cleaner comprising an electric motor driven wheel, a vacuum cleaner housing, a dust collecting container, and a vacuum cleaner cover, the vacuum cleaner having an obstacle The identification device is an optical triangulation system comprising a light source and a receiving unit' and the receiving unit comprises a reflected beam receiving lens and a photosensitive element. The invention further relates to an object having a horizontal and/or vertical length, the object being provided with a sensing device for detecting an obstacle, and the sensing device is an optical triangulation system comprising a light source and a receiving unit The receiving unit includes a reflected beam receiving lens and a photosensitive element. [Prior Art] Such a vacuum cleaner is of a conventional type, for example, see DE 10242 257 A. The working mode and technique of the obstacle recognition device are fully included in the present case. Such a δ device having a sensing device for detecting an obstacle is also a conventional type. The object here is, for example, a travelable object, and the sensing device can detect the obstacle 18 in time to avoid hitting the obstacle. . Such an object may also be a mobile item. The sensing device detects an obstacle approaching the object. Such an object may also be a measuring device that positions it in a space. When the object is a self-propelled suction surface that can travel in a space, it is necessary to avoid the boundary. The obstacles here are mostly used to learn distance sensors. When the obstacle is identified on the path of the vacuum cleaner, the optical signal 098107533 200948333 receives the signal and is processed by a microprocessor that stops the rotation of the wheel or causes the vacuum cleaner to take other appropriate responses. The male triangulation system is conventionally known, and the optical elements formed by the light spots at different distances are imaged at different positions of the green element. The distance can be determined from the component's input = signal. This kind of optical triangulation system is mainly used for close-range measurement, which is not suitable for long-distance measurement, because when the obstacle and the object or the vacuum cleaner are increased, the curve of the plucking of the lining will be riding, and there is no flaw. The method accurately determines the distance of the obstacle. ..., [Summary of the Invention] The purpose of X ^ hair ^ is to provide a self-propelled vacuum cleaner and a sensing device, which can improve the obstacle distance measurement of its optical triangulation system, so that it can be used in a long range. Accurately measure distance. This object is achieved by the object of claim 1 and 2 of the patent scope that the beam is affected in the receiving unit such that at least the beam of the obstacle object that is far away from the actual distance is aggregated by the receiving lens. Large distances are incident on the photosensitive element, so at least in the long range, that is, the range of 'distance from the actual distance of the obstacle. Compared with the prior art, the steep characteristic curve and line are obtained, and the distance can be accurately obtained. Obstacle. The correction is made before the beam reaches the green element, i.e., the receiving unit is provided with the optical element. No expensive electronic devices are used here to handle the signals emitted by the photosensitive elements, so this is especially true for vacuum cleaners because & vacuum cleaners typically have a limited volume. The invention makes the analysis of the distance from the red number relatively simple and does not interfere. The influence of the receiving unit on the light 098107533 5 200948333 beam is preferably limited to the long range, so that the characteristic curve of the _ _ _ can be matched with the characteristic curve of the close range. This effect can also cover the entire measurement range, ie the 'close range and long range. Therefore, the influence of the receiving unit on the beam can affect the proportional relationship between the obstacle distance and the position of the light beam of the photosensitive member. For the inverse relationship characteristic curve, the effect can at least correct the curve 'so that the actual distance between the two distance obstacles can be represented by the distance between the spots measured by the receiver on the green component. In addition to finding the distance from the object, the photosensitive element can provide information on the surface characteristics and reflectance of the object, and can match the wire on the photosensitive element to determine the generated current. The other features of the present invention are mainly based on the characteristics of the patent scope or the scope of the patent application of the scope of claim 1 or 2. It may also be based solely on the application of the patent (4) or 2 or other application features. In the preferred embodiment, the photosensitive element emits a large distance of light, and the reflected light beam: ==::= amount obstacle:: rr, first beam refraction, range distance two === = The curve is corrected so that the long distance line is steeper. In another - implementation of Q = accuracy. The pure Wei makes the characteristic curve, and there is another lens. When the 098107533 lens is used as a condensing lens in addition to the receiving lens and the correcting lens, the lens can condense the reflected light at 200948333. Due to this design, the concentrating and bunching of the beams is achieved by the front and rear lenses. The correction lens is placed behind the condenser lens. - In order to make the beam spot and the spot of light passing through the correction lens imaged particularly well in the photosensitive element y - in a preferred embodiment, the receiving unit comprises an aperture. The receiving unit 70 can also include a plurality of such apertures. The aperture beam is viewed in the direction of the first lens (ie, the receiving lens) and is positioned between the two lenses (eg, the receiving lens and the kiEif mirror), or the last-lens (eg, the correcting lens). Between components. It is also advantageous to have the receiving unit comprise a filter element. The filter element has a maximum penetration of the wavelength of the beam being measured, and the wavelength of the beam other than the beam is filtered by the filter element. Thereby reducing the interference of other light sources (for example, ambient light) and improving the efficiency of the photosensitive element. The filter element can optionally be disposed in front of the first lens, between the two lenses, or between the last lens and the photosensitive element. In another embodiment, the photosensitive element or an optical element, such as a ❹ lens or aperture, can be coated or dyed to filter the reflected light, which is the same function as the filter element. - Depending on the distance between the object to be measured or the obstacle to be detected and its surface characteristics (reverse radiance), the amount of light reflected to the photosensitive element will cause it to become photo-saturated. The signal analysis at this time is meaningless and measurement errors will occur. This problem especially occurs in the above-mentioned vacuum cleaner because the material there has a wide spectrum (for example, a light-reflective wallpaper, or a dark non-reflective fabric) and the light changes strongly (for example, summer direct sunlight, and dark Space), which shall not interfere with the photosensitive element 098107533 7 200948333 pieces. To solve this problem, the present invention modifies at least one lens of the receiving unit. This correction is to optically purify the optical transmission active surface of the lens. That is, it is not allowed to pass light. The problem of saturation mainly occurs in the close range, because the structure of the triangulation system is received by the receiving unit more than the long range. In the preferred embodiment, the optically cleaned lens is mechanically cut. Optical passivation can also be achieved by coating-layer blocking or opaque layers. The lens can also be dyed by a gradient such that the 'close range van _ active surface is darker in color and the long range has maximum light transmission. It only makes sense to optically passivate the portion of the lens that is optically active over long distances without optical transmission. Therefore, the high range intensity is obtained in the long range, and the saturation is avoided in the close range. It is also possible that portions of the close range are not completely passivated, for example, by coating, so that only a portion of the light energy can pass. It is most desirable to have a luminance distribution of the photosensitive member over a long range of 100%, and a close range of, for example, 20 to 90% 'especially, for example, 5 %. In addition to the full lens for general optical use, in another embodiment of the present invention, a Fresnel lens can also be used. Such a Fresnel lens has a smaller thickness, weight and volume than a typical full lens. A holographic lens can also be used. To further reduce the sensitivity of the photosensitive element to interfering light (e.g., ambient light), in one embodiment of the invention, the light source of the triangulation system is provided with a separate photosensor. Analytical electron cleavage behind the photosensitive element, a signal is obtained by a separate photosensor after the light source is activated. The signal curve of the light source can be synchronized with the signal curve of the photosensitive 098107533 8 200948333 component. The separate photo sensor is here a separate component of the light source, but the photo sensor can also be integrated in the light source. Therefore, in another preferred embodiment, the light source is a laser integrated with a monitoring diode. Diode. In order to use the optical triangulation system to achieve navigation of the self-propelled vacuum cleaner and the drivable items, only one sensing device is used to navigate the triangulation system to a straight axis of the silkworm to avoid dead angles. Therefore, the obstacles around the entire vacuum cleaner or object can be detected by only one triangulation system or one sensing device. The rotation of the triangulation system to the vertical axis is preferably 360. the above. In one embodiment, the triangulation system is disposed on a plate that is rotatable relative to a fixed vacuum cleaner housing to a vertical axis. The plate body is, for example, a cover covering the vacuum cleaner chassis. It is also possible to form the entire cover covering the chassis to form a turntable. In addition to the continuously rotatable triangulation system, the triangulation system, or the turntable carrying the triangulation system, can be oscillated to scan a given range of angles. With the proper design of the swinging device, the swing angle can also be made ❹ 360. the above. When using more than one triangulation system, the angle can be less than 360. . • In a preferred embodiment, the drive of the turntable utilizes a separate electric motor that is housed in the vacuum cleaner or article. The electric motor can drive the turntable to rotate via a gear or traction drive. Advantageously, the drive of the turntable is coupled to the drive of the wheel. Therefore, the action of the vacuum cleaner is combined with the scanning of the surrounding environment. This combination is for example the use of gears or traction drives. The rotating or oscillating turntable and the two-angle measuring system placed on it are covered by a 098107533 9 200948333 cover. The rotating member is then hidden from the outside world. To ensure proper functioning of the triangulation system, the cover or cover is at least partially transparent. It is provided with a portion that emits a light beam and receives a light beam. The triangulation system of the turntable is located in the transparent part of the cover. In another embodiment, the transparent portion of the cover is configured as a diaphragm and/or filter element, for example, using a suitable coating of the transparent portion. The treatment of the transparent portion of the cover improves the imaging of the spot on the photosensitive element and/or reduces interference such as 5 ambient light. A plurality of triangulation systems can be provided on the turntable, all of which are distributed on the circumference of the turntable. In addition to the triangulation system, other turntable components, such as ultrasonic sensors or camera systems, can be provided. Power can be supplied when setting up a triangulation system that can be rotated or swung. Distance data can be transferred to a vacuum cleaner or object. Here, the power supply to the triangulation system on the turntable is the use of a collector/brush. The brush can be placed on the turntable, and the collector can be placed on a vacuum cleaner that is fixed relative to the turntable. But it can be set up instead. The power supply can also utilize the relative movement of the carousel and the vacuum cleaner housing. Here, the turntable and the vacuum cleaner housing constitute a generator, for example, a fixed shaft of the vacuum cleaner is constructed as a stator, and permanent magnets or electromagnets of alternating polarity are provided, and the turntable constitutes a rotor and is provided with a coil. When the turntable is rotated, the coil senses current and supplies power to the triangulation system. This type of power generation works in the same way as a synchronous generator. Other power generation principles can also be used, such as non-synchronous generators. Not only the turntable, but also the use of a fixed triangulation system, the triangulation system 098107533 10 200948333 can also use an optical system for the data transmission of the vacuum cleaner or object, and the optical system can transmit the signal received by the photosensitive element. Here, for example, the turntable can be provided with a light source that emits a digitally encoded signal by alternately turning it on and off. A receiving unit is provided in the vacuum cleaner or the object to receive the optical signal and transmit it to the control device of the vacuum cleaner or an analysis electronic device. In addition to optical transmission, distance data can also be transmitted by radio, for example, by providing a transmitting antenna on a turntable and a receiving antenna on a vacuum cleaner or object. The transmission of the photosensitive element ❹ signal can also be inductive, in particular, with a turntable for the triangulation system, where the turntable and the relatively fixed vacuum cleaner housing are each provided with a coil which is separated from each other by a narrow air gap. . When the coil of the turntable passes through the alternating current, the coil of the vacuum cleaner senses and generates alternating current, so that signal transmission can be performed. When the power supply of the two-angle measuring system on the turntable utilizes the collector/brush, it can be used simultaneously for the transmission of the encoded signal, for example, to superimpose the power supply with a high-frequency AC voltage. In another embodiment of the present invention, the debt measuring triangulation system utilizes a sensor for the angle of rotation of the fixed vacuum cleaner housing. The angle between the triangulation system and the longitudinal axis of the vacuum cleaner or object is measured by an angle measurement system. Therefore, there is a vacuum cleaner with a rotating or oscillating triangulation system, which can continuously scan the surrounding environment, and use the angle sensor to adjust the positioning of the surrounding environment data to guide the vacuum cleaner. . Angle sensors can use different principles 'eg 'optical perception n', such as fork gratings with embossing plates, potentiometers 'reed relays, Hall sensors, or triangulation systems and turntables 098107533 11 200948333 with fixed A joint at one or more angular positions between the vacuum cleaner members. In a preferred embodiment, the photosensitive element of the triangulation system is a one-dimensional space element, such as a linear shape, which is reflected by an obstacle and is beamed and corrected by the optical element to be projected onto the photosensitive line, and the linear photosensitive element is The end is defined as a zero point. From the occurrence of the -distance between the spot on the linear photosensitive element and the zero point, the distance between the triangulation system and the obstacle can be obtained by using appropriate analytical electronics, and the distance between the spot and the zero point increases. The distance from the obstacle also increases. In addition, in another preferred embodiment, the photosensitive element is a one-dimensional space element which is planar, wherein the zero point is defined by an edge of the second-dimensional element perpendicular to the direction of movement of the spot where the different distances are measured or The edge part is composed. The photosensitive element is a p§D (Position Sensitive Device) element. Such PSD parts are linear or planar. So-called photographic wafers (CCD or CMOS components) can also be used. Such an optical sensor can be designed as a linear shape of a space or a planar shape of a second space. 〇 In one embodiment, the light source emits visible light. However, it is also possible to use a light source that emits non-visible light, for example, infrared light. In principle, a light source that can be used is, for example, a laser-pole or a general light-emitting diode. An object of the present invention is that the light source emits light of a wavelength, so-called monochromatic light. However, it is also possible to make light out of multiple wavelengths in the spectral range. Therefore, the distance of obstacles having different surface characteristics or colors can be reliably obtained. The risk of using monochromatic light is that 'the obstacle to measure the distance from the vacuum cleaner is just not easy to reflect the wave. 098107533 12 200948333 Long. Measurement errors may occur at this time. This measurement error can be avoided by using light of more than one spectral component. It is particularly advantageous for the self-propelled vacuum cleaner described herein because it is used in the home where materials having different color and surface characteristics are present. When you want to expand the measurement range, you can use two or more light sources. The two light sources measure two shorter measuring ranges, which form an overall longer measuring range. This increases the efficiency of the triangulation system. Two or more photosensitive φ elements may also be provided, which have different distances from one or more light sources. When setting up multiple light sources or light-sensitive components, it is important that the signal analysis knows which measurement range the object to be measured is in, otherwise measurement cannot be performed. Here, in a preferred embodiment, the sensors or light sources are synchronized with each other, and the measurement and emission of the optical signals can be performed only when the analysis electronics recognizes the corresponding photosensitive element or light source. Only one photosensitive element is provided, but when more than one light source is provided, the light source G can also emit light having different wavelengths, which advantageously solves the problem of synchronization. When a photosensitive element that detects the wavelength of incident light is used, it is used for measurement. In another embodiment, when the light source emits light in the spectral range, a dispersing element may be added in addition to the optical element. Such a dispersive element is an optical element that has a different refractive power in conjunction with the light used, for example, an optical 稜鏡. It is advantageous here to measure the distance using light having more than one wavelength. The light is split into discrete components by the dispersive elements and refracted to different locations of the photosensor. It is still advantageous to dye the photosensitive element to 098107533 13 200948333 to the dispersion, by measuring the position of one or more wavelengths on the non-photosensitive element, which can be similar to the conventional distance triangle remainder. The distance of things. When a one-dimensional (i.e., linear) photosensitive element is provided, it is necessary to align the photonic elements used, such as lenses and photosensitive elements, for measurement. : All optical components of the angle measurement system must be accurately calibrated so that the spot appears on the photosensitive element. Here, the beam of circular cross section is generally used, so that the circular spot on the receiver must overlap with the linear photosensitive element. In order to avoid or simplify the correction required as much as possible, the present invention spatially increases the spot appearing on the photosensitive element, especially in the vertical direction, that is, perpendicular to the space of the photosensitive element. Simplifies correction in the vertical direction. The increase in the spot can be effected by the formation of light, for example, using special auxiliary optical elements, and/or setting such as a special so-called cylindrical lens in the receiving range. In addition to increasing the spot in a direction perpendicular to the linear photosensitive member, a second spatial photosensitive element can also be used. The corrections required here are greatly simplified. It is especially advantageous for the self-propelled vacuum cleaner described herein. Vibration, for example, caused by a door bar or the like, causes a measurement error 'because, a light spot that is vertically offset is received. A problem with the optical triangulation (10) of the conventional measurement distance is that the amount of light on the close range photosensitive elements is higher than the long range. This will cause the photosensitive element to appear in the close range and be unable to (4). In order to solve the problem, the present invention causes the photosensitive member to be in a close range and the partial focus is smaller than the portion belonging to the far range. The _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Poor, that is, energy transmission

