TW200933933A - Group III nitride semiconductor light emitting device, method of manufacturing thereof, and lamps using the same - Google Patents

Group III nitride semiconductor light emitting device, method of manufacturing thereof, and lamps using the same Download PDF

Info

Publication number
TW200933933A
TW200933933A TW097136316A TW97136316A TW200933933A TW 200933933 A TW200933933 A TW 200933933A TW 097136316 A TW097136316 A TW 097136316A TW 97136316 A TW97136316 A TW 97136316A TW 200933933 A TW200933933 A TW 200933933A
Authority
TW
Taiwan
Prior art keywords
layer
buffer layer
nitride semiconductor
light
group iii
Prior art date
Application number
TW097136316A
Other languages
English (en)
Inventor
Yasunori Yokoyama
Hisayuki Miki
Original Assignee
Showa Denko Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Kk filed Critical Showa Denko Kk
Publication of TW200933933A publication Critical patent/TW200933933A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Physical Vapour Deposition (AREA)
  • Led Device Packages (AREA)

Description

200933933 九、發明說明 【發明所屬之技術領域】 本發明乃關於適用在發光二極體(LED )、雷射二極體 (LD)、電子裝置等,層積以一般式AlaGabIneN ( OSaSl、 OSbSl、OSc^l、a+b+c=l)所表示之III族氮化物半 • 導體所成之III族氮化物半導體發光元件及該製造方法以 . 及燈。 ❹ 本發明乃對於2007年9月27日申請之日本特願 2007-251478號主張優先權,在此沿用該內容。 【先前技術】 ΠΙ族氮化物半導體乃具有相當於從可見光至紫外光 領域之範圍的能量之直接遷移型之能帶隙,在於發光效率 非常優異之故,做爲發光二極體(LED )或雷射二極體( LD)等之半導體發光元件被商品化,而使用於各種之用 ❹ 途上。又,使用於電子裝置之時,III族氮化物半導體乃 相較使用以往之III-V族化合物半導體之時,具有可得優 異特性之位能。 如此III族氮化物半導體乃一般而言,將三甲基鎵、 三甲基鋁及氨爲原料,經由有機金屬化學氣相層積 (MOCVD)法加以製造。MOCVD法乃在載體氣體,含入原 料蒸氣,運送至基板表面,在加熱之基板表面,經由分解 原料,使結晶成長之方法。 以往,III族氮化物半導體之單結晶晶圓未被市售, 200933933 做爲III族氮化物半導體,一般而言乃採用在不同之材料 之單結晶上,使結晶成長所得之方法。如此,在異種基板 ,以及在其上磊晶成長之族氮化物半導體結晶之間’ 存在有大的晶格失配。例如,於藍寶石(A1203 )基板上 ,成長氮化鎵(GaN )之時,兩者之間,存在16%之晶格 - 失配,於SiC基板上,成長氮化鎵之時,兩者之間,存在 . 6%之晶格失配。一般而言,存在如上述之大的晶格失配 〇 之時,於基板上難以直接磊晶成長結晶,又即使成長之時 ,有無法得結晶性良好之結晶的問題。 因此,一般而言,進行有提案之經由有機金屬化學氣 相層積(MOCVD)法,於藍寶石單結晶基板或SiC單結 晶基板上,使III族氮化物半導體結晶磊晶成長之時,首 先於基板上層積稱之爲氮化鋁(A1N )或氮化鋁鎵( AlGaN )所成低溫緩衝層的層,於其上以高溫磊晶成長 III族氮化物半導體結晶之方法(例如,專利文獻1、2 ) 〇 但是,記載於專利文獻1及2之方法中,基本上,與 其上成長之III族氮化物半導體結晶之間,未晶格匹配之 故,於成長之結晶內部,內含有朝向表面延伸之稱之爲貫 通換位之換位的狀態。爲此,在結晶會產生歪曲,不使構 造調正的話’有無法得充分之發光強度,或有生產性下降 等的問題》 又’亦有提案將上述緩衝層以MOCVD以外之方法成 膜之技術。例如,提案有在於以高頻濺鍍成膜之緩衝層上 -5- 200933933 ’經由MOCVD成膜同樣組成之結晶之方法(例如,專利 文獻3)但是,記載於專利文獻3之方法中,有在於基板 上’無法層積良好之結晶的問題。 在此,爲得安定良好之結晶,提案有成長緩衝層之後 ’在氨與氫混合之氣體中加以退火之方法(例如專利文獻 ' 4 ) ’或將緩衝層以400°C以上之溫度,經由DC濺鍍加以 . 成膜之方法(例如專利文獻5 )等。 〇 又’提案有在於藍寶石基板上,形成成爲特定氧組成 比及氮組成比之氧氮化鋁層,於此氧氮化鋁層上,形成導 入P型不純物之氮化物半導體所成緩衝層,更且,於此緩 衝層上形成氮化物半導體薄膜之方法。(例如專利文獻6 )等。 [專利文獻1]日本特許3026087號公報 [專利文獻2]日本特開平4-297023號公報 [專利文獻3]日本特開平5-86646號公報 © [專利文獻4]日本特許3440873號公報 [專利文獻5]曰本特許3 700492號公報 [專利文獻6]曰本特開2006-4970號公報 【發明內容】 [發明欲解決之課題] 使用上述專利文獻3〜6之濺鍍法,於基板上形成緩 衝層之時’附著於濺鍍裝置之處理室內壁之水分等之含氧 物,則經由濺射從內壁擊出,於基板上成膜緩衝層之時, -6- 200933933 不可避免會被混入。爲此,使用濺鍍法形成之緩衝層,則 成爲至少一定以上之範圍,例如成爲2%程度之範圍之含 氧之膜。 - 但是,經由本發明人等的不斷檢討,緩衝層中之氧濃 度,例如超過1 %時,層積於此緩衝層上之ΠΙ族氮化物 ' 半導體之結晶會下降,會有使III族氮化物半導體所成發 . 光元件之發光特性下降之情形。 〇 本發明乃有鑑於上述問題,提供具有優異發光特性之 III族氮化物半導體發光元件及該製造方法,以及燈爲目 的者。 [爲解決課題之手段] 本發明乃關於如下。 〔1〕在藍寶石所成基板上,至少層積III族氮化物 化合物所成緩衝層,於該緩衝層上,順序層積η型半導體 〇 層、發光層及Ρ型半導體層的III族氮化物半導體發光元 件中,前述緩衝層乃經由反應性濺鍍法所形成者,前述緩 . 衝層則含有氧,緩衝層中之氧濃度爲1原子%以下爲特徵 之III族氮化物半導體發光元件。 〔2〕前述緩衝層乃將含金屬Α1原料與氮元素之氣體 ,經由以電漿活性化之反應性濺鍍法所形成,而由 Α1Ν 所成爲特徵之如申請專利範圍第1項之III族氮化物半導 體發光元件。 〔3〕前述緩衝層中之氧濃度爲0.8原子%以下爲特徵 -7- 200933933 之〔1〕或〔2〕項記載之III族氮化物半導體發光元件 〔4〕含於前述緩衝層之氧乃在前述緩衝層之膜內, 成爲略均勻之氧濃度分布爲特徵之〔U〕至〔3〕之任一項 記載之III族氮化物半導體發光元件。 〔5〕前述緩衝層之膜厚乃在10〜5 00nm之範圍爲特 - 徵之〔1〕至〔4〕之任一項記載之III族氮化物半導體發 . 光元件。 ❹ 〔6〕前述緩衝層之膜厚乃在20〜lOOnm之範圍爲特 徵之〔1〕至〔5〕之任一項記載之III族氮化物半導體發 光元件。 〔7〕前述緩衝層乃使被覆前述基板表面之至少90% 而形成爲特徵之〔1〕至〔7〕之任一項記載之III族氮化 物半導體發光元件。 〔8〕在藍寶石所成基板上,至少層積III族氮化物 化合物所成緩衝層,於該緩衝層上,順序層積η型半導體 ❹ 層、發光層及Ρ型半導體層的III族氮化物半導體發光元 件之製造方法中,使前述緩衝層經由反應性濺鍍法而形成 . 的同時,前述緩衝層則含有氧,且緩衝層中之氧濃度成爲 1原子%以下而形成爲特徵之III族氮化物半導體發光元 件之製造方法。 〔9〕將前述緩衝層,與含金屬Α1原料與氮元素之氣 體,使用以電槳活性化之反應性濺鍍法,由 Α1Ν所形成 爲特徵之記載於〔8〕之III族氮化物半導體發光元件之 製造方法。 -8- 200933933 〔10〕令前述緩衝層,使濺鍍裝置之處理室內之到達 真空度爲1.5xlO_5Pa以下爲條件而形成爲特徵之記載於〔 8〕或〔9〕之III族氮化物半導體發光元件之製造方法。 〔11〕於前述濺鍍裝置之處理室內,進行虛擬放電後 ,形成前述緩衝層爲特徵之記載於〔8〕至〔1〇〕之任一 - 者之III族氮化物半導體發光元件之製造方法。 „ 〔 12〕令前述緩衝層,經由使含有前述氮元素之氣體 Q 流通於反應器內的反應濺鍍法而成膜爲特徵之記載於〔8 〕至〔1 1〕之任一者之III族氮化物半導體發光元件之製 造方法者。 〔13〕前述緩衝層乃經由RF濺鍍法而形成爲特徵之 記載於〔8〕至〔12〕之任一者之III族氮化物半導體發 光元件之製造方法》 〔14〕令前述緩衝層,使前述基板溫度在400〜800°C 之範圍下而形成爲特徵之記載於〔8〕至〔13〕之任一者 Ο 之ΙΠ族氮化物半導體發光元件之製造方法。 〔15〕經由記載於上述〔8〕〜〔14〕之製造方法所 得之III族氮化物半導體發光元件。 〔16〕使用記載於上述〔1〕〜〔7〕或〔15〕之任一 者之III族氮化物半導體發光元件之燈。 [發明之效果] 根據本發明之III族氮化物半導體發光元件時,經由 反應性濺鍍法而形成之緩衝層則含有氧,且緩衝層中之氧 -9- 200933933 濃度成爲1原子%以下之故,層積於緩衝層上之in族氮 化物半導體之結晶性會提升,因此可得具有優異之發光特 性之III族氮化物半導體發光元件。 一 【實施方式】 ' 以下,對於關於本發明之III族氮化物半導體發光元 - 件及其製造方法,燈之一實施形態,適切參照圖1〜7而 ® 加以說明。 [III族氮化物半導體發光元件] 本實施形態之III族氮化物半導體發光元件(以下有 略稱爲發光元件之情形)1乃在藍寶石所成基板11上, 至少層積III族氮化物化合物所成緩衝層12,於該緩衝層 12上,順序層積n型半導體層14、發光層15及p型半導 體層16的III族氮化物半導體發光元件1中,緩衝層12 © 乃經由反應性濺鍍法所形成,緩衝層12則含有氧,且緩 衝層12中之氧濃度爲1原子%以下者。 (發光元件之層積構造) 圖1乃爲說明關於本發明之III族氮化物半導體發光 元件之一例之圖,顯示於基板上形成III族氮化物半導體 之層積半導體之一例的槪略剖面圖。 圖1所示層積半導體層10乃在基板11上,層積III 族氮化物化合物所成緩衝層12,於該緩衝層12上,形成 -10- 200933933 順序層積η型半導體層14、發光層15及p型半導體層16 的半導體層20。