TW200929513A - Method for packaging a light emitting diode and its structure - Google Patents

Method for packaging a light emitting diode and its structure Download PDF

Info

Publication number
TW200929513A
TW200929513A TW096148811A TW96148811A TW200929513A TW 200929513 A TW200929513 A TW 200929513A TW 096148811 A TW096148811 A TW 096148811A TW 96148811 A TW96148811 A TW 96148811A TW 200929513 A TW200929513 A TW 200929513A
Authority
TW
Taiwan
Prior art keywords
layer
light
frame
emitting diode
reflective
Prior art date
Application number
TW096148811A
Other languages
Chinese (zh)
Inventor
Chi-Yuan Hsu
Original Assignee
Iledm Photoelectronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iledm Photoelectronics Inc filed Critical Iledm Photoelectronics Inc
Priority to TW096148811A priority Critical patent/TW200929513A/en
Priority to GB0816788A priority patent/GB2455843B/en
Priority to DE102008042511A priority patent/DE102008042511A1/en
Publication of TW200929513A publication Critical patent/TW200929513A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2101/00Point-like light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Abstract

A method for packaging a light emitting diode and its structure, a print circuit layer having interleaving nodes is disposed on a base. In an outer periphery of the base is formed a frame rolling with inclined arches at a bottom of an inner wall thereof. A plurality of protruding reflective points is formed on the print circuit layer. Crystal grains and wires are fixed on the print circuit layer, and a reflective lacquer is sprayed on the print circuit layer except the surface fixing the crystal grains. A resin (adhesive) is filled in the frame, and a predetermined luminescence film covers the resin. Thereby, the light emitting diode can reflect invalid lights and improve the illumination efficiency. Moreover, the smooth luminescence film having less invalid lights also can strengthen the efficiency of the light emitting diode.

Description

200929513 九、發明說明: 【發明所屬之技術領域】 -種發光二極:於:先二極體(LED)之領域’尤關於 但提昇發^ =組之封裝方法及其結構,不 生。 革而且可降低溫度與無效光線的產 Ο 【先前技術】 〇 =㈣㈣燈具存在許多問題,例如:白則 便宜’但白熾燈泡有發光效率低、高耗電、壽4 ,、易碎等缺點。而日光燈雖很省電,但日光燈的廟 茱物:汞污染、易碎壽命短等問題。相對而言,符合 :國:能環保安全標準的發光二極體(_、冷光光源 等產扣就產生出相對的優勢’其特性及優點在於:壽 命長、低耗電量、絲色純、高防震性、安全不易碎、 無污染及小型化可封裝等等; 雖然具有前述多種優冑,但{受到發光二極體 (LED)發光效率的限制,前述發光二極體⑽)光源產 品仍不足以完全應用在人類生活之各種產品之中,請 芬閱第1、2圖的習用範例,此種習用發光二極體LED 晶片結構如圖所示,其基板1〇上整齊排列安裝有多數 200929513 發光光源晶片U,且發光光源晶片11利用打線12與 私路連接,在該基板10周邊繞設有框13,該框13内 最後會填覆透明石夕膠14,並且在透明石夕膠14表面塗 佈螢光層15 ;前述f用設計作為發光光源的產品問題 在於: 八 目引市场上出現產品多是在一個電路基板 1G上安心數發光光源晶片u,由於各發光光源晶片 ❹ Π朝向㈣方向與肖度發出光線,故其朝電路基板1〇 方向與框13方向發出的光線無效果,進而讓—般發光 二極體(LED)光源產品出現發光率過低、溫度過高、且 會產生多數光影的問題;雖然此種設計仍能組合出類 似傳統燈泡等照明光度,但是無效光線的能源浪費與 溫度過高及光影重疊的缺點卻是令人無法忽視的問 公題;故全球光源設備相關廠商和研究單位不斷的積極 力究,力求尋找可以充份發揮光_有光線能量的設 計。 其一,4用電路基板1〇上會使用透明石夕膠14覆 層疋位、保護發光光源晶片u,但是在填覆該透明矽 膠14時,該透明矽膠14液態時會相對框13產生毛細 現象(Capillarity),故凝固後的透明矽膠14表面會 在中央主凹陷狀,並且造成隨後塗佈的螢光層15内的 200929513 螢光粒子也集中於中央,形成成品的發光效果不平 均,且不平均的散佈反射將會產生更多的無效光線。 其二,習用的線12(金線)、基板10及周邊的框 13都會叉到發光光源晶片丨〗的光線照射,但是線 12(金線)不僅會產生不良光影,且基板1〇及框η的 接縫凹fe處也會吸收光線,再度形成光線的無謂耗用。 為了能夠有效解決前述相關議題,本發明創作人 基於過去研發㈣發光二極體⑽)設備及發光光源 系統的技術與經驗,在改善前述問題的目標下研發設 計及實驗’終於發展出—種线的高發光率之光源封 【發明内容】 ❿ ,發明之主要目的,在於提供一種發 :复層模組封裝方法,能夠生產出具備出光均勻J 度與南散熱效能及低耗損的發光二極體模 本發明之次要 複層模組封裝結構 目的,在於提供一種發光二極 ’其發光均勻、亮度高的優點。 200929513 複層模組封裝方法及其钍 义位組 、、',Q構,可增加發光二極體之 ^率降低瑕窥產品的數量。 為達成前述目的,本發明發 圭 知月知元一極體歿層模組 封裝方法的基本流程為: ❹200929513 IX. Inventive description: [Technical field of invention] - Luminous dipole: In the field of "first diode" (LED), it is especially concerned with the encapsulation method and structure of the group. It can also reduce the temperature and the production of ineffective light. [Prior Art] 〇 = (4) (4) There are many problems with lamps. For example, white is cheaper. However, incandescent bulbs have shortcomings such as low luminous efficiency, high power consumption, longevity, and fragility. Although the fluorescent lamp is very energy-saving, the temple of the fluorescent lamp has the problems of mercury pollution and short fragile life. Relatively speaking, it conforms to: Country: Light-emitting diodes that can meet environmental protection safety standards (_, cold light source, etc. produce a relative advantage). Its characteristics and advantages are: long life, low power consumption, silk color, High shock resistance, safe and non-destructive, non-polluting and miniaturized, etc.; although with the above various advantages, {the above-mentioned light-emitting diode (10)) light source products are still limited by the luminous efficiency of the light-emitting diode (LED) It is not enough to be fully applied to various products in human life. Please refer to the familiar examples in Figures 1 and 2. The structure of the conventional LED array is as shown in the figure, and the substrate 1 is neatly arranged with a majority. 200929513 illuminating light source chip U, and the illuminating light source chip 11 is connected to the private circuit by using the wire 12, and a frame 13 is arranged around the periphery of the substrate 10. The frame 13 is finally filled with the transparent dia plastic 14 and is transparent. 14 surface coating fluorescent layer 15; the above-mentioned product design of f as a light source is: The products appearing on the market of the eight mesh are mostly on the number of light-emitting source wafers u on a circuit substrate 1G, due to the crystals of the respective light sources. ❹ 发出 emits light in the direction of (4) and the opacity, so the light emitted in the direction of the circuit board 1 与 and the direction of the frame 13 has no effect, thereby causing the illuminating rate of the light-emitting diode (LED) light source product to be too low and the temperature is too high. High, and will produce most problems of light and shadow; although this design can still combine illumination luminosity like traditional light bulbs, but the energy waste of invalid light and the disadvantages of excessive temperature and overlapping of light and shadow are inconsequential questions. Therefore, the global light source equipment manufacturers and research units continue to actively research, and strive to find a design that can fully play the light _ light energy. First, the circuit board 1 is coated with a transparent stellite 14 to protect the illuminating light source wafer u. However, when the transparent silicone 14 is filled, the transparent silicone 14 is wicked relative to the frame 13 when it is in a liquid state. The phenomenon (Capillarity), the surface of the transparent silicone 14 after solidification is mainly concave in the center, and the 200929513 fluorescent particles in the subsequently applied fluorescent layer 15 are also concentrated in the center, and the luminous effect of the finished product is uneven, and Uneven scattering reflections will produce more invalid light. Secondly, the conventional line 12 (gold wire), the substrate 10 and the peripheral frame 13 are all forked to the light source of the light source chip, but the line 12 (gold wire) not only causes bad light and shadow, but also the substrate 1 and the frame. The joint concave of the η will also absorb the light, and the unnecessary consumption of the light will be formed again. In order to effectively solve the aforementioned related issues, the creators of the present invention have developed and designed and experimented under the goal of improving the aforementioned problems based on the technology and experience of the past (4) light-emitting diode (10) equipment and illuminating light source system. High-luminosity light source seal [Summary of the Invention] ❿ The main purpose of the invention is to provide a hair modulating module packaging method capable of producing a light-emitting diode having uniform light-emitting J degree and south heat-dissipating efficiency and low loss. The purpose of the secondary multi-layer module package structure of the present invention is to provide an illumination diode having the advantages of uniform illumination and high brightness. 200929513 Multi-layer module packaging method and its 义 位 , , ', Q structure, can increase the rate of light-emitting diodes to reduce the number of products. In order to achieve the foregoing object, the basic flow of the method for packaging the module of the invention is: ❹

h在基板上製印刷電路層:在該印刷電路層上 製作交錯配設的多數節點; 2.製框及凸出斜缴:於基板周圍固定一白色框 (膠口),且於該框内壁底緣繞設有凸出斜 墩,並於框内壁上喷塗反光白漆再烘乾; 襄凸出反射微結構點··在印刷電路層表面製 作多數半圓形之凸出反射微結構點,且各個 反射微結構點相對應配置在多數節點之 間’並且烘烤固定; (^位晶粒及打線:於該印刷電路層上烘烤固 定晶粒(發光二極體之晶粒),再進行打線 (鲜接金線); 5.喷漆:並於晶粒除外的各元件表面上精密噴 塗反光漆; 、 占膠.於該框中填入矽膠與擴散粉混合之矽 8 200929513 私擴散層,並且烘乾固定; Γη •佈螢光膠層:並將螢光粉與矽膠均勻攪拌成 京光膠層後,將螢光膠層覆蓋於矽膠擴散層 的表面上。 ^ 本發明的發光二極體能反射無效光線而 提幵發光效率’而·^螢光膠層平整、無效光線較少 ❹ 又無重疊光影的優點更能強化本發明的效率。 ‘述方法之中的2.製框及凸出斜墩步驟及3.製 凸出反射微結構點步驟並未限定先後順序,也可以 疋先進行製凸出反射微結構點後再製框或凸出斜 墩。 表”藉此,本發明將晶粒發出的光有效反射,提昇 發:效率,而且晶粒之結構排列設計,可減少彼此 〇 @照射增溫(防止衰變)’有效降低溫度與無效光線 的產味。 可述印刷電路層表面製作的反射微結構點可以 是採用具折射效能的形狀,例如半圓开[錐形、斜 =塊狀、柱狀或三角塊狀,且各個反射微結構點同 樣會發揮無效光線之折射功能。 200929513 前述發光二極體複層模級 沾致入 # Η Τ衣方法為各項技術 的整合,右是僅採用製凸出 ^ 久射破結構點及反光漆 技術的本發明基本流程為: 1. 在基板上製印刷電踗爲.— 略層.在该印刷電路層上 製作多數節點; 2.製凸出反射微結構點:在印刷電路層表面製 ❹h manufacturing a printed circuit layer on the substrate: forming a plurality of nodes arranged in a staggered manner on the printed circuit layer; 2. making a frame and protruding obliquely: fixing a white frame (glue) around the substrate, and at the bottom of the frame The edge is provided with a protruding oblique pier, and the reflective white paint is sprayed on the inner wall of the frame and then dried; the convex convex reflection microstructure is formed on the surface of the printed circuit layer, and most semi-circular convex reflective microstructure points are formed on the surface of the printed circuit layer. And each reflective microstructure point is correspondingly disposed between the plurality of nodes' and baked and fixed; (^-position die and wire: baking the fixed grain on the printed circuit layer (the crystal of the light-emitting diode), and then Performing the wire bonding (fresh gold wire); 5. Painting: and spraying the reflective paint on the surface of each component except the die; and occupying the glue. Fill the frame with the mixture of silicone and diffusion powder. 200929513 Private diffusion layer And drying and fixing; Γη• cloth fluorescent layer: after uniformly mixing the phosphor powder and the silicone into a gelatin layer, the phosphor layer is coated on the surface of the silicone diffusion layer. The polar body can reflect the ineffective light and improve the luminous efficiency. · The fluorescent glue layer is flat, the ineffective light is less, and the advantages of no overlapping light and shadow are better to enhance the efficiency of the invention. 2. The frame and the protruding oblique pier steps and the 3. convex reflection The micro-structure point step does not limit the order, and the embossing of the micro-structure point can be performed before the frame is formed or the slanted pier is protruded. The invention thus effectively reflects the light emitted by the crystal grain and enhances the hair: Efficiency, and the structure of the crystal grains are designed to reduce each other's 照射@radiation warming (preventing decay)' effective reduction of temperature and ineffective light. The reflective microstructures produced on the surface of the printed circuit layer can be refracted. The shape of the effect, such as semi-circular opening [tapered, oblique = block, column or triangular block, and each reflective microstructure point will also play the role of refraction of invalid light. 200929513 The above-mentioned light-emitting diode complex layer level In ## Τ 方法 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 基本 为 基本 基本 基本 基本 基本 基本 基本 基本 基本 基本 基本 基本 基本 基本 基本 基本 基本 基本 基本 基本 基本 基本 基本.in Most of the production of printed circuit layers node; 2. convex reflecting microstructure manufactured by points: a surface layer made of printed circuit ❹

作夕數半圓形之凸出反射微結構點,且各個 反射微結構點相對應配置在多數節點之 間,並且烘烤固定; 3·定位晶粒及打線:於該印刷電路層上定位晶 粒(發光二極體之晶粒)及打線(銲接金 線),並且烘烤固定; 4.噴漆:並於晶粒除外的各元件表面上精密噴 塗反光漆; 、 5. 封裝固定。 刚述發光二極體複層模組封裝方法為各項技術 的整合’若是僅採用製凸出反射微結構點及斜墩技7 術的本發明基本流程為: 在基板上製印刷電路層:在該印刷電路層上製作的 多數節點; ' 10 200929513 2. 3. 4. ❹ 製凸出反射微結構 ,·、、.在印刷電路層表面製作多數 牛Η形之凸出反射微社 且各個反射微結構點 祁对應配置在多數節 在丨丨丄 ,,.,占之間’亚且烘烤固定; 衣框及凸出斜缴 人、 於基板周圍固定一白色框(膠 & )’且於該框内劈麻絡a — 底緣繞设有凸出斜墩; 疋位晶粒及打線:於誃 . 、P刷電路層上定位晶粒(發 先二極體之晶粒)及 — 7線(‘接金線),並且烘烤固 疋; 點膠:封裝固定或佈螢光 上。 膠層於该樹脂的表面 之 明如下 配合前述方法,本發明 之獨特結構、效果的說 〇 該基板的印刷電路層上製作交錯配設的多數節 西番且多數半圓形之凸出反射微結構點同樣是交錯 =置在多數節點之間,利用前述設計讓晶粒呈現交 配置’不會產生光線的過度遮蔽,再配合凸出反 '娬結構點將晶粒朝向彼此的光線折射利用。 該框定位於該基板周圍,且為白色,特別是利 精密噴漆技術在各元件表面上精密喷塗反光漆, 11 200929513 僅避免喷佈影響該晶粒; 喷塗反光漆僅為本發明製作反光層的一種手 •ί又並非僅限於噴塗漆料的技術,其他例如反光金屬 濺鍍或反光材料表面沈積技術都可以製作本發明的反 光層; 藉此,本發明的各個晶粒產出的光線不會被金 線、框或基板吸收,而是再次被有效的反射利用。 ❹ 該框内壁底緣繞設有凸出斜墩,此凸出斜壞的 截面可以是矩形、三角形或具弧面之幾何形狀,且 其利用精密點膠機具讓膠延著框内壁上緣附著後滑 落而成,藉由此凸出斜墩可以破壞點膠步驟時的毛 細現象(Capillarity)’”膠擴散層膠面不會受到毛 細現象(Capillarity)影響而.呈凹陷狀,故本^明隨後 塗佈的螢光膠層可以平整,其㈣螢絲子也不會集 中於中央’有效增進成品的發光均勾度。 ^ 依據本發明前述技術的簡單 或組合,皆屬同一技術領域者依據 、/、名略 以i孩县尸4 m η P ^ %日月挂·#ί而可 以Ιι易仔知,應同屬本發明保護範圍。 22 200929513 【實施方式】 為使本發明之發光二極體複層模組封裝方法及 其結構更臻明確,以下將配合圖式對其做詳盡之說 明。請參閱第3圖流程及第4至12圖的各流程示意, 本發明之發光二極體複層模組封裝方法包括以下步 驟: ❹ 2. 〇 3. 上製作一層印刷電路㉟2卜並且在該印刷 ι路層21上製作父錯配設有多數節點川; 製框及凸出斜墩:於該基板20表面周圍固 定一凸出的白色方框30,且白色方框30採 用膠合固定於基板2G,且利用精密點膠機 具讓膠延著該框30的内壁上緣附著後滑落 底面’進而形成於該框3〇内壁底緣繞設的 凸出斜墩31,該凸出斜墩31具有朝外擴張 的斜面311 (第6圖為二 、第7圖為矩形截:=面的凸出斜 々祀办戰面的凸出斜 ,凸出反射微結構點:在該印刷電路’ :面點谬製作多數半圓形之 ; 置在該印刷電:;=S“°相對應配 層21表面的多數節點211 13 200929513 之間,隨後再以扭妹古4 + '、巧方式口疋凸出反射微么士 構點40 ; 〜 4. 疋位曰曰粒及打線:於該印刷電路層21上定 位發光二極體之晶粒5G,再以打線機具將 金線51銲接於印刷電路層21上,並且 固定; 'The radiant semi-circular convex reflection microstructure points, and each reflective microstructure point is correspondingly disposed between a plurality of nodes, and baked and fixed; 3. Positioning the die and wire: positioning the crystal on the printed circuit layer Granules (grains of light-emitting diodes) and wire bonding (welding gold wire), and baked and fixed; 4. Painting: and precision spraying of reflective paint on the surface of each component except the die; 5. Packaging and fixing. Just the description of the integration method of the light-emitting diode multi-layer module is the integration of various technologies. The basic flow of the invention is only to use the convex reflective micro-structure point and the diagonal-drilling technique: manufacturing a printed circuit layer on the substrate: The majority of the nodes fabricated on the printed circuit layer; ' 10 200929513 2. 3. 4. 凸 凸 反射 反射 反射 , , , 多数 多数 多数 多数 多数 多数 多数 多数 多数 多数 多数 多数 多数 多数 多数 多数 多数 多数 多数 多数 多数 多数 多数 多数 多数 多数 多数 多数 多数 多数The microstructures are arranged correspondingly in the majority of the sections, ,, 占占's and are baked and fixed; the frame and the bulge are attached, and a white frame (glue &) is fixed around the substrate. In the frame, the ramie a - the bottom edge is provided with a convex oblique pier; the ridged grain and the wire are: 誃., the P brush circuit layer is positioned on the grain (the grain of the first diode) — 7-wire ('gold wire'), and baked solid; Dispensing: packaged or cloth fluorescent. The surface of the adhesive layer on the surface of the resin is matched with the above method. According to the unique structure and effect of the present invention, most of the sections of the printed circuit layer of the substrate are formed in a staggered manner, and most of the semicircular convex reflections are microscopically The structural points are also interlaced = placed between the majority of the nodes, and the use of the aforementioned design allows the crystal grains to be placed in a configuration that does not cause excessive shielding of the light, and then cooperates with the convex anti-娬 structure points to refract light rays toward the other side. The frame is positioned around the substrate and is white, in particular, precision painting technology is used to precisely spray the reflective paint on the surface of each component, 11 200929513 only to avoid the influence of the spray on the grain; spray reflective paint is only the reflective layer of the invention A hand ί is not limited to the technique of spraying paint, and other reflective layers such as reflective metal sputtering or reflective material can be used to fabricate the light-reflecting layer of the present invention; thereby, the light produced by each of the crystal grains of the present invention is not It will be absorbed by the gold wire, frame or substrate, but will be used again by effective reflection.底 The bottom edge of the inner wall of the frame is provided with a convex oblique pier. The protruding oblique section can be a rectangular, triangular or curved geometric shape, and the precision dispensing device is used to allow the glue to adhere to the upper edge of the inner wall of the frame. After sliding down, the protruding pier can break the capillarity of the dispensing step. The rubber surface of the rubber diffusion layer is not affected by the Capillarity. It is concave. Subsequently, the coated phosphor layer can be flattened, and (4) the filaments are not concentrated in the center to effectively improve the luminous uniformity of the finished product. ^ Simple or combined according to the foregoing technology of the present invention, all of which belong to the same technical field. , /, the name is slightly i i county corpse 4 m η P ^ % sun and moon hanging · #ί, can be easy to know, should belong to the scope of protection of the present invention. 22 200929513 [Embodiment] In order to make the light of the present invention The polar multi-layer module packaging method and its structure are more clear, and the following will be described in detail with the drawings. Please refer to the flow chart of FIG. 3 and the flow diagrams of FIGS. 4 to 12, the light-emitting diode of the present invention. The bulk layer module packaging method includes Step: ❹ 2. 〇 3. Make a layer of printed circuit 352 and make a father's fault on the printed layer 21 with a majority of nodes; frame and protruding oblique pier: fixed around the surface of the substrate 20 a white box 30 is protruded, and the white box 30 is fixed to the substrate 2G by gluing, and the glue is applied to the upper edge of the inner wall of the frame 30 by a precision dispensing machine, and then the bottom surface is slid down and formed on the inner wall of the frame 3 a protruding oblique pier 31 surrounded by a bottom edge, the convex oblique pier 31 having a slope 311 which is outwardly expanded (Fig. 6 is a second diagram, and Fig. 7 is a rectangular section: = a convex slanting plane of the plane Convex oblique, convex reflective microstructure point: in the printed circuit ': face point 谬 making most semi-circular; placed in the printed electricity:; = S "° corresponding to the majority of the surface of the layer 21 211 13 200929513 Between, then, with the twisted sister ancient 4 + ', clever way to emboss the reflective micro-Muscular configuration point 40; ~ 4. 曰曰 position 及 grain and wire: positioning the light-emitting diode on the printed circuit layer 21 The die 5G is soldered to the printed circuit layer 21 by a wire bonding tool and fixed;

5. 喷漆:於前述各元件(基板2〇、線51、節點 2+11)表面上精密噴塗反光漆a,且利用精密 喷塗機具確保該晶粒50不會被噴佈;5. Painting: Precisely spraying the reflective paint a on the surface of each of the above components (substrate 2, line 51, node 2+11), and using a precision spraying machine to ensure that the die 50 is not sprayed;

6. 點膠:於該基板20周圍框3〇内填入矽膠與 擴散粉混合之矽膠擴散層60(慣稱點膠), 讓矽膠擴散層60覆蓋或平齊於該凸出斜墩 31,利用凸出斜墩31之擴張斜面3ιι弱化 矽膠擴散層60的毛細現象,並且在平整的 狀態下進行烘烤固定; 7. 佈赏光膠層.將螢光粉與;&夕膠均勻擾拌成螢 光膠層61後,塗佈均勻螢光膠層61覆蓋於 該矽膠擴散層60的表面之上。 藉此,本發明的發光二極體產品能充份反射晶 粒5 0之間的然政光線,進而提昇發光效率;且前述 螢光膠層61平整而無粒子集聚問題,更加提昇本發 14 200929513 明的出光均勻度。 :述發光二極體複層模組封裝方法為各項技術 、、右疋僅採用製凸出反射微結構點及反光漆 發明u法步驟基本流程 僅為部份步驟之省略,故不s入闽 ( ’ % 故不另配合圖示說明): Ο h在基板上製印刷電路層; 製凸出反射微結構點 疋位晶粒及打線: 噴漆; 封裝固定 一般常見之封裝固定方式。 刚逑發光二極體複層模虹封裳方法為各項技術 〇 出反射微結構點及斜墩技 :的本發明基本流程如下(此方法僅為部份步驟之 省略,故不另配合圖示說明): 1.在基板上製印刷電路層; 2·製凸出反射微結構點; 3. 製框及凸出斜墩; 4. 疋位晶粒及打線; 5. 點膠; 15 200929513 6.佈螢光膠層。 本發明且多數半圓形之凸出反射微結構點4 〇配 置在多數晶粒50之間,再配合凸出反射微結構點4〇 將晶粒50朝向彼此的光線折射再利用,降低無效光 線的比率、增強晶粒5〇光線的利用率; 為加強前述凸出反射微結構點4〇折射無效光線 的效果,本發明另創新設計以下獨特之結構設計, 以下技術不僅可以獨自配合凸出反射微結構點4〇, 也可以整合實施於同一產品内: 其一,該基板20的印刷電路層21上製作交錯 配。又的夕數節點211,利用前述設計讓晶粒5〇定位 後也壬現父錯配置,而各晶粒5〇、金線51都不會重 ®形成光線的過度遮蔽,且配合多數之凸出反射微 結構點40同樣是交錯配置在多數節點之間; 藉此,本發明可以確保此實施例的光線會被充 份的折射再利用。 其一’該基板20上若製作有框3〇時,框3〇定 位於5亥基板20周圍,且框3〇可選用白色(全反射色 並利用精您喷漆技術在印刷電路層21、金線 16 200929513 接、及凸出反射微結構點4G上精密喷塗反光漆 A,僅避免喷佈影響該晶粒50; 猎此’本發明的各個晶粒50產出的光線不會被 私路層2卜金線5卜接縫及凸出反射微結構點 吸收而疋再次被反光漆a (例如:白色漆料) 有效的反射利用。 © ' _ ,、二,忒框30内壁底緣繞設有凸出斜墩31,此 凸出斜墩31的戴面可以是矩形(如第7圖)、三角形 (如第6圖)或具弧面之幾何形狀,且其是利用精密 ^膠機具讓膠延著框内^上緣附著後滑落而成,藉 由此凸出斜墩31可以破壞點膠步驟時矽膠擴散層6曰〇 周、、彖的毛細現象(Capillarity),使㈣擴散層表 ❾ 不θ又到毛細現象(Capiiiarii:y)影響而呈凹陷狀; 藉此,本發明矽膠擴散層60表面平整,隨後塗 佈的榮光膠層61也可以平整塗佈,其内的螢光粒子 將不會集中於中央’有效增進成品的光線折射均勻度。 另則述均勻螢光膠層61可轉換晶粒5〇所發出之 色光成為白光,且可以依照設計需求在其上另設置 —光學透鏡(習用技術,未圖示)。 17 200929513 前述本發明之各種實施例中’均勻螢光膠層可 以利用真空吸入製膜法、粉劑高壓高溫壓製法、噴 墨式或塗佈等方法製成; 前述框與基板之間亦可採用膠纟或一體成形方 式結合; 前述凸出反射微結構點的反光層可以是採噴塗反 A漆、反光金屬濺鑛或反光材料表面沈積技術製作而 ® 成; 另外,忒凸出反射微結構點的成型位置可以在任 何一個發光光源週侧或兩個發光光源之間,皆能發揮 折射水平方向热效光線的效果;最後,該折射凸部的 的形狀可以是一般折射設計常見的半圓型、圓錐型、 方塊型、水滴型等設計,皆能依照設計發揮各種需求 下的折射變化。 0 g取重要的是,本發明設計的結構另一特徵,盆點 :是於該基板20周圍框‘内填人铸與擴散粉混 °之石夕膠擴散層60(慣稱點膠);*該佈榮光膠層步 驟則將螢光粉與石夕膠均勻攪拌成營光膠層61後^塗 布句勻螢光膠層61覆蓋於該石夕膠擴散層6〇的表面 之上; 18 ❹ ❹ 200929513 藉 本毛明石夕膠與擴散粉混合之石夕膠擴散層 6〇 (第—層)凝固後,再將另—款㈣與螢光粉均勾 檀拌後之螢光膠層61均勾塗佈於石夕膠擴散層⑽之 上(第二層);本發明的發光二極體模組能先運用矽 踢擴散層6〇擴散光線將晶粒發光,由點發光變為面 考'光使出光面均勻不會產生多點光影,再以螢光 膠層61將光轉為自光而提昇發光效率。 + 、斤I本發明係關於一種發光二極體複層 柄’、且封衣m其結構,其在基板上配設具交錯節 點的印刷電路Μ ? Θ -foV -fcf » 曰 於基板周圍製作有框’該框内 =底緣㈣有凸出斜墩’另在印刷電路層表面製作 夕數凸出反射微結構點’於印刷電路層上定位晶粒 及打線,並於晶粒除外的表面上精密喷塗反光漆, 而於該框中填入石夕膠擴散層(點膠),並塗佈均勻螢 光膠層覆蓋於矽膠擴散層之上; 藉此’本發明的發光二極體能反射無效光線而 t昇發光效率’且螢光膠層平整出光面均勻、無效 、'線車又V不會產生多點光影的優點更能強化本發明 的效率 本發明之實用柄:座p 、 已無庸置疑,此外本發明實 19 200929513 ,亦未曾 進步性』 ,祈求惠 施例所揭露之結構,申請前並未見諸刊物 公開使用,是故,本發明之『新穎性』『 又均已符合,爰依法提出發明專利之申請 予審查並早日賜準專利,實感德便。 〇 ❹ 20 200929513 【圖式簡單說明】 第1圖 第2圖 第3圖 第4圖 第5圖 第6圖 第7圖 第8圖 第9圖 娜之發光二極體模組結構側視圖; =知之發光二極體模級結構俯視圖; 係本發明實施例流程步驟圖; 係本發明在基板上製印刷電 係本發明製框及凸出斜墩示意圖/圖 ❹ Ο 係本發明凸出斜墩戴面示意圖; 係本發明另一形狀凸出斜缴戴面示意圖 係本發明製凸出反射微結構點示意圖; — 係本發明定位晶粒及打線示意圖;, 第10圖係本發明噴漆示意圖; 第11圖係本發明點膠示意圖;以及 第12圖係本發明佈螢光膠層示意圖。 【主要元件符號說明】 《習用》 晶片11 框13 螢光層15 基板10 線12 透明矽膠 《本發明》 14 200929513 基板20 印刷電路層21 節點211 框30 斜面311 ' 反射微結構點40❹ 凸出斜墩31 晶粒5 0 線51 反光漆A 矽膠擴散層60 螢光膠層616. Dispensing: a silicone diffusion layer 60 (commonly known as dispensing) mixed with silicone and diffusion powder is placed in the frame 3 around the substrate 20, and the silicone diffusion layer 60 is covered or flushed with the protruding oblique hole 31. The capillary phenomenon of the silicone diffusion layer 60 is weakened by the expansion inclined surface 3 ιι of the protruding oblique pier 31, and is baked and fixed in a flat state; 7. The polishing layer is provided. The phosphor powder is uniformly spoiled with the < After the phosphor layer 61 is formed, a uniform phosphor layer 61 is coated over the surface of the tantalum diffusion layer 60. Thereby, the light-emitting diode product of the present invention can fully reflect the common light between the crystal grains 50, thereby improving the luminous efficiency; and the fluorescent glue layer 61 is flat without particle aggregation problem, and the present invention is further improved. 200929513 The uniformity of light output. The light-emitting diode multi-layer module packaging method is a technology, and the right-hand side only uses the convex reflection micro-structure point and the reflective paint. The basic process of the u-step is only omitted for some steps, so it is not闽 ( '%, so do not match the illustrations): Ο h make printed circuit layers on the substrate; embossed reflective microstructures, 疋 晶粒 晶粒 及 及 及 及 打 打 : : : : : : : : : : : 喷 喷 喷 喷 。 。 。 。 。 。 。 。 。 。 。 The method of the invention is as follows: the basic flow of the present invention is as follows: (This method is only omitted for some steps, so there is no additional diagram Instructions: 1. Make a printed circuit layer on the substrate; 2. Make a convex reflection microstructure point; 3. Frame and protrude the oblique pier; 4. Clamp the grain and wire; 5. Dispensing; 15 200929513 6 .The cloth is a layer of fluorescent glue. In the present invention, most of the semi-circular convex reflective microstructure dots 4 〇 are disposed between the plurality of crystal grains 50, and are combined with the convex reflective microstructure dots 4 to refract the light of the crystal grains 50 toward each other to reduce the invalid light. The ratio, the utilization of the 5 〇 light ray is enhanced; in order to enhance the effect of the aforementioned convex reflection microstructure point 4 〇 refracting the invalid light, the present invention further innovatively designs the following unique structural design, and the following techniques can not only cooperate with the convex reflection alone The microstructure points 4〇 can also be integrated into the same product: First, the printed circuit layer 21 of the substrate 20 is interlaced. The eve node 211 uses the above design to position the die 5〇 and also displays the parental misplacement, and the 5 〇 and the gold wires 51 of each die do not over-shield the ray, and cooperate with most of the convexities. The out-reflecting microstructure points 40 are also interleaved between the plurality of nodes; thereby, the present invention ensures that the light of this embodiment is fully refracted and reused. If the frame 3 is formed on the substrate 20, the frame 3〇 is positioned around the 5-well substrate 20, and the frame 3〇 can be white (full reflection color and using the fine painting technique on the printed circuit layer 21, gold) Line 16 200929513 Connected and protruded reflective microstructures 4G on the precision sprayed reflective paint A, only to avoid the impact of the spray on the die 50; hunting this 'the light produced by each of the crystal grains 50 of the present invention will not be private The layer 2 gold wire 5 seam and the convex reflection microstructure are absorbed and the enamel is again effectively reflected by the reflective paint a (for example, white paint). © ' _ , , 2, 30 frame 30 inner wall bottom edge winding The protruding diagonal pier 31 is provided, and the wearing surface of the protruding diagonal pier 31 may be a rectangular shape (as shown in FIG. 7), a triangular shape (as shown in FIG. 6) or a geometric shape with a curved surface, and is a precision rubber machine. Allowing the rubber to extend in the frame and then the upper edge of the frame is slid down, whereby the slanting pier 31 can break the 矽 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 Cap Cap Cap Cap Cap Cap Cap Cap Cap Cap Cap Cap Cap Cap Cap Cap Cap Cap Cap Cap Cap The surface ❾ is not θ and is depressed by the capillary phenomenon (Capiiiarii: y); thereby, the silicone diffusion layer 60 of the present invention The surface is flat, and then the coated glory adhesive layer 61 can also be flat coated, and the fluorescent particles therein will not concentrate on the central portion to effectively improve the light refraction uniformity of the finished product. The uniform fluorescent adhesive layer 61 can be converted. The color light emitted by the crystal grains 5b becomes white light, and can be further disposed thereon according to design requirements - an optical lens (conventional technology, not shown). 17 200929513 In the foregoing various embodiments of the present invention, the 'uniform fluorescent adhesive layer can be The method can be formed by a vacuum suction film forming method, a powder high-pressure high-temperature pressing method, an inkjet method or a coating method; and the frame and the substrate can also be combined by a glue or an integral forming method; The layer may be made by spraying anti-A paint, reflective metal splashing or reflective surface deposition technology; in addition, the forming position of the convex protruding microstructure point may be on the circumference of any one of the light sources or two light sources. In the meantime, the effect of refracting the horizontal direction of the heat effect light can be exerted; finally, the shape of the refracting convex portion can be a semicircle type or a cone which is common in general refraction design. The design of the square type, the water drop type, etc. can all make the refractive changes under various requirements according to the design. 0 g is important, another feature of the design of the present invention, the basin point: is filled in the frame around the substrate 20 The human and the diffusion powder are mixed with the Shishijiao diffusion layer 60 (commonly known as dispensing); * the step of the glory layer of the cloth is to uniformly stir the phosphor powder and the Shiki gum into the gel layer 61. a phosphor layer 61 is overlaid on the surface of the enamel diffusion layer; 18 ❹ ❹ 200929513 After the solidification of the diarrhea diffusion layer 6 〇 (the first layer) Then, the other layer (four) and the phosphor powder 61 are coated on the Shiyue gel diffusion layer (10) (the second layer); the light emitting diode module of the invention can First, use the 矽 kicking diffusion layer 6 〇 diffuse light to illuminate the grain, change from point luminescence to face ' 'light to make the illuminating surface uniform without multi-point light and shadow, and then use the fluorescent glue layer 61 to turn the light into self-light Luminous efficiency. +, 斤 I This invention relates to a light-emitting diode multi-layer handle ′, and the structure of the seal m, which is provided with a printed circuit with staggered nodes on the substrate Θ -foV -fcf » 曰 around the substrate There is a frame 'the inside of the frame=the bottom edge (4) has a convex oblique pier' and another yoke convex reflection microstructure point on the surface of the printed circuit layer' to position the grain and the wire on the printed circuit layer, and the surface except the die Spraying the reflective paint on the surface, filling the Shixia adhesive diffusion layer (dispensing) in the frame, and coating the uniform fluorescent layer on the silicone diffusion layer; thereby, the luminous diode of the invention can Reflecting ineffective light and t-increasing luminous efficiency' and the smoothing of the phosphor layer is uniform and ineffective, and the advantage of the line car V does not produce multi-point light and shadow. The efficiency of the present invention can be enhanced. The utility handle of the present invention: seat p, There is no doubt that, in addition, the present invention 19 200929513, has not been progressive, and prayed for the structure disclosed in the application example, the publications were not publicly used before the application, therefore, the "novelty" of the present invention Comply with, 提出Propose invention patents according to law Applying for review and granting patents as soon as possible, it is really sensible. 〇❹ 20 200929513 [Simple diagram of the diagram] Fig. 1 Fig. 2, Fig. 3, Fig. 4, Fig. 6, Fig. 7, Fig. 7, Fig. 8 Fig. 9: Side view of the structure of the light-emitting diode module; A plan view of a light-emitting diode structure of the present invention; a flow chart of an embodiment of the present invention; a printed circuit system of the present invention; and a frame and a protruding oblique pier of the present invention; FIG. 10 is a schematic view showing a embossed reflective microstructure of the present invention; FIG. 10 is a schematic view of a glazing of the present invention; Figure 11 is a schematic view of the dispensing of the present invention; and Figure 12 is a schematic view of the polishing gel layer of the present invention. [Major component symbol description] "Utility" Wafer 11 Frame 13 Fluorescent layer 15 Substrate 10 Line 12 Transparent silicone "Invention" 14 200929513 Substrate 20 Printed circuit layer 21 Node 211 Frame 30 Bevel 311 'Reflective microstructure point 40 凸 Convex oblique Pier 31 Grain 50 Line 51 Reflective Paint A Silicone Diffusion Layer 60 Fluorescent Layer 61

22twenty two

Claims (1)

200929513 十、_請專利範圍: 1. 一種發光二極體模組封裝方法,在 層’且在印刷電路層表面製作多數;:刷:路 反射微結構點相對應配置在多數節點之間、、·=;各個 路層上定位晶粒及打線,並且封裝固定。於該印刷電 2.如申請專利範圍第〗 ❹ ^ ^ 〇 貝·^钐尤一極體模組封裝方 其中,另包含以下步驟: / , 在基板上製印刷電路層,在料刷電 錯配設的多數節點; 衣作父 製框,於基板周圍固定一框; 製凸出反射微結構點,隨後烘烤固定; 疋位晶粒及打線,晶粒呈导 固定; 曰曰才立壬現乂錯配置,隨後烘烤 ❹ 以及 點膠,於該框中填入矽膠擴散層,並且烘烤 固定; 膠 佈螢光膠層’錄佈均自#切層彳t蓋於該石夕 擴散層的表面之上。 3 ·如申請專利範圍第1項之發光二極體模組封裝方法及 其結構,復包含-噴漆步驟’於前述各元件表面上精密 23 200929513 喷塗反光漆,且嗔佈區域排除該 曰B 粒 4.如申請專利篇圍笛 乾阁罘3項之發光二極體模組 其結構,1中,好+、士 』衣力泛及 ” 〜贺漆步驟排序在點膠步驟之前。 構,其 5.種以明求項1方法製作的發光二極體模組結 封裝内包含有:200929513 X. _Patent scope: 1. A method for encapsulating a light-emitting diode module, in the layer 'and making a majority on the surface of the printed circuit layer;: brush: the road reflection microstructure point is correspondingly disposed between the majority nodes, ·=; locate the die and wire on each road layer, and the package is fixed. In the printing power 2. As claimed in the patent scope 〗 ^ ^ ^ 〇 · 钐 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一The majority of the nodes are provided; the clothing is made into a parent frame, and a frame is fixed around the substrate; the convex structure reflects the microstructure points, and then is baked and fixed; the grain and the wire are clamped, and the crystal grains are guided and fixed;乂 配置 , , , , , ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ Above the surface. 3 · The method and structure of the light-emitting diode module according to the first application of the patent scope, the composite-painting step 'precisely on the surface of the aforementioned components 23 200929513 spray reflective paint, and the crepe area excludes the 曰B Granules 4. For example, the structure of the light-emitting diode module of the patent application, the genus of the genus, and the structure of the light-emitting diode module, 1 and the smear of the lacquer are sorted before the dispensing step. The light-emitting diode module package made by the method of the invention 1 includes: 一基板; 至少一晶粒,裝設於該基板上;以及 粒旁,且折射 至少一凸出反射微結構點,位於該晶 該晶粒的光線。 6.如申請專利範㈣5項所述之發光二極體模組結 構,其中,該凸出反射微結構點呈半圓型、圓錐型、方 ® 塊型或水滴型。 7. 如申請專利範圍第5項所述之發光二極體模組結 構’其中’戎凸出反射微結構點表面製作—反光層。 8. 如申請專利範圍第7項所述之發光二極體模組結 構,其中,該反光層為在該凸出反射微結構點表面喷塗 200929513 的反光漆。 9. 如申請專利範圍第5項所述之發光二極體模組結 構’其中’該晶粒打線後’於其線上噴塗反光漆。 10. 如申請專利範圍第7項所述之發光二極體模組結 構,其中,該反光層係在該凸出反射微結構點表面以反 ❹光金屬濺鍍或反光材料表面沈積而成。 Π· —種發光二極體複層模組封裝方法,包含以下步驟: 在基板上製印刷電路層; 製框及凸出斜墩’於基板周圍固定—框,且於該框 内壁底緣繞設有凸出斜缴; 製反射微結構點’在印刷電路層表面製作多數之反 射微結構點; 定位晶粒及打線; 點膠,於該框中填入石夕膠擴散層;以及 五佈赏光膠層’並塗佈均句螢光膠層覆蓋於該石夕膠擴 政層的表面之上。 &quot; 二極體複層模組封 12·如申請專利範圍f 11項之發光 25 200929513 裝方法,其中,另於該製反射微結構點步驟中,各個反 射微結構點相對應配置在各個晶粒之間,並且烘烤固 定;另於該定位晶粒及打線步驟後以烘烤固定。 Ο 13.如申請專利範圍第】j項之發光二極體複層模纽封裝 方法,其中,該凸出斜墩是利用精密點膠機具讓膠延著 框内壁上緣附著後滑落而成,藉以破壞點膠時矽膠擴散 層周緣的毛細現象(Capillarity)。 14.如申請專利範圍第n項之發光二極體複層模組封裝 方法,其中,該佈螢光膠層步驟可以是利用真空吸入製 膜法、粉劑高壓高溫壓製法、喷墨式或塗佈法製成。 ^明求項11方法製作的發光二極體模組結構, Μ其封&amp;含冑: 一基板; 一框,圍繞該基板; 凸出斜墩’設置於該框内壁底緣’且朝外擴張的面; 曰曰粒’裝設於該基板上’且位於該框内; 至少—凸出反射微結構點,位於該晶粒旁,且折射 該晶粒的光線; 、 26 200929513 一石夕膠擴散層,充填於該框中;以及 一螢光膠層,均勻覆蓋於該矽膠擴散層的表面。 16·如中請專利範圍帛15項所述之發光二極體模組結 構,其中,該凸出斜墩的截面可以是矩形、三角形 弧面之幾何形狀。 v 2具 © H申^專利範㈣15項所述之發光二極體模b 冓,、中,该框定位於該基板周緣,且框選用白色。 =如申請專利範圍帛15項所述之發光二極體模心 構,/、t,該框係膠合定位於該基板。 、… 〇 19.-種發光二極體複層模組封裝方法 在基板上劁釦咖币* ^ 3以下步驟: 錯配設的多數^ 層’在該印刷電路層上製作交 ’框及凸出斜墩’於基板周圍固定一框 内壁底緣繞設有凸出斜墩; ,且於該框 衣凸出反射微結構點,在印刷 之凸出反射微結構點,日^ 硲層表面製作多數 配置在多數節點之間;固凸出反射微結構點相對應 27 200929513 定位晶粒及打線; 嗔漆,並於預設元件表面上精密喷塗反光漆,且該 漆嘴佈區域排除該晶粒; 點膠,於該框中填入矽膠擴散層;以及 佈螢光膠層’在該㈣擴散層的表面之上覆蓋均勾 螢光膠層。 ❹2G.、如申請專利範圍第19項之發光:極體複層模組封裝 方法’其中,該佈螢光膠層步驟的螢光膠層是利用真空 吸入製膜法、粉劑高壓高溫壓製法、噴墨式或塗佈法; 成。 以.如申請專利範圍第19項之發光二極體複層模組封裝 方法’其中’該凸出斜墩是利用精密卿機具讓膠延著 框内壁上緣附著後滑落而成,藉以破壞點膠時石夕膠擴散 層周緣的毛細現象(Capiiiarity)。 ' 22·如申請專利範圍第19項之發光二極體複層模組封裝 方法’其中,另於該製反射微結構點步驟中,各個反射 微結構點相對應配置在各個晶粒之間’並且烘烤固定; 另於該定位晶粒及打線步驟後以烘烤固定。 28 200929513 23. 一種以請求項1 9方法製 其封裝内包含有·· 一基板; 作的發光二極體模組結構 ? 一枢’圍繞該基板,· 凸出斜墩,設置於該框内壁底緣,且朝外擴張的面; ❹ 至少-晶粒,裝設於該基板上,且位於該框内; 』至少—凸出反射微結構點,位於該晶粒旁,且折射 5亥晶粒的光線; 上 一矽膠擴散層 一螢光膠層, ’平整填覆於該框中;以及 均勻覆蓋在該矽膠擴散層的表面之 ❹24.如申請專利範圍第23項所述之發光二極體模組結 構,其中,該凸出反射微結構點呈半圓型、圓錐型、方 塊型或水滴型。 25. 如申請專利範圍第23項所述之發光二極體模組結 構’其中’該凸出反射微結構點表面噴塗反光漆。 26. 如申請專利範圍第頊所述之發光二極體模組結 29 I 200929513 構,其中,該晶粒打線後,於其線及該基板上噴塗反光 漆。 27. 如申請專利範圍第23項所述之發光二極體模組結 構其中,5玄凸出斜徵的截面可以是矩形、三角形或具 弧面之幾何形狀。 CI 28. 如申請專利範圍第23頊所述之發光二極體模組結 構’其中,該框選用白色。 〇a substrate; at least one die mounted on the substrate; and a side of the grain, and refracting at least one protruding reflective microstructure point, the light located in the crystal grain. 6. The light-emitting diode module structure according to claim 5, wherein the convex reflection microstructure point is a semicircular shape, a conical shape, a square shape, or a water droplet type. 7. The light-emitting diode module structure as described in claim 5, wherein the surface of the reflective microstructure is made of a reflective layer. 8. The light-emitting diode module structure of claim 7, wherein the light-reflecting layer is a reflective paint of 200929513 sprayed on the surface of the convex reflective microstructure. 9. The illuminating diode module structure as described in claim 5, wherein the dies are lined, and a varnish is sprayed on the line. 10. The light-emitting diode module structure of claim 7, wherein the light-reflecting layer is deposited on the surface of the protruding reflective microstructure point by reverse-reflecting metal sputtering or a surface of the reflective material. Π·-Light-emitting diode multi-layer module packaging method, comprising the following steps: manufacturing a printed circuit layer on a substrate; the frame and the protruding diagonal pier are fixed to the frame around the substrate, and are arranged around the bottom edge of the inner wall of the frame There is a convex oblique payment; the reflective microstructure point 'produces a large number of reflective microstructure points on the surface of the printed circuit layer; locates the grain and lines; dispenses, fills the stone with a diffusion layer; and The glue layer is coated with a uniform layer of fluorescent glue over the surface of the Shihua gum expansion layer. &quot; Diode multiplexed module seal 12· illuminating 25 of the patent application scope f 11 25295295, wherein, in the step of reflecting the microstructure, each reflective microstructure point is correspondingly arranged in each crystal Between the granules, and baking is fixed; in addition to the positioning of the dies and the wire bonding step, the baking is fixed. Ο 13. The method of encapsulating a light-emitting diode multi-layer mold core according to the scope of the patent application, wherein the protruding oblique pier is formed by using a precision dispensing machine to let the glue adhere to the upper edge of the inner wall of the frame and then slide down. In order to destroy the capillarity of the periphery of the silicone diffusion layer during dispensing. 14. The method of encapsulating a light-emitting diode multi-layer module according to claim n, wherein the step of arranging the fluorescent layer may be a vacuum suction film forming method, a powder high-pressure high-temperature pressing method, an ink jet method or a coating method. Made of cloth. The structure of the light-emitting diode module produced by the method of claim 11 is as follows: a substrate; a frame surrounding the substrate; a protruding oblique pier 'located at the bottom edge of the inner wall of the frame and facing outward An expanded surface; a ruthenium particle 'mounted on the substrate' and located within the frame; at least - a convex reflective microstructure point located adjacent to the crystal grain and refracting light of the crystal grain; 26 200929513 a diffusion layer filled in the frame; and a phosphor layer uniformly covering the surface of the silicone diffusion layer. The illuminating diode module structure as described in claim 15 , wherein the protruding cross-section of the slanting pier may be a geometric shape of a rectangular or triangular arc. v 2 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 = The light-emitting diode core structure, /, t, as claimed in claim 15 of the patent application, wherein the frame is glued to the substrate. ...19.- Kind of light-emitting diode multi-layer module packaging method on the substrate 劁 咖 咖 * ^ 3 The following steps: Mismatched majority ^ layer 'making a 'frame and convex on the printed circuit layer The slanting pier is fixed around the substrate with a protruding bottom pier at the bottom edge of the inner wall of the frame; and the reflective structure is protruded from the frame, and the surface of the embossed reflective structure is printed on the surface of the embossed surface. Most of the configurations are between the majority of the nodes; the solid-convex reflective microstructure points correspond to 27 200929513 to position the grain and the wire; the paint is applied, and the reflective paint is precisely sprayed on the surface of the preset component, and the paint cloth area excludes the crystal Granules; dispensing, filling the silicone diffusion layer in the frame; and the cloth phosphor layer 'over the surface of the (four) diffusion layer is covered with a fluorescent layer. ❹2G., such as the illuminating of the 19th item of the patent application: the polar body multi-layer module packaging method, wherein the fluorescent glue layer of the cloth fluorescent layer step is a vacuum suction film forming method, a powder high-pressure high-temperature pressing method, Inkjet or coating method; For example, the method of encapsulating a light-emitting diode multi-layer module of the 19th item of the patent application scope is as follows: wherein the protruding oblique pier is formed by using a precision machine tool to let the rubber adhere to the upper edge of the inner wall of the frame and then slip off, thereby destroying the point. Capillarity of the periphery of the diffusion layer of the gelatin. '22. The method of encapsulating a light-emitting diode multi-layer module according to claim 19, wherein in the step of reflecting the microstructure, each reflective microstructure point is correspondingly disposed between the respective grains' And baking is fixed; and the baking is fixed after the positioning of the die and the wire bonding step. 28 200929513 23. A method according to claim 19, wherein the package comprises a substrate; a light-emitting diode module structure; a pivot 'around the substrate, · a protruding oblique pier, disposed on the inner wall of the frame a bottom edge, and an outwardly expanding surface; ❹ at least a die, mounted on the substrate and located within the frame; 』 at least—a convex reflective microstructure point located adjacent to the die and having a refractive index of 5 The light of the granules; a layer of the phthalocyanine diffusion layer, a luminescent layer, 'flatly filled in the frame; and uniformly covering the surface of the bismuth diffusion layer. 24. The luminescent diode according to claim 23 The body module structure, wherein the convex reflective microstructure points are semicircular, conical, square or water drop. 25. The luminescent diode module structure of claim 23, wherein the embossed reflective microstructure surface is sprayed with a varnish. 26. The illuminating diode module according to claim </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> <RTIgt; 27. The illuminating diode module structure of claim 23, wherein the cross section of the sinusoidal ridge is a rectangle, a triangle or a curved surface. CI 28. The structure of a light-emitting diode module as described in claim 23, wherein the frame is white. 〇
TW096148811A 2007-12-19 2007-12-19 Method for packaging a light emitting diode and its structure TW200929513A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW096148811A TW200929513A (en) 2007-12-19 2007-12-19 Method for packaging a light emitting diode and its structure
GB0816788A GB2455843B (en) 2007-12-19 2008-09-15 Package method and structure for a light emitting diode multi-layer
DE102008042511A DE102008042511A1 (en) 2007-12-19 2008-09-30 A method of packaging a dual-layer module of a light emitting diode and device made by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096148811A TW200929513A (en) 2007-12-19 2007-12-19 Method for packaging a light emitting diode and its structure

Publications (1)

Publication Number Publication Date
TW200929513A true TW200929513A (en) 2009-07-01

Family

ID=39930123

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096148811A TW200929513A (en) 2007-12-19 2007-12-19 Method for packaging a light emitting diode and its structure

Country Status (3)

Country Link
DE (1) DE102008042511A1 (en)
GB (1) GB2455843B (en)
TW (1) TW200929513A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104347461A (en) * 2013-08-07 2015-02-11 方晶科技股份有限公司 Heat transfer device for LED (Light-Emitting Diode)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102147061A (en) * 2010-02-09 2011-08-10 刘世全 Modular integrally-luminous LED planar light source fluorescent lamp and manufacturing method thereof
CN102278611A (en) * 2010-06-09 2011-12-14 福建富顺电子有限公司 Lamp tube
CN102345809A (en) * 2010-08-03 2012-02-08 艾笛森光电股份有限公司 Illumination system
CN102374409B (en) * 2010-08-24 2013-05-15 亚世达科技股份有限公司 Tube device with light-emitting diode light source
CN102374434A (en) * 2011-10-11 2012-03-14 山水照明科技(常熟)有限公司 LED (light-emitting diode) fluorescent lamp tube
CN102818151B (en) * 2012-07-23 2014-11-26 贵州光浦森光电有限公司 Universal type LED (light emitting diode) bulb forming method and LED bulb with fluorescent inner cover
CN108332174B (en) * 2018-02-07 2019-12-24 武汉大学 Heat dissipation system and method applied to light emitting surface of high-power LED lighting equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381873A (en) * 1986-09-26 1988-04-12 Toshiba Corp Light emitting device
TWM271252U (en) * 2004-12-14 2005-07-21 Niching Ind Corp Package structure of light-emitting device
JP4535928B2 (en) * 2005-04-28 2010-09-01 シャープ株式会社 Semiconductor light emitting device
KR100616695B1 (en) * 2005-10-04 2006-08-28 삼성전기주식회사 High power light emitting diode package
JP2007242856A (en) * 2006-03-08 2007-09-20 Rohm Co Ltd Chip-type semiconductor light emitting device
KR100809210B1 (en) * 2006-07-10 2008-02-29 삼성전기주식회사 High power light emitting diode package and method of producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104347461A (en) * 2013-08-07 2015-02-11 方晶科技股份有限公司 Heat transfer device for LED (Light-Emitting Diode)

Also Published As

Publication number Publication date
GB2455843A (en) 2009-06-24
GB0816788D0 (en) 2008-10-22
GB2455843B (en) 2010-03-31
DE102008042511A1 (en) 2009-07-16

Similar Documents

Publication Publication Date Title
TW200929513A (en) Method for packaging a light emitting diode and its structure
US7919339B2 (en) Packaging method for light emitting diode module that includes fabricating frame around substrate
CN206958642U (en) The LEDbulb lamp of LED filament and the application LED filament
CN203322771U (en) Light emitting assembly
CN107910322A (en) The preparation method of light source assembly, display device and light source assembly
TW201017940A (en) Light emitting unit
WO2010115347A1 (en) Led illumination lamp
CN105810800A (en) LED (Light Emitting Diode) integrated light emitting device and manufacturing method thereof
CN206754927U (en) One kind is added lustre to type LED backlight light-emitting device
CN103746064A (en) Mirror surface aluminum base plate capable of improving light source luminous efficacy and manufacturing method thereof
CN204732409U (en) A kind of encapsulating structure of LED silk
CN204760416U (en) LED encapsulation module and LED lamps and lanterns that have this LED encapsulation module
TW201426966A (en) Light emitting diode light bar
CN207938650U (en) The emitting semiconductor for sending out a variety of coloured light is realized based on a chip
CN207938637U (en) A kind of LED light emitting diodes
CN206532794U (en) A kind of LED support with radiator structure
CN101483141A (en) Multilayer module encapsulation method for LED and construction thereof
CN205429008U (en) Metal heat conduction post COB LED light source
CN204391110U (en) A kind of LED integrated light-emitting device
CN209150154U (en) A kind of encapsulating structure of COB light source
CN204760426U (en) Light -emitting diode packaging structure
CN106960821A (en) A kind of LED component and preparation method thereof
CN203859150U (en) Optical element and lighting device with same
CN203215328U (en) LED lamp preventing glare
WO2008144974A1 (en) Tip led