TW200947722A - Solar cell - Google Patents

Solar cell Download PDF

Info

Publication number
TW200947722A
TW200947722A TW97116245A TW97116245A TW200947722A TW 200947722 A TW200947722 A TW 200947722A TW 97116245 A TW97116245 A TW 97116245A TW 97116245 A TW97116245 A TW 97116245A TW 200947722 A TW200947722 A TW 200947722A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
solar cell
upper electrode
layer
substrate
Prior art date
Application number
TW97116245A
Other languages
Chinese (zh)
Other versions
TWI450402B (en
Inventor
Hai-Lin Sun
Kai-Li Jiang
Qun-Qing Li
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW097116245A priority Critical patent/TWI450402B/en
Publication of TW200947722A publication Critical patent/TW200947722A/en
Application granted granted Critical
Publication of TWI450402B publication Critical patent/TWI450402B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a solar cell. The solar cell includes a back electrode, a silicon substrate a doped silicon layer and an upper electrode. The silicon substrate includes a first surface and a second surface. The back electrode is disposed on the first surface of the silicon substrate, and electrically connected to the first surface of the silicon substrate. A number of holes are defined in the second surface of the silicon substrate. The doped silicon layer is disposed on the insides of the holes. The upper electrode is disposed on the second surface of the silicon substrate. The upper electrode includes a carbon nanotube composite structure.

Description

200947722 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種太陽能電池,尤其涉及一種基於奈米 碳管的太陽能電池。 【先前技術】 太陽能係當今最清潔的能源之一,取之不盡、用之不 竭。太陽能的利用方式包括光能-熱能轉換、光能_電能轉 換和光能-化學能轉換。太陽能電池係光能_電能轉換的典 型例子’係利用半導體材料的光生伏特原理製成的。根據 半導體光電轉換材料種類不同,太陽能電池可以分為矽基 太陽能電池(請參見太陽能電池及多晶矽的生產,材料與冶 金學報,張明傑等,v〇l6,p33-38 (2007))、砷化鎵太陽能 電池、有機薄膜太陽能電池等。 目前’太陽能電池以矽基太陽能電池為主。請參閱圖 為先前技術中的矽基太陽能電池30包含一背電極32、200947722 IX. Description of the Invention: [Technical Field] The present invention relates to a solar cell, and more particularly to a solar cell based on a carbon nanotube. [Prior Art] Solar energy is one of the cleanest energy sources in the world. It is inexhaustible and inexhaustible. Solar energy utilization includes light energy-thermal energy conversion, light energy_electric energy conversion, and light energy-chemical energy conversion. Solar cell light energy - a typical example of electrical energy conversion is made using the photovoltaic principle of semiconductor materials. According to different types of semiconductor photoelectric conversion materials, solar cells can be classified into germanium-based solar cells (see production of solar cells and polycrystalline germanium, Journal of Materials and Metallurgy, Zhang Mingjie et al., v〇l6, p33-38 (2007)), gallium arsenide. Solar cells, organic thin film solar cells, etc. At present, solar cells are mainly based on silicon-based solar cells. Please refer to the figure. The prior art samar-based solar cell 30 includes a back electrode 32,