元件傾斜’可在近距離範圍與遠距離範圍之界 號衰減過渡。 E 配合可旋轉或擺動的三角測量系絲 里系統進行科導航,本發明 標的物另一實施方式係使光敏元件為 L ^ u疋’而與光敏元件互 相作用的光學元件則可旋轉。例如,臉, 網1先源固定在吸塵器或 物件上,轉盤具有一個旋轉裝置,其The component tilt ' can attenuate the transition between the close range and the far range. E. In conjunction with a system of rotatable or oscillating triangulation systems, another embodiment of the subject matter of the present invention is such that the photosensitive element is L ^ u疋' and the optical element interacting with the photosensitive element is rotatable. For example, the face, the mesh 1 is fixed to the vacuum cleaner or the object, and the turntable has a rotating device,

一 开使先束與其他光學接收 元件,例如,反射鏡或稜鏡,一起旋 〜处轉。故,使得三角測量 系統體積縮小,尤其是接收單元’如此對吸塵器特別有利。 其亦可制於不旋轉錢續擺動的三角測m而可掃描 某一角度範圍。 為改良上述吸塵器及物件之使用特性,本發明使三角測量 系統被懸吊,並另設一個傾斜感測器。例如,使用三角測量 系統之萬向懸吊。如此可使其始終保持水平,即使吸塵器失 去水平亦然,例如,通過門攔等。在一較佳實施方式中,懸 吊设有自己的感測器,例如,傾斜感測器,其可將吸塵器傾 斜信號傳送至主動裝置,例如,電動馬達,以使承載三角測 量系統的轉盤或三角測量系統本身始終保持水平。亦可設置 一個被動的復位系統,其不需要自己的感測器或主動裝置, 例如,利用重力或回轉效應。 為改良光學三角測量系統之使用特性,尤其是使用於吸塵 器,本發明使三角測量系統在垂直方向上振盪,而進行不同 098107533 15 200948333 垂直咼度上的距離測量。如此,對自走式吸塵器之導航特別 有利,因為,可偵測諸如平台、柵欄下的空間、或類似的障 礙物。可使整個三角測量系統或其一部分在垂直方向上機械 振盪,而偵測不同高度障礙物之距離。亦可使用線形雷射作 為光源’而與平面狀的(亦_,二度空間的)光敏元件互相作 用。亦可在不同垂直高度上設置光源,而與一個二度空間光 敏兀件或一個振盪光敏元件互相作用。 述角測量系統中,遠距離範圍一般開始於感測器特 改曲線月顯變扁平之距離。測量範圍為300cm之距離感測 器的遠距離範圍開始於大約職心大致劃分時,近距離範 ® H測量範圍下面的三分之―,遠距離範圍為上面的 刀 以彳5號衰減來定義近距離範圍及遠距離範圍時, 須配口使用的光敏元件。實際上,範圍之間的過渡為階梯 ;原貝j上’只要光敏元件因光強度太高而出現過載時,近 距離範圍即_進人衰減部分。 以下將依據㈣詳細說明本發明之實施例。 【實施方式] 圖中顯示一種 也板吸塵器1,其為一清潔機器人,包泰 底盤2 ’該底盤2 子^ 如 <朝向地板的下方設有電動馬達驅動白 大的底盤底部4,及同樣被電動馬達驅動的刷+ 底盤2被罩體6包 I固,地板吸塵器1為圓形。但,吸塵 亦可非為圓型,你 ’由一個半圓形部分與一個矩形部3 098107533Once opened, the first beam is rotated with other optical receiving components, such as mirrors or cymbals. Therefore, the reduction of the triangulation system, especially the receiving unit, is particularly advantageous for the vacuum cleaner. It can also be used to scan a range of angles without rotating the triangle of the money. In order to improve the use characteristics of the above vacuum cleaner and articles, the present invention allows the triangulation system to be suspended and a tilt sensor. For example, use a gimbal suspension of a triangulation system. This keeps it level, even if the vacuum cleaner loses its level, for example, through a door stop. In a preferred embodiment, the suspension is provided with its own sensor, for example, a tilt sensor, which can transmit the vacuum signal of the vacuum cleaner to an active device, such as an electric motor, to enable the turntable carrying the triangulation system or The triangulation system itself is always level. A passive reset system can also be provided that does not require its own sensor or active device, for example, using gravity or gyroscopic effects. In order to improve the use characteristics of the optical triangulation system, especially for vacuum cleaners, the present invention allows the triangulation system to oscillate in the vertical direction while performing different distance measurements on the vertical twist of 098107533 15 200948333. As such, navigation of a self-propelled vacuum cleaner is particularly advantageous because it can detect such things as a platform, a space under a fence, or the like. The entire triangulation system or a portion thereof can be mechanically oscillated in the vertical direction to detect the distance of obstacles at different heights. It is also possible to use a linear laser as a light source' to interact with a planar (also, two-dimensional) photosensitive element. The light source can also be placed at different vertical heights to interact with a second spatial photosensitive element or an oscillating photosensitive element. In the angular measurement system, the long range generally begins at a distance from the sensor's characteristic curve that becomes flattened. The distance range of the sensor with a measuring range of 300 cm starts from approximately three-points below the range of the close range, and the range of the long range is defined by the attenuation of the 彳5. For close range and long range, the photosensitive element to be used with the mouth. In fact, the transition between the ranges is a step; on the original shell, as long as the photosensitive element is overloaded due to too high light intensity, the close range is _ into the attenuation portion. Embodiments of the present invention will be described in detail below based on (d). [Embodiment] A vacuum cleaner 1 is also shown, which is a cleaning robot, and the chassis 2 'the chassis 2 ^ such as < under the floor is provided with an electric motor to drive the white chassis bottom 4, and the same The brush + chassis 2 driven by the electric motor is secured by the cover 6, and the floor cleaner 1 is circular. However, the vacuum can also be non-circular, you're made up of a semi-circular part with a rectangular part 3 098107533