本實施形態之緩衝層12乃如上述’經由 反應性濺鍍法所形成之層’氧濃度爲1原子%以下。 然後,於上述層積半導體10中,如圖2之平面圖及 圖3之剖面圖所示之例’在於P型半導體層16上’層積 ' 透光性正極17,於其上形成正極接合墊片18的同時’在 - 形成於η型半導體層14之η型連接層14b之曝露範圍 φ 14d,層積負極19,構成本實施形態之發光元件Ϊ。 以下,對於本實施形態之II1族氮化物半導體發光元 件之層積構造加以詳述。 『基板』 本實施形態中,做爲基板11之材料’則使用藍寶石 〇 一般而言,做爲層積III族氮化物半導體結晶之基板 ❹ 材料,例如選擇使用藍寶石、Sic、矽、氧化鋅、氧化鎂 、氧化錳、氧化锆、氧化錳鋅鐵、氧化鎂鋁、砸化锆、氧 . 化鎵、氧化銦、氧化鋰鎵、氧化鋰鋁、氧化銨鎵、氧化鑭 緦鋁鉅、氧化緦钽、氧化鈦、鈴、鎢、鉬等之ΠΙ族氮化 物半導體結晶,磊晶成長於表面之基板材料。其中,將藍 寶石、Sic等之具有六方晶構造之材料,使用於基板時, 可層積結晶性良好之ΠΙ族氮化物半導體之故爲佳,最佳 爲使用藍寶石。 又,做爲基板之大小,通常使用直徑2英吋程度之物 -11 - 200933933 ,而本發明之III族氮化物半導體中可使用直徑4〜6英 吋的基板。 然而,不使用氨而成膜緩衝層的同時,在使用氨之方 法下,經蚱成膜構成η型半導體層之基底層,上述基板材 料之內,以高溫接觸氨之時,使用會產生化學性之變性之 - 氧化物基板或金屬基板等之時,本實施形態之緩衝層則做 - 爲塗佈層而作用之故,有防止基板化學性變質之效果。又 〇 ,一般而言,濺鍍法可抑制壓低基板之溫度之故,即使用 具有在高溫下會分解之性質的基板之時,可不給予基板 11損傷地,進行對於基板上之各層之成膜。 『緩衝層』 本實施形態之層積半導體10乃於藍寶石所成基板11 上,以反應性濺鍍法加以形成,至少設置III族氮化物化 合物所成之緩衝層12。緩衝層12乃可將含金屬Α1原料 © 與氮元素之氣體,經由以電漿活性化之反應性濺鏟法加以 形成。 . 如本實施形態使用電漿化之金屬原料之方法所成膜之 _ 膜,乃有易於得配向之作用。 成爲如此緩衝層之ΙΠ族氮化物化合物之結晶乃具有 六方晶系之結晶構造,經由控制成膜條件,可成爲單結晶 膜。又,π I族氮化物化合物之結晶乃經由控制上述成膜 條件,可成爲六角柱爲基板之集合組織所成柱狀結晶。然 而,在此說明之柱狀結晶,乃指在於鄰接之結晶粒間,形 -12- 200933933 成結晶粒場而隔開,其本身乃就縱剖面而言成爲柱狀之結 晶。 緩衝層12爲單結晶構造之時,在於緩衝機能^面上爲 較佳者。如上所述,ΠΙ族氮化物化合物之結晶乃具有六 方晶系之結晶,形成六角柱爲基本之組織。ΠΙ族氮化物 • 化合物之結晶乃經由控制成膜等之條件,可成膜朝向面內 . 方向成長之結晶。將具有如此單結晶構造之緩衝層12, 〇 成膜於基板11上之時,緩衝層12之緩衝機能會有效作用 之故,成膜於其上之III族氮化物半導體之層乃成爲具有 良好之配向性及結晶性之結晶膜。 緩衝層12之膜厚乃以10〜5 00nm之範圍爲佳。使緩 衝層12之膜厚在此範圍之時,可具有良好之配向性,又 於緩衝層12上成膜III族氮化物半導體所成各層之時, 可得做爲塗佈層有效工作之緩衝層12。 緩衝層12之膜厚不足10nm之時,會有做爲上述塗 〇 佈層之功能無法充分發揮之虞。又,以超過5 OOnm之膜 厚形成緩衝層12之時,雖然做爲塗佈層之功能沒有變化 _ ,但成膜處理時間會變長,會有生產性下降之疑慮。 又,緩衝層12之膜厚乃以20〜1 OOnm之範圍者爲更 佳。 本實施形態中,緩衝層1 2爲A1N所成之組成爲佳。 一般而言,做爲層積於基板上之緩衝層,爲含AL之 組成者爲佳,只要是一般式AlGalnN所示之III族氮化物 化合物,可使用任何之材料,更且可爲含有做爲V族之 -13- 200933933
As或P之組成。其中,令緩衝層爲含A1之組成之時,爲 GaAIN者爲佳,此時,A1之組成爲50%以上者爲更佳。 又,緩衝層12由A1N所構成者爲最佳。 - 又,做爲構成緩衝層12之材料,雖可使用具有與III 族氮化物半導體相同結晶構造者,但以晶格長度接近構成 ' 後述基底層之III族氮化物半導體者爲佳,尤其適用於周 . 期表之Ilia族元素之氮化物。 〇 緩衝層12以含有氧。且緩衝層12中之氧濃度爲1原 子%以下者爲佳。 當緩衝層中之氧濃度超過1原子%時,膜中之氧會過 多,基板與緩衝層間之晶格常數之匹配性會下降,做爲緩 衝層之功能亦會有所下降。 如本實施形態,緩衝層經由反應性濺鍍法形成之時, 附著於濺鍍裝置之處理室(參照圖5之符號41)內壁之 水分等之含氧物,則於濺鍍成膜處理時,從處理室之內壁 〇 向處理室內空間擊出,在成膜於基板上之緩衝層中,會有 氧被混入。爲此,使用濺鍍法形成之緩衝層乃雖成爲具有 _ 至少含一定以上之氧的膜,令緩衝層12以A1N構成之時 ,藉由以上述範圍(上限濃度:1原子%)含有少量之氧 » ,會接近藍寶石所成基板之晶格常數,提升基板與緩衝層 間之晶格常數之匹配性,而提升緩衝層之配向性。 由此,可提升形成於緩衝層上之III族氮化物半導體 之結晶性。在此,含於緩衝層12之氧量,則如上述上限 値所示,只要低濃度即可,緩衝層12乃經由含有極少量 -14- 200933933 之氧,可得上述效果。 又,緩衝層12之氧濃度乃以原子%成爲0.8%以下者 爲更佳。 - 本實施形態中,將含於緩衝層1 2中之氧之濃度,經 由控制於上述範圍,可提升A1N所成緩衝層12與藍寶石 ' 所成基板11之晶格匹配性之故,緩衝層12則成爲配向性 - 優異之層。形成於如此緩衝層12上之III族氮化物半導 © 體乃成爲結晶性優異之層之故,可實現發光特性優異之 ΙΠ族氮化物半導體發光元件。 本實施形態中,緩衝層1 2膜內之氧濃度分布略爲均 勻者爲佳。 於緩衝層12之膜內,經由使氧無不均地加以均勻分 布,可更提升與如上述基板11之晶格匹配性。由此,更 可提升緩衝層12上之III族氮化物半導體之結晶性,進 而實現發光特性更爲優異之族氮化物半導體發光元件。 Ο 『半導體層』 . 如圖1所示,本實施形態之層積半導體層10乃在基 板11上,藉由上述緩衝層12,由III族氮化物半導體所 成,層積由η型半導體層14、發光層15及p型半導體層 16所構成之半導體層20。又,1圖示例之層積半導體10 乃備於η型半導體層14之基底層14a,層積於緩衝層12 上者。 做爲 III族氮化物半導體,例如有以一般式 -15- 200933933
AlxGayInzNi-ΑΜΑ ( O^X^l ' O^Y^l ' O^Z^l 且 X+Y + Z=1。記號M爲表示除了氮(N)之外之第V族元素 ,0SA<1。所示之氮化鎵系化合物半導體被眾所周知’於 本發明中,亦包含該周知之氮化鎵系化合物半導體’可無 限制使用一般式 AlxGaYlnzlSh-ΑΜΑ ( 0SX‘l、0SYS1、 • 0SZS1且X+Y+Z=l。記號Μ爲表示除了氮(N)之外 • 之第V族元素,0SA<1。)所7Γ:之氮化鎵系化合物半導 ❹ 體。 氮化鎵系化合物半導體乃除了 Al、Ga及In以外,可 含有其他之Π族元素,依需要可含有Ge、Si、Mg、Ca、 Zn、Be、P及As等之元素。更且,不限於有意圖添加之 元素,有包含關連於成膜條件等’必然含有之不純物’以 及原料;含於反應管材質之微量不純物之情形。 ^ η型半導體層」 ® η型半導體層14乃通常,層積於前述緩衝層12上, 由η型連接層14b及η型包覆層14c所構成。然而,η型 - 連接層雖可兼爲基底層,及/或η型包覆層,但基底層亦 . 可兼做爲η型連接層。 (基底層} 本實施形態之基底層14a乃由III族氮化物半導體所 成,經由以往公知之MOCVD法,層積於緩衝層12上而 成膜。 -16- 200933933 做爲基底層14a之材料,無需一定與成膜在3 上之緩衝層12相同,使用不同之材料亦可’ > AlyGai.yN 層(OSySl,較佳爲 0SyS0.5,| OSySO.l)構成者爲佳。 做爲使用於基底層14a之材料’可適用含Ga • 族氮化物化合物,即使用GaN系化合物半導體, . 用 AlGaN 或 GaN。 © 又,將緩衝層12做爲A1N所成柱狀結晶之集 形成之時,基底層1 4a則未不使緩衝層1 2之結晶 續,需經由遷移,使換位成爲迴圈化,但如此材料 列舉含上述Ga之GaN系化合物半導體,尤其適用 或 GaN。 基底層14a之膜厚爲0.1 ~8 μπι之範圍時,可 性良好之基底層之故爲佳,爲0.1〜2 μιηΐ之範圍時 所需之工程時間可縮短,可提升生產性之故因而爲 © 基底層14a乃依需要,η型不純物雖可在1 > 1 xlO19個/cm3之範圍內加以摻雜而構成亦可,亦可 . 雜(<1 xlO17個/cm3 )之構成,未摻雜者可維持良 晶之故因而較佳。 基板11有導電性之時,經由在於基底層14a 雜劑而呈導電性,可於發光元件之上下,形成電極 方面,於基板11使用絕緣性之材料時,在發光元 一面,採設置正極及負極之各電極之晶片構造之故 層14a成爲不摻雜之結晶者,可得良好之結晶性之 板11 L以由 佳爲 之III 尤其適 合體而 性被接 ,亦可 AlGaN 得結晶 ,成膜 ί圭。 :1017 ~ 爲未慘 好之結 摻雜摻 。另一 件之同 ,基底 故因而 -17- 200933933 較佳。做爲η型不純物雖未特別加以限定,例如可列舉 Si、Ge及Sn等,較佳可列舉Si及Ge。 { η型連接層} 本實施形態之η型連接層14b乃由III族氮化物半導 ♦ 體所成,經由MOCVD法或濺鍍法,層積於基底層14a上 . 而成膜。
〇 做爲η型連接層14b,與基底層14a相同,由AlxGai.xN 層(OSxSl,較佳爲0SxS0.5,更佳爲OSxSO.l)構成者 爲佳又,摻雜η型不純物爲佳,當n型不純物以ΙχΙΟ17〜 ΙχΙΟ19個/cm3’更佳爲1χ1〇18〜1χ1〇19個/cm3之濃度而含 有之時,在於與負極之良好電性接觸之維持、龜裂產生之 抑制、良好結晶性之維持上爲較佳者。做爲η型不純物雖 未特別加以限定,例如可列舉Si、Ge及Sn等,較佳可爲 Si及Ge。成長溫度乃與基底層相同。又,如上述,η型 φ 連接層14b乃可兼做成基底層之構成。 構成基底層14a及η型連接層14b之氮化鎵系化合物 _ 半導體乃同一組成者爲佳,令此等合計之膜厚設定於 0.1-2 0 μιη,較佳設定於0.5〜15 μιη,更佳爲設定於1〜12 μιη之範圍者。膜厚在此範圍時,半導體之結晶可被良好 維持。 { η型包覆層} 於上述η型連接層14b與詳述於後之發光層15間, -18- 200933933 設置η型包覆層者爲佳。經由設置η型包覆層14c,可改 善產生於η型連接層14b之最表面平坦性之惡化。η型包 覆層 14c乃可使用MOCVD法等,經由 AlGaN、GaN、 GalnN等而成膜。又,可爲此等之構造之異質接合或複數 次層積之超晶格構造。於成爲GalnN時,必然是以較發 - 光層15之GalnN之能帶隙爲大者爲佳。 • η型包覆層14c之膜厚雖未特別加以限定,但爲較佳 〇 爲5〜5 00nm之範圍,更佳者爲5〜1 OOnm之範圍。 又,η型包覆層 Me之n型掺雜濃度爲1χ1〇17〜 1 xl02Q個/ cm3之範圍爲佳,更佳者爲1 X 1〇18〜1 χίο19個 /cm3之範圍。掺雜濃度爲此範圍時,在此良好之結晶性之 維持及發光元件之動作電壓之減低之方面上爲較佳者。 