石夕片襯底34、一摻雜;ε夕層36和一上電極38。於石夕基太 ,能電池中,作為光電轉換的材料的矽片襯底通常採用單 二矽製成。因此,要獲得高轉換效率的矽基太陽能電池, 就需要製備出高純度的單晶,所述f電極32設置於所述 :片襯底34的第一表面341 ’且與該矽片襯底34的第一 =341 I姆接觸。所述矽片襯底34的第二表面別3設置 有複數個間隔設置的凹ί丨。沉·、+、a, 用又1的凹孔342。所述摻雜矽層36形成於所 ^孔342的内表面344’起到光電轉換的作用。所述上 38设置於所述石夕片襯底34的第二表面如。先前技 200947722 術一般採料電金制格料上電極38,然㈣電 係不透明的材料,降低了太陽光的透過率。為都 加太陽光的透過率,故採用透明的姻錫氧化物層作為上= 極38,但由於銦錫氧化物層的機械和化學耐用性不夠好, 導致了切的太陽能電池的耐用性低。同時,由於 雜石夕層36本身的吸光性不錄好,故所財陽電 3〇的光電轉換效率不高。 苟此電池 一有鑒於此,提供一種具有較高的光電轉換效率、耐用 !生间、阻值分佈均勻及透光性好的太陽能電池實為必 【發明内容】 一種太陽能電池包括一背電極、一矽片襯底、—摻雜 矽層和一上電極。所述矽片襯底包括相對設置的一第一表 面和一第二表面。所述背電極設置於所述矽片襯底的第一 表面,且與該矽片襯底第一表面歐姆接觸。所述矽片襯底 的第二表面設置有複數個間隔設置的凹孔。所述摻雜矽層 ❹形成於所述矽片襯底第二表面的凹孔的内表面。所述上電 極設置於所述矽片襯底的第二表面。該上電極包括一奈米 碳管複合結構。 〃 與先前技術相比較,所述太陽能電池具有以下優點: 其一 ’奈米碳管複合結構具有良好的吸收太陽光能力,所 得到的太陽能電池具有較高的光電轉換效率;其二,奈米 碳管複合結構具有很好的韌性和機械強度,故,採用奈米 碳官複合結構作上電極,可以相應的提高太陽能電池的耐 用性。 7 200947722 【實施方式】 以下將結合附圖詳細說明本技術方案太陽能電池。 ❹ ❹ 請參閱圖2,本技術方案實施例提供一種太陽能電池 10包括一背電極12、一矽片襯底14、一摻雜矽層16、一 上電極18、一減反層22和至少一電極20。所述矽片襯底 14包括相對設置的一第一表面141和一第二表面143。所 述月電極12设置於所述石夕片襯底14的第一表面141,且 與所述矽片襯底14的第一表面141歐姆接觸。所述矽片襯 底14的第二表面143設置有複數個間隔設置的凹孔142。 所述摻雜矽層16形成於所述矽片襯底14第二表面143的 凹孔142的内表面144。所述上電極18設置於所述矽片襯 底14的第二表面143。該上電極18包括一奈米碳管複合 結構。所述減反層22設置於所述上電極18的第一表面 181。所述至少一電極20設置於所述減反層22的表面。 所述至少-電極20係一可選擇的結構。該電極2〇的 材料為銀、金、含奈来碳管的導電材料或者其他常用作電 極的導電材料。所述電極20的形狀和厚度不限,還可嗖置 於所述上電極18的第一表面181或者第二表面182,並與 上電極18的第-表面181或者第二表面182電接觸。所述 電極20的設置可用於收集流過所述上電極18中的電流, 並與外電路連接。 所述減反層22係-可選擇的結構。該減反層22的材 料為一氧化鈦或者氧化鋅料。所述減反層22可設置 述上電極18的第一表® 181或者第二表面182,用以減少 8 200947722 .所述上電極18對太陽光的反射,從而進一步提高所述太陽 .能電池10的光電轉換效率。 所述背電極12的材料可為鋁、鎂或者銀等金屬。所述 老電極12的厚度為1〇微米〜3〇〇微米。所述背電極12的 形狀和厚度不限。 . 所述石夕片概底14為P型單晶矽片。該P型單晶矽片 的厚度為200微米〜3〇〇微米。所述複數個凹孔142之間的 距離為10微米〜30微米,深度為5〇微米~7〇微米。所述 複數個凹孔142的形狀和大小不限,該凹孔142的橫截面 可以為正方形、梯形或者三角形等多邊形。所述摻雜矽層 16的材料為N型摻雜矽層,可通過向所述矽片襯底14注 入過量的如磷或者砷等N型摻雜材料而形成。所述N型摻 雜矽層16的厚度為5〇〇奈米q微米。所述N型摻雜材料 與所述P型矽片襯底14形成複數個p_N結結構,從而實 現所述太陽能電池中光能到電能的轉換。所述凹孔142的 ❹結構使所述矽片襯底14的第二表面143具有良好的陷光機 制和較大的P-N結的介面面積,可以提高所述太陽能電池 的光電轉換效率。 請參閱圖3’所述上電極18具有一定的空隙、很好的 韌性和機械強度及均勻分佈的結構,以使所述太陽能電池 100具有良好的透光性及很好的耐用性,從而提高所述太 陽能電池100的性能。所述上電極1δ包括一奈米碳管複合 結構,用以收集所述Ρ-Ν結中通過光能向電能轉換而產生 的電流。該奈米碳管複合結構包括一奈米碳管結構183和 9 200947722 大里的金屬顆粒184。所述金屬顆粒184為鉑顆粒、鈀顆 粒、釕顆粒、銀顆粒、金顆粒或其混合。該金屬顆粒184 的平均粒^^大小為i奈米〜奈米。所述奈米碳管的質量 占所述奈米碳管複合結構質量的70%〜90%。所述金屬顆粒 184的質量占所述奈来碳管複合結構質量的〜%%。其 中,金屬顆粒184均勻分佈於所述奈米碳管結構183中形 成奈米碳管複合結構。所述奈米碳管結構183包括無序奈 来碳管層或者有序奈米碳管層。可將奈米碳管結構183: /包於含由金屬鹽的溶液中,使金屬鹽吸附於所述奈米碳管 結構183的表面,然後於還原性氣氛下,高溫還原吸附于 奈米碳管結構183的金屬鹽。或者採用氣相沈積和化學鐘 的方法於奈米碳管結構183的表面包覆上金屬奈米粒子或 者奈米膜。 ^所述無序奈米碳管層包括複數個無序排列的奈米碳 管。該奈来碳管於無序奈米破管層中相互纏繞或者各向同 性。 所述有序奈米碳管層包括複數個有序排列的奈米碳 管。所述的複數個奈米碳管於該有序奈米碳管層中平行於 所述有序奈米碳管層的表面排列,且沿同一方向 數個方向擇優取向排列。 < σ 所述奈米碳管結構183中的奈米碳管為單壁奈米碳 管、雙壁奈米碳管或者多壁奈米碳f。當所述奈米碳管結 構183中的奈米碳管為單壁奈米碳料,該單壁奈米碳管 的直徑為0.5奈米〜50奈米。當所述奈米碳管結構183中 200947722 .的奈米碳管為雙壁奈米碳管時,該雙壁奈米碳管的直徑為 .1.0奈米〜50 1米。當所述奈米碳管結構183中的奈米碳管 為多壁奈来碳管時,該多壁奈米碳管的直徑為15奈米〜50 f米。由於所述奈米碳管結構183中的奈求碳管非常純 淨’且由於奈米碳管本身的比表面積非常大,故該奈米碳 管結構183本身具有較強的粘性。該奈米碳管結構183可 利用其本身的粘性直接固定於所述矽片襯底14的第二表 面 143。 ❹ 一部分太陽光通過該奈米碳管複合結構中相鄰的奈米 碳管之間的空隙照射進所述凹孔142内,另一部分太陽光 照射於所述上電極18上。當太陽光照射到所述上電極Μ 中的金屬顆粒184的表面時’就會於金屬顆粒184的内部 生成表面電漿,即濃度相同的正、負電荷組成的體系。該 體系係電中性的,平衡時各處正、負電荷密度相等。但由 於太陽光照射所引起的熱起伏效應,局部平衡被破壞,引 ❹起正電荷和負電荷於金屬顆粒184内部反復運動便產生振 盪,稱為表面電漿振盪。當入射太陽光的頻率與表面電漿 振盪頻率相等時,金屬顆粒184内部的自由電子會產生共 振表面電漿會形成輻射態,即向外輻射照射於所述上電 極18的太陽光。這樣金屬顆粒184會把太陽光輻射進所述 凹孔142中’從而增加了所述太陽能電池1〇對太陽光的吸 收。 請參閱圖4,本實施例的奈米碳管結構183優選採用 至少一有序奈米碳管薄膜1S5。該有序奈米碳管薄膜185 11 200947722 .通過直接拉伸一奈米碳管陣列獲得。該有序奈米碳管薄膜 • 185包括沿同一方向定向排列的奈米碳管。具體地,所述 有序奈米碳管薄膜185包括複數個首尾相連且長度相等的 奈来碳官束186。所述奈米碳管束186的兩端通過凡德瓦 爾力相互連接。每個奈米碳管束186包括複數個長度相等 且平行排列的奈米碳管187。所述相鄰的奈米碳管之 間通過凡德瓦爾力緊密結合。所述有序奈米碳管薄膜185 ❹係由奈米碳管陣列經進一步處理得到的,故其長度與寬度 和奈米碳管陣列所生長的基底的尺寸有關。可根據實際需 求制得。本實施例中,採用氣相沈積法於4英寸的基底生 長超順排奈米碳管陣列。所述有序奈米碳管薄膜185的寬 度可為0.01厘米〜10厘米,厚度為1〇奈米〜1〇〇微米。 可以理解,所述奈米碳管結構183可以進一步包括至 v兩個重疊設置的有序奈米碳管薄膜185。具體地,相鄰 的兩個有序奈米碳管薄膜185中的奈米碳管具有一交又角 ❹度(X,且〇度$aS9〇度,具體可依據實際需求製備。可以 理解’:於奈米碳管結構183中的有序奈米碳管薄膜185 β重疊叹置,故,上述奈米碳管結構的厚度不限,可 根據實際需要製成具有任意厚度的奈米碳管結構⑻。 斤述有序奈米碳官薄膜185係由奈米碳管陣列經進一 ν里得到的,其長度和寬度可以較準破地拷制。