16 200948333 組成。 吸塵器1之輪子3設在一般行駛方向r上的刷子5之後 方,刷子5後方並設有畚箕式的垃圾斜坡7,其可將清掃的 垃圾送入一容置部中。 一般行駛方向r上的刷子5前方設有一支撐輪,其係由一 自由滾輪8所構成,而使得地板吸塵器1與地板達到三點式 接觸。 ❹ 地板吸塵器1亦可另設或取代刷子5而設一吸入口。此處 吸塵器1内設有一個電動的吸塵器鼓風馬達。 吸塵器1之各電氣組件,例如,輪子3之電動馬達、刷子 5之電驅動裝置、吸塵器鼓風機、及吸塵器1中之電子控制 裝置,其供電皆利用一個充電式電池。 此種地板吸塵器1須能辨識阻止行駛的障礙物,故設有感 測裝置9。其在本發明中係由一個三角測量系統T所構成。 〇 在第一實施例(圖1 )中,該三角測量系統T之元件被設 在罩體6頂側,以達成輕薄短小的結構。亦可將三角測量系 統T之發送器S及接收器E分開設置,例如,將發送器S • 設在罩體6周壁,而將接收器E設在罩體6頂側。 三角測量系統T是一種光學系統,如圖3之第一實施例 所示。發送器S最簡單為設作成光源10,可由一個發光二 極體或雷射二極體構成,而該光源10發出單色可見光,但 亦可為不可見光,例如,紅外線光。 098107533 17 200948333 接收器E具有一個光敏元件u。在此處,例如為pSD元 件或CCD或CMOS元件,其被設作成直線狀,亦即,為一 度空間之結構,如圖12所示。接收器e之另一組件為接收 透鏡12,其設在光敏元件11前方。該接收透鏡12之作用 在於,將光源10之被障礙物13、13•反射的光束聚束,其中 障礙物13為近距離範圍之障礙物,障礙物13,為遠距離範圍 之障礙物。 光學二角測量系統T的作用方式如下:配合所測得的障 礙物13或13,之距離,光束經接收器透鏡12而到達光敏電 子元件11的位置y,該光敏電子元件11上的位置y隨著障 礙物13或13’距離之增加,而遠離於光敏元件u 一邊緣處 之零點位置L。 由光敏元件11上的位置y ’可以求得障礙物13、13,之距 離。 此外,接收器E尚設有校正透鏡14,其使接收透鏡12所 接收的光束被折射,而清晰成像於光敏元件U上。在圖3 之實施例中,該校正透鏡14為雙凸透鏡,故其在入射面具 有正彎曲半徑,而在出射面具有負彎曲半徑。在本實施例 中,設在光束方向上校正透鏡14前方的接收透鏡12為平凸 透鏡’而具有平出射面。 由於此種設計,尤其是設置校正透鏡14,即使在遠距離 範圍,亦即,較遠的障礙物Π’’亦可利用光敏元件u後方 098107533 200948333 之刀析電子裝置而求出距離。圖4為三角測量系統τ之特 陡曲線,、顯不/則量距離χ與光敏元件^上之位置^的關 係:該特性曲線比未設校正透鏡M之系統τ為陡可得到 簡單+擾不敏感及精確的距離信號分析。圖*中比較用的 無校正祕14之》_以纽衫。 如圖3之一角測量系統Τ所示,接收侧設有光圈15。在 所示實施射’該域位在接收透鏡12與校正透鏡14之 β間。利用該光圈1S’可使被障礙物13、13,反射的光點P在 光敏元件11上的成像特別良好。 接收器E中认有一個渡光元件16。該遽光元件16對測量 所使用光束的波長具有最大的透射性。非屬該光束的波長則 無法通過滤光元件,故可減少其他光源(例如,環境光源)之 干擾’而提高紐元件u之效率。在本實施例中,滤光元 件16設在接收透鏡12前方。 © 除了设置分開的濾光元件16之外,亦可使透鏡(接收透 鏡12或校正透鏡14)或光敏元件I〗至少一光學表面設有 ' 一具有濾光元件功能之塗層。 在圖5之另一實施例中光源1〇之光信號被一分開的光感 測器17接收,該光源1〇被分析電子裝置A調制。光源1〇 一開啟,分析電子裝置A便由光感測器π接收到一信號。 故光源10之信號曲線與光敏元件11之信號曲線同步化,而 降低三角測量系統T對外部環境干擾,例如環境光的敏感 098107533 19 200948333 度。圖6以光敏元件信號曲線(特性曲線18)與光源10信號 曲線(特性曲線19)之關係顯示利用光感測器17之同步化。 分開的光感測器17亦可由一整合在光源10中的光敏元 件構成,例如整合有監控二極體之雷射二極體。 設有感測器欲進行導航時,若只設有一個三角測量系統 T,如圖7實施例所示,為避免死角可將三角測量系統T放 置在一轉盤20上。該轉盤20例如構成罩體6之蓋板。 轉盤20可對一垂直軸z旋轉。 三角測量系統T偵測出固定的角度範圍α。藉由轉盤20 及三角測量系統Τ對軸ζ之旋轉,可完全掃描吸塵器1之周 圍。亦可使轉盤20及三角測量系統Τ擺動而掃描所界定之 角度範圍。並可在轉盤20上設多個三角測量系統Τ,而可 以小擺動角度完全偵測環境,使得感測系統的掃描速度提 高。 三角測量系統Τ中轉盤20之驅動,係利用一個分開的未 示出的電動馬達、及一個中間的傳動裝置。驅動亦可利用輪 子3之驅動裝置。 如圖8及9所示,在另一實施例中,轉盤20及其所承載 之三角測量系統Τ係被蓋板21所覆蓋,而該蓋板較佳為固 定,因而沒有旋轉件外露。 蓋板21在三角測量系統Τ高度上的周壁部分被設作成透 明。該透明部分被標示為22。 098107533 20 200948333 光學系統之元件,尤其是接收器E之光學元件,可整合 在該透明部分22,例如,利用透明部分22之塗佈或染色而 構成慮光或光圈。 三角測量系統之接收信號被一個分析電子裝置A所分 析。配合該分析而提出預設的吸塵器1對應方式,例如,繞 過該測得的障礙物。可旋轉三角測量系統T,尤其是被轉盤 20承載的三角測量系統T,距離資料之傳輸較佳為無接觸 〇 式。圖8實施例中,光學信號之傳輸係利用一個設在轉盤 20中央的光源23,例如,發光二極體。該光源受三角測量 系統T之接收器E之控制,而發出數位光信號,最簡單的 方式為利用光源23之開啟及關閉。相對於轉盤20為固定的 吸塵器1元件(圖中為固定軸24)中設有一個接收單元25, 該接收單元接收光信號,並將其傳送至吸塵器控制裝置。接 收單元25例如為光電元件。 Ο 如圖9所示,距離資料之信號傳輸亦可利用無線電。此 處,轉盤20中央設有一個發送天線26,其可與相對於轉盤 • 20為固定的吸塵器元件中之接收天線27進行傳輸。 如圖8所示,轉盤20上之電子元件,尤其是三角測量系 統T,其電源供應係利用機械式集電環。在所示實施例中, 該集電環28設在轉盤20下方。與其互相作用的電刷29設 在吸塵器上,其連接吸塵器之蓄電池。 圖9中,轉盤20與相對固定的吸塵器構成一個發電機, 098107533 21 200948333 此處,固定的轴24設有永久磁鐵或極性交替變化的電磁鐵 30,而構成定子。轉盤20則設有線圈31,而構成轉子。轉 盤20旋轉時,線圈31產生感應電流,而可供三角測量系統 T使用。此種發電方式相當於同步發電機。 在另一實施例中,轉盤20上之三角測量系統τ之供電用 的集電環及電刷’亦可用於距離資料之傳輸,此處,由吸塵 器經由集電環28及電刷29而傳輸至轉盤20的電能,被疊 加一高頻交流電壓’三角測量系統T藉此而將編碼之距離 資料傳輸至吸塵器之分析電子裝置A。 為達到吸塵器1之導航,如圖7所示,可測量轉盤20或 三角測量系統T對行駛方向r之旋轉角度。故在此處設置一 個位置感測器32。其例如為一個光學感測器,如具有壓花 板的叉形光栅。亦可在轉盤2〇圓周方向上設置數個此種位 置感測器32,例如,在一或數個角度位置上的接點。 為提高光敏το件11之效率,圖1〇所示實施例中的三角測 量系統T設有兩個光源1〇、1〇,,光源1〇係用於偵測近距 離範圍N之障礙物13,光源1〇,則用於偵測遠距離範圍F 之障礙物13’。 由兩個光源10、10’之設置位置,而得到兩個較短的測量 範圍,亦即,近距離範圍N之測量範圍、及遠距離範圍f 之測量範圍,合計而得到一個較長的測量範圍。此處,信號 分析可得知欲測量的障礙物13、13,位在哪個測量範圍中。 098107533 22 200948333 接收器E與光源1〇、1〇,被同步化,使得,分析電子裝置確 認屬於相應接收器E或_ 1G、㈣,才進行測量或發出 光信號。 在所示實施例巾’光源1Q、1G,發出不同波長的光。接收 H E或光敏兀件U可偵測入射光之波長,故可用於測量。 圖11顯示三角測量純T之實施例,除了未示出的光學 兀件之外,例如’透鏡或光圈,尚設有-個色散元件33, ❹其係由—個光學稜鏡所構成。此處,較佳由光源H)發出具 數個波長的光’以測量距離。被障礙物13反射的光經色散 元件33而被/7成光各成分,並投射到光敏元件 11的不同 位置。此處,紐元件較佳為—個光學❹jlf,故可利用光 敏元件11 <或數個波長位置之測量,而得到障礙物13 之距離。 為避免麻煩i也調整反射光投射在光敏幻牛U上的光點 β P ’圖12之實施例中’絲p被增大為兩度空間。即,成 為垂直於光敏元件11之一度空間線形感測範圍n,的縱向長 度。該二度空間光點P的增大,可例如在光源10範圍中設 特殊的附加光學元件、或在接收侧設特殊的所謂柱面透鏡而 達成。藉由於此設計,可在垂直方向或垂直於感測範圍u, 的方向得到足夠的公差。 亦可在光點P為點狀時,將光敏元件11之感測範圍u,增 大為兩度空間。故,設置面狀的感測元件。感測範圍11'垂 098107533 23 200948333 直於測量方向之增大,相當於光點p直徑的數倍,例如,直 徑的二至五倍(比較圖13)。 為解決光學三角測量系統T距離測量的另—個問題,即, 近距離範圍投射於光敏元件11的光量高於遠距離範圍,圖 14實施例中,三角測量系統T之光敏元件u傾斜於入射光 束’其傾斜角度例如為15°。圖14以虛線顯示垂直於入射 光束之光敏元件11,以作為比較。 由於使光敏元件11傾斜,遠距離範圍可達到足夠的聚焦 及尚光量’近距離範圍則減少聚焦及光量,而在近距離範圍 與遠距離範圍之間達到連續的信號衰減過渡。 如圖15所示’三角測量系統T測得一個在恒定高度h上 的障礙物13。為摘測不同高度的障礙物,例如台階13”、桃 欄下的空間或其他障礙物’而測量不同的高度h、h’、h”。 其可利用三角測量系統T在垂直方向上的振盪,整個三角 測量系統Τ或其一部分在垂直方向上機械式振盪,而測量 不同高度的距離(比較圖16)。 三角測量系統Τ亦可具有不同高度的光源,其反射光束 投射到一平面,亦即’二度空間的光敏元件11上。 圖 17 顯示設作成 PSD (Position Sensitive Device)元件的 光敏元件11,其在本發明中被使用於三角測量系統T ’以 測量距離。三角測量系統Τ之光學元件’可使被欲求出距 離的物體Ο (比較圖18)所反射的光’聚焦到光敏元件11 098107533 24 200948333 上。光點!>在線狀感測範圍U,產生兩個光電流“及^。其 可被感測範圍η,末端之-個適當的測量器所測量。、 依據光學三角測量之原理,感_圍11,上光點Ρ之位置 為物體距離之-比例。該比例即為兩電流U h之比。兩 電流U丨2之總合受物體距離及其表面雜,亦即,反射 度,所左右。求出距離後,可進1求取表面特性資料,琴 資料可使用於空間R中吸塵器1之導航。 人 _顯示空間R中之吸塵器1。空間r之輪廓可被三角 測f系統τ所制。分析幾何資料,可定向空間r中之吸 塵器卜藉助於三角測量系統τ,亦可使用所述方法求出環 &之反射特性,故’吸塵器丨可利用該#料於定向及導銳。 因t,如圖18所示,吸塵器1可辨識出具林同反射特性 的範圍圖18中,具有不同反射特性的物體〇分別被以實 線及虛線表示。 Λ 三角測量系統Τ亦可利用信號強度而求出反射度,其光 敏兀件11例如為光晶片,如CCD或CM〇S晶片。 圖19顯示接收器E —實施例,其接收透鏡12及校正透 鏡14皆⑤作成雙凸透鏡。其中,至少—個透鏡表面設作成 非球面,而有效地影響光程,該透鏡表面為非球形。圖β 中校正透鏡14具兩個非球面。接收透鏡12具一非球面,即, 朝向光束的面。 兩透鏡較佳具有柱形鏡框,可使其容置於具有柱形穿孔的 098107533 25 200948333 支架上。校正透鏡14之柱形鏡框被標示為34。 圖20之實施例在光學透鏡(接收透鏡12及校正透鏡μ) 之間設有一光圈。該光圈15由不透光材料(例如,不透明塑 膠或金屬)所製成,並具有一中心孔35,接收透鏡之光程通 過該中心孔。光圈15也可設在接收透鏡12前方,或校正透 鏡14與光敏元件η之間。此外,亦可設置一個以上的光圈 15 ° 圖21之實施例設有一個濾光元件,該濾光元件16係由透 明材料所製成,該材料被染色而只可讓所使用光之波長通 過’其他波長之光則會被吸收。故可使用塑膠材料作為濾光 元件16,其在重量輕時亦具高破裂強度’且在極限溫度時 具較高的形狀穩定性。 除了染色的濾光元件16之外’亦可使用具有濾光塗層的 透明元件。 此外,亦可將所使用的透鏡染色或塗佈。圖22之實施例 中,校正透鏡14朝向光束的疋面被均勻塗佈一層濾光層36。 亦可將透鏡梯度染色,而使其光學鈍化。圖23之實施例 中,校正透鏡14朝向光束的正面被梯度染色。 近距離範圍物體之光才町通過的透鏡部分染成深色(部分 37)。遠距離範圍物體之光<通過的透鏡部分呈顏色漸淡, 直至校正透鏡14呈完全透明(部分38)。 亦可利用透鏡之機械切刻’而使至少一透鏡光學鈍化。圖 26 098107533 200948333 24中,校正透鏡14之只讓近距離範圍物體之光通過的部 分,被所正割(順nt)狀切除。圖24中切割部分被標示為%。 光點p之線形增大,可使關如—個柱形透鏡4q而達成。 圖25中之柱形透鏡40㈣具有校正透鏡丨彳之功能。 ❹ 在本發明標的物之另-個進—步設計中,三_量_7 被萬向㈣,而始終保持在水平方向上。圖26為該萬向懸 爷之第-實施例。三角測量系統τ被安裝在平台4!上。該 平台41例如為三角測量系、統丁殼體之一部分。平台41樞 .又於水平%轉軸b,而容置在框體42中,而該框體42則極 設於兩支柱43上的旋植紅α .. 焚轉軸a。旋轉軸a及b相交又,並構 成一直角。 支柱43與吸塵益【之罩體6固定連接。直角相交的旋轉 轴a及b 一者所構成的共同平面下方設有配重塊44,其質 量遠大於:角測量系統T之質量,故,藉由配重塊44之重 ❹量使%·-角測量系統τ始終保持在水平位置,即使吸塵 器1因通過-門攔而傾斜於水平方向時亦然。 除了在-角測里系統T之交叉處設有被動補償外,亦可 -在該處設置兩個調整馬達45,45,如圖27所示。 如圖26所述’二角測量系統T以兩旋轉軸a及b與框體 42樞„又於兩支柱43上’該等支柱係與吸塵器i之罩體6固 疋連接。並a有-個傾斜感測器47,其可偵測吸塵器i傾 斜於水平面的角度°利用萬向懸吊的幾何度量,可將傾斜角 098107533 27 200948333 度換算成三角測量純τ對旋轉軸a&b的旋轉角度。該旋 轉角度可藉由調整馬達45及46之適當轴承控制而構成調整 變量,以補償三角測量系統T對水平面之傾斜。 原則上,所有可被光敏元件u偵測的波長皆可使用。但, 較佳為使用標準就。尚為較佳的是,以輕薄短小㈣射二 極體等作為光源1G,例如具有紅色光的f射二極體。該雷 射一極體之波長通常在635nm至658nm之間。此外,亦可 使用具有綠色光的雷射二極體,其波長範圍約為5〇〇nm。亦 ❹ 可使用紅外線範圍的光源,其波長為900nm。此處較佳為使 用發光二極體。並可使用紅外線雷射二極體作為光源1〇。 所有揭示特徵本身皆具有發明性質。本發明揭示之特徵完 全包含於本案之申請專利範圍中。 【圖式簡單說明】 圖1係本發明吸塵器之立體圖。 圖2係本發明吸塵器之底面立體圖。 ❹ 圖3係本發明吸塵器三角測量系統第一實施例之示意圖。 圖4係三角測量系統光敏元件測量值之特性曲線圖。 圖5係三角測量系統第一實施例之部分圖。 圖6係圖5三角測量系統光敏元件光源之同步信號圖。 圖7係本發明吸塵器之示意圖,包括一個可繞著吸塵器垂 直軸旋轉的三角測量系統、 及一個偵測旋轉位置的感測器。 圖8係承載三角測量系統的轉盤及吸塵器軸承部分之另 098107533 28 200948333 一實施例之剖面圖。 圖9係再另一實施例如圖8之剖面圖。 圖10係三角測量系統另一實施例之示意圖。 圖11係三角測量系統再另一實施例之示意圖。 圖12係三角測量系統之一度空間光敏元件之示意圖,其 中之光斑在垂直方向上被增大。 圖13係三角測量系統之二度空間光敏元件之示意圖,其 ❹ 中之光敏元件上的光斑為圓形。 圖14係三角測量系統之光敏元件另一實施例之俯視圖。 圖15係本發明吸塵器與偵測一固定高度的三角測量系統 之侧視圖。 圖16係如圖15之圖,其中之三角測量系統可掃描不同高 度。 圖17係圖12光敏元件之示意圖,其可求取反射度。 〇 圖18係一個空間及此空間中自走式吸塵器之平面圖。 圖19係接收透鏡、校正透鏡及光敏元件所構成的接收器 ' 之一實施例。 ' 圖20係具有光圈的接收器之另一實施例。 圖21係如圖20之圖,但設有一濾光元件。 圖22係具有塗佈校正透鏡的接收器之立體圖。 圖23係如圖22之圖,但具有梯度染色的校正透鏡。 圖24係如圖22之圖,但一透鏡部分以機械切割而光學鈍 098107533 29 200948333 化。 圖25係如圖22之圖,但校正透鏡為柱形透鏡 圖26係設萬向懸吊三角測量系統之實施例。 圖27係三角測量系統萬向懸吊之另一實施例。 【主要元件符號說明】 1 吸塵器 2 底盤 3 輪子 4 底盤底部 5 刷子 6 罩體 7 垃圾斜坡 8 自由滚輪 9 感測裝置 10 光源 10, 光源 11 光敏元件 1Γ 感測部分;感測範圍 12 (接收)透鏡 13 (近)障礙物 13' (遠)障礙物 13" 障礙物;台階 098107533 30 20094833316 200948333 Composition. The wheel 3 of the vacuum cleaner 1 is disposed behind the brush 5 in the general direction of travel r, and behind the brush 5 is provided with a rubbish-type garbage ramp 7 for feeding the cleaned garbage into a receiving portion. A support wheel is provided in front of the brush 5 in the general direction of travel r, which is constituted by a free roller 8, so that the floor cleaner 1 is in three-point contact with the floor.地板 The floor vacuum cleaner 1 may be provided with or instead of the brush 5 to provide a suction port. Here, an electric vacuum cleaner blower motor is provided in the vacuum cleaner 1. The electrical components of the vacuum cleaner 1, for example, the electric motor of the wheel 3, the electric drive of the brush 5, the vacuum cleaner blower, and the electronic control unit of the vacuum cleaner 1 are all powered by a rechargeable battery. Such a floor cleaner 1 is capable of recognizing an obstacle that prevents traveling, and is therefore provided with a sensing device 9. It is constituted by a triangulation system T in the present invention. 〇 In the first embodiment (Fig. 1), the elements of the triangulation system T are placed on the top side of the cover 6 to achieve a slim, short structure. The transmitter S and the receiver E of the triangulation system T may be separately provided, for example, the transmitter S is disposed on the peripheral wall of the cover 6 and the receiver E is disposed on the top side of the cover 6. The triangulation system T is an optical system as shown in the first embodiment of Fig. 3. The transmitter S is simply configured to be a light source 10, and may be composed of a light emitting diode or a laser diode, and the light source 10 emits monochromatic visible light, but may also be invisible light, for example, infrared light. 098107533 17 200948333 Receiver E has a light sensitive element u. Here, for example, a pSD element or a CCD or CMOS element is designed to be linear, that is, a one-degree space structure as shown in Fig. 12. Another component of the receiver e is a receiving lens 12 which is disposed in front of the photosensitive element 11. The receiving lens 12 functions to concentrate the light beams 10 reflected by the obstacles 13, 13 and the obstacles 13 are obstacles in a close range, and the obstacles 13 are obstacles in a long range. The optical two-angle measuring system T acts in the following manner: with the distance of the measured obstacle 13 or 13, the beam passes through the receiver lens 12 to the position y of the photosensitive electronic component 11, the position y of the photosensitive electronic component 11 As the distance of the obstacle 13 or 13' increases, it is far from the zero position L at the edge of the photosensitive element u. The distance of the obstacles 13, 13 can be found from the position y' on the photosensitive member 11. Further, the receiver E is further provided with a correcting lens 14 which causes the light beam received by the receiving lens 12 to be refracted and clearly imaged on the photosensitive element U. In the embodiment of Fig. 3, the correcting lens 14 is a lenticular lens so that it has a positive bending radius at the entrance mask and a negative bending radius at the exit surface. In the present embodiment, the receiving lens 12 provided in front of the correcting lens 14 in the beam direction is a plano-convex lens 'having a flat exit surface. Due to such a design, in particular, the correction lens 14 is provided, and even in the long-distance range, that is, the far-reaching obstacle Π'' can be obtained by using the knife-distributing device of the 098107533 200948333 behind the photosensitive member u. Fig. 4 is a steep curve of the triangulation system τ, and the relationship between the distance/the distance χ and the position on the photosensitive element ^: the characteristic curve is steeper than the system τ without the correction lens M to obtain a simple + disturbance Insensitive and accurate distance signal analysis. Figure 4 compares the use of no correction secret 14" _ to the new shirt. As shown in the angle measuring system 如图 of Fig. 3, the receiving side is provided with an aperture 15. This field is shown between the receiving lens 12 and the ? of the correcting lens 14 in the illustrated embodiment. With this aperture 1S', the imaging of the spot P reflected by the obstacles 13, 13 on the photosensitive member 11 can be made particularly good. A light-receiving element 16 is recognized in the receiver E. The calendering element 16 has the greatest transmission to the wavelength of the beam used for the measurement. Wavelengths other than the wavelength of the beam cannot pass through the filter element, so the interference of other light sources (e.g., ambient light sources) can be reduced, and the efficiency of the button element u can be improved. In the present embodiment, the filter element 16 is disposed in front of the receiving lens 12. In addition to providing the separate filter elements 16, the lens (receiving lens 12 or correcting lens 14) or the photosensitive element I can be provided with at least one optical surface as a coating having the function of a filter element. In another embodiment of Fig. 5, the light signal of the source 1 is received by a separate photosensor 17, which is modulated by the analysis electronics A. When the light source 1 is turned on, the analyzing electronic device A receives a signal from the photo sensor π. Therefore, the signal curve of the light source 10 is synchronized with the signal curve of the photosensitive element 11, and the sensitivity of the triangulation system T to the external environment, such as ambient light sensitivity, is reduced 098107533 19 200948333 degrees. Fig. 6 shows the synchronization with the photosensor 17 in relation to the signal curve (characteristic curve 18) of the photosensitive member and the signal curve (characteristic curve 19) of the light source 10. The separate photosensor 17 can also be formed by a photosensitive element integrated in the light source 10, such as a laser diode integrated with a monitoring diode. When a sensor is provided for navigation, if only one triangulation system T is provided, as shown in the embodiment of Fig. 7, the triangulation system T can be placed on a turntable 20 in order to avoid dead angles. This turntable 20 constitutes, for example, a cover of the cover 6. The turntable 20 is rotatable about a vertical axis z. The triangulation system T detects a fixed angular range α. The circumference of the vacuum cleaner 1 can be completely scanned by the rotation of the turntable 20 and the triangulation system. The turntable 20 and the triangulation system can also be swung to scan the defined range of angles. A plurality of triangulation systems 设 can be arranged on the turntable 20, and the environment can be completely detected at a small swing angle, so that the scanning speed of the sensing system is improved. The drive of the turntable 20 in the triangulation system utilizes a separate electric motor, not shown, and an intermediate transmission. The drive can also utilize the drive of the wheel 3. As shown in Figures 8 and 9, in another embodiment, the turntable 20 and the triangulation system it carries are covered by a cover 21 which is preferably fixed so that no rotating member is exposed. The peripheral wall portion of the cover plate 21 at the height of the triangulation system is designed to be transparent. This transparent portion is indicated as 22. 