「P型半導體層」 p型半導體層16乃通常由p型包覆層16a及p型連 © 接層16b所構成’使用MOCVD法或反應性濺鍍法而成膜 。又,P型連接層乃可兼做爲P型包覆層而構成。 . 本實施形態之P型半導體層16乃添加爲將導電性控 制於P型之P型不純物。做爲p型不純物雖未特別加以限 定,使用Mg者爲佳,或同樣地可使用Zn。 又’做爲P型半導體層16整體之膜厚,雖未特別加 以限定,較佳爲0.05~1 μπι之範圍。 { Ρ型包覆層} -19- 200933933 做爲p型包覆層16a,爲較詳述於後之發光層15之 能量間隙爲大之組成,只要可封閉朝向發光層15之載子 者,不特別加以限定’但較佳者可列舉爲AldGai-dN(0<dS0.4 ,較佳爲0.1 Sd$0.3)p型包覆層16a乃由如此AlGaN所 成之時,在於發光層15之載子之封閉面上是爲較佳者。 * p型包覆層16a之膜厚雖未特別加以限定,但爲較佳 , 爲 l~400nm,更佳者爲 5~l〇〇nm。 〇 經由於P型包覆層16a,添加p型不物所得之p型掺 雜劑濃度爲1X1018〜1X1021個/cm3之範圍爲佳,更佳者 爲ΙχΙΟ19〜5χ102<)個/cm3。p型摻雜劑濃度爲上述範圍時 ,結晶性不會下降,可得良好之P型結晶。 { P型連接層} 做爲P型連接層16b,爲至少含有由AleGai.eN (0Se<0.5, 較佳爲〇SeS0.2,更佳爲OSeSO.l)所成氮化鎵系化合 ❹ 物半導體。A1組成在上述範圍之時,在於良好結晶性之 維持及與P電性電極(參照後述之透光性電極17)良好之電 . 性接觸之面上爲較佳。p型型連接層16b之膜厚雖未特別 加以限定,但爲較佳爲10〜500nm,更佳者爲50~200nm。 膜厚在此範圍時,在發光輸出的觀點上爲較佳者。 又,經由在於P型連接層16b,添加p型不物所得之 P型掺雜劑濃度爲1 χΙΟ18〜1 X 1021個/cm3之範圍時,在於 良好之電性連接之維持,龜裂產生之防止,良好之結晶之 維持的觀點上爲較佳,更佳者爲5χ1019〜5χ102〇個/cm3 -20- 200933933 之範圍。 「發光層」 發光層15乃層積於η型半導體層14上的同時’ P型 半導體層16層積於其上,可經由以往公知之M0CVD法 • 等加以成膜。又,發光層15乃如圖1所示’交互重覆層 . 積氮化鎵系化合物半導體所成障壁層15a、和含銦之氮化 〇 鎵系化合物半導體所成井層15b而成,圖示例中,於η型 半導體層14側及ρ型半導體層16側,以配置障壁層15a 之順序加以層積形成。 做爲障壁層15a,例如可適用較含銦之氮化鎵系化合 物半導體所成井層15b能量間隙爲大之AIeGai-eN (0Sc<0.3) 等之氮化鎵系化合物半導體。 又,井層15b中,做爲含銦之氮化鎵系化合物半導體 ,例如可可使用Gai-sInsN ( 0<S<0.4 )等之氮化鎵銦。 ❹ 又,做爲發光層1 5整體之膜厚’則未特別加以限定 。例如,發光層15之膜厚乃在卜5 OOnm之範圍爲佳’尤 _ 以10 Onm前後之膜厚爲更佳。膜厚在此範圍時,可賦予 發光輸出的提升。 本實施形態之半導體層20乃如上述’至少含有氧而 成,形成於該氧濃度爲原子%爲1 %以下之緩衝層12上之 故,可成爲結晶性優異之ΙΠ族氮化物半導體之層。因此 ,可實現發光特性優異之ΠΙ族氮化物半導體發光元件。 -21 - 200933933 『透光性正極』 透光性正極17乃形成於上述層積半導體1〇之p型半 導體層16(P型型連接層16b)上之透光性之電極。
做爲透光性正極1 7之材質,未特別加以限制,可將 ITO ( ln2〇3-Sn〇2 ) 、AZO ( ZnO-Al203 ) 、IZO ( In203-ZnO • ) 、GZ〇 ( ZnO-Ga2 03 )等之材料,在此技術範圍以習知 . 用之手段加以設置。又,此構造,則包含以往公知之構造 〇 ,可不受任何限制之使用任何之構造。又,透光性正極 17乃被覆摻雜Mg之p型半導體層16上之幾近全面加以 形成亦可,開出間隙形成呈格子狀或樹形狀亦可。 『正極銲墊及負極』 正極銲墊18乃形成於上述透光性正極17上之電極。 做爲正極銲墊1 8之材料,眾所周知有使用Au、A1 ' Ni及Cu等之各種構造,可無任何限制此周知材料、構造 © 者。 正極銲墊18之膜厚乃以100〜100 Onm之範圍內爲佳 、 。又,銲墊之特上,爲厚者接合性爲高之故’正極銲塾 18之厚度成爲300nm以上者爲佳。更且’從製造成本之 觀點視之,500nm以下者爲佳。 負極19乃在於基板11上,順序層積n型半導體層 14、發光層15及ρ型半導體層的半導體層中’使接觸於 η半導體層14之η型連接層14b而形成。 爲此,設置負極19之時’經由除去P型半導體層16 -22- 200933933 、發光層15及η型半導體層14之一部分,形成n型連接 層14b之露出範圍14d,於其上形成負極19。 做爲負極19之材料,各種組成及構造之負極皆爲公 知者,可任意無限制使用此等之公知負極,設置此技術範 圍眾所周知之慣用手段。 • 根據如以上說明之本實施形態之III族氮化物半導體 • 發光元件1時,經由反應性濺鍍法而形成之緩衝層12中 〇 之氧濃度成爲1原子%以下,層積於緩衝層上之ΠΙ族氮 化物半導體所成半導體層20之結晶性會提升之故,可得 具有優異之發光特性之III族氮化物半導體發光元件。 [III族氮化物半導體發光元件] 本實施形態之III族氮化物半導體發光元件之製造方 法乃在藍寶石所成基板11上,至少層積ΙΠ族氮化物化 合物所成緩衝層12,於該緩衝層12上,順序層積η型半 Ο 導體層14、發光層15及ρ型半導體層16的方法中,是 爲緩衝層1 2乃經由反應性濺鍍法加以形成之同時,緩衝 . 層1 2則含有氧,且緩衝層1 2中之氧濃度爲1原子%以下 加以形成之方法。 本實施形態之製造方法中,於基板上磊晶成長ΠΙ族 氮化物半導體之結晶,在如圖1所示形成層積半導體10 之時,於基板11上成膜緩衝層12,於其上形成半導體層 20。本實施形態中,採令緩衝層1 2,經由令含金屬Α1原 料與氮元素之氣體,以電漿活性化之反應性濺鍍法’由 -23- 200933933 A1N形成,於其上,將η型半導體層14之基底層14a,經 由MOCVD法形成之後,將n型連接層14b以濺鑛法加以 形成,將其上之η型包覆層14c及發光層15之各層,以 MOCVD法形成,然後將p型半導體層16以濺鍍法加以形 成之方法。 • 然後,本實施形態之製造方法中,如圖2之平面圖及 . 圖3之剖面圖所示之例,在於上述層積半導體10之p型 ❹ 半導體層16上,層積透光性正極17,於其上形成正極銲 墊18的同時,在形成於η型半導體層14之η型連接層 14b之曝露範圍14d,層積負極19。 以下,對於本實施形態之ΙΠ族氮化物半導體發光元 件之製造方法加以詳述。 『基板之前處理』 本實施形態中,將基板1 1導入反應器中之後,於形 G 成緩衝層12前’使用濺鍍法等之方法,進行前處理者爲 佳。具體而言,經由將基板11曝露於中’可整飭表面。 _ 例如,將Ar氣體或N2氣體之電漿,經由作用於基板1 1 之表面之逆濺鍍’可防去附著於基板11表面之有機物或 氧化物。此時,於基板11與處理室間,施加電壓時’電 漿粒子可有效率地作用於基板11。經由將如此前處理施 於基板11,於基板11之表面11a整面,可成膜緩衝層12 ,可提高成膜於其上之膜之結晶性。 又,於基板11,在進行如上述之逆濺鍍所成前處理 -24- 200933933 之前,施以濕式前處理爲更佳。 又,基板11之前處理乃在混合如上述逆濺鑛之離子 成分、與不具有電荷之自由基成分的環境中所進行之電漿 處理加以進行者爲佳。 在此,從基板之表面除去污染之時,例如’將離子成 - 分等單獨供予基板表面之時,能閉會過強,會於基板表面 . 產生損傷,會有使成長於基板上之結晶品質下降的問題。 © 本實施形態中,做爲基板11之前處理,使用混合上 述離子成分與自由基成分之環境所進行之電漿處理,經由 在於基板上使具有適度能量之反應種作用,可不給予基板 11表面任何損傷,進行污染等之去除。就得如此之效果 之機構而言,有著藉由使用離子成分之比例爲少之電漿, 可抑制供予基板表面之損傷、和在於基板表面使電漿作用 ,而有效除去污染等。 Ο 『緩衝層之形成』 本實施形態中,使緩衝層1 2,在於基板1 1上經由反 _ 應性濺鍍法而形成的同時,緩衝層12含有氧,且緩衝層 12中之氧濃度成爲1原子%以下而形成者。又,本例中, 緩衝層12乃將含金屬A1原料與氮元素之氣體,經由以電 漿活性化之反應性濺鍍法,由A1N加以形成,爲經由以 下詳述之條件以及手續而形成之方法。 「反應性濺鍍法所成之膜 -25- 200933933 對於基板11之表面,施以上述前處理之後,於濺鍍 裝置40(參照圖5)之處理室41內,導入含氬及氮元素 之氣體,將基板11加溫至5 00°C程度。然後,於基板11 側,施加高頻偏壓的同時,在做爲III族金屬原料使用金 屬A1之A1標靶側,施加電力,於處理室41內產生電漿 - ,將處理室41內之壓力保持於一定下,於基板11成膜 • A1N所成緩衝層12。 © 做爲將緩衝層1 2成膜於基板1 1之方法,除了反應性 濺鍍法之外,例如可列舉脈衝雷射沈積(PLD )法、脈衝 電子線堆積(PED )法等,可適切選擇加以使用,但由於 反應性濺鍍法最爲簡便又適於量產之故,爲適切之方法者 (濺鍍裝置) 圖5所示例之濺鍍裝置40中,於金屬標靶47之下方 ❹ (圖5之下方),配置磁鐵42,該磁鐵42經由圖示省略 之驅動裝置,在金屬標靶47之下方搖動。於處理室41供 給氮氣、及氬氣,在安裝於加熱器44之基板11上’成膜 緩衝層。此時,如上所述,磁鐵42在金屬標靶47之下方 搖動之故,封閉於處理室41內之電漿會移動’除基板11 之表面11A之外,可對於側面,無不均地成膜緩衝層。 做爲將緩衝層以濺鍍法加以成膜之方法’可列舉RF 濺鍍法或DC濺鍍法。在此’如關於本發明之製造方法, 使用反應性濺鍍法,做爲含氮之氣體使用氮氣進行成膜之 -26- 200933933 時,眾所周知氮則吸附於標靶(金屬材料)之表面(參照 Mat.Res.Soc.Symp.Proc.Vol.68、3 57、1 986 ) —般而言, 使用金屬材料之標靶,進行濺射之時,使用DC濺鍍法, 在於成膜效率之觀點上爲較佳者,但是連續放電之DC濺 鍍法,則有藉由氮附著於標靶,而招致標靶表面之充電上 ' 昇(帶電),使成膜速度無法安定之可能性。爲此,關於 . 本發明之製造方法中,使用在RF濺鍍法或DC濺鍍法中 〇 可脈衝性供予偏壓之脈衝DC濺鍍法者爲佳,使用可以如 此濺鍍方法處理之濺鍍裝置者爲佳。 又,將緩衝層12經由濺鍍法成膜之時,使用將含氮 之氣體流通於反應器之反應性濺鍍法而成膜者,由於控制 反應,可保持良好結晶性,在於再現安定該良好結晶性之 觀點上則更佳,採用可以如此反應性濺鍍方法處理之濺鍍 裝置者爲佳。 又,使用採用RF濺鍍法之濺鍍裝置之時,做爲避免 〇 充電上昇之方法,可使該磁鐵之位置在標靶內加以移動者 爲佳。具體之運動方法則可經由使用之濺鍍裝置加以選擇 . ,進行搖動運動,或旋轉運動。例示於圖5之濺鍍裝置 4〇中,於標靶47之下方備有磁鐵42,此磁鐵42則可於 標靶47之下方呈現旋轉運動而加以構成。 又,於反應性濺鍍法中,經由在磁場內封閉電漿,有 效率提之升技術爲一般所採用的。此時,做爲標靶無偏移 使用之方法,則使用如上述濺鍍裝置40,令陰極之磁鐵 42之位置,在標靶47內加以移動而成膜之RF濺鍍法爲 -27- 200933933 佳。 