讀亡由The substrate is 34, a doped layer, and an upper layer 38 and an upper electrode 38. In Shi Xiji, too, in the battery, the ruthenium substrate as a material for photoelectric conversion is usually made of a single bismuth. Therefore, in order to obtain a high conversion efficiency bismuth-based solar cell, it is necessary to prepare a high-purity single crystal, and the f-electrode 32 is disposed on the first surface 341' of the sheet substrate 34 and the ruthenium substrate 34 of the first = 341 I contact. The second surface 3 of the cymbal substrate 34 is provided with a plurality of spaced apart recesses. Sink, +, a, use a recessed hole 342. The doped germanium layer 36 is formed on the inner surface 344' of the hole 342 to function as a photoelectric conversion. The upper surface 38 is disposed on the second surface of the stone substrate 34. The prior art 200947722 generally uses the electric gold to make the upper electrode 38, while the (four) electric opaque material reduces the transmittance of sunlight. In order to increase the transmittance of sunlight, a transparent tin oxide layer is used as the upper electrode 38, but the mechanical and chemical durability of the indium tin oxide layer is not good enough, resulting in low durability of the cut solar cell. . At the same time, since the light absorption of the miscellaneous layer 36 itself is not recorded, the photoelectric conversion efficiency of the Caiyang 3〇 is not high. In view of this, in view of the above, a solar cell having high photoelectric conversion efficiency, durability, uniformity, uniform distribution of resistance, and good light transmittance is required. SUMMARY OF THE INVENTION A solar cell includes a back electrode. A wafer substrate, a doped germanium layer and an upper electrode. The cymbal substrate includes a first surface and a second surface disposed opposite each other. The back electrode is disposed on the first surface of the cymbal substrate and is in ohmic contact with the first surface of the cymbal substrate. The second surface of the cymbal substrate is provided with a plurality of spaced apart recessed holes. The doped germanium layer is formed on an inner surface of the recess of the second surface of the enamel substrate. The upper electrode is disposed on a second surface of the cymbal substrate. The upper electrode includes a carbon nanotube composite structure.太阳能 Compared with the prior art, the solar cell has the following advantages: a 'nanocarbon tube composite structure has good ability to absorb sunlight, and the obtained solar cell has high photoelectric conversion efficiency; second, nano The carbon tube composite structure has good toughness and mechanical strength. Therefore, the use of a nano-carbon composite structure as the upper electrode can correspondingly improve the durability of the solar battery. 7 200947722 [Embodiment] Hereinafter, a solar cell of the present technical solution will be described in detail with reference to the accompanying drawings. Referring to FIG. 2 , the embodiment of the present invention provides a solar cell 10 including a back electrode 12 , a germanium substrate 14 , a doped germanium layer 16 , an upper electrode 18 , an anti-reflective layer 22 , and at least one electrode . 20. The cymbal substrate 14 includes a first surface 141 and a second surface 143 disposed opposite each other. The moon electrode 12 is disposed on the first surface 141 of the slab substrate 14 and is in ohmic contact with the first surface 141 of the cymbal substrate 14. The second surface 143 of the cymbal substrate 14 is provided with a plurality of spaced apart recessed holes 142. The doped germanium layer 16 is formed on the inner surface 144 of the recess 142 of the second surface 143 of the raft substrate 14. The upper electrode 18 is disposed on the second surface 143 of the cymbal substrate 14. The upper electrode 18 includes a carbon nanotube composite structure. The anti-reflection layer 22 is disposed on the first surface 181 of the upper electrode 18. The at least one electrode 20 is disposed on a surface of the anti-reflection layer 22 . The at least -electrode 20 is an alternative structure. The material of the electrode 2 turns is silver, gold, a conductive material containing a carbon nanotube or other conductive material commonly used as an electrode. The electrode 20 is not limited in shape and thickness, and may be disposed on the first surface 181 or the second surface 182 of the upper electrode 18 and in electrical contact with the first surface 181 or the second surface 182 of the upper electrode 18. The arrangement of the electrodes 20 can be used to collect current flowing through the upper