098107533 20 200948333 Elements of the optical system, particularly the optical elements of the receiver E, may be integrated into the transparent portion 22, for example, by coating or dyeing the transparent portion 22 to form a light or aperture. The received signal of the triangulation system is analyzed by an analysis electronics A. In conjunction with this analysis, a predetermined manner of vacuum cleaner 1 is proposed, for example, to bypass the measured obstacle. The rotatable triangulation system T, in particular the triangulation system T carried by the turntable 20, preferably transmits the distance data in a contactless manner. In the embodiment of Fig. 8, the transmission of the optical signal utilizes a light source 23 disposed in the center of the turntable 20, for example, a light emitting diode. The light source is controlled by the receiver E of the triangulation system T to emit a digital light signal. The simplest way is to use the light source 23 to turn it on and off. A receiving unit 25 is provided in the fixed vacuum cleaner 1 component (the fixed shaft 24 in the drawing) with respect to the turntable 20, and the receiving unit receives the optical signal and transmits it to the cleaner control device. The receiving unit 25 is, for example, a photovoltaic element. Ο As shown in Figure 9, the signal transmission from the distance data can also use the radio. Here, the center of the turntable 20 is provided with a transmitting antenna 26 which is transmittable to the receiving antenna 27 in the vacuum cleaner element which is fixed relative to the turntable 20. As shown in Fig. 8, the electronic components on the turntable 20, particularly the triangulation system T, utilize a mechanical slip ring for the power supply. In the illustrated embodiment, the slip ring 28 is disposed below the turntable 20. The brush 29 interacting therewith is provided on the vacuum cleaner, which is connected to the battery of the vacuum cleaner. In Fig. 9, the turntable 20 and the relatively fixed vacuum cleaner constitute a generator, 098107533 21 200948333. Here, the fixed shaft 24 is provided with permanent magnets or electromagnets 30 of alternating polarity to form a stator. The turntable 20 is provided with a coil 31 to constitute a rotor. When the rotary disk 20 is rotated, the coil 31 generates an induced current for use by the triangulation system T. This type of power generation is equivalent to a synchronous generator. In another embodiment, the collector ring and the brush ' used for powering the triangulation system τ on the turntable 20 can also be used for transmission of distance data, where it is transmitted by the vacuum cleaner via the collector ring 28 and the brush 29. The electric energy to the turntable 20 is superimposed with a high-frequency alternating voltage 'triangulation system T' to thereby transmit the encoded distance data to the analysis electronic device A of the vacuum cleaner. In order to achieve navigation of the vacuum cleaner 1, as shown in Fig. 7, the angle of rotation of the turntable 20 or the triangulation system T with respect to the direction of travel r can be measured. Therefore, a position sensor 32 is provided here. It is for example an optical sensor such as a forked grating with an embossed plate. It is also possible to provide a plurality of such position sensors 32 in the circumferential direction of the turntable 2, for example, contacts at one or several angular positions. In order to improve the efficiency of the photosensitive member 11, the triangulation system T in the embodiment shown in FIG. 1A is provided with two light sources 1〇, 1〇, and the light source 1 is used to detect the obstacle 13 in the short range N. The light source 1〇 is used to detect the obstacle 13' of the long range F. By setting the positions of the two light sources 10, 10', two shorter measurement ranges are obtained, that is, the measurement range of the close range N and the measurement range of the far range f are combined to obtain a longer measurement. range. Here, the signal analysis reveals which measurement range the obstacles 13, 13 to be measured are located. 098107533 22 200948333 The receiver E and the light source 1〇, 1〇 are synchronized so that the analysis electronics confirm that they belong to the corresponding receiver E or _ 1G, (4) before measuring or emitting an optical signal. In the illustrated embodiment, the light sources 1Q, 1G emit light of different wavelengths. Receiving H E or photosensitive element U can detect the wavelength of incident light, so it can be used for measurement. Fig. 11 shows an embodiment of triangulation pure T, except for an optical element not shown, such as a 'lens or aperture, which is provided with a dispersive element 33, which is composed of an optical cymbal. Here, light having a plurality of wavelengths is preferably emitted by the light source H) to measure the distance. The light reflected by the obstacle 13 is /7 into a light component via the dispersing element 33, and is projected to a different position of the photosensitive element 11. Here, the button element is preferably an optical ❹jlf, so that the distance of the obstacle 13 can be obtained by measuring the photosensitive element 11 <or several wavelength positions. In order to avoid trouble i, the spot of the reflected light projected on the photosensitive illusion U is also adjusted. β P ' In the embodiment of Fig. 12, the wire p is increased to a two-degree space. Namely, it becomes a longitudinal length perpendicular to the one-dimensional linear sensing range n of the photosensitive member 11. The increase in the second spatial spot P can be achieved, for example, by providing a special additional optical element in the range of the light source 10 or by providing a special so-called cylindrical lens on the receiving side. With this design, sufficient tolerance can be obtained in the direction perpendicular to or perpendicular to the sensing range u. Alternatively, when the spot P is dot-shaped, the sensing range u of the photosensitive element 11 can be increased to a two-degree space. Therefore, a planar sensing element is provided. Sensing range 11' vertical 098107533 23 200948333 The increase in the direction of measurement is equivalent to several times the diameter of the spot p, for example, two to five times the diameter (compare Figure 13). Another problem to solve the T-distance measurement of the optical triangulation system is that the amount of light projected on the photosensitive element 11 in the close range is higher than the far range. In the embodiment of Fig. 14, the photosensitive element u of the triangulation system T is inclined to the incident. The beam 'an angle of inclination is, for example, 15°. Fig. 14 shows the photosensitive member 11 perpendicular to the incident beam in a broken line for comparison. Since the photosensitive element 11 is tilted, a sufficient range of focus and distance of light can be achieved over a long range, and the focus and amount of light are reduced, and a continuous signal attenuation transition is achieved between the close range and the long range. As shown in Fig. 15, the triangulation system T measures an obstacle 13 at a constant height h. Different heights h, h', h" are measured for the measurement of obstacles of different heights, such as the steps 13", the space under the peach bar or other obstacles'. It can utilize the oscillation of the triangulation system T in the vertical direction, and the entire triangulation system or a part thereof mechanically oscillates in the vertical direction to measure the distances of different heights (compare Fig. 16). The triangulation system Τ can also have light sources of different heights, the reflected beam of which is projected onto a plane, i.e., the photosensitive element 11 of the second dimension. Fig. 17 shows a photosensitive member 11 designed as a PSD (Position Sensitive Device) element which is used in the present invention for the triangulation system T' to measure the distance. The optics of the triangulation system 可使 can focus the light reflected by the object Ο (compare Fig. 18) to be distanced onto the photosensitive element 11 098107533 24 200948333. light spot! > On-line sensing range U, generating two photocurrents "and ^. It can be measured by the sensing range η, the end of a suitable measuring device. According to the principle of optical triangulation, sense_circle 11, The position of the glazing point is the ratio of the distance of the object. The ratio is the ratio of the two currents U h. The sum of the two currents U 丨 2 is affected by the distance of the object and its surface, that is, the degree of reflection. After the distance is reached, the surface characteristic data can be obtained by 1 and the piano data can be used for the navigation of the vacuum cleaner 1 in the space R. The vacuum cleaner 1 in the space R is displayed in the space R. The contour of the space r can be made by the triangulation f system τ. Analyze the geometric data, the vacuum cleaner in the directional space r can be used to determine the reflection characteristics of the ring & by using the triangulation system τ, so that the vacuum cleaner can use the material for orientation and sharpening. t, as shown in Fig. 18, the vacuum cleaner 1 can recognize the range of forest-like reflection characteristics. In Figure 18, objects with different reflection characteristics are respectively indicated by solid lines and broken lines. 三角 The triangulation system can also utilize signal strength. Find the reflectivity, and its photosensitive element 1 1 is, for example, an optical wafer such as a CCD or a CM 〇 S. Figure 19 shows a receiver E - an embodiment in which both the receiving lens 12 and the correcting lens 14 are formed as lenticular lenses, wherein at least one lens surface is designed to be aspherical, While effectively affecting the optical path, the lens surface is non-spherical. The correction lens 14 has two aspherical surfaces in Fig. β. The receiving lens 12 has an aspherical surface, that is, a surface facing the light beam. The two lenses preferably have a cylindrical frame. It can be placed on a 098107533 25 200948333 stand with cylindrical perforations. The cylindrical frame of the correcting lens 14 is designated 34. The embodiment of Figure 20 is provided between the optical lens (receiving lens 12 and correcting lens μ) The aperture 15 is made of an opaque material (for example, opaque plastic or metal) and has a central aperture 35 through which the optical path of the receiving lens passes. The aperture 15 can also be disposed in front of the receiving lens 12. Or between the correction lens 14 and the photosensitive element η. In addition, more than one aperture 15 ° may be provided. The embodiment of FIG. 21 is provided with a filter element, which is made of a transparent material. Dyeing only allows the wavelength of the light used to pass through the 'other wavelengths' of light. Therefore, a plastic material can be used as the filter element 16, which also has a high burst strength when light in weight' and is higher at extreme temperatures. Shape stability. A transparent element with a filter coating can be used in addition to the dyed filter element 16. In addition, the lens used can be dyed or coated. In the embodiment of Fig. 22, the correction lens The face of the beam is uniformly coated with a filter layer 36. The lens gradient can also be dyed to optically passivate it. In the embodiment of Figure 23, the correcting lens 14 is dyed by the gradient toward the front side of the beam. The lens portion through which the object is lighted is dyed dark (Section 37). The light of the object in the long range < the passing lens portion fades in color until the correcting lens 14 is completely transparent (portion 38). At least one lens can also be optically passivated by mechanical dicing of the lens. In Fig. 26 098107533 200948333, the portion of the correcting lens 14 through which only the light of the close range object passes is cut by the secant (next nt) shape. The cut portion in Fig. 24 is indicated as %. The linear shape of the spot p is increased to be achieved as a cylindrical lens 4q. The cylindrical lens 40 (four) in Fig. 25 has a function of correcting the lens 丨彳. ❹ In another design of the subject matter of the present invention, the three_quantity_7 is universal (four) and is always maintained in the horizontal direction. Fig. 26 is a view showing the first embodiment of the gimbal. The triangulation system τ is mounted on the platform 4!. The platform 41 is, for example, a part of a triangulation system and a casing. The platform 41 pivots and is accommodated in the frame 42 in the horizontal % axis b, and the frame 42 is disposed on the two columns 43 of the spin-red a.. burning axis a. The axes of rotation a and b intersect again and form a right angle. The pillar 43 is fixedly connected to the cover 6 of the vacuum suction. Below the common plane formed by the right-angled intersecting axes of rotation a and b, a weight 44 is provided, the mass of which is much greater than the mass of the angle measuring system T, so that the weight of the weight 44 is made by % The angle measuring system τ is always kept in a horizontal position even when the vacuum cleaner 1 is inclined in the horizontal direction by passing the door stopper. In addition to passive compensation at the intersection of the system T at the angle, it is also possible to provide two adjustment motors 45, 45 there, as shown in FIG. As shown in Fig. 26, the 'two-angle measuring system T is pivotally connected to the frame 42 by two rotating axes a and b and on the two pillars 43. The pillars are fixedly connected to the cover 6 of the cleaner i. a tilt sensor 47, which can detect the angle of the vacuum cleaner i inclined to the horizontal plane. Using the geometrical measure of the universal suspension, the tilt angle 098107533 27 200948333 can be converted into a triangulation pure τ rotation of the rotation axis a & b The angle of rotation can be adjusted by adjusting the appropriate bearings of the motors 45 and 46 to compensate for the tilt of the triangulation system T to the horizontal plane. In principle, all wavelengths detectable by the photosensitive element u can be used. However, it is preferable to use a standard. It is preferable to use a light, thin, short (four) emitter diode or the like as the light source 1G, for example, a f-diode having red light. The wavelength of the laser body is usually Between 635 nm and 658 nm, a laser diode having green light having a wavelength in the range of about 5 〇〇 nm can also be used. Also, a light source in the infrared range can be used, and the wavelength is 900 nm. Use light-emitting diodes and use red The outer laser diode is used as the light source. All of the disclosed features are inherently inventive. The features disclosed in the present invention are fully included in the scope of the patent application. [Fig. 1] Fig. 1 is a perspective view of the vacuum cleaner of the present invention. Figure 2 is a perspective view of the bottom surface of the vacuum cleaner of the present invention. Figure 3 is a schematic view of the first embodiment of the vacuum measuring system of the vacuum cleaner of the present invention. Figure 4 is a characteristic diagram of the measured value of the photosensitive member of the triangulation system. Figure 6 is a schematic diagram of the synchronizing signal of the light source of the photometric element of the triangulation system of Figure 5. Figure 7 is a schematic view of the vacuum cleaner of the present invention, including a triangulation system rotatable about the vertical axis of the vacuum cleaner, and a detecting rotation Figure 8 is a cross-sectional view of another embodiment of a turntable and a vacuum cleaner bearing portion of the 309107533 28 200948333. Fig. 9 is a cross-sectional view of still another embodiment, such as Fig. 8. Fig. 10 is a triangulation Schematic diagram of another embodiment of the system. Fig. 11 is a schematic view showing still another embodiment of the triangulation system. A schematic diagram of a one-dimensional spatial photosensitive element of a measuring system in which the spot is enlarged in the vertical direction. Figure 13 is a schematic illustration of a two-dimensional spatial photosensitive element of a triangulation system in which the spot on the photosensitive element is circular. A top view of another embodiment of a photosensitive element of a 14-series triangulation system. Figure 15 is a side view of a vacuum cleaner of the present invention and a triangulation system for detecting a fixed height. Figure 16 is a diagram of Figure 15, wherein the triangulation system can Figure 17 is a schematic view of the photosensitive element of Figure 12, which can be used to determine the reflectance. Figure 18 is a plan view of a space and a self-propelled vacuum cleaner in this space. Figure 19 is a receiving lens, a correcting lens, and a photosensitive element. One embodiment of a constructed receiver. Figure 20 is another embodiment of a receiver having an aperture. Figure 21 is a diagram of Figure 20 but with a filter element. Figure 22 is a perspective view of a receiver having a coated correction lens. Figure 23 is a diagram of Figure 22 but with a gradient dyed correction lens. Figure 24 is a diagram of Figure 22, but a lens portion is mechanically blunt and optically blunt 098107533 29 200948333. Figure 25 is a diagram of Figure 22, but the correcting lens is a cylindrical lens. Figure 26 is an embodiment of a gimbal suspension triangulation system. Figure 27 is another embodiment of a gimbal suspension of a triangulation system. [Main component symbol description] 1 Vacuum cleaner 2 Chassis 3 Wheel 4 Chassis bottom 5 Brush 6 Cover 7 Garbage slope 8 Free roller 9 Sensing device 10 Light source 10, Light source 11 Photosensitive element 1 感 Sensing part; Sensing range 12 (Receiving) Lens 13 (near) obstacle 13' (far) obstacle 13"obstacle; step 098107533 30 200948333