做爲如此之時之具體磁鐵之運動方法則可經由使用之 - 濺鍍裝置加以選擇,例如可使磁鐵進行搖動,或旋轉運動 〇 又,於後會再加以詳述,於處理室4 1內,儘可能不 • 殘留不純物者爲佳,尤其,僅可能減低附著於處理室41 , 之內壁之含氧物者爲佳,濺鍍裝置40之處理室41內之到 〇 達真空度乃1.0 X 1 (T4pa以下者爲佳。 又,緩衝層12乃使被覆基板11之側面而形成者爲佳 ,使被覆基板11之側面及背面而形成者爲最佳。 但是,以以往之濺鍍裝置以及成膜方法,成膜緩衝層 之時,最大需進行6次至8次程度之成膜處理,會成爲長 時間之工程。做爲除此之外之成膜方法,經由不保持基板 而設置於處理室內,於基板整面加以成膜之方法,在需加 熱基板之時,裝置會有變得複雜的疑慮。 © 在此,例如可使用使基板加以搖動或旋轉運動之濺鍍 裝置,可將基板之位置,對於成膜材料之濺鍍方向加以變 更而成膜。經由如此濺鍍裝置以及成膜方法,可使基板之 r 表面及側面以一次的工程加以成膜,接著經由進行基板背 面之現今之成膜工程,以2次之工程加以被覆基板之整體 〇 又,令濺鍍裝置成爲成膜材料源爲大之面積之產生源 (標靶)所產生之構造,且經由移動材料之產生位置,不 移動基板,成膜於基板整體之構成者爲佳。做爲如此裝置 -28- 200933933 之一,可列出採用經由如圖5所示濺鍍裝置40之令磁鐵 搖動或旋轉運動,令陰極之磁鐵位置在標靶內加以移動而 ^成膜之RF濺鍍法之裝置。又,以如此RF濺鍍法進行成 膜之時,採用移動基板側與陰極側之雙方之裝置亦可。 更且,經由將材料產生源之陰極(參照圖5之標靶皿 ' 43)配設於基板附近,可使產生之電漿,非對於基板而言 . 供給呈電子束狀,而是呈包圍基板地加以供給之構成時, © 可進行基板表面及側面之同時成膜。 (含氮元素氣體之環境) 做爲本實施形態所使用之含氮氣體,可將一般所周知 之氮化合物在無任何限制加以採用,但氨或氮(N2 )可簡 單加以處理之同時,可較便宜地加以到手之故是爲較佳者 〇 氨之分解效率爲佳,雖可以高成長速度成膜,但反應 〇 性或毒性高之故,需除害設置或氣體檢測器,又需令使用 於反應裝置之構件之材料具有化學上安定性爲高之物。 . 又,將氮(N2)做爲原料使用之時,就裝置而言可使 用簡單者,但無法得高的反應速度。但是,是爲將氮經由 電場或熱等加以分解再導入裝置之方法之時,雖較偎成膜 速度爲低,可得工業生產性上可利用程度之成膜速度之故 ,與裝置成本位倂考量時,氮(N2)是最佳的氮源。 含氮元素之氣體中之氮之氣體分率,即對於氮(N2) 與氬之流量的氮流量比乃令氮超出20%者爲佳。當氮爲 -29- 200933933 20%以下時’氮之存在量爲少,在基板11會析出金屬, 無法成爲做爲緩衝層12之要度於III族氮化物化合物之 結晶構造。又,氮高於99%流量比時,Ar之量則過少, 濺銨率會大幅下降,因此爲不佳。 又,含氮元素之氣體中之氮之氣體分率,爲40%以上 - 95%以下之範圍爲更佳,最佳爲60%以上80%以下之範圍 〇 〇 本實施形態中,經由將活性氮反應種,以高濃度供予 基板11上,可抑制基板11上之遷移,由此,抑制自我組 織化,可將緩衝層12適切地單結晶組織。於緩衝層12中 ,經由適切控制單結晶所成組織,可良好控制層積於其上 之AIN ( III族氮化物半導體)所成半導體層之結晶性。 (處理室內壓力) 使用反應性濺鍍法,成膜緩衝層12時之處理室41內 φ 之壓力乃以0.2Pa以上者爲佳。此處理室41內之壓力不 足0.2P a之時,持有產生反應種之運動能量會變得過大’ . 一竹形戈尸成之緩衝層之膜質會變得不充分。又’處理室 41內之理力之上限雖未特別加以限定,但到達〇.8Pa以上 時,賦予膜之配向之二量體荷電粒子會受到電漿中之荷電 粒子之相互作用之故’處理室41內之壓力成爲0_2〜〇.8Pa 之範圍爲佳。 (濺鍍裝置之到達真空度) -30- 200933933 本實施形態之製造方法中,令使用於前述緩衝層12 之形成的濺鍍裝置之處理室內之到達真空度爲1.5xl(T5Pa 以下爲條件,將處理室41內成爲此範圍之真空度時,形 成緩衝層1 2爲佳。 如上所述,使用反應性濺鍍法形成緩衝層之時,附著 ' 於濺鍍裝置40之處理室41內壁之水分等之含氧物,則於 - 濺鍍成膜處理時,從處理室之內壁擊出,在成膜於基板 〇 11上之緩衝層12中,可可避免會有氧被混入。此含氧物 主要乃爲進行處理室41之維護開放大氣之時,由於大氣 中氧或水分侵入處理室41內,而附著於內壁而產生者。 經本發明人之硏究,A1N所成緩衝層12乃在濺鍍時 ,經由混入氧,藉由在於膜含有少量(低濃度)之氧,可 接近藍寶石所成基板11之晶格常數,而提升基板11與緩 衝層12間之晶格常數之整合性,可得提升緩衝層12之配 向性之效果。 ❹ 但是另一方面,在形成於基板上之緩衝層,混入大量 氧時,膜中之氧過多(超過1原子%)時,基板與緩衝層 _ 間之晶格常數之匹配性會下降,緩衝層之配向性亦會下降 。即,於濺鍍裝置之處理室內壁,附著大量含氧物之時, 濺鍍時大量氧被混入緩衝層之膜中,會產生上述問題。 本實施形態中,令使用於前述緩衝層12之形成的濺 鍍裝置之處理室內之到達真空度爲1.5 xl (T5Pa以下爲條件 ,將處理室41內成爲此範圍之真空度,經由充分吸引處 理室41內之含氧物,除去減少附著處理室41之內壁之含 -31 - 200933933 氧物以及存在於處理室41內之空間之含氧物後,形成緩 衝層12之方法。 由此,令A1N所成緩衝層12,做爲含1原子%以下 之低濃度之氧的狀態而形成之故,可提升與藍寶石所成基 板1 1間之晶格匹配性,而成爲優異配向性之層。形成於 - 如此緩衝層12上之III族氮化物半導體乃成爲結晶性優 . 異之層之故,可實現發光特性優異之III族氮化物半導體 0 發光元件。 (虛擬放電) 本實施形態之製造方法中,爲更提升上述到達真空度 ,在進行緩衝層12之濺鍍成膜處理之前,於濺鏟裝置40 之處理室41內,進行不伴隨成膜處理之虛擬放電爲佳。 做爲虛擬放電之方法,一般而言進行與成膜處理相同 之放電程序,導入至基板之方法。如此方法下,經由進行 Φ 虛擬放電,即使不清楚任何成分,在任何機構下擊出不純 物,可使在成膜條件下,湧出之不純物,可預先加以擊出 〇 又,如此虛擬放電乃相較於與通常成膜條件的同樣條 件進行之方法,可設定成易於擊出不純物之條件而進行。 做爲如此之條件,例如可列出設定成提高基板加熱用之設 定溫度(圖5之濺鍍裝置40之加熱器44)、或設定成提 高爲產生電漿之功率等之條件。 又,更且,如上述之乃可與處理室41內之吸引同時 -32- 200933933 加以進行。 經由進行如上述之虛擬放電’經由更提高成膜 理室41內之到達真空度,可將存在於處理室41之 存在於空間中之含氧物,更不確實除去減少。因此 升基板1 1與緩衝層12之晶格匹配性,可更提高 12之配向性。 Ο (成膜速度) 成膜緩衝層12時之成膜速度乃以 0.01nm/s~ 之範圍者爲佳。成膜速度不足〇_〇lnm/S時,膜無 層,成長成爲島狀,會有無法被覆基板11之表面 。成膜速度超過l〇nm/s時,膜不會成爲結晶體而 晶質。 (基板溫度) Ο 成膜緩衝層12時之基板11之溫度乃以室溫〜 之範圍爲佳,400〜800 °C之範圍者則更佳。基板] ' 度不足上述下限時,緩衝層12無法被覆基板11整 、 有露出基板11表面之疑慮。基板11之溫度超過上 時,金屬原料之遷移則活躍,做爲緩衝層12並不 然而,本發艮所說明之室溫雖會由於工程環境等而 溫度,但做爲具體之溫度,爲0〜3(TC之範圍。 (標靶) 前之處 內壁或 ,更提 緩衝層 10 nm/s 法成爲 的疑慮 成爲非 1 0 0 0。。 1之溫 面,會 述上限 適用。 影響之 -33- 200933933 使用令含有III族金屬原料與氮元素之氣體,經由電 漿活化之反應性濺鍍法,做爲緩衝層混晶成膜之時,例如 可爲將含A1等之金屬材料之混合物(不一定需要形成合 金)做爲標靶之方法,亦可爲準備由不同材料所成2個標 靶,同時加以濺鍍之方法。例如,成膜一定組成之膜時, • 使用混合材料之標靶,成膜組成不同之數種類之膜時,將 • 複數之標靶,設置於處理室亦可。 〇 『半導體層之形成』 於緩衝層12上,將η型半導體層14、發光層15、p 型半導體層16,依此順序加以層積,而形成半導體層20 。本實施形態之製造方法中,則如上述,將η型半導體層 14之基底層14a,經由MOCVD法形成之後,將η型連接 層14b以濺鍍法加以形成,將其上之η型包覆層14c及發 光層15之各層,以MOCVD法形成,然後將p型半導體 層1 6以濺鍍法加以形成。 © 於本實施形態中,形成半導體層20時之氮化鎵系化 合物半導體之成長方法則未特別加以限定,上述濺鍍法之 . 外,適用 MOCVD(有機金屬化氣相層積法)、HVPE(鹵化 物氣相層積法)、MBE (分子線磊晶法)等之成長氮化物 半導體之所有方法。此等之方法內,MOCVD法中’做爲 載體氣體使用氫(H2 )或氮(N2 )、做爲III族原料之Ga 源,使用三甲基鎵(TMG )或三乙基鎵(TEG ),做爲A1 源,使用三甲基鋁(TMA )或三乙基鋁(TEA )、做爲In 源使用三甲基銦(TMI )或三乙基銦(TEI)、做爲V族 -34- 200933933 原料之N源使用氨(NH3 )、聯胺、(n2h4)等。又,做 爲摻雜劑,ri型做爲Si原料可利用單矽烷(siH4)或二矽 烷(SizHe ),。做爲Ge原料,可利用鍺氣(GeH4 ),或四 甲基鍺((CH3) 4Ge)或四乙基鍺((c2h5) 4Ge)等之 有機鍺化合物。MBE法中,元素狀之鍺亦可做爲摻雜源 ' 加以利用。P型則做爲Mg原料,例如使用雙環戊二烯鎂 • ( cP2Mg )或雙乙基環戊二烯鎂(EtCp2Mg )。 Ο 如上述之氮化鎵系化合物半導體乃除了 Al、Ga及In 以外’可含有其他之Π族元素,依需要可含有Ge、Si、 Mg、Ca、Zn、Be、P及As等之摻雜元素。 更且’不限於有意圖添加之元素,有包含關連於成膜 條件等’必然含有之不純物,以及原料,或含於反應管材 質之微量不純物之情形。 「η型半導體層之形成」 © 形成本實施形態之半導體層20時,首先將η型半導 體層14之基底層14a,經由以往公知之MOCVD法,層積 . 於緩衝層12上而成膜。接著,於基底層14a上,將η型 連接層14b以濺鍍法成膜後,將η型包覆層i 4c經由 MOCVD法加以成膜。此時,基底層14a及η型包覆層 14c之反層乃可同樣使用MOCVD法加以成膜。然而,本 實施形態中’說明了將η型連接層1 4b以濺鍍法成膜之例 ,但亦可以MOCVD法加以成膜。 -35- 200933933 「發光層之形成」 於η型包覆層14c上,將發光層15,經由以往公知 之MOCVD法加以形成。 本發明所形成之圖1所例示之發光層15乃具有開始 於GaN障壁層終止於GaN障壁層之層積構造’交互層積 • GaN所成6層之障壁層15a、和未摻雜之In〇.2Ga().8N所成 - 之5層之井層15b而形成。 © 又,本實施形態之製造方法中’經由使用與用於型包 覆層14c之成膜之MOCVD法的相同者’以往常公知之 MOCVD法,成膜發光層15 ° 「p型半導體層之形成」 發光層15上即於成爲發光層15之最上層之障壁層 15a上,乃將p型包覆層16a及p型連接層16b所成p型 半導體層16,使用MOCVD法或濺鍍法而形成。 Ο 本實施形態中,首先,將摻雜Mg之AluGa^N所成 P型包覆層16a,形成於發光層15(最上層之障壁層i5a 〜 )上,更且於其上,形成摻雜Mg之AI〇.G2Ga〇.98N之p型 型連接層16b。此時’於p型包覆層16a及p型連接層 16b之層積中,可使用同樣之濺鍍裝置。 然而,如上所述,做爲p型不純物,不僅是Mg,例 如可同樣使鋅(Zn)等。 透光性正極之形成』 -36- 200933933 經由上述方法,於形成各層之層積半導體ίο之P型 型連接層16b上’形成ITO所成透光性正極17。 做爲透光性正極1 7之形成方法則未特別加以限定, 通常可藉由此技術範疇所採用之常用方法加以形成。又, 此構造,則包含以往公知之構造,可不受任何限制而使用 • 任何之構造。
. 又,如上述,透光性正極17之材料乃非限定於ITO 〇 ,可使用AZO、IZO、GZO等之材料加以形成。 又,形成透光性正極17之後,有施以合金化或透明 化爲目的之熱退火之情形,但亦可不施行。 『正極銲墊及負極之形成』 在形成於層積半導體10上之透光性正極17上,更形 成正極銲墊18。 此正極銲墊18乃從透光性正極17之表面側,依序將 © Ti、Al、Au之各材料,經由以往公知之方法加以層積而 形成。 - 又,形成負極19之時,首先將形成於基板1丨上之p , 型半導體層16、發光層15及n型半導體層14之—部分 ’經由乾蝕劑等之方法加以除去,形成η型連接層l4b之 露出範圍14d。然後,於此露出範圍I4d上,例如從露出 範圍Hd表面側,依序將Ni、Al、Ti及Au之各材料,經 由以往公知之方法加以層積,形成省略詳細圖示之4層構 造之負極1 9。 -37- 200933933 然後’如上所述,於層積半導體10上,將設置透光 性正極17、正極銲墊18及負極19之晶圓,使基板之背 面硏削或硏磨,成爲鏡-面狀之面後,例如經由切斷成3 5 0 μπι平方之正方形’而成爲發光元件晶片(發光元件1) 〇 • 如以上之說明,本實施形態之III族氮化物半導體發 . 光元件之製造方法乃在藍寶石所成基板11上,至少層積 〇 III族氮化物化合物所成緩衝層12,將緩衝層12經由反 應性濺鍍法加以形成之同時,緩衝層1 2中之氧濃度形成 爲1原子%以下加以形成之方法之故,可形成在基板1 1 間提高晶格匹配性之緩衝層12。由此,提升緩衝層12之 配向性,可提高形成於其上之η型半導體層14、發光層 15及ρ型半導體層16各層所成之半導體層20之結晶性 。因此,伴隨優異之生產性,可得具備高發光特性之III 族氮化物半導體發光元件1。 Ο 又,令使用於緩衝層12之形成的濺鍍裝置40之處理 室41內之到達真空度爲1.0 XI (T4Pa以下爲條件,於形成 . 緩衝層12之前,經由吸引處理室41,可減少存在於處理 室41內之含氧物之故,可更提升形成於基板11上之緩衝 層12之配向性。 又,更且經由上述操作’吸引濺鍍裝置40之處理室 41內而成爲低壓的同時’經由進行特定次數之虛擬放電 ’使處理室41內之到達真空度成更爲低壓,可確實減低 存在於處理室41內之含氧物之故’可更提升形成基板11 -38- 200933933 上之緩衝層12之配向性。 〔燈〕 - 經由如以上說明之關於本發明之之III族氮化物半導 體發光元件與螢光體之組合,可藉由該業者周知之手段, - 構成此燈。以往,經由發光元件與螢光體之組合,改變發 • 光色之技術乃爲人所知,如此技術可不受任何限刮加以採 © 用。 例如,經由適切選定螢光體,可得較發光元件長波長 之發光,又,經由發光元件本身之發光波長與螢光體,經 由與變換之波長的混合,可爲成爲白色發光層之燈。 又,做爲燈,可使用於一般用途之砲彈型、使用於手 機之背光用途之側觀景型,使用於顯示器頂顯示型之任何 用途之中。 例如如圖4所厚將同一面電極型之III族氮化物半導 〇 體發光元件1,安裝於砲彈型之時,在2條之框體內之一 方(圖4中爲框體31),黏著發光元件1,又,將發光元 . 件1之負極(參照圖3所示符號19),以導線34接合於 框體32,將發光元件1之正極銲墊(參照圖3所示符號 18),以導線3 3接合於框體3 1。然後,以透明樹脂所成 模鑄3 5,經由模鑄發光元件1之周邊,作成如圖4所示 砲彈型之燈3。 然而,具備本發明所得優異之結晶性之III族氮化物 半導體之層積構造乃除了備於上述之發光二極體(LED) -39- 200933933 或雷射二極體(LD)等之發光二極體之半導體層之外, 亦可使用於雷射元件或受光元件等之光電變換元件,或 Η B T ( H e t e r 〇 j u nc t i ο η B ip ο I ar T r an s i s t 〇 r )或 HEMT ( High Efectron Mobility Transistor )等之電子裝置。此等 之半導體元件乃有許多各種之構造,關於本發明之III族 • 氮化物半導體之層積構造體之元件構造乃包含此等周知之 • 元件構造,無任何限制。 〇 [實施例] 以下,雖將本發明之III族氮化物半導體發光元件及 該製造方法,藉由實施例再加以詳細說明,但本發明非僅 限定於此等之實施例。 [實施例1] 圖1中,顯示本實施例所製作之III族氮化物半導體 〇 發光元件之層積半導體的剖面模式圖。 本例中,於藍寶石所成基板11之C面上,做爲緩衝 . 層12,使用RF濺鎪法形成A1N所成單結晶之層,於其上 ,做爲基底層14a,使用反應性濺鍍法形成GaN ( III族 氮化物半導體)所成之層。 『緩衝層之形成』 首先將表面鏡斫盃磨之直徑2英吋的(0001) c面藍 寶石所成基板經由氟酸及有機溶媒洗淨之後,導入至處理 -40- 200933933 室中。此時,做爲濺鍍裝置,使用如圖5例示之濺鍍裝置 40,具有高頻式電源,或在高頻電源內移動磁鐵之位置的 機構的裝置。然而,做爲標靶,-使用金屬All所成者。 然後,在處理室內,將基板11加熱至5 00°C ’將氮氣 以15Sccm之流量導入後,將處理室內之壓力保持於l.OPa * ,於基板1 1施加50W之高頻偏壓,經由曝露於氮電漿下 • ,洗淨基板1 1表面。 〇 接著,經由真空泵,使處理室內被吸引,與此同時經 由16次重覆虛擬放電,減壓濺鍍裝置之處理室內,使內 壓下降至6.〇xl(T6Pa,除去處理室內之不純物。 接著,保持基板11之溫度,於濺鍍裝置內導入氬氣 及氮氣。然後,將2000 W之高頻偏壓,施加於金屬A1標 靶側,將爐內之壓力保持在0.5 P a,令氮氣爲1 5 s scm流通 條件下(氣體整體之氮的比率爲75%),於藍寶石所成基 板11上’成膜A1N所成單結晶之緩衝層12。標靶內之磁 〇 鐵乃在洗淨時及成膜時之任一時候,皆加以搖動。 然後,根據預先測定之成膜速度(0.067nm/s ),經 . 由規定之時間處理,成膜40nm之A1N (緩衝層12 )後, 停止電漿動作,使基板11之溫度下降。 然後’將形成於基板11之緩衝層12之X線回擺曲 線(XRC) ’使用X線測定裝置(spectris公司製,型號 :X‘part pro MRD)加以測定。此測定,將CuKa線X線 產生源做爲光源使用而進行。此結果,緩衝層12之XRC 半値寬度顯示成優異的0 · Γ ,緩衝層1 2可確認到良好之 -41 - 200933933 配向。 又,對於緩衝層12之組成,使用X線光電子 置(XPS )測定的結果,如圖6A ^所示,相當於緩 蝕刻時間3〜13分鐘之間,氧濃度確認爲原子%之 下。 . 『基底層之形成』 © 接著,將成膜A1N(緩衝層12)之基板11, 裝置內取出,輸送至MOCVD裝置內,於緩衝層1 用以下之手續,成膜GaN所成基底層14a。 首先,將基板11導入至反應爐內(MOCVD裝 在以氮氣置換之手套箱內,載置於加熱用之碳製承 。接著,於反應爐流通氮氣之後,使加熱器作動, 溫度上昇至1150°C,確認溫度安定在1150°C後, 氣配管之閥,開始各反應爐之氨氣的流通。 Ο 接著,將含TMG蒸氣之氫,供給至反應爐, 層12上,開始成膜構成基底層14a之III族氮化物 _ ( GaN )的工程。此時之氨量乃調整至V/III比爲 如此,在約1小時下,成長GaN後,切換TMG配 ,終止原料之反應爐的供給,停止GaN之成長。 停止對加熱器之通電,將基板溫度降溫至室溫。 經由以上之工程,在成膜於基板11上之單結 之A1N所成緩衝層12上,成膜非摻雜2μιη之 GaN所成基底層14a。於成膜後從反應爐內取出之 分光裝 衝層之 1%以 從濺鍍 2上, 置), 受器上 將基板 打開氨 於緩衝 半導體 6000 ° 線之閥 然後, 晶組織 膜厚之 試料乃 -42- 200933933 無色透明,GaN層(基底層14a)之表面乃爲鏡面。 將如上述所形成之未摻雜GaN所成基底層14a之X 線回擺曲線(XRC ),使用X線測定裝置(spectris公司 製,型號:X‘part pro MRD )加以測定。此測定,將 CuKa線X線產生源做爲光源使用,在對稱面之(0002 ) ' 面與非對稱面之(10-10 )面加以進行。一般而言,ΙΠ族 - 氮化物半導體之時,(0002 )面之XRC光譜半値寬度乃 Ο 成爲結晶平坦性(Mosaicity )之指標,(10-10 )面之 XRC光譜半値寬度乃成爲換位密度(扭轉)之指標。此 測定結果,本發明之製造方法所製作之未摻雜GaN層乃 在(0002 )面之測定,半値寬度爲46arcsec,在(10-10 )面顯示 220arcsec 。 「η型連接層之形成」 接著,將形成基底層14Α之基板11’輸送至MOCVD 裝置內,將GaN所成η型連接層,使用MOCVD加以形成 。此時,於η型連接層摻雜Si。在此,做爲使用於GaN 成膜之MOCVD裝置,使用以往公知之裝置。 經由以上說明之工程,在表面施以逆濺鍍之藍寶石所 成基板1 1上,形成具有單結晶組織之A1N之緩衝層1 2, 於其上形成未摻雜2 μιη膜厚之GaN層(η型基底層14a )、和具有5xl018cm·3之載子濃度2 μιη之Si摻雜GaN 層(η型連接層14b)。於成膜後從裝置內取出之基板乃 無色透明,GaN層(在此爲η型型連接層14b)之表面乃 -43 - 200933933 爲鏡面。 『η型包覆層及發光層之形成』 - 於以上述手續製作之樣本之η型連接層上,使用 MOCVD法,層積η型包覆層14c及發光層15。 . 「η型包覆層之形成」 〇 首先,將成長Si摻雜GaN所成η型連接層之基板, 向MOCVD裝置之處理室內輸送。然後,處理室內以氮置 換之狀態下,將基板溫度上昇至1〇〇〇 °C,昇華除去附著於 η型連接層之最表面之污垢。又,此時,從基板溫度到達 8 3 0°C以上之時點,將氨流通於爐內。 接著,將基板之溫度下降至740 °C之後’使氨保持流 通於處理室內下,使SiH4氣體、和經由發泡產生之TMI 及TEG蒸氣,流通至爐內,形成具有18 0A膜厚之Si摻 © 雜 111().(31〇3().99>1所成 η 型包覆層 14c。 然後,切換TMI、TEG及SiH4之閥’停止此等之原 . 料的供給。 「發光層之形成」 接著,形成GaN所成障壁層15a、和InQ.2Ga〇.8N所 成井層15b所構成,具有多重量子井構造之發光層15° 此發光層15之形成中,於Si摻雜Ino.cn Ga〇.99N所成η型 包覆層14c上,首先形成障壁層15a,於此障壁層15&上 -44 - 200933933 ,形成InuGauN所成井層15b。將如此層積手續重覆5 次之後,於5次層積之井層15b上,形成第6之障壁層 15a,於具有多重量子井構造之發光層15之兩側,成爲配 有發光層15a之構造。 即,Si摻雜Ino.^Gao ^N所成η型包覆層14c之成長 ' 終了後,保持基板溫度或爐內之壓力、載體氣體之流量或