electrode 18 and to be connected to an external circuit. The anti-reflection layer 22 is an optional structure. The material of the anti-reflection layer 22 is a titanium oxide or zinc oxide material. The anti-reflection layer 22 may be provided with a first surface 181 or a second surface 182 of the upper electrode 18 for reducing the reflection of the sunlight by the upper electrode 18, thereby further improving the solar cell 10 Photoelectric conversion efficiency. The material of the back electrode 12 may be a metal such as aluminum, magnesium or silver. The thickness of the old electrode 12 is 1 〇 micrometer to 3 〇〇 micrometer. The shape and thickness of the back electrode 12 are not limited. The stone slab base 14 is a P-type single crystal cymbal. The P-type single crystal crucible has a thickness of 200 μm to 3 μm. The distance between the plurality of recessed holes 142 is 10 micrometers to 30 micrometers, and the depth is 5 micrometers to 7 micrometers. The shape and size of the plurality of recessed holes 142 are not limited, and the cross section of the recessed holes 142 may be a polygon such as a square, a trapezoid or a triangle. The material of the doped germanium layer 16 is an N-type doped germanium layer, which can be formed by injecting an excess of an N-type doping material such as phosphorus or arsenic into the germanium substrate 14. The N-type doped layer 16 has a thickness of 5 nanometers q microns. The N-type dopant material and the P-type ruthenium substrate 14 form a plurality of p_N junction structures to effect conversion of light energy to electrical energy in the solar cell. The meandering structure of the recessed holes 142 allows the second surface 143 of the cymbal substrate 14 to have a good light trapping mechanism and a large P-N junction interface area, which can improve the photoelectric conversion efficiency of the solar cell. Please refer to FIG. 3' that the upper electrode 18 has a certain gap, good toughness and mechanical strength, and a uniformly distributed structure, so that the solar cell 100 has good light transmittance and good durability, thereby improving The performance of the solar cell 100. The upper electrode 1δ includes a carbon nanotube composite structure for collecting current generated by the conversion of light energy to electric energy in the Ρ-Ν junction. The carbon nanotube composite structure includes a carbon nanotube structure 183 and 9 200947722 Dali metal particles 184. The metal particles 184 are platinum particles, palladium particles, ruthenium particles, silver particles, gold particles or a mixture thereof. The average particle size of the metal particles 184 is i nm to nanometer. The mass of the carbon nanotubes accounts for 70% to 90% of the mass of the carbon nanotube composite structure. The mass of the metal particles 184 is ~% by weight of the mass of the carbon nanotube composite structure. Among them, the metal particles 184 are evenly distributed in the carbon nanotube structure 183 to form a carbon nanotube composite structure. The carbon nanotube structure 183 includes a disordered carbon nanotube layer or an ordered carbon nanotube layer. The carbon nanotube structure 183: / can be contained in a solution containing a metal salt, the metal salt is adsorbed on the surface of the carbon nanotube structure 183, and then adsorbed to the nanocarbon at a high temperature under a reducing atmosphere The metal salt of the tube structure 183. Alternatively, the surface of the carbon nanotube structure 183 may be coated with a metal nanoparticle or a nanofilm by a vapor deposition and a chemical clock. The disordered carbon nanotube layer comprises a plurality of randomly arranged carbon nanotubes. The carbon nanotubes are entangled or isotropic in the disordered nanotube layer. The ordered carbon nanotube layer comprises a plurality of ordered carbon nanotubes. The plurality of carbon nanotubes are arranged parallel to the surface of the ordered carbon nanotube layer in the ordered carbon nanotube layer, and are arranged in a preferred orientation in a plurality of directions in the same direction. < σ The carbon nanotubes in the carbon nanotube structure 183 are single-walled carbon nanotubes, double-walled carbon nanotubes or multi-walled nanocarbons f. When the carbon nanotubes in the carbon nanotube structure 183 are single-walled nanocarbon materials, the diameter of the single-walled carbon nanotubes is from 0.5 nm to 50 nm. When the carbon nanotubes of the carbon nanotube structure 183 of 200947722 are double-walled carbon nanotubes, the diameter of the double-walled carbon nanotubes is from 1.0 nm to 50 1 m. When the carbon nanotubes in the carbon nanotube structure 183 are multi-walled carbon nanotubes, the multi-walled carbon nanotubes have a diameter of 15 nm to 50 f meters. Since the carbon nanotubes in the carbon nanotube structure 183 are very pure, and since the specific surface area of the carbon nanotubes themselves is very large, the carbon nanotube structure 183 itself has a strong viscosity. The carbon nanotube structure 183 can be directly fixed to the second surface 143 of the cymbal substrate 14 by its own viscosity.一部分 A part of sunlight is irradiated into the concave hole 142 through a gap between adjacent carbon nanotubes in the carbon nanotube composite structure, and another part of sunlight is irradiated onto the upper electrode 18. When sunlight is irradiated onto the surface of the metal particles 184 in the upper electrode ’, a surface plasma, i.e., a system of positive and negative charges having the same concentration, is generated inside the metal particles 184. The system is electrically neutral and has equal positive and negative charge densities throughout equilibrium. However, due to the thermal fluctuation effect caused by the sunlight, the local balance is destroyed, and the positive and negative charges are induced to repeatedly oscillate inside the metal particles 184, which is called surface plasma oscillation. When the frequency of the incident sunlight is equal to the surface plasma oscillation frequency, the free electrons inside the metal particles 184 generate a resonance surface plasma which forms an irradiation state, i.e., outwardly radiates sunlight that is incident on the upper electrode 18. Thus, the metal particles 184 will radiate sunlight into the recesses 142' thereby increasing the absorption of sunlight by the solar cells. Referring to Fig. 4, the carbon nanotube structure 183 of the present embodiment preferably employs at least one ordered carbon nanotube film 1S5. The ordered carbon nanotube film 185 11 200947722 is obtained by directly stretching a carbon nanotube array. The ordered carbon nanotube film • 185 includes carbon nanotubes oriented in the same direction. Specifically, the ordered carbon nanotube film 185 includes a plurality of Nyle carbon official beams 186 that are end to end and of equal length. Both ends of the carbon nanotube bundle 186 are connected to each other by a van der Waals force. Each of the carbon nanotube bundles 186 includes a plurality of carbon nanotubes 187 of equal length and arranged in parallel. The adjacent carbon nanotubes are tightly bonded by van der Waals force. The ordered carbon nanotube film 185 is further processed by a carbon nanotube array, so its length is related to the width and the size of the substrate on which the carbon nanotube array is grown. It can be made according to actual needs. In this example, a vapor-deposited method was used to grow a super-sequential carbon nanotube array on a 4-inch substrate. The ordered carbon nanotube film 185 may have a width of from 0.01 cm to 10 cm and a thickness of from 1 nm to 1 μm. It will be understood that the carbon nanotube structure 183 may further comprise two ordered carbon nanotube films 185 arranged in an overlapping manner. Specifically, the carbon nanotubes in the adjacent two ordered carbon nanotube films 185 have an angle of intersection (X, and a twist of $aS9, which can be prepared according to actual needs. It can be understood : The ordered carbon nanotube film 185 β in the carbon nanotube structure 183 overlaps and sighs. Therefore, the thickness of the above-mentioned carbon nanotube structure is not limited, and a carbon nanotube having an arbitrary thickness can be prepared according to actual needs. Structure (8). The ordered nano-carbon film 185 is obtained from the array of carbon nanotubes, and its length and width can be copied to the ground.