14 (校正)透鏡 15 光圈 16 濾光元件 17 光感測器 18 特性曲線 19 特性曲線 20 轉盤 21 蓋板 22 透明部分 23 光源 24 轴 25 接收單元 26 發送天線 27 接收天線 28 集電圈 29 電刷 30 磁鐵 31 線圈 32 位置感測器 33 色散元件 34 鏡框 35 中心孔 098107533 31 200948333 36 遽光層 37 (深色)部分 38 (淡色)部分 39 (切割)部分 40 柱形透鏡 41 平台 42 框體 43 支柱 44 配重塊 45 調整馬達 46 調整馬達 47 傾斜感測器 A 分析電子裝置 E 接收器;接收單元 F (遠距離)範圍 L 零點位置 N (近距離)範圍 P 光點 s 發送器 T 三角測量系統 0 物體 R 空間 098107533 32 200948333 h h, h" r x y z ❹ a 11 12 a b 高度 高度 高度 行駛方向 距離 位置 (垂直)軸 偵測角度 光電流 光電流 旋轉軸 旋轉軸 098107533 3314 (Correct) Lens 15 Aperture 16 Filter Element 17 Photosensor 18 Characteristic Curve 19 Characteristic Curve 20 Turntable 21 Cover 22 Transparent Part 23 Light Source 24 Axis 25 Receiving Unit 26 Transmitting Antenna 27 Receiving Antenna 28 Current Collector 29 Brush 30 Magnet 31 Coil 32 Position sensor 33 Dispersive element 34 Frame 35 Center hole 098107533 31 200948333 36 Twilight layer 37 (dark) part 38 (light color) part 39 (cut) part 40 Cylindrical lens 41 Platform 42 Frame 43 Pillar 44 Counterweight 45 Adjustment motor 46 Adjustment motor 47 Tilt sensor A Analysis electronics E Receiver; Receiving unit F (distance) range L Zero position N (close range) Range P Spot s Transmitter T Triangulation System 0 Object R Space 098107533 32 200948333 hh, h" rxyz ❹ a 11 12 ab Height Height Height Direction of Travel Distance Position (Vertical) Axis Detection Angle Photocurrent Photocurrent Rotary Axis Rotary Axis 098107533 33

