TW200927885A - Blue fluorescent element - Google Patents

Blue fluorescent element Download PDF

Info

Publication number
TW200927885A
TW200927885A TW097145052A TW97145052A TW200927885A TW 200927885 A TW200927885 A TW 200927885A TW 097145052 A TW097145052 A TW 097145052A TW 97145052 A TW97145052 A TW 97145052A TW 200927885 A TW200927885 A TW 200927885A
Authority
TW
Taiwan
Prior art keywords
blue
phosphor
general formula
value width
peak
Prior art date
Application number
TW097145052A
Other languages
Chinese (zh)
Inventor
Koutoku Ohmi
Tsuyoshi Ohashi
Makoto Higuchi
Asuka Sasakura
Jun-Ichi Itoh
Original Assignee
Nat Univ Corp Tottori Univ
Mitsui Mining & Smelting Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Corp Tottori Univ, Mitsui Mining & Smelting Co filed Critical Nat Univ Corp Tottori Univ
Publication of TW200927885A publication Critical patent/TW200927885A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7715Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
    • C09K11/77214Aluminosilicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

In a blue fluorescent element represented by the general formula Ba2SiS4: Ce, a part of Si site is substituted with Al to form a blue fluorescent element represented by the general formula Ba2(Si1-xAlx)S4: Ce (wherein x satisfies the formula 0< x< 1) containing a crystalline construction. The blue fluorescent element thus formed exhibits and enhances emission intensity of emission spectrum generated by near ultraviolet region excitation, and further enhances the brightness.

Description

200927885 六、發明說明: 【發明所屬之技術領域】 本發明係關於藍色螢光體。更詳而言之,係關於可作 為以近紫外線LED(Light Emitting Diode,發光二極體) 為激勵源之照明用螢光體使用,或FED(Field Emission Display,電場發射型顯示器)、PDP(Plasma Display Panel, 電漿顯示面板)、EL(Electro Luminescence,電致發光) 等顯示器用螢光體所使用之藍色螢光體。 ❹【先前技術】 目前之照明用光源之主流雖係為螢光燈或白熱電燈, 惟將LED使用在光源,相較於螢光燈等,其具備消耗電力 少、壽命長、且即使以手觸摸亦不會燙之安全性之外,同 時亦不含汞等有害物質而無害於環境,在不久的將來,被 期待成為照明用光源之主流。 然而,將藍色與黃色之光加以混合使其發光之習知之 0 白色LED,其顯示自然之發色性之演色性不佳,而不適用 於商品之商品照明或餐桌等之室内照明。以改善白色LED 之演色性之手法而言,係可考慮將近紫外線LED與紅、綠、 藍之3種榮光體加以組合之方法,惟既有之螢光體由於在 近紫外線之激勵中之發光效率不佳,因此乃期望開發一種 在近紫外線之激勵中顯示較高發光強度之螢光體。 另一方面,在FED、PDP、EL等顯示器技術中,係藉由 將藍色螢光體、紅色螢光體及綠色螢光體加以組合,或是 將藍色螢光體與顏色轉換材料加以組合來實現彩色顯示, 3 320803 200927885 乃要求開發一種可發出純度較高之藍色光,亮度高,且無 害於環境之螢光體。 以往以來,作為無機EL等顯示器用藍色螢光體,已知 有(l)SrS : Ce、(2)MGa2S‘ : Ce(M=Sr、Ca)、(3)BaAl2S4: Eu、 (4)Ba2SiS4 : Ce等。此外,作為LED燈用之藍色螢光體, 已知有(5)(Ba、Mg)Al1()〇17 : Eu、(6)Sr5(P〇4)3Cl : Eu 等。 此外,本申請人等係揭示由Ba2S i S4: Ce所構成之藍色 螢光體作為顏色純度良好、亮度高、化學穩定性良好、且 ® 結晶化溫度較低之藍色螢光體(參照專利文獻1)。 專利文獻1 :日本特開2007-211265 【發明内容】 [發明欲解決之問題] 本發明係就專利文獻1所揭示之Ba2SiS4:Ce進一步再 進行研究,而欲提供一種亮度更高,尤其藉由近紫外線區 域之激勵而顯示優異之發光強度之嶄新藍色螢光體。 ❹[解決問題之方案] 本發明係提案一種含有一般式:Ba2(Sii-xAlx)S4: Ce(惟 式中之X係為0&lt;x&lt; 1)所示之結晶之藍色螢光體,亦即含 有將一般式:Ba2SiS4 : Ce所示之結晶之Si位置之一部分 置換為A1而成之結晶之藍色螢光體。 藉由將一般式Ba2SiS4 : Ce所示之藍色螢光體中之Si 位置之一部分置換為A1,即可更加提高藉由近紫外線區域 (350nm至420nm左右)之激勵所致之發光頻譜之發光強 度,而可更加提升亮度。 320803 200927885 以此主要原因而言,首先係可推測由於將Si位置之一 部分置換為A1,而使3價之A1被導入至2價之Si之位置 所導致之電荷補償效果之影響,惟若以即使添加相同3價 之Ga或Y亦無法確認發光強度之提升之結果來看,亦可推 測為A1特有之效果。 依據本發明之藍色螢光體,由於可提高藉由近紫外線 (35〇nm至42〇nm左右)之激勵所致之發光頻譜之發光強 ❹度,因此可作為例如以近紫外線LED(例如405mn)為激勵源 之照明裝置用螢光體來使用,或例如作為FED、PDP、EL等 顯示器之發光元件或裝置用之螢光體來使用。 此外,藉由將本發明之藍色螢光體、黃色螢光體、與 激勵源加以組合,亦可構成不含采、Se、cd等有害物質, 且亮度高之白色發光元件或裝置。 【貫施方式】· 以下雖就本發明之實施形態進行詳細說明,惟本發明 ❹之範圍並不限定以下所說明之實施形態。 本實施形態之藍色螢光體(以下稱「本藍色螢光體」) 係為含有一般式:Ba2(Sh-xAlx)S4 : Ce(惟式中之X係〇&lt;;?( (1)所示之結晶之螢光體,較佳為由該結晶所組成之單— 相所構成之螢光邀。 本藍色螢光體之發光中心(發光離子),重要的係為3 價之Ce3+。200927885 VI. Description of the Invention: [Technical Field to Which the Invention Is Ascribed] The present invention relates to a blue phosphor. More specifically, it is used as a fluorescent body for illumination using a near-ultraviolet LED (Light Emitting Diode) as an excitation source, or FED (Field Emission Display), PDP (Plasma) Display panel, plasma display panel, EL (Electro Luminescence), etc. Blue phosphor used for display phosphors. ❹[Prior Art] The current mainstream of lighting sources is fluorescent or white, but LEDs are used in light sources. Compared with fluorescent lamps, they have low power consumption, long life, and even hands. In addition to the safety of the touch, it does not contain harmful substances such as mercury and is harmless to the environment. In the near future, it is expected to become the mainstream of lighting sources. However, the conventional white LED, which mixes blue and yellow light to emit light, exhibits poor color rendering properties of natural color development, and is not suitable for indoor lighting such as merchandise lighting or dining tables. In order to improve the color rendering of white LEDs, it is possible to consider a combination of near-ultraviolet LEDs and red, green and blue glory bodies, but only the phosphors are illuminated by the excitation of near-ultraviolet rays. Inefficient, it is desirable to develop a phosphor that exhibits a higher luminous intensity in the excitation of near ultraviolet light. On the other hand, in display technologies such as FED, PDP, and EL, by combining a blue phosphor, a red phosphor, and a green phosphor, or by using a blue phosphor and a color conversion material. Combining to achieve color display, 3 320803 200927885 is required to develop a phosphor that emits high purity blue light, high brightness, and is harmless to the environment. Conventionally, as a blue phosphor for display such as inorganic EL, (1) SrS: Ce, (2) MGa2S': Ce (M=Sr, Ca), and (3) BaAl2S4: Eu, (4) are known. Ba2SiS4: Ce, etc. Further, as the blue phosphor for LED lamps, (5) (Ba, Mg) Al1 () 〇 17 : Eu, (6) Sr5 (P 〇 4) 3Cl : Eu, and the like are known. In addition, the present applicant discloses a blue phosphor composed of Ba2S i S4: Ce as a blue phosphor having good color purity, high luminance, good chemical stability, and low crystallization temperature (refer to Patent Document 1). Patent Document 1: Japanese Laid-Open Patent Publication No. 2007-211265 [Disclosure] The present invention is further studied in the case of Ba2SiS4:Ce disclosed in Patent Document 1, and is intended to provide a higher brightness, particularly by A new blue phosphor that exhibits excellent luminous intensity in the vicinity of the ultraviolet region. ❹ [Solution to solve the problem] The present invention proposes a blue phosphor containing a crystal of the general formula: Ba2(Sii-xAlx)S4: Ce (where X is 0 &lt; x &lt; 1), That is, a blue phosphor containing a crystal in which one part of the Si position of the crystal represented by the general formula: Ba2SiS4: Ce is replaced by A1 is contained. By replacing one of the Si positions in the blue phosphor represented by the general formula Ba2SiS4: Ce with A1, the luminescence of the luminescence spectrum caused by the excitation of the near ultraviolet region (about 350 nm to 420 nm) can be further enhanced. Strength, but can increase the brightness even more. 320803 200927885 For this reason, firstly, it is presumed that the effect of the charge compensation effect caused by the introduction of one of the Si positions to A1 and the introduction of the trivalent A1 to the position of the divalent Si is obtained. Even if Ga or Y of the same trivalent value is added, the result of the improvement of the luminous intensity cannot be confirmed, and it is also presumed to be the effect unique to A1. According to the blue phosphor of the present invention, since the luminescence intensity of the luminescence spectrum by excitation of near ultraviolet rays (about 35 〇 nm to 42 〇 nm) can be improved, it can be used, for example, as a near-ultraviolet LED (for example, 405 nm). It is used as a illuminating device for an excitation source, or as a illuminating element for a display such as an FED, a PDP, or an EL, or a phosphor for a device. Further, by combining the blue phosphor, the yellow phosphor, and the excitation source of the present invention, it is possible to constitute a white light-emitting element or device which does not contain harmful substances such as Se, Se or cd and which has high luminance. [Embodiment] The embodiments of the present invention will be described in detail below, but the scope of the present invention is not limited to the embodiments described below. The blue phosphor of the present embodiment (hereinafter referred to as "the present blue phosphor") contains a general formula: Ba2(Sh-xAlx)S4: Ce (in the formula, X system 〇&lt;;?(( 1) The crystal phosphor shown is preferably a fluorescent composition composed of a single phase composed of the crystal. The luminescent center (luminescent ion) of the blue phosphor, the important one is 3 valence Ce3+.