,,,心禾不喂官複合結構具有均勻的 均勻的阻值分佈和透光特性。 12 200947722 .所述奈米碳管複合結構具有很好的勃性和機械強度,故, •採用該奈来碳管複合結構作上電極,可以相應提高所述太 陽能電池的财用性。 山所述太陽能電池1〇S應用時’太陽光照射到所述奈米 碳管複合結構,並通過該奈米碳管複合結構中相鄰的夺米 碳管之間的空隙照射到所述太陽能電池1〇中的複數個凹 孔142 β ’太陽光通過所述凹孔142的内壁多次反射,從 而增加了該太陽能電池1()中所料片襯底14的第二表面 143的陷光性能。於所述複數個凹孔142内,ρ型矽片襯 底和Ν型摻雜材料接觸於一起的面形成有複數個ρ·Ν結。 於接觸面上Ν型摻雜材料多餘電子趨向ρ型石夕片概底,並 形成阻檔層或接觸電位差。當ρ型石夕片襯底接正極,Ν型 $雜材料接負極’ Ν型摻雜材料多餘電子和ρ_Ν結上電子 容易往正極移動,且阻擋層變薄接觸電位差變小,即電阻 變小,可形成較大電流。即,所述ρ_Ν結於太陽光的激發 ❹下產生複數個電子·電洞對,電子_電洞對於靜電勢能作用 下分離,Ν型摻雜材料中的電子向所述奈米碳管複合結構 移動,Ρ型矽片襯底中的電洞向所述背電極12移動,然後 被背電極12和作為上電極的奈米碳管複合結構收集,這樣 外電路就有電流通過。 所述太陽能電池具有以下優點:其一,奈米碳管複合 結構具有良好的吸收太陽光能力,所得到的太陽能電池具 有較尚的光電轉換效率;其二,奈米碳管複合結構具有很 好的韌性和機械強度,故,採用奈米碳管複合結構作上電 13 200947722 極山Γ以相應的提局太陽能電池的耐用性;其三,由於奈 :碳Β複口、、’。構具有較均勻的結構,故,採用奈米碳管複 一、構作上電極,可使得上電極具有均勾的電阻,從而提 :太陽^池的性能;其四,奈米碳管複合結射相鄰的 ”只炭g之間具有均勻分佈的空隙,故,採用奈米碳管複 今結構作上電極’可使得上電極對太陽光具有很好的透光 眭,其五,由於金屬顆粒的存在,於太陽光的照射下該金 ❹ 屬顆粒可以產生表面電漿,從而增強了所述太陽能電池對 太陽光的吸收。 ^綜上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 ’蓋於以下申請專利範圍内。 【圖式簡單說明】 〇 圖1係先前技術中太陽能電池的結構示意圖。 圖2係本技術方案實施例的太陽能電池的侧視結構示 意圖。 圖3係本技術方案實施例的太陽能電池的上電極的結 構示意圖。 圖4係本技術方案實施例的太陽能電池採用有序奈东 碳管薄膜的部分放大示意圖。 14 200947722,,, Xinhe does not feed the composite structure has a uniform uniform resistance distribution and light transmission characteristics. 12 200947722 . The carbon nanotube composite structure has good bourbility and mechanical strength, so that the use of the carbon nanotube composite structure as the upper electrode can correspondingly improve the financial efficiency of the solar battery. When the solar cell is applied, the solar light is irradiated to the carbon nanotube composite structure, and the solar energy is irradiated through a gap between adjacent carbon nanotubes in the carbon nanotube composite structure. A plurality of recessed holes 142 in the battery 1 β β 'sunlight is reflected multiple times through the inner wall of the recessed hole 142, thereby increasing the light trapping of the second surface 143 of the sheet substrate 14 in the solar cell 1 () performance. Within the plurality of recesses 142, a plurality of p·Ν junctions are formed on the faces of the p-type ruthenium substrate and the bismuth-type dopant material. The excess electrons of the erbium-type doping material on the contact surface tend to form a barrier layer or a contact potential difference. When the p-type stone substrate is connected to the positive electrode, the Ν-type material is connected to the negative electrode. The excess electrons of the Ν-type doping material and the electrons on the ρ_Ν junction are easily moved to the positive electrode, and the barrier layer becomes thin, and the contact potential difference becomes small, that is, the resistance becomes small. , can form a large current. That is, the ρ_Ν junction generates a plurality of pairs of electrons and holes under the excitation enthalpy of the sunlight, and the electrons_holes are separated by the electrostatic potential energy, and the electrons in the erbium-type dopant material are applied to the carbon nanotube composite structure. Moving, the holes in the 矽-type ruthenium substrate are moved toward the back electrode 12, and then collected by the back electrode 12 and the carbon nanotube composite structure as the upper electrode, so that an external circuit has a current. The solar cell has the following advantages: First, the carbon nanotube composite structure has a good ability to absorb sunlight, and the obtained solar cell has a relatively high photoelectric conversion efficiency; second, the carbon nanotube composite structure has a good The toughness and mechanical strength, therefore, the use of carbon nanotube composite structure for power-up 13 200947722 poles to the corresponding mention of the durability of solar cells; third, due to Nai: carbon Β 、,, '. The structure has a relatively uniform structure. Therefore, the use of a carbon nanotube to form a top electrode can make the upper electrode have a uniform resistance, thereby improving the performance of the solar cell; and fourth, the carbon nanotube composite junction. The adjacent "only carbon g has a uniformly distributed gap between the carbons, so the use of the carbon nanotubes and the structure of the upper electrode as the upper electrode" can make the upper electrode have a good light transmission 太阳 to the sunlight, and fifth, due to the metal In the presence of particles, the cerium particles can generate surface plasma under the irradiation of sunlight, thereby enhancing the absorption of sunlight by the solar cell. In summary, the present invention has indeed met the requirements of the invention patent. 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Fig. 3 is a schematic view showing the structure of the upper electrode of the solar cell according to the embodiment of the present invention. Fig. 4 is a partially enlarged schematic view showing the use of the ordered Ndear carbon tube film for the solar cell according to the embodiment of the present technical solution. 200947722

【主要元件符號說明】 太陽能電池 10, 30 背電極 12, 32 矽片襯底 14, 34 矽片襯底的第一表面 141,341 凹孔 142, 342 矽片襯底的第二表面 143,343 凹孔的内表面 144,344 摻雜矽層 16, 36 上電極 18, 38 上電極的第一表面 181 上電極的第二表面 182 奈米碳管結構 183 金屬顆粒 184 有序奈米碳管薄膜 185 奈米碳管束 186 奈米碳管 187 電極 20 減反層 22 15[Description of main component symbols] Solar cell 10, 30 Back electrode 12, 32 衬底 substrate 14, 34 First surface 141, 341 of the cymbal substrate, recess 142, 342 Second surface 143, 343 of the cymbal substrate Inner surface 144, 344 doped yttrium layer 16, 36 upper electrode 18, 38 first surface of upper electrode 181 second surface of upper electrode 182 carbon nanotube structure 183 metal particle 184 ordered carbon nanotube film 185 nanocarbon Tube bundle 186 carbon nanotube 187 electrode 20 anti-reflection layer 22 15

Claims (1)

200947722 ,十、申請專利範圍 .一種太陽能電池,其包括: -矽片襯底,該矽片襯底包括相對設置的一第一表面 t 一第二表面,财片襯底的第二表面設置有複數個 間隔設置的凹孔; —背電極’該背電㈣置於所述W襯底的第一表 面,且與該矽片襯底第一表面歐姆接 —摻_層’該摻雜傾形成於所切片襯底第二表 v 面的凹孔的内表面; 上電極,該上電極設置於所述石夕片概底的第二表 面; 於’所述上電極包括-奈米碳管複合結構。 2.如申請專職圍第u所述的太陽能電池,其中, ^ 碳管複合結構包括一奈米碳管結構和大量 均勻刀佈於該奈米碳管結構中的金屬顆粒。 ❽3.如中晴專利範圍第2項所述的太陽能電池,其中, 所述金屬顆粒為麵顆粒、鈀顆粒、顆 金顆粒或其混合,其平均粒徑為!奈米夺Γ 4.如申料利範園第2項所述的太陽能電池, 所述=米碳管結構包括無序奈米碳管層有 米碳管層。 ’序奈 5.如申請專利範圍第4項所述的太陽能電池, f述無序奈米碳管層包括複數個無序排列的奈米碳 當 16 200947722 .6.如申請專利範圍第4項所述的太陽能電池,其中, . 所述有序奈米碳管層包括複數個有序排列的奈米碳 管。 7.如申凊專利範圍第4項所述的太陽能電池,其中, 所述有序奈米碳管層包括至少一有序奈米碳管薄 膜’該有序奈米碳管薄膜通過直接拉伸一奈米碳管 陣列獲得,且包括沿同一方向排列的奈米碳管。 8·如申請專利範圍第7項所述的太陽能電池,其中, ^ 所述有序奈米碳管薄膜包括複數個首尾相連且長度 相等的奈米碳管束,該奈米碳管束的兩端通過凡德 瓦爾力相互連接,每個奈米碳管束包括複數個長度 相等且平行排列的奈米碳管。 9.如申請專利範圍第7項所述的太陽能電池,其中, 所述有序奈米碳管層包括至少兩個重疊設置的有序 奈米碳管薄膜。 ❹10.如申請專利範圍第9項所述的太陽能電池,其中,所 述相鄰兩個有序奈米碳管薄膜中的奈米碳管之間具 有一交叉角度α’且〇度度。 ii·如申請專利範圍第1項所述的太陽能電池,其中,所 述矽片襯底為p型單晶矽片,該P型單晶矽片的厚度 為200微米〜300微米。 又 I2.如申請專利範圍第1項所述的太陽能電池,其中,所 述複數個凹孔的間距為1〇微米〜3〇微米,深度為% 微米〜70微米。 17 200947722 · .13.=請專利項所述的太陽能電池,其中,所 .述摻雜矽層為摻雜有磷或者珅的N型矽層。 14·如申請專利範圍第1項所述的太陽能電池,直中,兮 、、 匕括至少一電極,該電極設置於所 . 述上電極的表面,並與該上電極的表面電接觸。、 .15·如中請專利範圍第1項所述的太陽能電池,其中,該 太陽能電池進-步包括一減反層,該減反層設置於所 述上電極的表面。 β 16·如中請專利範圍第15項所述的太陽能電池,其中, 所述減反層的材料為二氧化鈦或者氧化鋅鋁。200947722, X. Patent Application Scope. A solar cell comprising: - a cymbal substrate comprising a first surface t and a second surface disposed opposite each other, the second surface of the slab substrate being provided with a plurality of spaced apart recessed holes; - a back electrode 'the backing (4) is placed on the first surface of the W substrate, and is ohmically connected to the first surface of the cymbal substrate - the doped layer is formed by the doping An inner surface of the recessed hole of the second surface v of the substrate; an upper electrode disposed on the second surface of the base of the stone; and the upper electrode includes a composite of carbon nanotubes structure. 2. The solar cell of claim 5, wherein the carbon tube composite structure comprises a carbon nanotube structure and a plurality of metal particles uniformly distributed in the carbon nanotube structure. The solar cell according to the item 2, wherein the metal particles are surface particles, palladium particles, gold particles or a mixture thereof, and the average particle diameter thereof is! The solar cell of the second aspect of the invention, wherein the carbon nanotube structure comprises a disordered carbon nanotube layer having a carbon nanotube layer. '序奈 5. According to the solar cell of claim 4, the unordered carbon nanotube layer includes a plurality of disordered nanocarbons as 16 200947722 .6. The solar cell, wherein the ordered carbon nanotube layer comprises a plurality of ordered carbon nanotubes. 7. The solar cell of claim 4, wherein the ordered carbon nanotube layer comprises at least one ordered carbon nanotube film 'the ordered carbon nanotube film is directly stretched A carbon nanotube array is obtained and includes carbon nanotubes arranged in the same direction. 8. The solar cell of claim 7, wherein the ordered carbon nanotube film comprises a plurality of carbon nanotube bundles of equal length and length, and the ends of the carbon nanotube bundle pass The van der Waals force is connected to each other, and each of the carbon nanotube bundles comprises a plurality of carbon nanotubes of equal length and arranged in parallel. 9. The solar cell of claim 7, wherein the ordered carbon nanotube layer comprises at least two ordered carbon nanotube films disposed one on top of the other. The solar cell according to claim 9, wherein the carbon nanotubes in the adjacent two ordered carbon nanotube films have a crossing angle α' and a degree of twist. The solar cell according to claim 1, wherein the enamel substrate is a p-type single crystal ruthenium, and the P-type single crystal ruthenium has a thickness of 200 μm to 300 μm. The solar cell of claim 1, wherein the plurality of recessed holes have a pitch of 1 μm to 3 μm and a depth of from 0.01 μm to 70 μm. The solar cell of the above-mentioned patent, wherein the doped germanium layer is an N-type germanium layer doped with phosphorus or antimony. The solar cell of claim 1, wherein the solar cell comprises at least one electrode disposed on a surface of the upper electrode and in electrical contact with a surface of the upper electrode. The solar cell of claim 1, wherein the solar cell further comprises an anti-reflection layer disposed on a surface of the upper electrode. The solar cell according to claim 15, wherein the material of the anti-reflection layer is titanium dioxide or zinc aluminum oxide. 1818
TW097116245A 2008-05-02 2008-05-02 Solar cell TWI450402B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097116245A TWI450402B (en) 2008-05-02 2008-05-02 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097116245A TWI450402B (en) 2008-05-02 2008-05-02 Solar cell

Publications (2)

Publication Number Publication Date
TW200947722A true TW200947722A (en) 2009-11-16
TWI450402B TWI450402B (en) 2014-08-21

Family

ID=44870396

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097116245A TWI450402B (en) 2008-05-02 2008-05-02 Solar cell

Country Status (1)

Country Link
TW (1) TWI450402B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI656654B (en) * 2017-05-24 2019-04-11 鴻海精密工業股份有限公司 Solar battery
US10424638B2 (en) 2017-05-24 2019-09-24 Tsinghua University Semiconductor device
US10748992B2 (en) 2017-05-24 2020-08-18 Tsinghua University Semiconductor element
US10847737B2 (en) 2017-05-24 2020-11-24 Tsinghua University Light detector

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI241029B (en) * 2003-12-05 2005-10-01 Hon Hai Prec Ind Co Ltd Dye sensitized solar cell electrode and solar cell having same
TWM319521U (en) * 2007-04-09 2007-09-21 Advance Design Technology Inc Thin film solar-cell with tandem intrinsic layer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI656654B (en) * 2017-05-24 2019-04-11 鴻海精密工業股份有限公司 Solar battery
US10424638B2 (en) 2017-05-24 2019-09-24 Tsinghua University Semiconductor device
US10600925B2 (en) 2017-05-24 2020-03-24 Tsinghua University Solar battery
US10748992B2 (en) 2017-05-24 2020-08-18 Tsinghua University Semiconductor element
US10847737B2 (en) 2017-05-24 2020-11-24 Tsinghua University Light detector

Also Published As

Publication number Publication date
TWI450402B (en) 2014-08-21

Similar Documents

Publication Publication Date Title
Yang et al. Single-crystalline branched zinc phosphide nanostructures: synthesis, properties, and optoelectronic devices
CN101527327B (en) Solar cell
Kuang et al. Nanorod solar cell with an ultrathin a-Si: H absorber layer
JP5155241B2 (en) Solar cell
Lee et al. Hybrid energy harvester based on nanopillar solar cells and PVDF nanogenerator
Li et al. Oriented layered Bi2O2Se nanowire arrays for ultrasensitive photodetectors
JP5596114B2 (en) Solar cell
Hong et al. Design guidelines for slanting silicon nanowire arrays for solar cell application
TWI481050B (en) A solar cell
TW201001726A (en) Techniques for enhancing efficiency of photovoltaic devices using high-aspect-ratio nanostructures
Lin et al. Growth and optical properties of ZnO nanorod arrays on Al-doped ZnO transparent conductive film
JP5379811B2 (en) Photovoltaic devices using high aspect ratio nanostructures and methods for making same
TW200919751A (en) Distributed coax photovoltaic device
Parashar et al. Plasmonic silicon solar cell comprised of aluminum nanoparticles: Effect of nanoparticles' self-limiting native oxide shell on optical and electrical properties
TW200947722A (en) Solar cell
US20110083728A1 (en) Disordered Nanowire Solar Cell
TWI481046B (en) A solar cell
KR20100084383A (en) Graphene solar cell module and manufacturing method thereof
CN101552297B (en) Solar cell
JP5027185B2 (en) Solar cell
Cao et al. Fabrication of carbon nanotube/silicon nanowire array heterojunctions and their silicon nanowire length dependent photoresponses
Mathieu-Pennober et al. Improvement of carrier collection in Si/a-Si: H nanowire solar cells by using hybrid ITO/silver nanowires contacts
Wang et al. Frontside scattering structures for enhanced performance in flexible ultrathin crystalline silicon solar cells
TWI459568B (en) Solar cell
Srivastava et al. Aperiodic silicon nanowire arrays: fabrication, light trapping properties and solar cell applications