Claims (1)

200948333 七、申請專利範圍: 1.-種自走式吸塵器⑴,其包括電動馬達驅動的輪子 (3)、吸塵器殼體、集塵容器、及吸塵器罩體⑹,其中,該 吸塵器(1)具有一個障礙物辨識裝置,其為光學三角測量^ 統(T),包括光源(10, 10’)及接收單元⑹,而該接收單元包含 反射光束的接收透鏡(12)及光敏元件(n),其特徵為:光束 在接收單元(E)中受到影響,使得,至少實際距離較遠的障 礙物(13, 13’)之光束,在被接收透鏡(12)聚束後,以較大間 距射入光敏元件(11)。200948333 VII. Patent application scope: 1. A self-propelled vacuum cleaner (1) comprising an electric motor driven wheel (3), a vacuum cleaner housing, a dust collecting container, and a vacuum cleaner cover (6), wherein the vacuum cleaner (1) has An obstacle recognition device, which is an optical triangulation system (T), comprising a light source (10, 10') and a receiving unit (6), and the receiving unit comprises a receiving lens (12) and a photosensitive element (n) that reflect the light beam, The feature is that the light beam is affected in the receiving unit (E) such that at least the light beams of the obstacles (13, 13') which are far away from each other are shot at a larger interval after being bundled by the receiving lens (12). Into the photosensitive element (11). 〇 2.—種設有感測裝置(9)而具有水平及/或垂直長度的物 件,用來偵測障礙物(13, 13,),其中,該感測裝置(9)為光學 三角測量系統(T),包括光源(1〇)及接收單元(E),而該接收 單元包含反射光束的接收透鏡(12)及光敏元件(11),其特徵 為:光束在接收單元(E)中受到影響,使得,至少實際距離 較遠的障礙物(13,13')之光束,在被接收透鏡(12)聚束後, 以較大間距射入光敏元件(11)。 3. 如申請專利範圍第1或2項之吸塵器或物件,其中’光 敏元件(11)入射光之較大間距,可利用附設於接收透鏡(12) 的校正透鏡(14)而得到。 4. 如申請專利範圍第3項之吸塵器或物件’其中’除了接 收透鏡(12)及校正透鏡(14)之外,尚設有另一個透鏡° 5. 如申請專利範圍第4項之吸塵器或物件,其中’接收透 098107533 34 200948333 鏡(12)設作成聚光透鏡時,該透鏡可使反射光聚束。 6. 如申請專利範圍第1或2項之吸塵器或物件,其中, 收單元(E)包含一光圈(15)。 7. 如申請專利範圍第1或2項之吸塵器或物件,其中, 收單元(E)包含一濾光元件(16)。 8·如申請專利範圍第1或2項之吸塵器或物件,其中,光 敏元件(11)被塗佈或染色,以過濾反射光。 ❹ 9.如申請專利範圍第丨或2項之吸塵器或物件,其中,— 個光學元件,例如,透鏡(12, 14)或光圈(15),被塗佈或染色, 以過滤·反射光。 10·如申請專利範圍第1或2項之吸塵器或物件,其中, 透鏡(12, 14) 一部分被光學鈍化。 11.如申請專利範圍第10項之吸塵器或物件,其中,光學 鈍化係利用透鏡之機械切割。 ❹ 12.如申請專利範圍第10項之吸塵器或物件,其中,光學 純化係藉由塗佈一層阻光或不透光層而達成。 ' 13.如申請專利範圍第10項之吸塵器或物件,其中,光學 ' 鈍化係利用透鏡(12, 14)之梯度染色而達成。 14. 如申請專利範圍第1〇項之吸塵器或物件,其中,光學 鈍化只在透鏡(12, 14)屬於近距離範圍(N)的部分進行。 15. 如申請專利範圍第1或2項之吸塵器或物件,其中, 光源(10, 10·)設有一個分開的光感測器(17)。 098107533 35 200948333 16·如申請專利範圍第15項之吸塵II或物件,其中,光 測器(17)整合在光源(1〇,1〇,)中。 Π.如申請專利範圍第i或2項之吸塵器或物件,其中, 光源(10, 1G,)為-個整合有監測二極體的雷射二極體。 I8·如申請專利範圍第1或2項之吸塵器或物件,其中, 二角測量系統(T)可對一垂直轴(z)旋轉。 19. 如申請專利範圍第1或2項之吸塵器或物件,其中, 三角測量系統(T)設在-個可相對於蚊的吸塵器或物件殼 體而對一垂直軸(z)旋轉的轉盤(20)上。 20. 如申請專利範圍第19項之吸塵器或物件,其中,轉盤 (20)可對一垂直軸(z)擺動。 21. 如申請專利範圍第19項之吸塵器或物件,其中,轉盤 (20)被一個分開的電動馬達所驅動。 22. 如申請專利範圍第21項之吸塵器或物件,其中,轉盤 (20)的驅動連結輪子(3)的驅動。 23. 如申請專利範圍第19項之吸塵器或物件,其中,轉盤 (20) 及放置於其上的三角測量系統(T)被蓋板(21)所覆蓋。 24. 如申請專利範圍第23項之吸塵器或物件,其中,蓋板 (21) 為部分透明。 25. 如申請專利範圍第24項之吸塵器或物件,其中,蓋板 (21)之透明部分(22)被設作成光圈及/或濾光元件。 26. 如申請專利範圍第24頊之吸塵器或物件,其中,蓋板 098107533 36 200948333 明部分(22)係被塗 (21)之被設作成光圈及/或濾光元件的透 佈。 27. 如㈣專鄕_ 19項之吸魅或物件,其中,轉盤 ⑽上設置多個三角測量系統(T)。 轉盤 28. 如申請專利範圍第19 及壓器或物件,其中,韓盤 (2〇)上除了三角測量系統(T)之外,…番甘 ;弋外尚可杈置其他監控元件, 例如,超音波感測器或照相機。 29. 如申請專利範圍第19 $〈及壓器或物件,其中,韓盤 (20)上的三角測量系統 ^ 供電係利用集電圈/電刷。 3〇.如申請專利範圍第19項之吸塵器或物件,其中,轉盤 ()上的一角測量系統⑺之供電係利用轉盤(2〇)與吸塵器 或物件殼體之相對運動。 31. 如申請專利範圍第1或2項之吸塵器或物件,其中, 光敏元件(11)接收的信號被以光學傳輸。 32. 如申請專利範圍第1或2項之吸塵器或物件,其中, 光敏元件(11)之信號傳輸係利用無線電。 33·如申請專利範圍第1或2項之吸塵器或物件,其中, 光敏元件(11)之信號傳輸為感應式。 34.如申請專利範圍第19項之吸塵器或物件,其中,轉盤 (20)之供電為利用集電圈/電刷時’光敏元件(11)之信號傳輸 可同時利用集電圈/電刷之編碼信號傳輸。 35·如申請專利範圍第1或2項之吸塵器或物件,其中, 098107533 37 200948333 偵測三角測量系統(τ)對固定的吸塵器或物件殼體之旋轉角 度係利用一感測器。 36. 如申請專利範圍第1或2項之吸塵器或物件,其中, 光敏元件(11)為一度空間元件。 37. 如申請專利範圍第1或2項之吸塵器或物件,其中, 光敏元件(11)為二度空間元件。 38. 如申請專利範圍第1或2項之吸塵器或物件,其中, 光敏元件(11)為PSD元件。 39. 如申請專利範圍第1或2項之吸塵器或物件,其中, 光敏元件(11)為CCD元件。 40. 如申請專利範圍第1或2項之吸塵器或物件,其中, 光敏元件(11)為CMOS元件。 41. 如申請專利範圍第1或2項之吸塵器或物件,其中, 光源(10, 10’)發出可見光。 42. 如申請專利範圍第1或2項之吸塵器或物件,其中, 光源(10, 10’)發出非可見光。 43. 如申請專利範圍第1或2項之吸塵器或物件,其中, 光源(10, 10’)發出具單一波長的光。 44. 如申請專利範圍第1或2項之吸塵器或物件,其中, 光源(10, 10’)發出具多個波長的光。 45. 如申請專利範圍第1或2項之吸塵器或物件,其中, 設置二或多個光源(10, 10’)。 098107533 38 200948333 46. 如申請專利範圍第1或2項之吸塵器或物件 設置二或多個光敏元件(11)。 、, 47. 如申凊專利範圍第必或牝項之吸塵器或物件其 設置二或多個光源⑽㈣及/或光敏元件( 她’ 1〇,)及光敏元件⑴)被同步化。 尤源(1〇, 48. 如申請專利範圍第45項之吸塵器或物件,其中, ❹ 多個光源⑽H)’)以發出不同波長之光’且光 ^ 可偵測所設定的波長。 叹器〇1) 49.如申請專利範圍第丨或2項之吸塵器或物件其中, 光源(1〇, 10,)發出光譜範圍之光時,除了光學元件之外,尚 增設色散元件(33)。 5一〇 ·如申請專利範圍帛4 9項之吸塵器或物件,其中,將光 敏元件(11)染色而達到色散。 51·如申請專利範圍第1或2項之吸塵器或物件,其中, ⑩二度空間地增大了出現在光敏元件(11)上的光點(P)/ 52·如申請專利範圍第51項之吸塵器或物件,其中,光點 ’ (P)之增大係利用光源(10, 10,)及/或接收範圍之光的成形。 ' 53·如中請專利範圍第1或2項之吸塵器或物件,其中, 使光敏7L件(11)屬於近距離範圍(N)的部分聚焦小於屬於遠 距離範圍(F)的部分。 54.如申清專利範圍第丨或2項之吸塵器或物件,其中, 使光敏it件(11)為固定’與光敏元件互相作用的光學元件則 098107533 39 200948333 可旋轉。 55. 如申請專利範圍第1或2項之吸塵器或物件,其中, 三角測量系統(T)被懸吊,並另設一個傾斜感測器。 56. 如申請專利範圍第1或2項之吸塵器或物件,其中, 三角測量系統(T)被萬向懸吊。 57. 如申請專利範圍第1或2項之吸塵器或物件,其中, 三角測量系統(T)在垂直方向上振盪。 58. 如申請專利範圍第1或2項之吸塵器或物件,其中, 使用線形雷射作為光源(1〇,1〇’)。 59. 如申請專利範圍第1或2項之吸塵器或物件,其中, 在不同的垂直高度上設置光源(10,10')。 098107533 40〇2. An object having a horizontal and/or vertical length provided with a sensing device (9) for detecting an obstacle (13, 13,), wherein the sensing device (9) is an optical triangulation The system (T) comprises a light source (1) and a receiving unit (E), and the receiving unit comprises a receiving lens (12) that reflects the light beam and a photosensitive element (11), characterized in that the light beam is in the receiving unit (E) It is affected that at least the beam of the obstacle (13, 13') which is far away from the actual distance is incident on the photosensitive element (11) at a larger interval after being bundled by the receiving lens (12). 3. A vacuum cleaner or article according to claim 1 or 2, wherein a larger pitch of incident light of the photosensitive element (11) is obtained by using a correction lens (14) attached to the receiving lens (12). 4. If the vacuum cleaner or article 'in the 'Patent No. 3' is in addition to the receiving lens (12) and the correcting lens (14), there is another lens. 5. The vacuum cleaner of claim 4 or The object, wherein 'receiving through 098107533 34 200948333 when the mirror (12) is designed as a collecting lens, the lens can concentrate the reflected light. 6. The vacuum cleaner or article of claim 1 or 2, wherein the receiving unit (E) comprises an aperture (15). 7. The vacuum cleaner or article of claim 1 or 2, wherein the receiving unit (E) comprises a filter element (16). 8. A vacuum cleaner or article according to claim 1 or 2, wherein the photosensitive element (11) is coated or dyed to filter the reflected light. ❹ 9. A vacuum cleaner or article of claim 2 or 2, wherein - an optical element, such as a lens (12, 14) or aperture (15), is coated or dyed to filter and reflect light. 10. A vacuum cleaner or article of claim 1 or 2 wherein a portion of the lens (12, 14) is optically passivated. 11. A vacuum cleaner or article of claim 10, wherein the optical passivation utilizes mechanical cutting of the lens. ❹ 12. The vacuum cleaner or article of claim 10, wherein the optical purification is achieved by coating a layer of light blocking or opaque layer. 13. A vacuum cleaner or article according to claim 10, wherein the optical 'passivation system is achieved by gradient dyeing of the lens (12, 14). 14. The vacuum cleaner or article of claim 1, wherein the optical passivation is performed only in a portion of the lens (12, 14) that is in the close range (N). 15. A vacuum cleaner or article according to claim 1 or 2, wherein the light source (10, 10·) is provided with a separate light sensor (17). 098107533 35 200948333 16 A vacuum cleaner II or article as claimed in claim 15 wherein the photodetector (17) is integrated in the light source (1〇, 1〇,).如A. The vacuum cleaner or article of claim i or 2, wherein the light source (10, 1G,) is a laser diode integrated with a monitoring diode. I8. The vacuum cleaner or article of claim 1 or 2, wherein the diangular measuring system (T) is rotatable about a vertical axis (z). 19. The vacuum cleaner or article of claim 1 or 2, wherein the triangulation system (T) is provided on a turntable that rotates against a vertical axis (z) relative to a vacuum cleaner or article housing of the mosquito ( 20) On. 20. The vacuum cleaner or article of claim 19, wherein the turntable (20) is swingable about a vertical axis (z). 21. The vacuum cleaner or article of claim 19, wherein the turntable (20) is driven by a separate electric motor. 22. The vacuum cleaner or article of claim 21, wherein the drive of the turntable (20) is coupled to the drive of the wheel (3). 23. A vacuum cleaner or article according to claim 19, wherein the turntable (20) and the triangulation system (T) placed thereon are covered by a cover plate (21). 24. The vacuum cleaner or article of claim 23, wherein the cover (21) is partially transparent. 25. The vacuum cleaner or article of claim 24, wherein the transparent portion (22) of the cover (21) is configured as an aperture and/or a filter element. 26. The vacuum cleaner or article of claim 24, wherein the cover 098107533 36 200948333 is partially coated (21) to be permeable to the aperture and/or filter element. 27. For example, (4) Specialized _ 19 items of charm or objects, in which a plurality of triangulation systems (T) are arranged on the turntable (10). Turntable 28. If the patent scope is 19 and the pressure device or object, in addition to the triangulation system (T) on the Hanpan (2〇), the other monitoring components can be installed, for example, Ultrasonic sensor or camera. 29. If the scope of application for patents No. 19 $< and the pressure device or object, among them, the triangulation system on the Korean plate (20) ^ power supply system uses the collector ring / brush. 3. A vacuum cleaner or article according to claim 19, wherein the power supply of the one-angle measuring system (7) on the turntable () utilizes a relative movement of the turntable (2〇) with the vacuum cleaner or the object housing. 31. The vacuum cleaner or article of claim 1 or 2, wherein the signal received by the photosensitive element (11) is optically transmitted. 32. The vacuum cleaner or article of claim 1 or 2, wherein the signal transmission of the photosensitive element (11) utilizes a radio. 33. The vacuum cleaner or article of claim 1 or 2, wherein the signal transmission of the photosensitive element (11) is inductive. 34. The vacuum cleaner or article of claim 19, wherein the power supply of the turntable (20) is the use of a collector/brush when the signal transmission of the photosensitive element (11) can simultaneously utilize the collector/brush Coded signal transmission. 35. A vacuum cleaner or article of claim 1 or 2, wherein 098107533 37 200948333 detects a triangulation system (τ) utilizing a sensor for a fixed vacuum or object housing rotation angle. 36. The vacuum cleaner or article of claim 1 or 2, wherein the photosensitive element (11) is a one-dimensional space element. 37. The vacuum cleaner or article of claim 1 or 2, wherein the photosensitive element (11) is a second spatial element. 38. The vacuum cleaner or article of claim 1 or 2, wherein the photosensitive element (11) is a PSD element. 39. The vacuum cleaner or article of claim 1 or 2, wherein the photosensitive element (11) is a CCD element. 40. The vacuum cleaner or article of claim 1 or 2, wherein the photosensitive element (11) is a CMOS element. 41. The vacuum cleaner or article of claim 1 or 2, wherein the light source (10, 10&apos;) emits visible light. 42. The vacuum cleaner or article of claim 1 or 2, wherein the light source (10, 10&apos;) emits non-visible light. 43. A vacuum cleaner or article of claim 1 or 2, wherein the light source (10, 10&apos;) emits light having a single wavelength. 44. The vacuum cleaner or article of claim 1 or 2, wherein the light source (10, 10&apos;) emits light having a plurality of wavelengths. 45. A vacuum cleaner or article of claim 1 or 2, wherein two or more light sources (10, 10&apos;) are provided. 098107533 38 200948333 46. A vacuum cleaner or article as claimed in claim 1 or 2 is provided with two or more photosensitive elements (11). 47. A vacuum cleaner or article, as claimed in the claims or claims, is provided with two or more light sources (10) (four) and/or photosensitive elements (she's) and photosensitive elements (1) being synchronized.尤源 (1〇, 48. The vacuum cleaner or article of claim 45, wherein ❹ a plurality of light sources (10) H)') emit light of different wavelengths and the light can detect the set wavelength.叹器〇1) 49. If the light source (1〇, 10,) emits light in the spectral range, in addition to the optical component, a dispersing element (33) is added. . 5 一 · A vacuum cleaner or article of the patent application 帛49, in which the photosensitive element (11) is dyed to achieve dispersion. 51. The vacuum cleaner or article of claim 1 or 2, wherein the light spot (P)/52 appearing on the photosensitive member (11) is spatially increased by a factor of 12, as in claim 51. A vacuum cleaner or article in which the increase in spot '(P) utilizes light source (10, 10,) and/or shaping of the received range of light. A vacuum cleaner or article of the first or second aspect of the patent, wherein the portion of the photosensitive 7L member (11) belonging to the close range (N) is less focused than the portion belonging to the far range (F). 54. The vacuum cleaner or article of claim 2, wherein the photosensitive member (11) is fixed and the optical element interacting with the photosensitive member is 098107533 39 200948333 rotatable. 55. The vacuum cleaner or article of claim 1 or 2, wherein the triangulation system (T) is suspended and a tilt sensor is additionally provided. 56. The vacuum cleaner or article of claim 1 or 2, wherein the triangulation system (T) is suspended in a gimbal direction. 57. The vacuum cleaner or article of claim 1 or 2, wherein the triangulation system (T) oscillates in a vertical direction. 58. The vacuum cleaner or article of claim 1 or 2, wherein a linear laser is used as the light source (1〇, 1〇'). 59. The vacuum cleaner or article of claim 1 or 2, wherein the light source (10, 10') is disposed at a different vertical height. 098107533 40
TW098107533A 2008-03-19 2009-03-09 Automatically displaceable floor-dust collector TWI610650B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
??102008014912.8 2008-03-19
DE102008014912.8A DE102008014912B4 (en) 2008-03-19 2008-03-19 Automatically movable floor dust collector