Ce3+之濃度係以相對於BazSiS4為0.1至5mol%為較 佳,尤其以1至2mol%為更佳。另外,若Ce之添加量增加, 320803 5 200927885 則發光色朝綠色方向位移,看起來較為明亮,因此若重視 亮度提升,則Ce3+之濃度係以相對於i S4為〇. 5至4m〇 i % 為較佳’尤其以1至2mol%為較佳。 一般式.Ba2(Sh-xAlx)S4: Ce 係顯示將一般式:Ba2sn : Ce所示之化合物中之Si位置之一部分置換為M而成之結 構’而在一般式:Ba2(Sh-xAlx)S4 : Ce中顯示A1之置換比 率之X之值,只要是〇&lt;x&lt;〇. 1即可,惟較佳為〇 〇5以上, 尤佳為〇. 1以上。此外,上限值係以0.4以下為較佳,尤 其為0. 3以下’其中又以〇. 2以下為更佺。 若與一般式:BaJiS4 : Ce所示之化合物對比,藉由將 該化合物之Si位置之一部分置換為A卜可確認亮度提升, 尤其若X為0.05以上,即可更加提升亮度,而若為〇.γ以 上,亦可提升壳度30%左右。另一方面,若過度添加A1, 例如添加x=0.5以上,則會析出Ba2AhS4等之異相而使得 發光亮度降低。 〇 (本藍色螢光體之特徵) 若將本藍色螢光體使用CuKa線進行χ光繞射(XRD), 則在XRD圖案中’可將出現在繞射角2θ=21至23 5。之主 峰值之半值寬度,作成較一般式:BaJiS4 : Ce之其峰值之 半值寬度還小,且可設為一般式:BaSiS〆Ce之其峰值之 半值寬度之90至未達ι00%,進一步為9〇至98%,甚至9Q 至95%。若以此種觀點而言,在_般式::The concentration of Ce3+ is preferably 0.1 to 5 mol% relative to BazSiS4, more preferably 1 to 2 mol%. In addition, if the amount of Ce added increases, 320803 5 200927885, the illuminating color shifts toward the green direction and looks brighter. Therefore, if the brightness is increased, the concentration of Ce3+ is 相对. 5 to 4m〇i % with respect to i S4. It is preferably 'in particular, from 1 to 2 mol%. The general formula .Ba2(Sh-xAlx)S4: Ce shows a structure in which one part of the Si position in the compound represented by the general formula: Ba2sn: Ce is replaced by M', and in the general formula: Ba2 (Sh-xAlx) S4: The value of X indicating the substitution ratio of A1 in Ce is not particularly limited to 〇〇5 or more, and particularly preferably 〇. 1 or more. Further, the upper limit is preferably 0.4 or less, and particularly preferably 0.3 or less. When compared with the compound of the general formula: BaJiS4: Ce, it can be confirmed that the brightness is improved by replacing one part of the Si position of the compound with A, especially if X is 0.05 or more, the brightness can be further improved, and if Above γ, it can also increase the shell size by about 30%. On the other hand, when A1 is excessively added, for example, when x = 0.5 or more is added, a different phase such as Ba2AhS4 is precipitated to lower the light emission luminance. 〇 (Characteristics of the blue phosphor) If the blue phosphor is subjected to calender diffraction (XRD) using a CuKa line, 'in the XRD pattern' can appear at the diffraction angle 2θ=21 to 23 5 . The half value width of the main peak is made to be more general: BaJiS4: Ce has a half value width of the peak, and can be set to a general formula: BaSiS〆Ce has a half value width of the peak of 90 to less than 10%. Further further from 9〇 to 98%, even 9Q to 95%. In this view, in the _ like::

Ce中,顯不A1之置換比率之χ之值係以〇· 〇5至〇. 3(尤其 未達0·3)’其中尤以0.1至0.2為較佳。 、 6 320803 200927885 按一般常識而言,通常只要添加雜質,結晶性就會降 低而使半值寬度變大,惟本藍色螢光體之情形,係具有即 使將Si位置之—部分置換為,相較於未置換者,可將 結晶峰值之半值寬度設為相同或較小之特徵。 另外’出現在繞射角20=21至23. 5。之主峰值係可推 測為(012 )面之峰值。 此外’本藍色螢光體係具備藉由波長250nm至480nm ❹之光,尤其為近紫外線區域(35〇nm直420nm)之光所激勵, 而發出藍色光之特徵。 就發光頻譜而言,本藍色螢光體係具備藉由波長405nm 之光激勵’至少在波長435nm±30nm之區域具有發光峰值之 特徵。 (製造方法) 接著說明本藍色螢光體之較佳製造方法之一例。惟不 限定於以下所說明之製造方法。 © 本藍色螢光體係可將鋇原料、矽原料、鋁原料及鈽原 料’視需要再加上硫原料分別加以秤重並混合,在還原氣 體環境中以1,000至i,40(rc燒成,且視需要加以分級所 獲得。 以上述之鋇原料而言,係可舉BaS、BaC〇3等。 以矽原料而言,係可舉Si、SiS2等。 以銘原料而言,係可舉Al、A12S3等。 以硫原料而言’係可舉S、BaS、SiS2、Ce2S3等。 以鈽原料而言,係可舉Ce2S3、Ce2(C〇3)3等。 7 320803 200927885 為了提昇演色性,亦可將Pr、Sm等稀土類元素作為色 調調整劑添加於原料。 為了提昇激勵效率,亦可將選自從Sc、La、Gd、Lu, 稀土類元素之1種以上之元素作為增感劑而添加於原料。 淮上述之添加1係分別以設為5m〇i%以下為較佳。若 此等元素之含有量超過5m〇i%,則會有異相大量析出,而 亮度顯著降低之虞。 此外,亦可將驗金屬元素、矿等}價陽離子金属、… F、1等之_素離子作為電荷補償劑而添加於原料。其添加 量係在電荷補償效果及亮度之點,設為油族或豨土類族 之含量等量程度為較佳。 原料之混合係可以乾式、或濕式任一種進行。 乾式混合時,其混合方法並師舰定,例如可將氧 化錯球使用於媒介物中而在塗料搖動器(細的融⑷或 球磨機(ban mi⑴等加以混合,視需要使其乾燥而獲得原 ❹料混合物。 濕式混合時’係將原料作成懸浮液之狀離,爽上述同 樣將氧化錯球使用在媒介物中而藉由塗料搖動器成球磨機 等加以混合之後,以篩等將媒介物分離,並喊壓乾燦 或真空乾麟之適宜乾料從料㈣^分^除祕得乾 燥原料混合物。 ’、 在燒成之前,亦可視 物施以粉碎、分級、乾燥 乾燥^ 需要將上逑方式所獲得原料混合 5惟亦可未必要施以粉碎、分級、 320如 3 200927885 燒成係以以上燒成為較佳。 以此際之燒成氣體環境而言, 之氮氣氣體環境、含右^ '木用含有少量翕&gt; 心見3有一氧化碳之二氧化 置^ 化=硫化碳、惰性氣體或還原性氣體之硬 燒成溫度未達寒C時,會有需要長時境等。 成不充分之傾向。另一方面,燒成溫度之卜日繞成,或繞 爐之财久溫度、生成物之分解溫度等所決定限=係以境成 Ο 榮光體之製造方法中,係以在1,G(K)幻,在本藍色 佳。此外,誠時間雖係與誠溫度 t成為尤 小時左右。 准係為2至24 Ο 另外,在上述燒成之前,亦可先進行假 此際,假燒成係可在含有少量氫氣之 含有-氧化碳之二氧化碳氣體環境、硫化氫“體環境、 惰性氣體或還原性氣體等之氣體環境中,以8硫化碳、 溫度進行2小時至24小時假燒。此假燒之情形,之 成之情形不同,在還原性氣體環境中實施。 μ ” 在假燒溫度未達80(rc情形下,於使用碳酸睡在原 二情形等,韻氣體之分解並不充分,此外,使用㈣ 日守’無法充分獲得助熔(flux)效果。另一方面,在超過工K 它之高溫下將會引起異常粒成長,而難以獲得均勻之微2 子。此外,在假燒時間未達1小時情形下,物質特性將| 以獲得再現性,若超過12小時則會產生因為物質飛散之j 加所導致之組成變動之問題。 假燒後,係可進一步以混合粉體整體成為均勻之方: 320803 200927885 進行粉碎混合,再進一步進行燒成。. 在上述境成及假燒成中,於原料混合物中不含琉原料 時,需在硫化氫或二硫化碳之氣體環境中進行燒成。然而, 在原料混合物中含有硫原料時,係可在硫化氫、二破化石炭 或惰性氣體之氣體環境中進行燒成。此時之硫化氫及二硫 化礙亦有成為硫化合物之情形’此外亦有抑制生成物之分 解之功能。 ❹ 另一方面,在燒成氣體環境或假燒氣體環境中使用硫 化風或一硫化碳時’由於此等化合物亦成為硫化物,因此 例如在使用BaS作為原料成分時’係形成使用鋇化合物及 硫化合物,而在使用SiS2時,係形成使用矽化合物及硫化 合物。. 此外,亦可使用將含有鋇原料、矽原料、硫原料、鋁 原料及鈽原料之中之2成分之混合物,在硫化氫、二硫化 碳、惰性氣體或還原性氣體之氣體環境中以8〇〇。〇以上之 ◎溫度進行2至24小時假燒,分級,接著將剩餘之原料加以 混合所獲得之混合物。 、在本藍色榮光體之製邊方法中’係可以蒸鍍用顆粒之 形狀進行燒成。該顆粒形狀之藍色螢光體之製造例係顯示 於第6圖至第8圖之製造步驟圖。 在第6圖至第8圖中,「(S化合物)之記载雖係意味添 加硫化合物之情形與不添加之情形,惟在假燒氣體環境及 燒成氣體環境之兩方未使用硫化氫或二硫化碳時,係需添 加硫化合物。 320803 200927885 此外,在本藍色螢光體 靶之形狀進行燒成。該靶形Ik方法中,係可以濺鍍用 接合之例係顯示於第q圖 ^色榮光體之製造、加工、 在“圖至第=中之製程圖。 混合並無特觀制。例如,^龍之條件只要可均勻地 鐘混合。 ,’在塗料搖動器中可進行100分 假燒及燒成之條件係4 Ο Ο 之混合、成形容易,則無特:所述。關於分級只要在之後 以下進行分級。為了獲彳曰〈制。例如,在150網眼(mesh) 係可以2GGkg/em3左“ = 狀之藍色螢光體’ (用途) 本藍色螢光體係與激勵源組合 «置,可使用在各途中。#献色發先70件或 利用在特殊光源、液晶之背光般照@之外’尚可 裝置等顯示裝置等。 源或EL、FED、CRT用顯示 作為將本藍色螢光體與可激勵此藍色榮光體之激 加以組合之藍色發光元件或裝置之—例,射狀在產生 波長25Gmn至48〇nm之光之發光體之附近,亦即在可接為 該發光體所發光之光之位置,配置本藍色螢光體來構成。又In Ce, the value of 置换 of the substitution ratio of A1 is 〇· 〇5 to 〇. 3 (especially less than 0.3), and particularly preferably 0.1 to 0.2. 6 320803 200927885 In general, as long as impurities are added, the crystallinity is lowered and the half-value width is increased. However, in the case of the blue phosphor, even if the Si position is partially replaced, The half value width of the crystallization peak can be set to be the same or smaller than the unsubstituted one. 5。 In the diffraction angle 20 = 21 to 23. 5. The main peak value can be estimated as the peak of the (012) plane. Further, the present blue fluorescent system is characterized by emitting light of a wavelength of 250 nm to 480 nm, particularly light of a near-ultraviolet region (35 〇 nm to 420 nm), and emitting blue light. In terms of the luminescence spectrum, the blue luminescence system is characterized by being excited by light having a wavelength of 405 nm to have an emission peak at least in a region of wavelength 435 nm ± 30 nm. (Manufacturing Method) Next, an example of a preferred method of producing the blue phosphor will be described. However, it is not limited to the manufacturing method described below. © This blue fluorescent system can weigh and mix bismuth raw materials, bismuth raw materials, aluminum raw materials and bismuth raw materials, as needed, together with sulfur raw materials, in the reducing gas environment, 1,000 to i, 40 (rc It is obtained by calcination and, if necessary, classification. BaS, BaC〇3, etc. are mentioned as a raw material of the above-mentioned raw materials, and Si, SiS2, etc. are mentioned as a raw material. Examples of the sulfur raw material include S, BaS, SiS2, and Ce2S3. Examples of the ruthenium raw material include Ce2S3, Ce2(C〇3)3, etc. 7 320803 200927885 In the color rendering property, a rare earth element such as Pr or Sm may be added as a color tone adjusting agent to the raw material. In order to improve the excitation efficiency, one or more elements selected from the group consisting of Sc, La, Gd, Lu, and rare earth elements may be added. The sensitizer is added to the raw material. The addition of the above-mentioned 1 is preferably 5 m〇i% or less. If the content of these elements exceeds 5 m〇i%, a large amount of phase is precipitated, and the brightness is remarkably lowered. In addition, metal elements, minerals, etc., cation metal, ... F, 1, etc. The _ elementary ion is added to the raw material as a charge compensating agent, and the amount of addition is based on the charge compensation effect and the brightness, and is preferably equal to the content of the oil or bauxite family. The mixing of the raw materials can be dry, Or dry type. When dry mixing, the mixing method is set by the master. For example, the oxidized wrong ball can be used in the medium and mixed in the paint shaker (fine melt (4) or ball mill (ban mi (1), etc. It is necessary to dry it to obtain a raw material mixture. In the case of wet mixing, the raw material is used as a suspension, and after the above, the oxidized wrong ball is also used in the medium and mixed by a paint shaker into a ball mill or the like. Separate the medium by sifting, etc., and shout the dry dry or vacuum dry lining suitable dry material from the material (four) ^ points ^ to remove the secret dry raw material mixture. ', before the firing, also visible smashing, grading Drying and drying ^ It is necessary to mix the raw materials obtained by the topping method. However, it is not necessary to apply pulverization and classification. 320, 3, 200927885, the firing system is preferably used for the above firing. In terms of the environment, the nitrogen gas atmosphere, containing the right ^ 'wood with a small amount of 翕 · heart 3 carbon dioxide dioxide oxidation = carbon sulfide, inert gas or reducing gas hard firing temperature is not up to C When there is a need for a long time, etc., the tendency is not sufficient. On the other hand, the firing temperature is rounded, or the temperature of the furnace is long, and the decomposition temperature of the product is determined. In the method of manufacturing the glory of the glory, it is in the 1,G (K) illusion, and it is in the blue. In addition, since the time of the sacred time is about the hour of the temperature, the standard is 2 to 24 Ο. Before the above-mentioned firing, it is also possible to perform the pseudo-sintering process in a gas atmosphere containing a small amount of hydrogen-containing carbon dioxide gas atmosphere containing carbon dioxide, hydrogen sulfide "body environment, inert gas or reducing gas. The mixture was quenched at 8 hours and 24 hours with 8 carbon sulfide. This case of the fake burn is different in the case of a reducing gas atmosphere. μ ” In the case of a simmering temperature of less than 80 (in the case of rc, in the case of using carbonic acid to sleep in the original two, the decomposition of the rhythmic gas is not sufficient, and in addition, the use of (4) Guardian 'can not fully obtain the flux effect. Another On the other hand, it will cause abnormal grain growth at a high temperature exceeding the K, and it is difficult to obtain a uniform micro 2 sub. Further, in the case where the calcination time is less than 1 hour, the material property will be | to obtain reproducibility, if In 12 hours, there is a problem of compositional variation caused by the addition of the substance. After the smoldering, the whole powder can be further uniformly mixed: 320803 200927885 The pulverization and mixing are carried out, and further firing is performed. In the above-mentioned environment and pseudo-sintering, when the raw material mixture does not contain the antimony raw material, it is required to be calcined in a hydrogen sulfide or carbon disulfide gas atmosphere. However, when the raw material mixture contains the sulfur raw material, the hydrogen sulfide may be used. The firing is carried out in a gas atmosphere of a decarburized charcoal or an inert gas. At this time, hydrogen sulfide and disulfide also have a situation of becoming a sulfur compound, and there is also inhibition of decomposition of the product. ❹ On the other hand, when using sulfide gas or carbon monoxide in a firing gas atmosphere or a flash gas atmosphere, 'because these compounds also become sulfides, for example, when BaS is used as a raw material component, the system is used. a compound and a sulfur compound, and when SiS2 is used, a ruthenium compound and a sulfur compound are used. Further, a mixture of two components including a ruthenium raw material, a ruthenium raw material, a sulfur raw material, an aluminum raw material, and a ruthenium raw material may be used. In a gaseous environment of hydrogen sulfide, carbon disulfide, inert gas or reducing gas, the mixture obtained by calcining at a temperature of 8 〇〇 above 2 for 2 to 24 hours, classification, and then mixing the remaining raw materials. In the method of forming a blue glory body, the film can be fired by the shape of the particles for vapor deposition. The example of the production of the blue phosphor of the particle shape is shown in the manufacturing steps of Figs. 6 to 8 . In the sixth to eighth figures, the description of "(S compound) means that the sulfur compound is added and not added, but in the case of the pseudo-burning gas atmosphere and the firing gas ring. In the case where hydrogen sulfide or carbon disulfide is not used, it is necessary to add a sulfur compound. 320803 200927885 In addition, the shape of the blue phosphor target is fired. In the target Ik method, it is possible to use a joint for sputtering. It is shown in the figure q, the manufacture and processing of the color glory, and the process diagram in the figure to the middle. The mixing has no special system. For example, the condition of the dragon can be uniformly mixed as long as it is. In the shaker, it is possible to perform the mixing and firing conditions of 100 minutes, and the mixing is easy, and the molding is easy. If the classification is easy, the classification is performed as follows. 150 mesh (mesh) can be 2GGkg/em3 left "= blue phosphor" (use) This blue fluorescent system and excitation source combination « can be used on each way. #献色发70 pieces or use a display device such as a special light source or a liquid crystal backlight. Source or EL, FED, CRT display as a blue light-emitting element or device that combines the blue phosphor with a laser that can excite the blue glory, and emits at a wavelength of 25 Gmn to 48 〇 nm. The blue phosphor is disposed in the vicinity of the illuminant of the light, that is, at a position where it can be connected to the light emitted by the illuminator. also

具體而言’在由發光體所構成之發光體層上,可叠層 由本藍色螢光體所構成之螢光體層。 S 此際,螢光體層係例如可將粉末狀之本藍色螢光體, 與結合劑一同加在適當的熔劑,且充分混合使其均勻地分 散,並將所獲得之塗佈液塗佈在發光層之表面並進行乾燥 11 320803 200927885 而形成重膜(螢光體層)。 此外’亦可將本藍色榮光體混煉在破璃組成物而使本 藍色螢光體分散在玻璃層内而形成螢光體層。 再者,亦可將本藍色螢光體成形為片體(处6的)狀,且 將此片體疊層在發光體層上’此外’亦可將本藍色榮光體 直接濺鍍在發光體層上來進行製膜。 (用語之解說) 本藍色螢光體係可為粉體、成形體之任一種形態。 ® 此外,在本發明中,所謂「藍色發光元件或裝置」或 「白色發光元件或裝置」中之「發光元件」係意味至少具 備螢光體及作為其激勵源之發光源之較小型之發出光之發 光裝置,而所明「發光裝置」係意味至少具備螢光體及作 為其激勵源之發考源之較大型之發出光之發光裝置。 在本說明書中記載為「X至7」(}(丨係為任意之數字) 時,只要未特別聲明,除「X以上γ以下」之意,亦包含 ❹ 「較佳為較X大」或「較佳為較γ小」之涵義。 (實施例) 以下根據實施例說明本發明。惟本發明不應限定於此 等實施例加以解釋。 &lt;PL發光頻譜之測定〉 使用分光榮光光度儀(曰立公司製,f_4500)來測定 PL(光致發光)頻譜。 &lt; XRD測定〉 以網眼專用永久黏著型接著劑(Bi〇den心沾Cement) 320803 12 200927885 將X光繞射用之樣本充填於玻璃保持器(glass holder·), 且使用RINT-2200V(理學(RIGAKU)股份有限公司製品),且 使用CuK α線而獲得XRD圖案,而求出出現在繞射角20 =21 至23_ 5之主峰值(此範圍之最大峰值)之半值寬度(fwhm)。 此時之精密化,係使用上述RINT-2200V附屬之應用軟 體(軟體名稱:晶格常數之精密化)來實施。 (試驗例1) 使用BaS、Si、CezS3及ΑΙΑ作為起始原料,且以A1 /si之原子比成為0/1至0·5/0 5之比率之方式調配, 且將0 3mm之氧化錯球使用在媒介物而藉由塗料搖動器進 行100分鐘混合。 接著在硫化氫氣體環境中,以1,15(TC進行4小時假 燒之後’將所獲得之假燒品形成為圓減,且在硫化氮氣 體%境中以· 1’15G°C進行4小時燒成,而獲.得一般式:Specifically, a phosphor layer composed of the blue phosphor can be laminated on the phosphor layer composed of the phosphor. In this case, the phosphor layer may be, for example, a powdery blue phosphor added to a suitable flux together with a binder, and thoroughly mixed to uniformly disperse, and the obtained coating liquid is coated. A heavy film (phosphor layer) was formed on the surface of the light-emitting layer and dried at 11 320803 200927885. Further, the blue luminescent body may be kneaded in the glaze composition to disperse the blue luminescent body in the glass layer to form a phosphor layer. Furthermore, the blue phosphor may be formed into a sheet body (in the shape of 6), and the sheet body may be laminated on the illuminant layer, and the blue glory body may be directly sputtered on the illuminating layer. The film is formed on the body layer. (Explanation of terms) The blue fluorescent system can be in any form of powder or molded body. In the present invention, the term "light-emitting element" in the "blue light-emitting device or device" or "white light-emitting device or device" means a smaller type having at least a phosphor and a light source as an excitation source thereof. A light-emitting device that emits light, and the term "light-emitting device" means a larger type of light-emitting device that has at least a phosphor and a source of the excitation source. In the description of this document, "X to 7" (" (" is an arbitrary number"), unless otherwise stated, "X or more γ or less" means 「 "preferably greater than X" or The meaning of "preferably smaller than γ" (Embodiment) The present invention will be described below based on examples. However, the present invention should not be construed as being limited to the examples. <Measurement of PL luminescence spectrum> Using a spectrophotometer (The company's system, f_4500) is used to measure the PL (photoluminescence) spectrum. <XRD measurement> A permanent adhesive type adhesive for mesh (Bi〇den core adhesive) 320803 12 200927885 X-ray diffraction The sample was filled in a glass holder, and RINT-2200V (product of RIGAKU Co., Ltd.) was used, and an XRD pattern was obtained using a CuK α line, and it was found that the diffraction angle was 20 = 21 to The half value width (fwhm) of the main peak of 23_5 (the maximum peak of this range). The precision at this time is implemented using the application software (software name: precision of lattice constant) attached to the above RINT-2200V. (Test Example 1) Using BaS, Si, CezS3 and ΙΑ is used as a starting material, and is prepared in such a manner that the atomic ratio of A1 /si becomes 0/1 to 0·5/0 5 , and 0 3 mm of oxidized wrong ball is used in the medium and is carried out by a paint shaker. Mixing in 100 minutes. Then, in the hydrogen sulfide gas atmosphere, after 1,5 (TC is subjected to 4 hours of smoldering), the obtained sintered product is formed into a circle, and in the case of sulphurous gas, % 1 '15G °C is fired for 4 hours, and the general formula is obtained:

Ba2(Sll-xAlx)S4:Ce(惟式中之X係顯示於第1表)所示之螢 光體。 將所獲得之螢光體,以ICPUnductively Coupled P1_’電感輕合電裝)分析之結果,如第i表所示,可確 認所継之Al/Siu比錢由之分析值係大略相 同0 320803 13 200927885 第1表 調配量 ICP分析值 A1 Si A1 Si (χ) (1-x) 0 1 0 1 0. 05 0. 95 0. 048 0. 952 0. 1 0. 9 0. 09 0. 91 0.2 0.8 0. 21 0. 79 0.3 0. 7 0.31 0. 69 0.4 0. 6 0. 39 0. 61 0.5 0.5 0.52 0.48 此外’進行所獲得之螢光體之X光繞射(XRD),且彙總 XRD鹵形而顯示於第1圖,並且測定尧致發光(pL)強度 (a. u.),而將該發光頻譜顯示於第2圖,且將該激勵頻譜 ® 顯示於第3圖。 若將本藍色螢光體進行X光繞射(XRD),則如第i圖所 示,可確認所獲得之螢光體係為由Ba2(SiixAlx)S4:Ce所示 之早一相所構成者。 再者,可明瞭出現在從使用CuKa線之XRD圖案所求 出之繞射角20=21至23. 5度之主峰值之半值寬度,係較 二般式:Ba2SiSr Ce之其峰值之半值寬度為小,且成為一 奴式.BazSiS4 : Ce之其峰值之半值寬度之9〇至95%。 14 320803 200927885 此外’從第2圖及第3圖,可確認本藍色螢光體係藉 由波長250nro至480nm之光所激勵,而發出藍色光。 就發光頻譜而言’亦可確認本藍色螢光體係藉由波長 nm之光激勵’至少在波長435nm±3〇nm之區域具有發光 峰值。 此外從更加提高發光頻譜之強度之觀點而言,可明 瞭A1之調配里χ係以〇. 〇5以上為佳且以〇.仍至〇. 3〇(尤 其未達0.30)為較佳,其中又以〇. 1〇以上為佳其中尤以 〇·1〇至0·20為更佳。 (试驗例2) 系X A1/Si之原子比成為〇. 1/0. 9之比率之方式調 ,AhS3’ 或取代該 Al2S3 來使用 Ga2S3、Y2S3 ,以 M/Si(M=Ga 或Y)之原子比成為G.l/U之比率之方式進行調配,除 此之外係以與試驗例1同樣方式獲得螢光體。 〇 測定所獲得之螢光體之先致發光(PL)強度(a. U.),, 將結果顯示於第4圖。 _從第4圖之結果可確認,藉由將一般式::( 所不2色螢光體中之Si位置之—部分置換為以,即. 更加提高藉由近紫外線之激勵所致之發光頻譜之於 度,且可更加提升亮度。 ' 另一方面,可明瞭即使添加相同3價之以 法提高發錢譜之發韻度。由此,可推知此^ ’亦無 升效果,係為A1特有之效果。 宄麾之提 (試驗例3) 32〇8〇3 15 200927885 配:之原子比成為0.1/0·9之比率之方式調 心么^ ’、 ^至41110!%之間使Ce濃度變化,除此之 卜、試驗例1相同方式獲得螢光體。 —將=獲传之榮光體之光致發光(PL)強度(a. u·)進行測 疋且、Ce濃度與峰值波長之關係、以及Ce濃度與峰值 強度之關係顯示於第5圖。 從。第5圖可明瞭Ce3+之濃度相對於BaAiS4若為 Ο 、上則較佳為當著眼於峰值強度時,以1至2mol% 為尤佳。惟若^ i θ 右儿e之添加1增加,則發光色朝綠色方向位 f ’且看起來較為明亮,因此若重視亮度提升,則Ce3+之 濃度係以相對於BadiS4為0.5至4m〇l%為佳,尤以i至 2mol%為佳。 【圖式簡單說明】 第1圖係為將試驗例1中所獲得之螢光體各個之又光 繞射(XRD)圖形加以並排顯示之圖。 ❹ 第2圖係為顯示在試驗例1中所獲得之螢光體各個之 光致發光(photolumine^cence,PL)發光頻譜之圖。 第3圖係為顯示在試驗例1中所獲得之螢光體各個之 光致發光激勵頻譜之圖。 第4圖係為顯示在試驗例2中所獲得之螢光體各個之 光致發光(PL)發光頻譜之圖。 第5圖係為針對在試驗例2中所獲得之螢光體,顯示 Ce濃度與峰值波長之關係、以及Ce濃度與峰值強度之關 係之圖。 16 320803 200927885 第6圖係為顆粒(pellet)形狀之藍色螢光體之製程 圖。 第7圖係為顆粒形狀之藍色螢光體之另一製程圖。 第8圖係為顆粒形狀之藍色螢光體之再另一製程圖。 第9圖係為例示靶形狀之藍色螢光體之製造、加工、 接合之製程圖。 【主要元件符號說明】 無 17 320803The phosphor represented by Ba2(Sll-xAlx)S4:Ce (where X is shown in Table 1). As a result of analysis of the obtained phosphor, ICP Unductively Coupled P1_'inductive light-emitting device, as shown in the i-th table, it can be confirmed that the analyzed value of the Al/Siu ratio is roughly the same as that of the 0 320803 13 200927885 Table 1 ICP analysis value A1 Si A1 Si (χ) (1-x) 0 1 0 1 0. 05 0. 95 0. 048 0. 952 0. 1 0. 9 0. 09 0. 91 0.2 0.8 0. 21 0. 79 0.3 0. 7 0.31 0. 69 0.4 0. 6 0. 39 0. 61 0.5 0.5 0.52 0.48 In addition, 'X-ray diffraction (XRD) of the obtained phosphor is performed, and XRD is summarized The halogen pattern is shown in Fig. 1, and the electroluminescence (pL) intensity (au) is measured, and the emission spectrum is shown in Fig. 2, and the excitation spectrum® is shown in Fig. 3. When the blue phosphor is subjected to X-ray diffraction (XRD), as shown in Fig. i, it can be confirmed that the obtained fluorescent system is composed of an early phase represented by Ba2(SiixAlx)S4:Ce. By. Furthermore, it can be understood that the half value width of the main peak appearing from the diffraction angle of 20=21 to 23. 5 degrees which is obtained from the XRD pattern using the CuKa line is the second half of the peak value of Ba2SiSr Ce. The value width is small and becomes a slave. BazSiS4: Ce has a half-value width of 9 to 95% of its peak value. 14 320803 200927885 Furthermore, from Fig. 2 and Fig. 3, it can be confirmed that the blue fluorescent system emits blue light by being excited by light having a wavelength of 250 nro to 480 nm. As far as the luminescence spectrum is concerned, it can be confirmed that the blue luminescence system is excited by light of a wavelength nm to have a luminescence peak at least in a region of a wavelength of 435 nm ± 3 〇 nm. In addition, from the viewpoint of further improving the intensity of the illuminating spectrum, it can be understood that the A χ A 以上 以上 以上 以上 以上 以上 以上 以上 以上 以上 以上 以上 以上 以上 以上 以上 以上 以上 以上 仍 仍 仍 仍 仍 仍 仍 仍 仍 仍 仍 仍 仍 仍 仍 仍 仍 仍It is better to use 〇. 1〇 or more, especially 〇·1〇 to 0.20. (Test Example 2) The ratio of the atomic ratio of X A1/Si to 比率. 1/0. 9 is adjusted, and Ah23' or Al2S3 is used instead of Ga2S3, Y2S3, M/Si (M=Ga or Y) The phosphor was obtained in the same manner as in Test Example 1 except that the ratio of the atomic ratio to the ratio of Gl/U was adjusted. 〇 The electroluminescence (PL) intensity (a. U.) of the obtained phosphor was measured, and the results are shown in Fig. 4. _ From the results of Fig. 4, it can be confirmed that by the general formula:: (the portion of the Si in the two-color phosphor is partially replaced by, that is, the luminescence caused by the excitation of the near ultraviolet ray is further enhanced. The spectrum is more than the brightness, and the brightness can be further improved. On the other hand, it can be seen that even if the same 3 price is added, the rhyme of the money distribution spectrum is increased. Therefore, it can be inferred that this ^' has no effect. A1 unique effect. 宄麾提提(试验例3) 32〇8〇3 15 200927885 Equipped with: The ratio of the atomic ratio becomes 0.1/0·9 is tuned ^ ', ^ to 41110!% The Ce concentration was changed, and the phosphor was obtained in the same manner as in Test Example 1. - The photoluminescence (PL) intensity (a. u·) of the obtained glory was measured, and the Ce concentration and peak value were measured. The relationship between the wavelength and the relationship between the Ce concentration and the peak intensity is shown in Fig. 5. From Fig. 5, it can be seen that the concentration of Ce3+ is preferably Ο with respect to BaAiS4, and preferably 1 when focusing on the peak intensity. 2mol% is especially good. However, if ^ i θ is added to the right e, the illuminating color is toward the green direction f 'and looks brighter. Therefore, if the brightness is increased, the concentration of Ce3+ is preferably 0.5 to 4 m〇l% with respect to BadiS4, particularly preferably i to 2 mol%. [Simplified Schematic] Fig. 1 is a test example 1 The respective light diffraction (XRD) patterns of the phosphors obtained in the above are displayed side by side. ❹ Fig. 2 is a photoluminescence (photolumine^cence) showing the phosphors obtained in Test Example 1. , PL) diagram of the luminescence spectrum. Fig. 3 is a diagram showing the photoluminescence excitation spectrum of each of the phosphors obtained in Test Example 1. Fig. 4 is a graph showing the fluorescing obtained in Test Example 2. Fig. 5 is a graph showing the relationship between the Ce concentration and the peak wavelength, and the relationship between the Ce concentration and the peak intensity for the phosphor obtained in Test Example 2. Fig. 16 320803 200927885 Fig. 6 is a process diagram of a blue phosphor of a pellet shape. Fig. 7 is another process diagram of a blue phosphor of a particle shape. Another process diagram of the blue-shaped phosphor of the particle shape. Figure 9 is a diagram illustrating the shape of the target. Manufacturing a phosphor of the color processing, the engagement of the process of FIG. Main reference numerals DESCRIPTION None 17,320,803

Claims (1)

200927885 七、申請專利範圍: 1. 一種藍色螢光體,係含有一般式:Ba2(Sii xAlx)S4:Ce(惟 式中之X係〇&lt;χ&lt;1)所示之結晶。 2. —種藍色螢光體,係為含有—般式:Ba2(Sii xAlx)S4 : Ce 所示之結晶者,前述式中之χ係為〇. 〇5至〇. 3〇。 3. 如申請專利範圍第w之藍色勞光體,其中,在使用 CuKa線之XRD圖案中’出現在繞射角2 (9 =21至23. 5。 之主峰值之半值寬度係較一般式:Ba2SiS4 : Ce之其峰 ❹ 值之半值寬度為小。 4. 如申請專利範圍第2項之藍色螢光體,其中,在使用 CuKo:線之xrd圖案中,出現在繞射角2 0 =21至23. 5。 之主峰值之半值寬度係比一般式:Bajii : Ce之其峰 值之半值寬度為小。 5·如申請專利範圍第3項之藍色螢光體,其中,在使用 CuKa線之XRD圖案中’出現在繞射角20 =21至23. 5。 之主峰值之半值寬度係一般式:BadiS4 : Ce之其峰值 ® 之半值寬度之90至未達1〇〇%。 6. 如申請專利範圍第4項之藍色螢光體,其中,在使用 CuKa線之XRD圖案中,出現在繞射角20 =21至23. 5。 之主峰值之半值寬度係一般式:Badii : Ce之其峰值 之半值寬度之90至未達100%。 7. —種藍色發光元件或裝置,其具備激勵源、及申請專利 範圍第1至6項中任一項之藍色螢光體。 8. —種白色發光元件或裝置,其具備激勳源、申請專利範 圍第1至6項中任一項之藍色螢光體、及黃色螢光體。 18 320803200927885 VII. Patent application scope: 1. A blue phosphor containing a crystal of the general formula: Ba2(Sii xAlx)S4:Ce (X system in the formula χ&lt;χ&lt;1). 2. A blue phosphor, which is a crystal containing a general formula: Ba2(Sii xAlx)S4: Ce, and the oxime in the above formula is 〇5 to 〇. 3〇. 3. For example, the blue luminous body of the patent application range w, in which the XRD pattern using the CuKa line 'appears at the diffraction angle 2 (9 = 21 to 23.5. The half value width of the main peak is compared) General formula: Ba2SiS4: Ce has a half value width which is small. 4. The blue phosphor according to item 2 of the patent application, in which the diffraction pattern appears in the xrd pattern of CuKo: line Angle 2 0 = 21 to 23.5. The half value width of the main peak is smaller than the general formula: Bajii: Ce has a half value width of the peak. 5. The blue phosphor of claim 3 Wherein, in the XRD pattern using the CuKa line, 'the diffraction angle 20 = 21 to 23.5. The half value width of the main peak is the general formula: BadiS4: Ce has a peak value of half of the value of the half of 90 The main peak of the diffracting angle 20 = 21 to 23.5, in the XRD pattern using the CuKa line, in the XRD pattern of the CuKa line. The half-value width is a general formula: Badi : Ce has a half-value width of the peak of 90 to less than 100%. 7. A blue light-emitting element or device having an excitation source, And a blue phosphor according to any one of claims 1 to 6. 8. A white light-emitting element or device having a blue light source, a blue of any one of claims 1 to 6 Color phosphor, and yellow phosphor. 18 320803
TW097145052A 2007-11-22 2008-11-21 Blue fluorescent element TW200927885A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007302800 2007-11-22

Publications (1)

Publication Number Publication Date
TW200927885A true TW200927885A (en) 2009-07-01

Family

ID=40667286

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097145052A TW200927885A (en) 2007-11-22 2008-11-21 Blue fluorescent element

Country Status (3)

Country Link
JP (1) JP5066104B2 (en)
TW (1) TW200927885A (en)
WO (1) WO2009066452A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148910A1 (en) * 2010-05-25 2011-12-01 住友金属鉱山株式会社 PROCESS FOR PRODUCTION OF Eu-ACTIVATED ALKALINE EARTH METAL SILICATE PHOSPHOR

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104413A (en) * 2004-10-08 2006-04-20 Nec Lighting Ltd Phosphor and white light emitting device using the same
JP4632835B2 (en) * 2005-03-25 2011-02-16 国立大学法人鳥取大学 Method for producing blue phosphor
JP2007211086A (en) * 2006-02-08 2007-08-23 Sharp Corp Inorganic electroluminescence crystallized luminescent film, inorganic electroluminescence element equipped therewith, and method for producing the same

Also Published As

Publication number Publication date
JP5066104B2 (en) 2012-11-07
JPWO2009066452A1 (en) 2011-04-07
WO2009066452A1 (en) 2009-05-28

Similar Documents

Publication Publication Date Title
EP1609839B1 (en) Phosphor and production method of the same, method of shifting emission wavelength of phosphor, and light source and led
TWI390011B (en) Green phosphor
KR101660618B1 (en) Oxynitride phosphor powder
WO2015002139A1 (en) Phosphor and light emitting device
KR101042583B1 (en) White phosphor, and white light-emitting element or device
JP2006307090A (en) Phosphor, method for producing the same and light emitting device using the phosphor
JP2010047772A (en) Phosphor and method for producing the same and light source
TWI424046B (en) Green color fluorescent element
JPWO2016063965A1 (en) Phosphor, light emitting device, lighting device, and image display device
KR101148998B1 (en) Phosphor
JP4225083B2 (en) Phosphor
Zhou et al. Synthesis and luminescence properties of Mn4+-dopant Ca14Zn6Ga10− xAlxO35 solid solution
JP2000026854A (en) Liminous oxide having stuffed tridymite type or kaliphilite type structure and oxide luminophor
JP2009293022A (en) Green phosphor
TW200927885A (en) Blue fluorescent element
JP2008274028A5 (en) Phosphor material, light emitting member, and image display device
JP4343267B1 (en) Green phosphor
TW200837171A (en) Red light fluorescent substance, red light luminescent element and device, and white light luminescent element and device
JP4910151B2 (en) Phosphor mixture
KR100666210B1 (en) Green phosphor based on magnesium thiogallate and preparation method thereof
JP2000063825A (en) Heat resistant, weather resistant, highly luninous and long term afterglowing aluminate light stored body
KR20180061837A (en) Oxyide phosphor
JP5750774B2 (en) Method for producing silicon-containing phosphor
CN110003910B (en) Eu (Eu)3+Activated bismuth fluorotellurate red fluorescent powder and preparation method and application thereof
CN105778898A (en) Yellow silicate long-lasting luminescent material and preparation method thereof