• 種類,切換TEG之閥,經由向爐內供給TEG,成長GaN © 所成障壁層15a。由此,形成具有15 〇A膜厚之障壁層15a 〇 接著,障壁層15a之成長終了後,保持基板11之溫 度或爐內之壓力、載體氣體之流量或種類,切換TEG及 TMI之閥,經由向爐內供給 TEG 及 TMI,成長 In02Ga〇.8Nm成井層15b。由此,形成具有20A膜厚之井 層 1 5 b。 井層15b之成長終了後,再成長障壁層15a。 Ο 然後,經由5次重覆如此手續,形成層之障壁層15a 與5層之井層15b。更且,最後,於層積之井層15b上, . 形成障壁層15a,成爲發光層15。 『P型半導體層之形成』 於經由上述各工程處理所得之晶圓上,使用MOCVD 裝置,成膜P型半導體層16。 在此,做爲使用於P型半導體層16之成膜之MOCVD 裝置,使用以往公知之裝置。又,此時,於P型半導體層 -45- 200933933 1 6摻雜Mg。 然後,最終成膜由膜厚爲lOnm之摻雜Mg之 AluGao^N所成p型包覆層16a、和膜厚爲2-〇0nm之摻雜 Mg之Α1α. G2 Ga〇.98N所成p型連接層16b所構成之p型半 導體層16。 ' 如上述製作之LED用之磊晶成長晶圓乃如圖1所示 • 之層積半導體10,於具有c面之藍寶石所成基板11上, 〇 形成具有單結晶構造之A1N層(緩衝層12)後,由基板 11側順序具有層積2 μηι之未摻雜GaN層(基底層14a) 、持有5xl018cnT3之電子濃度之2 μιη之摻雜Si之GaN 層(η型連接層14b)、持有lxl018cnT3之電子濃度之 180A之Ino.cnGao.^N包覆層(η型包覆層14c)、開始於 GaN障壁層終止於GaN障壁層,層厚爲150A之6層之 GaN障壁層(障壁層15a)、由層厚20A之5層之非摻雜 之InQ.2Ga〇.8N之井層(井層15b)所成多重量子井構造( ❹ 發光層15)、膜厚lOnm之摻雜Mg之Al〇.iGaG.9N所成p 型包覆層16a、和膜厚200nm之摻雜Mg之Al〇.(j2Ga().98N . 所成P型連接層16b所構成之摻雜Mg之AIGaN層(p型 半導體層16)的構成。 『LED之製作』 接著,使用上述磊晶成長晶圓(層積半導體10)製 作 LED。 即,於上述磊晶成長晶圓之摻雜Mg之AIGaN層(p -46- 200933933 型半導體層16b)之表面,經由公知之光微影技術,形成 ITO所成透光性電極1 7,於其上,形成具有順序層積鈦、 鋁及金之構造之正極銲墊18(p電極銲墊),成爲p側電 極。更且,對於晶圓施以乾蝕刻,露出形成η型連接層 14b之η側電極(負極)之範圍,於此露出範圍14d,形 - 成Ni、Al、Ti、及Au之4層被順序層積之負極19 ( η側 - 電極)。 〇 經由如此手續,於晶圓(參照圖1之層積半導體16 )上,形成具有圖2所示之形狀之各電極。 然後,在上述手續下,對於形成Ρ側及η側之各電極 之晶圓,硏削及硏磨藍寶石所成基板11之背面,成爲鏡 狀之面。然後,將此晶圓切斷成3 50 μιη平方之正方形之 晶片,使各電極向上而配置於導線框上,以金線與導線框 連結,成爲發光元件(參照圖4之燈3) 於如上述製作之發光二極體之ρ側及η側之電極間, © 流入順方向電流,電流20Ma之順方向電壓乃3.IV。又, 透過P側之透光性電極17,觀察發光狀態的結果,發光 . 波長顯示爲460nm、發光輸出乃顯示15.2mW。如此發光 二極體之特性,就製作之晶圓之幾近整面所製作之發光二 極體而言,皆可無不均地加以獲得。 [實施例2 ] 除了令成膜於基板上之緩衝層之結晶組織,使用使成 爲柱狀結晶之集合體所成之多結晶之條件下,進行成膜處 -47- 200933933 理之部分之外’與上述實施側1问樣之手續下,於基板上 層積緩衝層,於其上層積未摻雜之GaN層(基底層)之 後,更且經由形成ΠΙ族氮化物半導體所成各層,作成圖 2及圖3所示之發光元件。 將形成於基板上之緩衝層之X線回擺曲線(XRC ), - 以與實施例1同樣之方法測定結果,XRC半値寬度爲 . 12arcsec。又,對於緩衝層之組成,使用X線光電子分光 〇 裝置(XPS)測定的結果,與實施例1相同,氧濃度確認 爲原子%之1%以下。 然後,以與實施例1同樣之方法,在成膜於基板上之 緩衝層上,經由反應性濺鍍法成膜GaN層。於成膜後從 處理室取出之基板乃無色透明,GaN層之表面乃爲鏡面。 將如上述形成之未摻雜GaN所成基底層之X線回擺 曲線(XRC ),以與實施例1同樣之方法測定結果,在( 〇〇〇2)面之測定中爲半値寬度爲 93 arcsec,在(10-10) © 面則顯示231arcsec。 然後,於基底層上,使用與實施例1同樣之方法,形 . 成III族氮化物半導體所成各層,於此晶圓,形成透光性 電極、正極銲墊以及負極之各電極之後,硏削及硏磨基板 之背面而成爲鏡狀之面,切斷成3 50 μπι平方之正方形之 晶片,將各電極以金線與導線框連結,成爲圖4之燈3所 示之發光元件。 於如上述製作之發光二極體之Ρ側及η側之電極間, 流入順方向電流,電流20mA之順方向電壓乃3.IV。又, 48 - 200933933 透過P側之透光性電極17,觀察發光狀態的結果,發光 波長顯示爲460nm、發光輸出乃顯示15.2mW。如此發光 二極體之特性,就製作之晶圓之幾近整面所製作之發光二 極體而言,皆可無不均地加以獲得。 ' [比較例] • 除了進行基板之前處理後,經由真空泵,吸引處理室 〇 內,在除去不純物時,不進行虛擬放電,令到達真空度爲 1.0 xl(T3Pa之外,與上述實施側1同樣之手續下,於基板 上層積緩衝層,於其上層積未摻雜之GaN層(基底層) 之後,更且經由形成III族氮化物半導體所成各層,作成 圖2及圖3所示之發光元件。 將形成於基板上之緩衝層之X線回擺曲線(XRC ), 以與實施例1同樣之方法測定結果,XRC半値寬度爲 50arcsec。又,對於緩衝層之組成,使用X線光電子分光 © 裝置(XPS )測定的結果,如圖6B所示,相當於緩衝層 之蝕刻時間3〜10分鐘之間,氧濃度可知爲原子%之5 % 〇 . 然後,以與實施例1同樣之方法,在成膜於基板上之 緩衝層上,經由反應性濺鍍法成膜GaN層。於成膜後從 處理室取出之基板乃無色透明,GaN層之表面乃爲鏡面。 將如上述形成之未摻雜GaN所成基底層之X線回擺 曲線(XRC ),以與實施例1同樣之方法測定結果,在( 0002)面之測定中爲半値寬度爲200arcsec,在(10-10) -49- 200933933 面則顯示374arcsec。 然後,於基底層上,使用與實施例1同樣之方法,形 成III族氮化物半導體所成各層,於此晶圓,形成透光性 電極、正極銲墊以及負極之各電極之後,硏削及硏磨基板 之背面而成爲鏡狀之面,切斷成3 50 μπι平方之正方形之 晶片,將各電極以金線與導線框連結,成爲發光元件(參 - 照圖4 )。 ❺ 於如上述製作之發光二極體之Ρ側及η側之電極間, 流入順方向電流,電流20mA之順方向電壓乃3.05V。又 ,透過P側之透光性電極17,觀察發光狀態的結果,發 光波長顯示爲460nm、發光輸出乃顯示14.3mW。 〔實驗例〕 以下,對於爲實証本發明之實驗例,使用圖7A、7B 之各圖加以說明。圖7A乃顯示虛擬放電之次數與緩衝層 © 中之氧濃度之關係圖表,圖7B乃顯示處理室內之到達真 空度與緩衝層中之氧濃度之關係圖表。 . 於本實驗例中,使進行基板之前處理後,經由真空泵 _ ,吸引處理室內,除去不純物時之虛擬放電,以圖7A所 示之次數進行,令處理室內之到達真空度,設定成爲圖 7B 所示之條件(No.l=2xl(T5Pa、No.2 = 3.1xlCT5Pa、 Νο.3 = 5· 1 χ 1 〇_5pa、ν〇·4= 1 ·5 χ 1 (T4Pa ),除此部分之外, 以與實施例1相同之方法,製作於基板上形成緩衝層之 No.1〜4之各樣本。 -50- 200933933 然後,對於上述No.l〜4之各樣本,使用與實施例1 相同之方法,測定形成於基板上之緩衝層之X線回擺曲 線(XRC ) ,XRC 半値寬度各爲 No.l = 10arcsec、 N〇 · 2 = 1 2 ar c sec、Νο . 3 = 3 3 arc s ec、No · 4 = 3 9ar cs ec 〇 又,對 於No. 1〜4之各樣本之緩衝層之組成,使用XPS測定的結 - 果,如圖7B所示,在,形成緩衝層之No.l之樣本乃確認 . 氧濃度爲1%。相對於此,到達真空度各爲3.1xl(T5Pa、 Q 5.1 xl(T5Pa、1.5xl(T4Pa 之條件下的 No.2~No.4 之各樣本 乃皆爲緩衝層中之氧濃度爲2%以上,較No.l之樣本,可 確認到氧濃度變高。 如上述結果,經由真空泵吸引處理室內除去不純物之 時,經由進行16次之虛擬放電,處理室內之到達真空度 達2.〇xlO_5Pa,可使成膜於基板上之緩衝層之氧濃度抑制 在1 %以下。 經由以上之結果,關於本發明之III族氮化物半導體 〇 發光元件,可知其生產性優異,且具備優異發光特性。 _ [產業上之可利用性] 本發明乃關於在藍寶石之基板上,順序層積緩衝層、 η型半導體層、發光層及p型半導體層所成之III族氮化 物半導體發光元件。本發明之半導體發光元件乃該緩衝層 雖含有氧,但緩衝層中之氧濃度爲1原子%以下,可在其 上成長結晶性良好之III族氮化物半導體之故,具有優異 之發光特性。可將此發光特性優異之III族氮化物半導體 -51 - 200933933 發光元件應用於燈之上。 【圖式簡單說明】 [圖1]模式性說明關於本發明之in族氮化物半導體 發光元件之一例之圖,顯示層積半導體之剖面構造之槪略 - 圖。 - [圖2]模式性說明關於本發明之III族氮化物半導體 〇 發光元件之一例之圖’顯示平面構造之槪略圖。 [圖3]模式性說明關於本發明之ΙΠ族氮化物半導體 發光元件之一例之圖,顯示剖面構造之槪略圖。 [圖4]模式性說明使用關於本發明之ΠΙ族氮化物半 導體發光元件所構成之燈的槪略圖。 [圖5]模式性說明關於本發明之in族氮化物半導體 發光元件之製造方法之一例之圖,顯示於處理室內具備標 靶之濺鍍裝置之構造之槪略圖。 Θ [圖6Α]說明關於本發明之III族氮化物半導體發光元 件之實施例之圖,6Α乃顯示緩衝層中組成的圖表。 . [圖6Β]說明關於本發明之III族氮化物半導體發光元 件之實施例之圖,6Β乃顯示緩衝層中組成的圖表。 [圖7Α]說明關於本發明之III族氮化物半導體發光元 件之實施例之圖’圖7Α乃顯示虛擬放電之次數與緩衝層 中之氧濃度之關係圖表。 [圖7Β]說明關於本發明之III族氮化物半導體發光元 件之實施例之圖’圖7Β乃顯示處理室內之到達真空度與 -52- 200933933 緩衝層中之氧濃度之關係圖表。 【主要元件符號說明】 1 : in族氮化物半導體發光元件 10 :層積半導體 * 1 1 :基板 . 1 1 a :表面 〇 1 2 :緩衝層 14 : η型半導體層 14a :基底層 1 5 :發光層 16: p型半導體層(III族氮化物半導體) 16a : p型包覆層 16b : p型連接層 3 :燈 〇 40 :濺鍍裝置 41 :處理室 -53-

Claims (1)

  1. 200933933 十、申請專利範面 1·一種III族氮化物半導體發光元件,在藍寶 基板上,至少層積III族氮化物化合物所成緩衝層 緩衝層上,順序層積η型半導體層、發光層及P型 層的III族氮化物半導體發光元件,其特徵乃 前述緩衝層乃經由反應性濺鍍法所形成者,前 層則含有氧,緩衝層中之氧濃度爲1原子%以下者' 2·如申請專利範圍第1項之III族氮化物半導 元件,其中,前述緩衝層乃將含金屬Α1原料與氮 氣體,經由以電漿活性化之反應性濺鍍法所形成 Α1Ν所成者。 3. 如申請專利範圍第1項或第2項之III族氮 導體發光元件,其中,前述緩衝層中之氧濃度爲〇. %以下者。 — 4. 如申請專利範圍第1項至第3項之任一項之 氮化物半導體發光元件,其中,含於前述緩衝層之 前述緩衝層之膜內,成爲略均勻之氧濃度分布者。 5. 如申請專利範圍第1項至第4項之任一項之 氮化物半導體發光元件,其中,前述緩衝層之膜 10〜500nm之範圍者。 6. 如申請專利範圍第1項至第4項之任一項之 氮化物半導體發光元件,其中,前述緩衝層之膜 20〜100nm之範圍者。 7. 如申請專利範圍第1項至第6項之任一項之 石所成 ,於該 半導體 述緩衝 D 體發光 元素之 ,而由 化物半 8原子 III族 氧乃在 III族 厚乃在 III族 厚乃在 III族 -54- 200933933 氮化物半導體發光元件,其中,前述緩衝層乃使被覆前述 基板表面之至少90%而形成者。 8. —種III族氮化物半導體發光元件之製造方法,在 藍寶石所成基板上,至少層積III族氮化物化合物所成緩 衝層,於該緩衝層上,順序層積η型半導體層、發光層及 • Ρ型半導體層的III族氮化物半導體發光元件之製造方法 - ,其特徵乃 © 使前述緩衝層經由反應性濺鍍法而形成的同時,前述 緩衝層則含有氧,且緩衝層中之氧濃度成爲1原子%以下 而形成者。 9. 如申請專利範圍第8項之III族氮化物半導體發光 元件之製造方法,其中,將前述緩衝層,與含金屬Α1原 料與氮元素之氣體,使用以電漿活性化之反應性濺鍍法, 由Α1Ν所形成者。 10. 如申請專利範圍第8項或第9項之III族氮化物半 ® 導體發光元件之製造方法,其中’令前述緩衝層,使濺鍍 裝置之處理室內之到達真空度爲以下爲條件而 . 形成者。 1 1 .如申請專利範圍第8項至第1 〇項之任一項之111 族氮化物半導體發光元件之製造方法’其中,於前述濺鍍 裝置之處理室內,進行虛擬放電後’形成前述緩衝層者。 12.如申請專利範圍第8項至第1 1項之任一項之III 族氮化物半導體發光元件之製造方法’其中’令前述緩衝 層,經由使含有前述氮元素之氣體流通於反應器內的反應 -55- 200933933 濺鍍法而成膜者。 13. 如申請專利範圍第8項至第12項之任一項之ΙΠ 族氮化物半導體發光元件之製造方法,其中,前述緩衝層 乃經由RF濺鍍法而形成者。 14. 如申請專利範圍第8項至第13項之任一項之HI 族氮化物半導體發光元件之製造方法,其中,令前述緩衝 ^ 層,使前述基板溫度在400〜800 °C之範圍下而形成者。 0 15· —種III族氮化物半導體發光元件,其特徵乃經由 如申請專利範圍第8項至第1 4項之任一項之製造方法所 得者。 1 6 . —種燈,其特徵乃使用如申請專利範圍第1項至 第7項或第15項之任一項之III族氮化物半導體發光元 件者。 ❹ -56-
TW097136316A 2007-09-27 2008-09-22 Group III nitride semiconductor light emitting device, method of manufacturing thereof, and lamps using the same TW200933933A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007251478A JP2009081406A (ja) 2007-09-27 2007-09-27 Iii族窒化物半導体発光素子及びその製造方法、並びにランプ

Publications (1)

Publication Number Publication Date
TW200933933A true TW200933933A (en) 2009-08-01

Family

ID=40511145

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097136316A TW200933933A (en) 2007-09-27 2008-09-22 Group III nitride semiconductor light emitting device, method of manufacturing thereof, and lamps using the same

Country Status (7)

Country Link
US (1) US20100219445A1 (zh)
EP (1) EP2200099A4 (zh)
JP (1) JP2009081406A (zh)
KR (1) KR20100049123A (zh)
CN (1) CN101874306A (zh)
TW (1) TW200933933A (zh)
WO (1) WO2009041256A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104851949A (zh) * 2014-02-19 2015-08-19 丰田合成株式会社 用于制造第iii族氮化物半导体发光器件的方法

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5272390B2 (ja) * 2007-11-29 2013-08-28 豊田合成株式会社 Iii族窒化物半導体の製造方法、iii族窒化物半導体発光素子の製造方法、及びiii族窒化物半導体発光素子、並びにランプ
US8742459B2 (en) 2009-05-14 2014-06-03 Transphorm Inc. High voltage III-nitride semiconductor devices
KR101669259B1 (ko) * 2009-09-28 2016-10-25 가부시키가이샤 도쿠야마 적층체의 제조방법
KR101178505B1 (ko) * 2009-11-03 2012-09-07 주식회사루미지엔테크 반도체 기판과 이의 제조 방법
CN102597340B (zh) * 2009-11-10 2015-04-08 株式会社德山 叠层体的制造方法
JP5399552B2 (ja) 2010-03-01 2014-01-29 シャープ株式会社 窒化物半導体素子の製造方法、窒化物半導体発光素子および発光装置
DE102010035489A1 (de) * 2010-08-26 2012-03-01 Osram Opto Semiconductors Gmbh Halbleiterbauelement und Verfahren zur Herstellung eines Halbleiterbauelement
KR20120032329A (ko) 2010-09-28 2012-04-05 삼성전자주식회사 반도체 소자
US8742460B2 (en) 2010-12-15 2014-06-03 Transphorm Inc. Transistors with isolation regions
US8409895B2 (en) * 2010-12-16 2013-04-02 Applied Materials, Inc. Gallium nitride-based LED fabrication with PVD-formed aluminum nitride buffer layer
US8643062B2 (en) 2011-02-02 2014-02-04 Transphorm Inc. III-N device structures and methods
US8772842B2 (en) 2011-03-04 2014-07-08 Transphorm, Inc. Semiconductor diodes with low reverse bias currents
JP5879225B2 (ja) * 2011-08-22 2016-03-08 住友化学株式会社 窒化物半導体テンプレート及び発光ダイオード
US8901604B2 (en) 2011-09-06 2014-12-02 Transphorm Inc. Semiconductor devices with guard rings
US9257547B2 (en) 2011-09-13 2016-02-09 Transphorm Inc. III-N device structures having a non-insulating substrate
US8598937B2 (en) 2011-10-07 2013-12-03 Transphorm Inc. High power semiconductor electronic components with increased reliability
KR20130067610A (ko) * 2011-12-14 2013-06-25 한국전자통신연구원 도파로형 광 혼합기
JP2013145867A (ja) * 2011-12-15 2013-07-25 Hitachi Cable Ltd 窒化物半導体テンプレート及び発光ダイオード
US9165766B2 (en) 2012-02-03 2015-10-20 Transphorm Inc. Buffer layer structures suited for III-nitride devices with foreign substrates
US9093366B2 (en) 2012-04-09 2015-07-28 Transphorm Inc. N-polar III-nitride transistors
DE102012103686B4 (de) * 2012-04-26 2021-07-08 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Epitaxiesubstrat, Verfahren zur Herstellung eines Epitaxiesubstrats und optoelektronischer Halbleiterchip mit einem Epitaxiesubstrat
KR20130128931A (ko) * 2012-05-18 2013-11-27 삼성전자주식회사 N형 알루미늄 갈륨 나이트라이드 박막 및 자외선 발광소자
US9184275B2 (en) 2012-06-27 2015-11-10 Transphorm Inc. Semiconductor devices with integrated hole collectors
TWI499080B (zh) 2012-11-19 2015-09-01 Genesis Photonics Inc 氮化物半導體結構及半導體發光元件
TWI535055B (zh) 2012-11-19 2016-05-21 新世紀光電股份有限公司 氮化物半導體結構及半導體發光元件
TWI524551B (zh) 2012-11-19 2016-03-01 新世紀光電股份有限公司 氮化物半導體結構及半導體發光元件
CN105164811B (zh) 2013-02-15 2018-08-31 创世舫电子有限公司 半导体器件的电极及其形成方法
US9087718B2 (en) 2013-03-13 2015-07-21 Transphorm Inc. Enhancement-mode III-nitride devices
CN105190842B (zh) * 2013-03-14 2017-07-28 佳能安内华股份有限公司 成膜方法、半导体发光元件的制造方法、半导体发光元件和照明装置
US9929310B2 (en) * 2013-03-14 2018-03-27 Applied Materials, Inc. Oxygen controlled PVD aluminum nitride buffer for gallium nitride-based optoelectronic and electronic devices
US9245993B2 (en) 2013-03-15 2016-01-26 Transphorm Inc. Carbon doping semiconductor devices
KR102075543B1 (ko) * 2013-05-06 2020-02-11 엘지이노텍 주식회사 반도체 기판, 발광 소자 및 전자 소자
WO2015009514A1 (en) 2013-07-19 2015-01-22 Transphorm Inc. Iii-nitride transistor including a p-type depleting layer
TWI536606B (zh) * 2013-12-25 2016-06-01 新世紀光電股份有限公司 發光二極體結構
DE102014101966A1 (de) 2014-02-17 2015-08-20 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines elektronischen Halbleiterchips und elektronischer Halbleiterchip
JP2015176936A (ja) * 2014-03-13 2015-10-05 株式会社東芝 半導体装置
US9318593B2 (en) 2014-07-21 2016-04-19 Transphorm Inc. Forming enhancement mode III-nitride devices
US9608103B2 (en) 2014-10-02 2017-03-28 Toshiba Corporation High electron mobility transistor with periodically carbon doped gallium nitride
JP6375890B2 (ja) 2014-11-18 2018-08-22 日亜化学工業株式会社 窒化物半導体素子及びその製造方法
US9536967B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Recessed ohmic contacts in a III-N device
US9536966B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Gate structures for III-N devices
TWI568016B (zh) * 2014-12-23 2017-01-21 錼創科技股份有限公司 半導體發光元件
CN104701432A (zh) * 2015-03-20 2015-06-10 映瑞光电科技(上海)有限公司 GaN 基LED 外延结构及其制备方法
KR102010401B1 (ko) * 2015-10-27 2019-08-14 주식회사 엘지화학 유기발광소자
CN105633223B (zh) * 2015-12-31 2018-10-09 华灿光电(苏州)有限公司 AlGaN模板、AlGaN模板的制备方法及AlGaN模板上的半导体器件
CN105633233B (zh) * 2015-12-31 2018-01-12 华灿光电(苏州)有限公司 AlN模板、AlN模板的制备方法及AlN模板上的半导体器件
CN108604597B (zh) 2016-01-15 2021-09-17 创世舫电子有限公司 具有al(1-x)sixo栅极绝缘体的增强模式iii-氮化物器件
CN105755536B (zh) * 2016-02-06 2019-04-26 上海新傲科技股份有限公司 一种采用AlON缓冲层的氮化物的外延生长技术
CN105590839B (zh) * 2016-03-22 2018-09-14 安徽三安光电有限公司 氮化物底层、发光二极管及底层制备方法
US10224401B2 (en) 2016-05-31 2019-03-05 Transphorm Inc. III-nitride devices including a graded depleting layer
TWI703726B (zh) * 2016-09-19 2020-09-01 新世紀光電股份有限公司 含氮半導體元件
CN109841708B (zh) * 2017-11-28 2022-05-31 中国科学院半导体研究所 半导体器件及其制备方法
CN118472152A (zh) * 2024-07-12 2024-08-09 诺视科技(浙江)有限公司 集成反射穹顶的微显示器件及其制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039819A (ja) * 1983-08-12 1985-03-01 Nippon Telegr & Teleph Corp <Ntt> 化合物半導体薄膜の作製方法
JPS60173829A (ja) * 1984-02-14 1985-09-07 Nippon Telegr & Teleph Corp <Ntt> 化合物半導体薄膜の成長方法
JPS6365917A (ja) 1986-09-06 1988-03-24 Kurita Mach Mfg Co Ltd 濾過ユニット
JPH088217B2 (ja) 1991-01-31 1996-01-29 日亜化学工業株式会社 窒化ガリウム系化合物半導体の結晶成長方法
JP3456404B2 (ja) * 1997-10-10 2003-10-14 豊田合成株式会社 半導体素子
JPH11200031A (ja) * 1997-12-25 1999-07-27 Applied Materials Inc スパッタリング装置及びその高速真空排気方法
JP3700492B2 (ja) * 1999-09-21 2005-09-28 豊田合成株式会社 Iii族窒化物系化合物半導体素子
JP3440873B2 (ja) 1999-03-31 2003-08-25 豊田合成株式会社 Iii族窒化物系化合物半導体素子の製造方法
US6713789B1 (en) * 1999-03-31 2004-03-30 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device and method of producing the same
JP4613373B2 (ja) * 1999-07-19 2011-01-19 ソニー株式会社 Iii族ナイトライド化合物半導体薄膜の形成方法および半導体素子の製造方法
JP3994623B2 (ja) * 2000-04-21 2007-10-24 豊田合成株式会社 Iii族窒化物系化合物半導体素子の製造方法
US6787814B2 (en) * 2000-06-22 2004-09-07 Showa Denko Kabushiki Kaisha Group-III nitride semiconductor light-emitting device and production method thereof
WO2002044443A1 (en) * 2000-11-30 2002-06-06 North Carolina State University Methods and apparatus for producing m'n based materials
JP2004179457A (ja) * 2002-11-28 2004-06-24 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体素子の製造方法
JP4468744B2 (ja) 2004-06-15 2010-05-26 日本電信電話株式会社 窒化物半導体薄膜の作製方法
JP2007251478A (ja) 2006-03-15 2007-09-27 Matsushita Electric Ind Co Ltd 確率的演算素子及びこれを用いた確率的演算装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104851949A (zh) * 2014-02-19 2015-08-19 丰田合成株式会社 用于制造第iii族氮化物半导体发光器件的方法

Also Published As

Publication number Publication date
EP2200099A4 (en) 2016-03-23
EP2200099A1 (en) 2010-06-23
JP2009081406A (ja) 2009-04-16
WO2009041256A1 (ja) 2009-04-02
KR20100049123A (ko) 2010-05-11
US20100219445A1 (en) 2010-09-02
CN101874306A (zh) 2010-10-27

Similar Documents

Publication Publication Date Title
TW200933933A (en) Group III nitride semiconductor light emitting device, method of manufacturing thereof, and lamps using the same
KR101067122B1 (ko) Ⅲ족 질화물 반도체의 제조 방법, ⅲ족 질화물 반도체 발광 소자의 제조 방법 및 ⅲ족 질화물 반도체 발광 소자, 및 램프
TWI375335B (en) Method for producing group iii nitride semiconductor light emitting device, group iii nitride semiconductor light emitting device, and lamp
TWI408733B (zh) Iii族氮化物化合物半導體發光元件之製造方法、及iii族氮化物化合物半導體發光元件、以及燈
JP5246219B2 (ja) Iii族窒化物半導体素子の製造方法及びiii族窒化物半導体発光素子の製造方法
TWI491064B (zh) Iii族氮化物半導體發光元件及該製造方法、以及燈
TWI377701B (en) Method of producing group-iii nitride semiconductor light emitting device, group-iii nitride semiconductor light emitting device, and lamp thereof
US8669129B2 (en) Method for producing group III nitride semiconductor light-emitting device, group III nitride semiconductor light-emitting device, and lamp
KR101074178B1 (ko) Ⅲ족 질화물 화합물 반도체 발광 소자의 제조 방법, 및 ⅲ족 질화물 화합물 반도체 발광 소자, 및 램프
US8106419B2 (en) Group-III nitride compound semiconductor light-emitting device, method of manufacturing group-III nitride compound semiconductor light-emitting device, and lamp
TW200838000A (en) Group-III nitride compound semiconductor device and production method thereof, group-III nitride compound semiconductor light-emitting device and production method thereof, and lamp
JP2008047762A (ja) Iii族窒化物化合物半導体発光素子の製造方法、及びiii族窒化物化合物半導体発光素子、並びにランプ
JP2011082570A (ja) Iii族窒化物半導体発光素子の製造方法
JP5041883B2 (ja) Iii族窒化物半導体層の製造方法、iii族窒化物半導体発光素子の製造方法
JP2008098224A (ja) Iii族窒化物化合物半導体積層構造体の成膜方法
JP2009161434A (ja) Iii族窒化物半導体結晶の製造方法及びiii族窒化物半導体結晶
JP2008294449A (ja) Iii族窒化物半導体発光素子の製造方法及びiii族窒化物半導体発光素子並びにランプ
JP2008198705A (ja) Iii族窒化物半導体発光素子の製造方法、及びiii族窒化物半導体発光素子、並びにランプ
JP2008034510A (ja) Iii族窒化物化合物半導体発光素子及びその製造方法、並びにランプ
JP2008177523A (ja) Iii族窒化物化合物半導体発光素子の製造方法、及びiii族窒化物化合物半導体発光素子、並びにランプ