Publications (2)

Publication Number Publication Date
TW200948333A true TW200948333A (en) 2009-12-01
TWI610650B TWI610650B (en) 2018-01-11

Family

ID=40983958

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098107533A TWI610650B (en) 2008-03-19 2009-03-09 Automatically displaceable floor-dust collector

Country Status (4)

Country Link
JP (1) JP5443796B2 (en)
DE (1) DE102008014912B4 (en)
IT (1) IT1393527B1 (en)
TW (1) TWI610650B (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103156551A (en) * 2011-12-16 2013-06-19 金宝电子工业股份有限公司 Dust collection detection system and method of sweeper
TWI465754B (en) * 2013-01-29 2014-12-21 Compal Electronics Inc Mobile robot with omnidirectional plane scanning and laser distance sensing module thereof
CN104412125A (en) * 2012-03-29 2015-03-11 商业创新和技能部国务大臣 Measurement device, system and method
CN105021163A (en) * 2015-07-14 2015-11-04 深圳乐行天下科技有限公司 Optical scanning device
TWI514101B (en) * 2011-01-31 2015-12-21 Unmanned device and mothed for controlling the same
TWI551877B (en) * 2014-06-27 2016-10-01 Mobile guidance device and mobile guidance method
WO2017000782A1 (en) * 2015-06-30 2017-01-05 芋头科技(杭州)有限公司 Obstacle recognition device and obstacle recognition method
TWI611791B (en) * 2015-07-17 2018-01-21 Lg電子股份有限公司 Robot cleaner
CN107745814A (en) * 2017-11-15 2018-03-02 航宇救生装备有限公司 A kind of active landed for aerial delivery system is anti-to turn over controlling organization
TWI641349B (en) * 2015-10-08 2018-11-21 日商東芝生活電器股份有限公司 Electric sweeper
TWI661289B (en) * 2016-08-22 2019-06-01 南韓商Lg電子股份有限公司 Moving robot and controlling method thereof
TWI700070B (en) * 2015-05-28 2020-08-01 德商佛維爾克控股公司 Vacuum cleaner, base station used therefor, system comprising the vacuum cleaner and base station, and method for indicating fill levels within the base station
TWI739622B (en) * 2020-10-05 2021-09-11 國立虎尾科技大學 Multi-laser rangefinder and the method of distinguishing reflection of laser thereof
CN113693480A (en) * 2020-03-03 2021-11-26 苏州维斯勒姆智能科技有限公司 Self-propelled household dust collector

Families Citing this family (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009003748B4 (en) 2009-04-06 2022-06-09 Vorwerk & Co. Interholding Gesellschaft mit beschränkter Haftung Floor dust collector and method of such a device
DE102009059215A1 (en) 2009-08-12 2011-02-17 Vorwerk & Co. Interholding Gmbh Automatically movable device and method for the route guidance of such a device
DE102009047662A1 (en) * 2009-12-08 2011-06-09 Endress + Hauser Gmbh + Co. Kg Device for measuring fill level of filling goods in container, has inlet and outlet surfaces whose radii of curvatures are determined such that radiations reflected at meniscus by object produce angle reinforced refraction and collimation
DE102010000174B4 (en) 2010-01-22 2022-09-01 Vorwerk & Co. Interholding Gesellschaft mit beschränkter Haftung Method for cleaning a room using an automatically movable cleaning device
DE102010000317A1 (en) 2010-02-05 2011-08-11 Vorwerk & Co. Interholding GmbH, 42275 Method for cleaning room by using automatically movable cleaning device, involves registering rectangle to be projected in room with longest possible dimensions by using algorithm
DE102010000607B4 (en) 2010-03-02 2022-06-15 Vorwerk & Co. Interholding Gmbh Household vacuum cleaner that can be used as a base station for an automatically movable suction and/or sweeping device
DE102010015941A1 (en) 2010-03-03 2011-09-08 Vorwerk & Co. Interholding Gmbh Method for measuring distance for cleaning robot, for household applications, involves performing pulse change during receipt of reflection signal outside of tolerance range for achieving reflection signal within tolerance range
DE102010016208B4 (en) 2010-03-30 2022-09-22 Vorwerk & Co. Interholding Gmbh Procedure for locating a remote control
DE102010017689A1 (en) 2010-07-01 2012-01-05 Vorwerk & Co. Interholding Gmbh Automatically movable device and method for orientation of such a device
DE102011050357A1 (en) 2010-08-12 2012-02-16 Vorwerk & Co. Interholding Gmbh Method for controlling i.e. guiding, movable household floor cleaning device e.g. sucking robot, involves recording and processing light signal such that transmission of light signal to cleaning area is controlled
DE102010037100A1 (en) 2010-08-23 2012-02-23 Vorwerk & Co. Interholding Gmbh Automatically movable device
DE102011053975B4 (en) 2010-10-05 2022-09-15 Vorwerk & Co. Interholding Gmbh Automatically movable cleaning device for cleaning floors
DE102010060347B4 (en) 2010-11-04 2024-05-16 Vorwerk & Co. Interholding Gmbh Automatically movable device and method for carrying out a check of distance measurement accuracy
DE102011054706A1 (en) 2010-11-18 2012-09-27 Vorwerk & Co. Interholding Gmbh Automatic movable floor dust collection apparatus has disc that is arranged in cross-section of output beam path for deflecting beam reflected on region between disc and transmission and receiving units
DE102010060876A1 (en) 2010-11-29 2012-05-31 Vorwerk & Co. Interholding Gmbh Automatic movable device, particularly automatically movable floor dust collecting device, has movable wheels driven by electric motor, where device housing and dust collecting container are provided
KR101192540B1 (en) * 2010-12-20 2012-10-17 (주)마미로봇 Multifunction charger for wireless cleaner
DE102011000009A1 (en) 2011-01-03 2012-07-05 Vorwerk & Co. Interholding Gmbh Method of simultaneous determination and map formation
DE102011000250A1 (en) 2011-01-21 2012-07-26 Vorwerk & Co. Interholding Gmbh Method for determining the position of a self-moving device
DE102012100758A1 (en) 2011-02-07 2012-08-09 Vorwerk & Co. Interholding Gmbh Automatically movable device i.e. automatically movable household-suction robot, behavior analyzing method for cleaning floor in room of laboratory environment, involves storing recording of camera in processing device together with data
DE102011000536A1 (en) 2011-02-07 2012-08-09 Vorwerk & Co. Interholding Gmbh Method for determining position of e.g. automatically movable household suction robot utilized for cleaning floor of home, involves determining actual position of corresponding sub region of map display by self-localization process
TWI429881B (en) * 2011-03-22 2014-03-11 Weistech Technology Co Ltd Non - contact power transmission structure of laser ranging device
JP2014112033A (en) * 2011-03-25 2014-06-19 Sanyo Electric Co Ltd Light receiving apparatus, object detecting device, and information acquisition device
CN102751792B (en) * 2011-04-21 2015-03-18 巍世科技有限公司 Contactless electric power transmission structure of laser ranging device
CN102564416B (en) * 2011-12-30 2014-08-20 浙江国自机器人技术有限公司 System and method for reconstructing and positioning three-dimensional environment for mirror cleaning robot
DE102012100324B4 (en) 2012-01-16 2024-03-28 Vorwerk & Co. Interholding Gmbh Automatically movable device and method for determining the inclination of such a device and/or for tracking walls and/or for approaching an object
DE102012100406A1 (en) 2012-01-19 2013-07-25 Vorwerk & Co. Interholding Gmbh Automatically movable device and method for operating such a device
KR20130090438A (en) * 2012-02-04 2013-08-14 엘지전자 주식회사 Robot cleaner
DE102012108802A1 (en) 2012-09-19 2014-03-20 Vorwerk & Co. Interholding Gmbh Automatically movable floor cleaning device and method for operating a floor cleaning device
DE102012110387A1 (en) 2012-10-30 2014-04-30 Vorwerk & Co. Interholding Gmbh Surface cleaning robot e.g. window cleaning robot has cleaning portion which is provided with closed cleaning surface, and suction bell region is rotated relative to cleaning portion in movable surface
DE102012111149B4 (en) 2012-11-20 2023-12-21 Vorwerk & Co. Interholding Gmbh Cleaning device
DE102013113426A1 (en) 2012-12-05 2014-06-05 Vorwerk & Co. Interholding Gmbh Mobile cleaning device and method for operating such a device
DE102013100192A1 (en) 2013-01-10 2014-07-10 Miele & Cie. Kg Self-propelled robot and method for distance determination in a self-propelled robot
ITGE20130095A1 (en) * 2013-09-27 2015-03-28 Nicolo' Spallarossa DEVICE FOR THE SURVEY OF INTERIORS AND ARCHITECTURAL PARTIALS AND METHOD OF DETECTION AND RECONSTRUCTION OF PLANTS OF INTERNAL ENVIRONMENTS
TWI498584B (en) * 2014-01-27 2015-09-01 Jason Yan Range detection device
DE102014101312B3 (en) * 2014-02-04 2014-12-04 Sick Ag Optoelectronic sensor and method for detecting objects in a surveillance area
DE102014105460A1 (en) 2014-04-16 2015-10-22 Vorwerk & Co. Interholding Gmbh Self-propelled floor cleaning device with a follower tool following a leader vehicle
DE102014105506B4 (en) * 2014-04-17 2023-11-16 Miele & Cie. Kg Robot vacuum cleaner and method for operating such a robot vacuum cleaner
WO2015169382A1 (en) 2014-05-08 2015-11-12 Alfred Kärcher Gmbh & Co. Kg Self-propelled and self-steering floor cleaning device and method for cleaning a floor surface
FR3022037B1 (en) * 2014-06-05 2017-12-01 Aldebaran Robotics DEVICE FOR HORIZONTALLY DETECTING OBSTACLES AND DETECTION METHOD USING SAME
FR3022038A1 (en) * 2014-06-05 2015-12-11 Aldebaran Robotics DEVICE FOR DETECTING AN OBLIQUE OBLIQUE PLAN AND DETECTION METHOD USING SUCH A DEVICE
FR3022036B1 (en) * 2014-06-05 2016-07-15 Aldebaran Robotics CROSS-PLAN DETECTION DEVICE OF AN OBSTACLE AND DETECTION METHOD USING SAME
DE102014110265A1 (en) 2014-07-22 2016-01-28 Vorwerk & Co. Interholding Gmbh Method for cleaning or processing a room by means of a self-moving device
DE102014111217A1 (en) 2014-08-06 2016-02-11 Vorwerk & Co. Interholding Gmbh Floor cleaning device for dry and damp cleaning and method for operating a self-propelled floor cleaning device
JP2017535279A (en) 2014-09-23 2017-11-30 宝時得科技(中国)有限公司Positec Technology (China) Co.,Ltd. Automatic mobile robot
DE102014114314A1 (en) 2014-10-01 2016-04-07 Sick Ag Optoelectronic sensor
DE102015100706A1 (en) * 2014-12-15 2016-06-16 Vorwerk & Co. Interholding Gmbh Automatically movable cleaning device
TWI548891B (en) * 2015-01-12 2016-09-11 金寶電子工業股份有限公司 Positioning system for sweeper and positioning method using for the positioning system
DE102015101471A1 (en) 2015-02-02 2016-08-04 Sick Ag triangulation
DE102015105211A1 (en) 2015-04-07 2016-10-13 Vorwerk & Co. Interholding Gmbh Process for working a soil
DE102015109775B3 (en) 2015-06-18 2016-09-22 RobArt GmbH Optical triangulation sensor for distance measurement
DE102015111392A1 (en) 2015-07-14 2017-01-19 Vorwerk & Co. Interholding Gmbh Method for operating a surface treatment device
DE102015113035A1 (en) 2015-08-07 2017-02-09 Vorwerk & Co. Interholding Gmbh Surface treatment device and base station
DE102015114883A1 (en) 2015-09-04 2017-03-09 RobArt GmbH Identification and localization of a base station of an autonomous mobile robot
DE102015119501A1 (en) 2015-11-11 2017-05-11 RobArt GmbH Subdivision of maps for robot navigation
DE102015119668B3 (en) 2015-11-13 2017-03-09 Sick Ag Optoelectronic sensor and method for detecting an object
DE102015119865B4 (en) 2015-11-17 2023-12-21 RobArt GmbH Robot-assisted processing of a surface using a robot
DE102015121666B3 (en) 2015-12-11 2017-05-24 RobArt GmbH Remote control of a mobile, autonomous robot
DE102016101552A1 (en) 2016-01-28 2017-08-03 Vorwerk & Co. Interholding Gmbh Method for creating an environment map for a self-moving processing device
DE102016102644A1 (en) 2016-02-15 2017-08-17 RobArt GmbH Method for controlling an autonomous mobile robot
DE102016121320A1 (en) 2016-11-08 2018-05-09 Vorwerk & Co. Interholding Gmbh Method for operating a self-propelled robot
DE102016124674A1 (en) 2016-12-16 2018-06-21 Vorwerk & Co. Interholding Gmbh Self-propelled cleaning device
DE102016124856A1 (en) 2016-12-19 2018-06-21 Vorwerk & Co. Interholding Gmbh Method for creating an environment map for a processing device
DE102016125319A1 (en) 2016-12-22 2018-06-28 Vorwerk & Co. Interholding Gmbh Method for operating a self-propelled vehicle
DE102016125358A1 (en) 2016-12-22 2018-06-28 Vorwerk & Co. Interholding Gmbh Method for operating a self-propelled cleaning device and such a cleaning device
DE102017100299A1 (en) 2017-01-09 2018-07-12 Vorwerk & Co. Interholding Gmbh Self-propelled cleaning device
DE102017100301A1 (en) 2017-01-09 2018-07-12 Vorwerk & Co. Interholding Gmbh Self-propelled cleaning device
DE202017100064U1 (en) 2017-01-09 2018-04-10 Vorwerk & Co. Interholding Gmbh Self-propelled cleaning device
CN110300899B (en) * 2017-02-17 2023-06-23 北阳电机株式会社 Object capturing device
DE102017103986A1 (en) 2017-02-27 2018-08-30 Vorwerk & Co. Interholding Gmbh Method for operating a self-propelled robot
WO2018158248A2 (en) 2017-03-02 2018-09-07 RobArt GmbH Method for controlling an autonomous, mobile robot
DE102017108194A1 (en) 2017-04-18 2018-10-18 Vorwerk & Co. Interholding Gmbh Method for operating a self-propelled vehicle
DE102017112794A1 (en) 2017-06-09 2018-12-13 Vorwerk & Co. Interholding Gmbh Method for operating a self-propelled soil tillage implement
DE102017112796A1 (en) 2017-06-09 2018-12-13 Vorwerk & Co. Interholding Gmbh Self-propelled soil tillage implement
DE102017113286A1 (en) 2017-06-16 2018-12-20 Vorwerk & Co. Interholding Gmbh System comprising at least two self-propelled tillage implements
DE102018116065A1 (en) 2017-07-13 2019-01-17 Vorwerk & Co. Interholding Gmbh Method for operating a self-propelled service device
DE102017115847A1 (en) 2017-07-14 2019-01-17 Vorwerk & Co. Interholding Gmbh Method for operating a self-propelled robot
DE102017118382A1 (en) 2017-08-11 2019-02-14 Vorwerk & Co. Interholding Gmbh Method for operating a self-propelled cleaning device
DE102017118380A1 (en) 2017-08-11 2019-02-14 Vorwerk & Co. Interholding Gmbh Method for operating a self-propelled cleaning device
DE102017118381A1 (en) 2017-08-11 2019-02-14 Vorwerk & Co. Interholding Gmbh Method for operating a self-propelled soil tillage implement
DE102017118383A1 (en) 2017-08-11 2019-02-14 Vorwerk & Co. Interholding Gmbh Method for operating a self-propelled cleaning device
US10481269B2 (en) 2017-12-07 2019-11-19 Ouster, Inc. Rotating compact light ranging system
KR102489806B1 (en) 2018-01-03 2023-01-19 삼성전자주식회사 Moving apparatus for cleaning, and system and method for cooperative cleaning thereof
KR102080515B1 (en) * 2018-03-14 2020-02-24 엘지전자 주식회사 A cleaner
KR102137463B1 (en) * 2018-03-29 2020-07-24 엘지전자 주식회사 A cleaner
JP6817638B2 (en) * 2018-05-10 2021-01-20 株式会社イージスモスジャパン Obstacle detection system
DE102018120577A1 (en) 2018-08-23 2020-02-27 Vorwerk & Co. Interholding Gmbh Tillage equipment moving automatically within an environment
KR102140838B1 (en) * 2019-01-16 2020-08-03 광전자 주식회사 Floor sensor for robot cleaner with image sensor
KR102693894B1 (en) * 2019-03-29 2024-08-12 삼성전자주식회사 Wide-angle high resolution distance measuring device
JP7231503B2 (en) * 2019-06-28 2023-03-01 株式会社マキタ Optical sensor and robot dust collector
CN111358367A (en) * 2020-03-03 2020-07-03 东莞芯速科技有限公司大岭山分公司 Floor sweeping robot
DE102020208400B4 (en) * 2020-07-03 2022-02-24 BSH Hausgeräte GmbH PROCEDURE FOR IMPROVED EDGE CLEANING OF A WALL
DE102020209843B3 (en) 2020-08-05 2021-09-30 BSH Hausgeräte GmbH Method for determining a distance between a cleaning robot and an obstacle
EP4116788B1 (en) 2021-07-09 2024-08-28 Vorwerk & Co. Interholding GmbH Automatic soil preparation equipment
DE102021119423A1 (en) 2021-07-27 2023-02-02 Sick Ag Photoelectric sensor and method for detecting an object using the triangulation principle
EP4343381A1 (en) 2022-09-26 2024-03-27 Vorwerk & Co. Interholding GmbH Automatically moving soil working device with an optical distance measuring device
GB202219808D0 (en) * 2022-12-29 2023-02-15 Exrobotics B V Improvements to position detection and navigation apparatus

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106204A (en) * 1987-10-20 1989-04-24 Sanyo Electric Co Ltd Self-traveling cleaner
DE3821892C1 (en) 1988-06-29 1990-02-22 Johann F. Dipl.-Phys. 2000 Hamburg De Hipp Method and device for position measurement of container repositioning vehicles
JP2658419B2 (en) * 1989-08-18 1997-09-30 松下電器産業株式会社 Self-propelled vacuum cleaner
JP2515882Y2 (en) * 1990-09-25 1996-10-30 日野自動車工業株式会社 Tilt correction device for inter-vehicle distance sensor
JP2568064Y2 (en) * 1991-10-23 1998-04-08 日本電気ホームエレクトロニクス株式会社 Cleaning robot
US5440216A (en) * 1993-06-08 1995-08-08 Samsung Electronics Co., Ltd. Robot cleaner
JPH09281237A (en) * 1996-04-16 1997-10-31 Nec Corp Laser distance measuring instrument
JPH1026524A (en) * 1996-07-10 1998-01-27 Omron Corp Range finding sensor, range finding unit, and carrying device, automatic inspection device, and printing device for sheet paper or the like
DE19757847A1 (en) 1997-12-24 1999-07-15 Hipp Johann F Scanner for optical object detection arrangement, especially in immediate vicinity of motor vehicles
ATE218210T1 (en) 1998-02-10 2002-06-15 Optosys Ag DEVICE FOR MEASURING DISTANCE OR ANGLE OF INCIDENCE OF A LIGHT BEAM
JP3945120B2 (en) * 2000-03-31 2007-07-18 松下電工株式会社 Ranging sensor and adjustment method thereof
US6496754B2 (en) 2000-11-17 2002-12-17 Samsung Kwangju Electronics Co., Ltd. Mobile robot and course adjusting method thereof
DE10114362C2 (en) 2001-03-22 2003-12-24 Martin Spies Laser scanning system for distance measurement
DE10242257C5 (en) 2001-09-14 2017-05-11 Vorwerk & Co. Interholding Gmbh Automatically movable floor dust collecting device, and combination of such a collecting device and a base station
JP2003156328A (en) * 2001-11-21 2003-05-30 Sharp Corp Ranging sensor
DE10220037C5 (en) 2002-05-04 2011-02-24 Sick Ag Device for detecting objects
DE102004001556A1 (en) 2004-01-10 2005-08-04 Robert Bosch Gmbh Night vision system for motor vehicles with partial optical filter
JP2005241340A (en) * 2004-02-25 2005-09-08 Sharp Corp Multi-range finding device
DE102005012107B4 (en) 2005-03-09 2010-04-29 Angermeier Ingenieure Gmbh Measuring system and method for geodetic surveying of objects
JP2007010556A (en) * 2005-07-01 2007-01-18 Sharp Corp Optical range finding sensor, and equipment provided therewith
AU2006284577B2 (en) * 2005-09-02 2012-09-13 Neato Robotics, Inc. Multi-function robotic device
US7544945B2 (en) 2006-02-06 2009-06-09 Avago Technologies General Ip (Singapore) Pte. Ltd. Vertical cavity surface emitting laser (VCSEL) array laser scanner

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI514101B (en) * 2011-01-31 2015-12-21 Unmanned device and mothed for controlling the same
CN103156551B (en) * 2011-12-16 2015-11-25 金宝电子工业股份有限公司 Dust collection detection system and method of sweeper
CN103156551A (en) * 2011-12-16 2013-06-19 金宝电子工业股份有限公司 Dust collection detection system and method of sweeper
CN104412125A (en) * 2012-03-29 2015-03-11 商业创新和技能部国务大臣 Measurement device, system and method
TWI465754B (en) * 2013-01-29 2014-12-21 Compal Electronics Inc Mobile robot with omnidirectional plane scanning and laser distance sensing module thereof
TWI551877B (en) * 2014-06-27 2016-10-01 Mobile guidance device and mobile guidance method
TWI700070B (en) * 2015-05-28 2020-08-01 德商佛維爾克控股公司 Vacuum cleaner, base station used therefor, system comprising the vacuum cleaner and base station, and method for indicating fill levels within the base station
WO2017000782A1 (en) * 2015-06-30 2017-01-05 芋头科技(杭州)有限公司 Obstacle recognition device and obstacle recognition method
CN105021163A (en) * 2015-07-14 2015-11-04 深圳乐行天下科技有限公司 Optical scanning device
TWI611791B (en) * 2015-07-17 2018-01-21 Lg電子股份有限公司 Robot cleaner
US10588474B2 (en) 2015-07-17 2020-03-17 Lg Electronics Inc. Robot cleaner
TWI641349B (en) * 2015-10-08 2018-11-21 日商東芝生活電器股份有限公司 Electric sweeper
TWI661289B (en) * 2016-08-22 2019-06-01 南韓商Lg電子股份有限公司 Moving robot and controlling method thereof
US10466711B2 (en) 2016-08-22 2019-11-05 Lg Electronics Inc. Moving robot and controlling method thereof
CN107745814A (en) * 2017-11-15 2018-03-02 航宇救生装备有限公司 A kind of active landed for aerial delivery system is anti-to turn over controlling organization
CN107745814B (en) * 2017-11-15 2023-12-22 航宇救生装备有限公司 Active anti-overturning control mechanism for landing of air drop system
CN113693480A (en) * 2020-03-03 2021-11-26 苏州维斯勒姆智能科技有限公司 Self-propelled household dust collector
CN113693480B (en) * 2020-03-03 2022-10-28 苏州维斯勒姆智能科技有限公司 Self-propelled household dust collector
TWI739622B (en) * 2020-10-05 2021-09-11 國立虎尾科技大學 Multi-laser rangefinder and the method of distinguishing reflection of laser thereof

Also Published As

Publication number Publication date
ITMI20090411A1 (en) 2009-09-20
IT1393527B1 (en) 2012-04-27
DE102008014912B4 (en) 2023-01-19
JP5443796B2 (en) 2014-03-19
DE102008014912A1 (en) 2009-09-24
TWI610650B (en) 2018-01-11
JP2009229458A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
TW200948333A (en) Automatically displaceable floor-dust collector and object with a sensor arrangement
US20200371585A1 (en) Integrated optoelectronic module
JP3875665B2 (en) Scanning range sensor
CN100517366C (en) Apparatus for monitoring light beam position in electro-optical readers and image projectors
AU2010220492B2 (en) Geodesic measurement system and method for identifying a target unit having a geodesic measurement device
Kawata et al. Development of ultra-small lightweight optical range sensor system
US8996172B2 (en) Distance sensor system and method
EP1014111A2 (en) Photodetecting system for surveying instrument
CN110376597B (en) Laser radar and detection device thereof
JP2013508695A (en) Equipment for optically scanning and measuring the environment
JP2003214851A (en) Method and apparatus for automatically searching for target mark, reception unit, and geodetic meter and system
TW294778B (en) Scanning optical rangefinder
RU2454313C2 (en) Mobile robot having self-contained navigation system (versions)
CN208350032U (en) Coaxial transmitting-receiving detection device
JP4859166B2 (en) Heating object position detection device
CN109613696A (en) Optical fiber scanning projection arrangement and electronic equipment
AU2015203089B2 (en) Scanning depth engine
JP2019518930A5 (en)
CN205484799U (en) Laser rangefinder with compensation calibration function
JP4768786B2 (en) Surveying instrument
JP3078382U (en) Scanning device inside barcode reader
CN107741582A (en) It is a kind of to pass through device for laser radar
Niitaka Development of ultra-small lightweight optical range sensor system
JPH01253604A (en) Lens system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees