TW200843541A - Noise reduction system and method - Google Patents

Noise reduction system and method Download PDF

Info

Publication number
TW200843541A
TW200843541A TW96121284A TW96121284A TW200843541A TW 200843541 A TW200843541 A TW 200843541A TW 96121284 A TW96121284 A TW 96121284A TW 96121284 A TW96121284 A TW 96121284A TW 200843541 A TW200843541 A TW 200843541A
Authority
TW
Taiwan
Prior art keywords
signal
noise
time domain
frequency domain
digital signal
Prior art date
Application number
TW96121284A
Other languages
Chinese (zh)
Inventor
Jung-Kwon Cho
Original Assignee
Incel Vision Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/790,206 external-priority patent/US20080130914A1/en
Application filed by Incel Vision Inc filed Critical Incel Vision Inc
Publication of TW200843541A publication Critical patent/TW200843541A/en

Links

Abstract

A noise reduction system and a noise reduction method are provided. The noise reduction method estimates directions of arrival of signals by directly using a signal subspace of the signals. Noise of the signals is suppressed at directions other than the directions of arrival. In one embodiment, the signals include audio signals. The signals may be multiple wide-band signals and/or coherent signals in multipath environment with a low signal-to-noise ratio.

Description

200843541 •九、發明說明: -【發明所屬之技術領域】 本發明大體上係關於雜訊減少技術,且尤係關於 .減少由線㈣測器陣列所偵測到之信號之雜、:用於 法。 布、、死和方 【先前技術】 對於諸如是手機、對講機等等之可攜式通气 (portable communication device ) * 言,線二 「( nnear microphone array )早已用來作為音訊^^200843541 • Nine, invention description: - [Technical field to which the invention pertains] The present invention relates generally to noise reduction techniques, and more particularly to reducing the complexity of signals detected by a line (four) detector array: law. Cloth, dead and square [Previous technology] For portable communication devices such as mobile phones, walkie-talkies, etc. *, "Near microphone array" has long been used as an audio ^^

Slgnal detector) 了。當使用者使用可攜式通訊= 置來和另-人通話時,線性麥克風陣列偵測到由該^ 所發出的音訊信號,以便可將谓測到的信號傳 = m當偵測所發出來的音訊信號時,線性爽= :崎細在環境中無所不在的雜訊信號。為;改: 專达到接收端之音訊信號的品質,在所偵測到之音訊n 内出現的雜訊信號需要予以抑制。 ° 典=,線性麥克風陣列通常是包括了複數個 隔設置的麥克風。線性麥克風陣列的麥克風同 :::!信號。由該等麥克風在-瞬時⑴一 ?)或 :::PShot)中所偵測到的音訊信號會被 音訊信號的到達方向(D0A)。 末精確地估計利測 =如’多重信號分類(Music)的演算法已由㈣砟 ° mi ^CMultiple Emitter Location and Signal 93988 5 200843541 * Parameter Estimation”,IEEE Transactions on Antennas and • Propagation,Vol. AP-34, No 3,第 276-280 頁,1986), •用以預估由陣列感應器所接收到的窄頻信號的DOA。 一般而言,MUSIC演算法由一個快照向量建構出光譜 密度矩陣(spectral density matrix ),並執行該光譜密度矩 陣的特徵分解(eigen-decomposition ),以獲得該光譜密度 矩陣的特徵值以及特徵向量。爾後,該MUSIC演算法則 使用該特徵值以及特徵向量來計算DOA的空間光譜,並 Γ 藉此估測該DOA。 由於現代攜帶式通訊裝置的微小化,線性參克風陣列 的麥克風僅以小距離隔開。音訊信號源以及線性麥克風陣 列亦僅以極短距離來隔開。例如,在現代可攜式通訊裝置 内的麥克風彼此之間可能僅相隔兩公分,而線性麥克風陣 列與音訊信號源之間的距離可能少於10公分。 在上述微小化的條件下,音訊信號可能在麥克風之中 I 及/或在線性麥克風陣列與音訊信號源之間反射。此種音訊 信號的反射可能引發多路徑狀態(multi-path condition ), 其可造成音訊信號的同調(coherent)。然而,MUSIC演算 法往往無法精確地預估同調音訊信號的DOA。 在多路徑狀態下克服MUSIC演算法之限制的一個方 法即是使用由T.J· Shan等所提議的空間平滑(spatial smoothing )方法(“Adaptive Beamforming for CoherentSlgnal detector). When the user uses the portable communication = set to talk to another person, the linear microphone array detects the audio signal sent by the ^, so that the measured signal can be transmitted when the detection is sent. The audio signal is linear and cool = : The nuisance of the noise signal in the environment. Change: To achieve the quality of the audio signal at the receiving end, the noise signal appearing in the detected audio n needs to be suppressed. ° Code =, linear microphone array is usually a microphone that includes a plurality of separate settings. The microphone of the linear microphone array is the same as the :::! signal. The audio signals detected by the microphones in the -instant (1) -?) or :::PShot will be in the direction of arrival of the audio signal (D0A). Accurately estimate the profit test = such as 'Multiple Signal Classification (Music) algorithm has been (4) 砟 ° mi ^ CMultiple Emitter Location and Signal 93988 5 200843541 * Parameter Estimation", IEEE Transactions on Antennas and • Propagation, Vol. AP- 34, No 3, pp. 276-280, 1986), DOA used to estimate the narrowband signal received by the array sensor. In general, the MUSIC algorithm constructs a spectral density matrix from a snapshot vector ( Spectral density matrix ), and performing eigen-decomposition of the spectral density matrix to obtain the eigenvalues and eigenvectors of the spectral density matrix. Then, the MUSIC algorithm uses the eigenvalues and eigenvectors to calculate the DOA The spatial spectrum is used to estimate the DOA. Due to the miniaturization of modern portable communication devices, the microphones of the linear reference array are separated by only a small distance. The audio signal source and the linear microphone array are only used for very short distances. Separated. For example, microphones in modern portable communication devices may be only two centimeters apart from each other, while linear The distance between the wind array and the audio source may be less than 10 cm. Under the above miniaturization conditions, the audio signal may be reflected in the microphone I and/or between the linear microphone array and the audio signal source. The reflection of the audio signal may cause a multi-path condition, which may cause the coherent of the audio signal. However, the MUSIC algorithm often cannot accurately predict the DOA of the homophonic signal. Overcoming the multipath condition One method of limiting the MUSIC algorithm is to use the spatial smoothing method proposed by TJ Shan et al. ("Adaptive Beamforming for Coherent"

Signals and Interference” ,IEEE Transactions 〇n Acoustics,Speech and Signal Processing, Vol. ASSP-33, 6 93988 200843541Signals and Interference" , IEEE Transactions Acn Acoustics, Speech and Signal Processing, Vol. ASSP-33, 6 93988 200843541

No· 3,第527-538頁,1985)。然而,雖然該空間平滑方 法可用來預估同調信號的DOA,但其需要線性麥克風陣列 來包含大量的麥克風,而造成具有較低解析度的空間光错。 再者,因為MUSIC演算法僅使用一個快照向量,故 MUSIC演算法僅能處理窄頻信號。為求將MUSIC演算法 延伸以處理寬頻信號,需要使用多個快照向量。 【發明内容】 在一個例示實施例中,提供了一種雜訊減少系統。該 雜訊減少系統可包含有輸入單元、第一轉換器、信號處= 器二第二轉換器以及輸出單元。該輸入單元可包含線性偵 ,态陣列,用於在複數個瞬時(time snap)偵測類比信號, 猎此建構在時域(timedomain)中的類比信號。該第—轉 換器是和該輸入單元相耦合,用於接收在時域中的類比信 號,並將在時域中的類比信號轉變成在時域中的數位^ I:信Γ處理器尚包括了轉變單元(tranSf〇rmati二 用於將在時域中的數位信號轉換成在頻域 朴⑽cy domain)巾的數位信號;雜訊抑制單元,用於 ==權:量(weightingv吻)乘上在頻域中位 =而抑财頻域中之數位㈣中的雜訊,藉此獲得在頻 或中之雜矾減少的數位信號;以及逆轉變 ’、 transf〇rmatiGn unit),肖於 /nverse 栌缺絲从丄丄 只Λ Τ <雜成減少的數位 二虎轉換成在時域中雜訊減少的數位信號 疋和該信號處理器相轉合,用於接收在時域中之 的數位信號,並將在時域中之雜1、咸,卜Μ 才。減彡 之H咸少的該數位信號轉變 93988 7 200843541 成在時域中之雜訊減少的類比信號。該 時域中之雜訊減少的類比信號。 兀•可輪出在 : 在另-個例示實施例中,提供了—種 •該雜訊減少方法可減少由線性麥克風陣列所二法。 信號中的雜訊。該方法可包含下 音訊 複數個快照向量,·由該等快照向曰= 虎準傷 度矩陣;特徵分解該光譜密度矩陣 === 以及複數個特徵值,㈣獲得信號子空間 間^由直接使用該信號子空間科㈣空間光譜 该曰則“虎的DQA;基於該觀來準備加權向量、 該加權向量來獲得雜訊減少的音 ]用 減少的音訊信號。 … 虎’以及輸出該雜訊 應瞭解的是,前述一般的介紹以及下列詳細的介绍僅 =示^及解釋性,並不對如料之本發㈣成限制。 八匕的W及/或變化在除了於此處所提供者之外,亦可力 以提供。例如’本發明可針對所揭露之特徵的各種组口No. 3, pp. 527-538, 1985). However, although this spatial smoothing method can be used to estimate the DOA of a coherent signal, it requires a linear microphone array to contain a large number of microphones, resulting in a spatial optical error with a lower resolution. Furthermore, because the MUSIC algorithm uses only one snapshot vector, the MUSIC algorithm can only process narrowband signals. In order to extend the MUSIC algorithm to process broadband signals, multiple snapshot vectors are required. SUMMARY OF THE INVENTION In one illustrative embodiment, a noise reduction system is provided. The noise reduction system can include an input unit, a first converter, a signal converter, a second converter, and an output unit. The input unit can include a linear array of detectors for detecting analog signals at a plurality of time snaps, merging the analog signals constructed in the time domain. The first converter is coupled to the input unit for receiving an analog signal in the time domain and converting the analog signal in the time domain into a digit in the time domain ^I: the signal processor further includes The transform unit (tranSf〇rmati 2 is used to convert the digital signal in the time domain into a digital signal in the frequency domain (10) cy domain); the noise suppression unit is used for == weight: quantity (weightingv kiss) multiplied In the frequency domain, the noise in the digits (4) in the frequency domain is suppressed, thereby obtaining the digital signal with reduced noise in the frequency or medium; and the inverse transform ', transf〇rmatiGn unit), Xiao Yu /nverse栌 丝 丄丄 Τ Τ Τ Τ 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂Signal, and will be mixed in the time domain, salty, divination. The digital signal transition of the reduced H is less. 93988 7 200843541 Analog signal with reduced noise in the time domain. The analog signal of the noise reduction in this time domain.兀•可轮出: In another exemplary embodiment, a method is provided. • The noise reduction method can reduce the two methods by the linear microphone array. Noise in the signal. The method may include a plurality of snapshot vectors of the audio signal, from the snapshots to the 准= tiger quasi-injury matrix; the feature decomposes the spectral density matrix === and the plurality of eigenvalues, and (4) obtains the signal subspace between the direct use The signal subspace (4) spatial spectrum is the "DQA of the tiger; based on the view to prepare the weight vector, the weight vector to obtain the noise reduced noise] with reduced audio signal. ... Tiger's and output the noise should It is to be understood that the foregoing general description and the following detailed description are merely illustrative and not limiting as to the present invention. The W and/or variations of the gossip are in addition to those provided herein. It can also be provided. For example, the present invention can be applied to various groups of the disclosed features.

次組合及/或組合以及數個在下列詳細說明中所揭霖之 外特徵的組合及次組合。 S 【實施方式】 現將針對所附圖式中符合本發明的範例予以詳細的 說明:在下列說明中所提出的實作僅是符合關於本發明之 某些態樣的某些範例,且並不代表符合所主張之本發明之 所有可能的實作。在可能的狀態下,相同的元件符號將在 93988 8 200843541 整個圖式中被用央扣—+ 溉用;Μ曰不相同或是相似的部件。 減少=的::咸解釋广種雜訊… 的雜訊。在二二二Γ侦測 麥克風陣列,而:::嫌偵測器陣列可能是線性 f述的β立 、及到的信號則可以是音訊信號。雖然 號以及線性麥克風陣列’應瞭解的是可使 μ k#u,諸如是電磁輻射信號,以及其它類型 的線性__列,諸如是線性天料列。 茶看第1圖,線性谓測器陣列11〇包含了線性排列且 彼此夺距間隔的複數個偵測器。在—個實施射,線性侦 測益陣列110可包含三個偵測器112、m和116。應瞭解 的是,在其它的實施例巾’線性偵測器_ ι10可包含任 意數量的偵測器。 在一個實施例中,偵測器112、114、116可包含麥克 風用於偵測音說信號。為了說明方便,偵測器j ^ Μ、 116疋組構在二維平面上,該二維平面之特徵在於水平軸 120以及垂直於該水平軸12〇的垂直軸13〇。水平軸 交會垂直軸130而定義出原點。 如第1圖所示,偵測器114是位在原點、偵測器112 是位在水平軸120上且是位在偵測器114的左侧、而偵測 器116是位在水平軸12〇上並位在偵測器114的右側。谓 測裔112、114、116是以分隔距離D來彼此等距分離。在 一個實施例中,分隔距離D可以是大約2公分。線性彳貞測 器陣列110是組構成接收寬頻類比信號。 9 93988 200843541 -因為由線性制器陣列11G所接收到的寬頻類比信號 ::包含雜訊信號,因此,為了模擬所接收到之寬頻類比 .可使用信號源u以產生欲被線性偵測器陣列⑽ •嶋,亦可使用雜訊源12以產生不欲被該線性 偵“陣列1U)所接收的信號,如第i圖所示。欲被接收 ^號連同不欲被接收的信號組成並且模擬被該線性偵測 :陣列110所接收到的寬頻類比信號。在-個實施例中, 見頻類比信號包含了音訊信號。 信號源11可以是使用者的嘴部(m〇uth),該嘴部產生 由該使用者所發出的音訊信號。在一個實施例中 11可位在距線性偵測器陣列m大約6公分遠的位^且 =該水平軸120之正方向呈第一角度01。應瞭解的是, 10 200843541 含Μ個制器,用於偵測或輪人來自p個聲音產生立 訊信號’纟中Μ和P為正整數。p個聲音產生器可:含: 就源11及/或雜訊源12。Μ固聲音產生器產生將 ^ 測器陣列110所偵測的類比信號。 、1貝 由線性摘測器陣列110之第i個偵測器在瞬 測到的類比信號可組成輸入信號h⑺, 、 ρ 兄(〇=Σ a (4,〇 ® ~ % , 片 方程式1 其中α'心)代表著第i個偵測器(1<=i< = M)對且有在第 j個角度A以及在瞬時t之D0A之第j個聲音產生器 間的脈衝回應;’代表由第j個聲音產生器在瞬時^所 產生的類比信號;_代表由第丨個偵測器在瞬時t所债測 到的雜訊;而③代表迴旋運算。藉由在瞬時"吏用所有的Μ 個輸入信號劝),則可建構出快照向量x(t),亦即 y(t) = A(t) ® uif) + n(t), 方程式2 其中x(t)和n(t)分別疋輸入仏號以及雜訊信號的 行向量,IL(t)是所產生類比信號的Ρχ1行向量,而八⑴則 是脈衝回應的ΡχΜ矩陣。具體而言, Ζ⑺七(〇,"·,/(0 = [〜(0, ··.,〜(0],!>〗〇),…,〜(?)],以及 Α(ί) == …,这(^ρ,ί)] ⑽1,〇 « « 稱,,)’ 方程式3 方程式4 方程式5方程式6 93988 11 200843541 其中在方私式3至5内的T代表向量或是矩陣的轉置 (transpose )運算。 其-人’亦可對方程式2的快照向量乂(t)執行轉變, 以獲得Z_轉變的快照向量z(z), .(^^(zmz),^), 方程式 7 f 其中J(Z) —[^’z),.··.·,妳〆)],且z是以Z = exp(J0)所表示的複 數,其中J是為虛數單位(imaginary unit )數,定義成負j 的平方根’而p是為複數平面的方位角(azimuthal angle)。透過使用在方程式7中所給定之z_轉變的快照向 量χ(Ζ),可建構出光譜密度s(z), 5(Z) = E[y(Z)yT (Z^)] = A(Z)E{u(Z)uT (Z^1 )]Ar (Z'1) + E\n(Z)nT (Z^1)], 方程式8 其中Ε[·]代表著期望值。光譜密度s(z)包含信號(無 雜訊)光譜密度以及雜訊光譜密度。依據z = exp(j0),方程式8 可表示成 S.S—hp抛、 方程式9 其中sNF⑹是信號(無雜訊)光譜密度,是雜訊光譜 密度,而〜是比例常數。 為了計算在方程式9中所給定之乙轉變的光譜密度 5⑹的特徵向量以及特徵值,可藉由將⑹乘在光譜密度 将)的左側以及將(Σ-1/2(州"乘在光譜密度柳)的右側而特徵 分解ζ-轉變的光譜密度⑽),其中[-1/2(0)是雜訊光譜密度 Σ@)之平方根的倒數,而(ς-1/2_〃則是2:〜1/2w的厄米共輕 (Hermitian conjugate)。因此,則獲得了特徵分解之光譜密 12 93988 200843541 度,即 Σ-"物,(紙·、产+从 方程式q 其中I是單位矩陣。因為Σ ,_)(Σ-"w之秩(而k) 為P,故可獲得p個非灾拉n推 非令知斂值(以八冰表示)以及(M-P) 個零特徵值。對應於p個非灾牲 似#令4寸敛值的特徵向量組成了信 號子空間,而對應於(Μ_ρ)個烫拉^ u 個令4寸徵值的特徵向量組成了雜 訊子空間。此外,特徵分解之 刀解之先瑨密度可導致標準化的 (normalized)特徵向量,亦即是聊、)=。 所以,可獲得: A尸(沴)0 0 ΕΗ{φ) 方程式9可因此以特徵值 m= 而重寫為 Σ「1/2(獅)(Σ-1/2,=·λ_ Λ〆卢) + /?wI 0Sub-combinations and/or combinations and a number of combinations and sub-combinations of the features disclosed in the following detailed description. S [Embodiment] Reference will now be made in detail to the preferred embodiments of the invention, in which It does not represent all possible implementations of the claimed invention. Where possible, the same component symbols will be used in the entire figure of 93988 8 200843541 for the use of the button - + irrigation; Μ曰 not the same or similar components. Decrease =:: Salt explains the noise of a wide variety of noise... The mic array is detected at 222, and the ::: Detector array may be linear, and the resulting signal may be an audio signal. While the number and linear microphone array' should be understood, it is possible to make μk#u, such as electromagnetic radiation signals, as well as other types of linear__ columns, such as linear arrays. Tea Looking at Figure 1, the linear predator array 11〇 contains a plurality of detectors that are linearly arranged and spaced apart from one another. In one implementation, the linear detection array 110 can include three detectors 112, m, and 116. It should be understood that in other embodiments, the 'Linear Detector' may include any number of detectors. In one embodiment, the detectors 112, 114, 116 may include a microphone for detecting the tone signal. For convenience of explanation, the detectors j ^ Μ, 116 疋 are organized in a two-dimensional plane characterized by a horizontal axis 120 and a vertical axis 13 垂直 perpendicular to the horizontal axis 12 〇. The horizontal axis intersects the vertical axis 130 to define the origin. As shown in FIG. 1, the detector 114 is at the origin, the detector 112 is on the horizontal axis 120 and is located on the left side of the detector 114, and the detector 116 is on the horizontal axis 12. The upper side is positioned on the right side of the detector 114. The descents 112, 114, 116 are separated from each other by a separation distance D. In one embodiment, the separation distance D can be about 2 cm. The linear detector array 110 is a group of receiving broadband analog signals. 9 93988 200843541 - Because the broadband analog signal received by the linear controller array 11G: contains the noise signal, therefore, in order to simulate the received broadband analogy, the signal source u can be used to generate the linear detector array to be generated. (10) • Alternatively, the noise source 12 can also be used to generate a signal that is not intended to be received by the linear detection "array 1U", as shown in Figure i. To be received with a ^ number together with a signal that is not intended to be received and simulated The linear detection: the broadband analog signal received by the array 110. In one embodiment, the frequency analog signal includes an audio signal. The signal source 11 can be a user's mouth (m〇uth), the mouth The portion produces an audio signal emitted by the user. In one embodiment, 11 is positionable about 6 cm away from the linear detector array m and = the first angle 01 of the positive direction of the horizontal axis 120. It should be understood that 10 200843541 contains a controller for detecting or wheeling people from p sounds to generate the signal "纟中Μ and P are positive integers. p sound generators can include: on source 11 And/or noise source 12. The tamping sound generator will generate The analog signal detected by the array 110. The first analog detector of the linear detector array 110 can form an input signal h(7), ρ 兄 (〇=Σ a (4, 〇® ~ % , slice equation 1 where α'heart) represents the ith detector (1<=i<=M) pair and has the jth angle at the jth angle A and the d0A at the instant t The impulse response between the generators; 'represents the analog signal generated by the jth sound generator at the instant ^; _ represents the noise detected by the second detector at the instant t; and 3 represents the convolution operation By instantiating all the input signals, we can construct the snapshot vector x(t), ie y(t) = A(t) ® uif) + n(t), the equation 2 where x(t) and n(t) are respectively input 仏 and the row vector of the noise signal, IL(t) is the Ρχ1 line vector of the generated analog signal, and 八(1) is the ΡχΜ matrix of the impulse response. For example, Ζ(7)七(〇,"·,/(0 = [~(0, ··.,~(0],!>〗〇),...,~(?)], and Α(ί) == ..., this (^ρ, ί)] (10)1, 〇« «称,,) Equation 3 Equation 4 Equation 5 Equation 6 93988 11 200843541 where T in the private 3 to 5 represents the transpose operation of the vector or matrix. The -person' can also be the snapshot vector of the other program 2 (t Perform a transformation to obtain the snapshot vector z(z) of the Z_transition, .(^^(zmz),^), where Equation 7 f where J(Z) —[^'z),.··.·,妳〆)], and z is a complex number represented by Z = exp(J0), where J is the number of imaginary units, defined as the square root of negative j ' and p is the azimuthal angle of the complex plane (azimuthal angle ). By using the snapshot vector χ(Ζ) of the z_transition given in Equation 7, the spectral density s(z) can be constructed, 5(Z) = E[y(Z)yT (Z^)] = A( Z) E{u(Z)uT (Z^1 )]Ar (Z'1) + E\n(Z)nT (Z^1)], Equation 8 where Ε[·] represents the expected value. The spectral density s(z) contains the signal (no noise) spectral density and the spectral density of the noise. According to z = exp(j0), Equation 8 can be expressed as S.S_hp, Equation 9 where sNF(6) is the signal (no noise) spectral density, is the spectral density of the noise, and ~ is the proportionality constant. To calculate the eigenvectors and eigenvalues of the spectral density 5(6) of the B-transition given in Equation 9, by multiplying (6) by the spectral density will be on the left side and (Σ-1/2 (state " multiply by the spectrum) The right side of the density willow) and the characteristic decomposition ζ-transition spectral density (10)), where [-1/2(0) is the reciprocal of the square root of the spectral density Σ@), and (ς-1/2_〃 is 2 : ~ 1/2w Hermitian conjugate. Therefore, the spectral decomposition of the characteristic decomposition is obtained 12 93988 200843541 degrees, that is, Σ-" matter, (paper, production + from equation q where I is the unit Matrix. Because Σ, _)(Σ-"w ranks (and k) is P, so you can get p non-disaster pull n push non-recognition values (indicated by eight ice) and (MP) zero features The eigenvectors corresponding to the p-non-disaster-like-like 4-inch convergence values constitute the signal subspace, and the eigenvectors corresponding to the (Μ_ρ) hot-drawing ^u 4-inch eigenvalues constitute the noise sub-sense. In addition, the prior density of the knives of the feature decomposition can lead to normalized eigenvectors, that is, chat,) =. So, you can get: A corpse (沴)0 0 ΕΗ{φ) Equation 9 can therefore be rewritten as 特征"1/2(狮)(Σ-1/2,=·λ_ Λ〆卢) + /?wI 0 with the eigenvalue m=

Pyf 方程式10 〇 以及特徵向量取的的形式 W,其中 的 在此,特徵值八冰包含了信號源11以及雜訊源12 特徵值。 根據方程式1〇’可獲得Z,變的信號先譜密度s鳥 及Z_轉變的信號光譜因子以⑹。即 〜(多)=Σ1/2 (办S’⑷八p⑻#⑹(£仍(多))打丨以及 、 3]1,\φ)-Συ\φ)ΕΡ(Φ)Αιί\φ)1 方程式 11 方程式12 其中聊是特徵向量,其包含了對應於ρ個非爱特徵 值的Ρ元素。藉由對方程式11#σ 12所給定之乙轉變的‘ 93988 13 200843541 胃號光譜密度sNF⑻以及光譜因子W⑹執行逆傅立葉轉變 • (inverse Fourier transform),則可得到信號光譜密度‘(幻以 :及信號光譜因子5^2(z),即 ’ J 的哪[卿],以及 方程式13 *=-〇〇 上兀 Ο幻=ΣΖ^士!。 方程式14 可藉由使用移動平均模型(moving average model)在 C 單位圓(unit circle )上插入點而計算在方程式13内之信 號光譜密度‘(z)。在一個實施例中,可使用2n+l個點在 單位圓上,且可藉由拉格朗日内插(Lagrange interpolation ) 而唯一地決定信號光譜密度‘⑺,即 4⑺方程式15 其中\是光譜密度矩陣(L = A ),是定義為 〇 b£(z) = -^±(wyzk ^ ^ T ^ Z = W^Qxp[J2n-^-£]斗從 2^ + 1 k=_n 的内插函數,而 +1 。該荨 内插點可平均地置於單位圓中用以預估信號子空間。藉由 特徵分解方程式15所給定之信號光譜密度心:⑺,可獲得 信號光譜密度‘= (z)的特徵值和特徵向量,因而預估信號 子空間的維度(dimension )。 在雜訊子空間和方向向量之間的歐幾里德距離 (Euclidean distance) J⑹係定義為 14 93988 200843541 方程式16 ^CV (^)=- 其中Μ系由雜訊子空間之行特徵向量構成之雜訊子 空:矩陣,係方向向量(稍後討論),而,係光譜加權 函數(,>〇)(亦在稍後討論>D0A之空間光譜可定義為 1 方程式17 J ^ f〇h〇^)^f+2p(\^ie)Etcf 二。為求精確預估用於在多路捏環境中之多個寬頻音訊 l ^及同凋js號的D0A,可使用在各個瞬時之複數個快照 向=來構成協方差矩陣。在一個實施例中,考慮◎個快照 向里’其中Q是正整數。第q個快照向量係給定為 咖_, 方程式18 田其中lSqgQ。利用方程式7中所定義之複數個快照 向量,可構成協方差矩陣Rt,其係給定為 is(q)The Pyf equation 10 〇 and the eigenvector take form W, where the eigenvalue october contains the signal source 11 and the noise source 12 eigenvalues. According to Equation 1〇, Z can be obtained, and the signal first spectral density s and the signal spectrum factor of the Z_transition are (6). That is ~ (multi) = Σ 1/2 (do S'(4) eight p(8)#(6) (£ still (multi)) 丨 and, 3]1, \φ)-Συ\φ)ΕΡ(Φ)Αιί\φ)1 Equation 11 Equation 12 where chat is a feature vector containing Ρ elements corresponding to ρ non-love eigenvalues. By performing the inverse Fourier transform on the '93988 13 200843541 stomach spectral density sNF(8) and the spectral factor W(6) given by the equation 11#σ12, the signal spectral density can be obtained. The signal spectral factor is 5^2(z), which is the 'J' of J, and the equation 13 *=-〇〇上兀Ο幻=ΣΖ^士!. Equation 14 can be obtained by using the moving average model Calculating the spectral density of the signal '(z) in Equation 13 by inserting a point on the C unit circle. In one embodiment, 2n + 1 points can be used on the unit circle and can be pulled by Lagrange interpolation and uniquely determines the spectral density of the signal '(7), ie 4(7) Equation 15 where \ is the spectral density matrix (L = A), which is defined as 〇b£(z) = -^±(wyzk ^ ^ T ^ Z = W^Qxp[J2n-^-£] is an interpolation function from 2^ + 1 k=_n, and +1. The interpolation point can be placed evenly in the unit circle for estimation Signal subspace. Signal light can be obtained by decomposing the spectral density of the signal given by Equation 15: (7) The eigenvalue of the density '= (z) and the eigenvector, thus estimating the dimension of the signal subspace. The Euclidean distance J(6) between the noise subspace and the direction vector is defined as 14 93988 200843541 Equation 16 ^CV (^)=- where the Μ is the noise subspace formed by the row eigenvectors of the noise subspace: the matrix, the direction vector (discussed later), and the spectral weighting function (, > ;〇) (also discussed later) The spatial spectrum of D0A can be defined as 1 Equation 17 J ^ f〇h〇^)^f+2p(\^ie)Etcf II. For accurate estimation, it is used in many A plurality of wideband audios in the environment and a D0A with the same js number can be used to form a covariance matrix using a plurality of snapshots at each instant. In one embodiment, consider ◎ snapshots inward. Q is a positive integer. The qth snapshot vector is given as _, Equation 18, where lSqgQ. Using a plurality of snapshot vectors defined in Equation 7, a covariance matrix Rt can be constructed, which is given as is(q)

^ Q Σ灼⑷乃—无),· · Σ乃⑷〜(《一无) g {q-k) Q-k ㈣+1 g=k+l Q-k : 、 : ^ 2 Σ yu (Φι Y^yM (q)yM (q - k) 护籴+1 方程式19 其中且下標灸是從i到”的整數,而2 = 2”+1( ”是 任意整數)。 第2A圖示意地說明沿著時間延遲(time lag)方向24〇 複數個協方差矩陣R〃。如圖所示,各個協方差矩陣&係 方形210表示,該正方形21〇代表橫跨在第一軸22〇 15 93988 200843541 =第二轴23G的空間相關性(spatial⑽elation )。在-個 貝也例中使用ρ個快照向量來構成+ i個協方差矩陣〇 利用方程式19,可將光譜密度矩陣&定義為 Π = Σ w(k) Rit Exp[-J 2; 2n + l 方程式20 ^其中w⑷是加權向量。藉由特徵分解光譜密度矩陣&可 獲,n+1個光譜密度矩陣\的特徵值和特徵向量。利用光 口曰么度矩陣A的特徵值和特徵向量,可以區別及識別出信 號:空間和雜訊子空間。若雜訊子空間矩陣〜包括該雜訊 子二間的(Μ-P )個特徵向量,則可利用方程式丨7計算出 空間光譜‘⑼,而不須考慮直流(DC)分量(component) (即,該項)。然後光譜加權函數力可定義為(若 Ρ 未加權)以及< § & (若有加權),其中心·是用於信號子 I空間的特徵值。此外,方向向量仏⑼係給定為 {〇) = [1? exp(J2^.3 exp(J2^(M -l)k)], 方程式 21^ Q Σ灼(4)是—无),·· Σ乃(4)~(“一无) g {qk) Qk (4)+1 g=k+l Qk : , : ^ 2 Σ yu (Φι Y^yM (q) yM (q - k) 籴 +1 Equation 19 where and the subscript moxibustion is an integer from i to ", and 2 = 2" +1 (" is an arbitrary integer). Figure 2A schematically illustrates the delay along time ( Time lag) direction 24 〇 a plurality of covariance matrices R 〃. As shown, each covariance matrix & square 210 indicates that the square 21 〇 represents across the first axis 22 〇 15 93988 200843541 = second axis Spatial correlation of 23G (spatial(10)elation). Using ρ snapshot vectors to form + i covariance matrices in the case of 贝 也, using equation 19, the spectral density matrix & can be defined as Π = Σ w(k) Rit Exp[-J 2; 2n + l Equation 20 ^ where w(4) is a weighted vector. The eigenvalues and eigenvectors of n+1 spectral density matrices can be obtained by decomposing spectral density matrices & The eigenvalues and eigenvectors of the matrix A can distinguish and identify the signal: space and noise subspace. If the noise subspace matrix ~ includes the noise For the two (Μ-P) eigenvectors, the spatial spectrum '(9) can be calculated using the equation 丨7, without regard to the direct current (DC) component (ie, the term). Then the spectral weighting function can be Defined as (if Ρ unweighted) and < § & (if weighted), its center is the eigenvalue used for the signal subspace I. In addition, the direction vector 仏(9) is given as {〇) = [1 ? exp(J2^.3 exp(J2^(M -l)k)], Equation 21

^ _ DisinO 其中 % + 1 ,而D是線性偵測器陣列11〇之兩個债 測益之間的分隔距離。方向向量义⑼可以是被用來以信號 子空間及/或雜訊子空間計算歐幾里德距離d⑻ 的複數正弦向量(complex sinusoid vector )。 第2B圖示意地說明沿著時間頻率(temporal frequency)方向260之複數個光譜密度矩陣如圖所示, 93988 16 200843541 光曰山度矩陣&係以正方形250表示,該正方形25〇代 =橫跨在第一車由270和第二車由28〇的空間相關性。在一個 貫施例中,可從協方差矩陣&建構光譜密度矩陣&。 、為求精確預估用於同調信號的D〇A及克服空間平滑 方法的缺陷,可藉由直接使用信號子空間(DUSS )來許管 空間光譜。 t z_轉變的雜訊子空間可表示為 方程式22 ⑽.⑻Z-㈣=秘)ή卜exp[為到, /=1 八旦其中⑽代表雜訊子空間的第^特徵向量的第打個 分量:购代表(Μ_ρ)個分量的ζ_多項式,而叫代表入 射角參數。入射角參數ω (其可定義為包含 了在中心頻率/。之第i個聲音產生器的人射角資訊。匕3 在一個實施例中,針對3個同調信號(即p=3)和8 個—(即M=8)具有信號雜訊比(SNR) $馳的偵測器 :算多項式咖的根。多項式。⑺的根為複數,其可由: 數平面上的點所代表。如第3圖所示,代表多項心幻的 的點係平均地散佈在複數平面之單位圓内。多項式⑽ =均地散佈的根建議著㈣子”職絲預估用於同 5周k號的DOA。 考慮空間相關性矩陣 壯~ , AO伯珂馮於非苓特徵值 ^向量⑽的複數個行’以及對應於零特徵值之特徵 的零向量△。空間相關性矩陣〜與零向量珀内積, 為零且滿足齊次矩陣方程4 ( h〇m〇genec)US matr 93988 17 200843541 equation),即 U鉍厶=0, ,. 方程式23 旦π Κ ΓΓ相關性矩陣〜是(M_K+1)xK的矩陣,而零向 里—疋X的仃向量。若空間相關性矩陣%與零向量々的内 積不疋τ則向里△不是空間相關性矩陣1^之特徵向 零向量。為求簡單,特徽内旦v⑺私主—* / 7 %攸向里—以)知表不為ν(·),而空 關性矩陣Uw係給定為 间相 v(l) v(2) υΛ v⑷餐1:)… v(m) V(jT)… 方程式24 ·: : '· V(W VC^ —1)…v(Af - 尤 + ι)」w -為求計算零向量ι可對空間相關性矩陣%之内積f 執行特徵分解。内積&係定義為 、k Σ,^(ι + Κ)ν(ι + Κ) ... ΛΓ - iT ’ · Σν*(ζ + Ι)ν(/ + Χ) ... Μ-Κ ΣνΦ(/ + Γ)ν(ζ + 1) >〇 Μ-Κ η Σν*(ζ + 1)ν(/ + ΐ) 7=0 方程式25 •其中ρ是空間相關性矩陣的實數維度(real dimension) ’ K是藉由經驗法則所判定的參數,而以·)是<·) 的共軛複數。 在一個實施例中,針對3個同調信號(即p=3)和8 個(即¥8)具有信號雜訊比為1〇dB的偵測器,計算由 信號子空間之特徵向量《Z_轉變的零向量&所構成之多項 式L(z)的根,並且以在複數平面中的點表示之,如第斗圖 所不。如圖所示,該等點大致位於單位圓的周圍。因此, 93988 18 200843541 從L唬子二間所獲得的空間光譜能較佳預估用於同調信號 的 DOA 〇 藉由直接使用k號子空間(Duss),可獲得 空間光譜 rDUS, )==—-—^ 1 l~t/t{e)EmcEiat{0) 方程式 26 2中I表示信號子空間矩陣’其包括對應於非 值7徵向量⑽的複數個行,而⑽是方程式21的方向 向里再者(Κ占⑼=β(θ)是信號子空間(句和 方向向量么⑻之間的歐幾里德距離。 為求抑制來自除了 D0A之 陣列1 1 〇所偵、、目丨沾 、向中被線性偵測器 向量在/程…的加權 (,,而給予在除了 權。利用極小方差法(minimum variah々方向料較少的加 在—_ = 1的限制 e method),可藉由 則itiplier ))取W峨二(丨 格朗日乘數(Lagrange "I是信號源11的目栌自取值而獲得加權向量咐),其 協方差矩陣。因此,能葬而*疋疋義於方程式19中的 _),即 來汁算加權向量 W(Jt) = —^jlak(0l)— ak 。 方程式27 一旦計算出方㈣27之加權向㈣ 貝J可猎由將加 19 93988 200843541 權向量’、乘以在頻域”的輸入信號而計算出在 中之雜訊減少的輸入信號,即 方程式28 ,在頻域八中的輸入信號係方程式1之傅立葉轉變 後的輸入信號乃⑺。結果,可藉由 ,、锊 積田對頻域〜卡之雜訊減少的 輸入信號進行逆離散傅立葉轉變( 朱得文U^T)而獲得雜訊減少 的輸入信號亦因此,雜訊減少的輸入信號切)被傳送到 接收器。因為在除了驗之外的方向進人線性偵測器陣 列110的那些信號明顯地被抑制為雜訊減少的輸入信號 切),接收器可僅接收欲被傳送之所需的信號。因此,可透 過包含線性侧11陣列11G之通訊設備將高品質的音訊信 號從發送端傳送至缝端。在—個實_巾,通訊設備可 包含可攜式通訊裝置,例如行動電話等等。 參見第5圖,將詳細描述根據符合本發明之一個實施 例的雜訊減少系統500。如圖所示,雜訊減少系統可 包含輸入單元5H)、第-轉換器跡以及信號處理器跡 雜訊減少系統5GG可進-步包含第二轉換器54()以及輸出 單元550。 在一個實施例中’輸入單元51〇可包含具有第一偵測 器5U、第二债測器514、以及第三傾測器516的線性偵測 益陣列。輸入單it 510在複數個瞬時债測類比信號,因而 建構在時域中的類比信號。在一個實施例中,偵測器512、 514和516可以是音訊制器或麥克風,而類比J號可以 是音訊信號。在-個實施例中,第—制器、512、第二债 93988 20 200843541 、、 *以及第二偵測器516係線性排列並彼此等距隔 •開。雖然在第5圖中顯示3個谓測器512、514和…,但 .應了解的是,輸人單元51G可包含任意數量的偵測器。^ .應了解’谓測器512、514和516可包含 可包含電磁輻射信號。 佩唬 第5圖中所示,第一轉換器52〇係與輸入單元Μ。 耦接,用於接收在時域中的類比信號並將在時域中的 類比信號轉變成在時域中的數位信號。在一個實施例中X, 第一轉換器520可以是類比至數位轉換哭 (anal°g如digital (A/D)⑶請ne〇,例如四通道的A/; 轉換器或二通道的立體聲編解碼器(c〇dec),並可呈 16 kHz的取樣率。 另穴、,习 士信號處理器530係與第一轉㈣52〇輕接,用於接收 在喊中轉換後的數位信號。信號處理器53G將在時域 的數位信號轉換成在頻域_的數位信號,並且藉由將 向量乘以在頻域中的數位信號來抑制在頻域中的數位信猿 中的雜訊’以獲得在頻域中之雜訊減少的數位信號。在: 個實施例中’信號處理器53〇可包含市面上可取 信號處理1 (脱),例如由德州儀器公司(τ^ Instnnnems Inc.)所製造之 Ti Dsp 6713。應了 解的是^ _ DisinO where % + 1 and D is the separation distance between the two debt estimates of the linear detector array 11〇. The direction vector meaning (9) may be a complex sinusoid vector (complex sinusoid vector) used to calculate the Euclidean distance d(8) in the signal subspace and/or the noise subspace. Figure 2B schematically illustrates a plurality of spectral density matrices along the temporal frequency direction 260 as shown, 93988 16 200843541 The pupil mountain matrix & is represented by a square 250, which is 25 = = horizontal The spatial correlation between the first car by 270 and the second car by 28 。. In one embodiment, the spectral density matrix & can be constructed from the covariance matrix & In order to accurately estimate the D〇A for the homology signal and overcome the shortcomings of the spatial smoothing method, the spatial spectrum can be controlled by directly using the signal subspace (DUSS). The noise subspace of the t z_ transition can be expressed as Equation 22 (10). (8) Z - (4) = secret) exp exp exp [for, / = 1 八 旦 (10) represents the first eigenvector of the noise subspace Component: buys the ζ_ polynomial of the representative (Μ_ρ) components, and is called the incident angle parameter. The angle of incidence parameter ω (which may be defined as the human angle information containing the i-th sound generator at the center frequency /.) 3 In one embodiment, for 3 coherent signals (ie p=3) and 8 - (ie M = 8) detector with signal-to-noise ratio (SNR) $: The root of the polynomial coffee. Polynomial. The root of (7) is a complex number, which can be represented by a point on the number plane. In Fig. 3, the points representing multiple hearts are scattered evenly in the unit circle of the complex plane. The polynomial (10) = the root of the uniform spread suggests that the (four) child is estimated to be used for the DOA of the same week 5 k. Considering the spatial correlation matrix, the AO 珂 珂 于 于 苓 苓 苓 ^ ^ ^ ^ 向量 向量 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 空间 空间 空间 空间 空间 空间 空间 空间Zero and satisfy the homogeneous matrix equation 4 (h〇m〇genec) US matr 93988 17 200843541 equation), ie U铋厶=0, ,. Equation 23 π π Κ ΓΓ Correlation matrix ~ is (M_K+1)xK The matrix, and the zero-inward-疋X 仃 vector. If the inner product of the spatial correlation matrix % and the zero vector 疋 is not 疋τ △ is not the characteristic of the spatial correlation matrix 1^ to the zero vector. For the sake of simplicity, the special emblem inner (v) private (-) / 7 % 攸 inward - to know that the table is not ν (·), and the nullity matrix Uw is given as interphase v(l) v(2) υΛ v(4) Meal 1:)... v(m) V(jT)... Equation 24 ·: : '· V(W VC^ —1)...v(Af - 尤+ ι)"w - To calculate the zero vector ι, the feature decomposition can be performed on the inner product f of the spatial correlation matrix %. The inner product & is defined as, k Σ, ^(ι + Κ) ν(ι + Κ) ... ΛΓ - iT ' · Σν*(ζ + Ι)ν(/ + Χ) ... Μ-Κ ΣνΦ (/ + Γ)ν(ζ + 1) >〇Μ-Κ η Σν*(ζ + 1)ν(/ + ΐ) 7=0 Equation 25 • where ρ is the real dimension of the spatial correlation matrix (real dimension ) 'K is a parameter determined by the rule of thumb, and ·) is a conjugate complex of <·). In one embodiment, the eigenvector "Z_" of the signal subspace is calculated for three coherent signals (ie, p=3) and eight (ie, $8) detectors having a signal to noise ratio of 1 〇 dB. The root of the polynomial L(z) formed by the transformed zero vector & and represented by a point in the complex plane, as in the first graph. As shown, the points are approximately around the unit circle. Therefore, 93988 18 200843541 The spatial spectrum obtained from L-Dragon II can be better estimated for the DOA of the homology signal. By directly using the k-space (Duss), the spatial spectrum rDUS can be obtained, )==- -^^ 1 l~t/t{e)EmcEiat{0) In Equation 26 2, I represents the signal subspace matrix 'which includes a plurality of rows corresponding to the non-valued 7 sign vector (10), and (10) is the direction of Equation 21. In the latter (Κ(9)=β(θ) is the Euclidean distance between the signal subspace (the sentence and the direction vector (8). In order to suppress the array from the D0A array 1 1 〇, , the weighting of the linear detector vector in / is ..., and is given in addition to the weight. Using the minimum variance method (minimum variah 々 direction is less added to the -_ = 1 limit e method), By itiplier )) take W峨二 (Lagrangian multiplier (Lagrange " I is the source of the signal source 11 to obtain the weight vector 咐), its covariance matrix. Therefore, can be buried * Derogatory to _) in Equation 19, that is, the weighting vector W(Jt) = -^jlak(0l) - ak. Equation 27 Once calculated The weight of the square (4) 27 (4) Bay J can be calculated by adding 19 93988 200843541 weight vector ', multiplied by the frequency domain' input signal to calculate the noise reduction input signal, ie equation 28, in the frequency domain eight The input signal in Equation 1 is the input signal after Fourier transform of Equation 1. (7). As a result, the inverse discrete Fourier transform (Zhu Dewen U^T) can be performed on the input signal of the noise reduction of the frequency domain to the card by the accumulation field. The noise-reduced input signal is also transmitted, so that the noise-reduced input signal is transmitted to the receiver, because those signals entering the linear detector array 110 in the direction other than the inspection are significantly suppressed to noise. The reduced input signal is cut, the receiver can only receive the desired signal to be transmitted. Therefore, a high quality audio signal can be transmitted from the transmitting end to the slot through the communication device including the linear side 11 array 11G. The communication device may include a portable communication device, such as a mobile phone, etc. Referring to Figure 5, a noise reduction system according to an embodiment of the present invention will be described in detail. 500. As shown, the noise reduction system can include an input unit 5H), a first-converter trace, and a signal processor trace noise reduction system 5GG that can include a second converter 54() and an output unit 550. In one embodiment, the 'input unit 51' may include a linear detection benefit array having a first detector 5U, a second detector 514, and a third detector 516. The input unit it 510 is in a plurality of transient debts The analog signal is measured, thus constructing an analog signal in the time domain. In one embodiment, detectors 512, 514, and 516 can be audio or microphones, and analog J can be an audio signal. In one embodiment, the first controller, the 512, the second debt 93988 20 200843541, the *, and the second detector 516 are linearly aligned and spaced apart from each other. Although three prescalers 512, 514, and ... are shown in Fig. 5, it should be understood that the input unit 51G may include any number of detectors. It should be understood that the 'predictors 512, 514, and 516 can include electromagnetic radiation signals that can be included. The first converter 52 is connected to the input unit 唬 as shown in Fig. 5. Coupled for receiving an analog signal in the time domain and converting the analog signal in the time domain into a digital signal in the time domain. In one embodiment, X, the first converter 520 can be analog to digital conversion crying (anal °g such as digital (A / D) (3) please ne, such as four-channel A /; converter or two-channel stereo Decoder (c〇dec), and can be sampled at 16 kHz. Another hole, the gentleman signal processor 530 is connected with the first turn (four) 52 ,, for receiving the digital signal after the conversion. The processor 53G converts the digital signal in the time domain into a digital signal in the frequency domain, and suppresses the noise in the digital signal in the frequency domain by multiplying the vector by the digital signal in the frequency domain. Obtaining a digital signal with reduced noise in the frequency domain. In one embodiment, the 'signal processor 53' may include commercially available signal processing 1 (off), for example by Texas Instruments (τ^ Instnnnems Inc.) Made by Ti Dsp 6713. It should be understood that

號處理器530可進-步將在頻域中之雜訊減少的數位奸 轉換回在時域中之雜訊減少的數位信號。 U 信號處理器530可包含轉變單元531、加權向 單元奶、複數個乘法器537、別和奶、以及逆轉變單 93988 21 200843541 元535 ’用以執行上述功能。 • 例如,信號處理器別可包含轉變單& 531,用 .在時域中的數位㈣轉換成在頻域中的數位信號。在叫固 .實施例中,轉變單元531可對在時域中的數 散傅立葉轉變(DFT)。 現進订離 信號處理器530可亦包含加權向量準備單元5% 權向量準備單元533接收在頻域中的數位信號並根據所接口 收之在頻域中的數位信號來計算加權向量。 所2體Γ言’加權向量準備單元533根據方程式18從 所接收之在時域中的數位信號構成複數個快照向量 =二9從該等快照向量構成協方差矩陣。然後,加權 里準備早το 533根據方程式2〇計算出光譜密度矩 且特徵分解該光譜密度矩陣以獲得該光譜密度矩陣之. 值和特徵向量。利用光譜密度矩陣之特徵值和特 加榷向量準備單元533可將該光譜密度矩陣分解成 雜訊子空間。信號子空間可包含對 : =度矩陣的特徵值,咐間可包含對應於= =值之減矩㈣龍值。藉由直接❹信號子* 間’加榷向量準備單元533可根據方程式%計算出^ 睹,因而精確地預估D0A。再者,加權向量準備單^奶 =謝來準備加權向量。在一個實施例中 將類比信號的增益最大化),並在遠離=== 予類比信號較少的加權(或將類比信號的❹最小:Γ/δ 22 93988 200843541 鬌 . 一旦計算出加權向量後,加權 .該加權向量給乘法哭 丰備早兀533發送 .與在頻域中之數位;于和,以便將該加權向量 f节知千、、· t號相乘。加權向量與在頻域中之盔办 是,在-個實施:中=少_^^^ 以是準備好被發送至接收端的。之㈣少的數位信號可 在-個實施例中,信號處理器53〇可包 一 535,用於接收在頻 轉、又早το 頻域中之雜訊減^的2 的數位信號以及將該在 的數位n , 以§5虎轉換成在時域中之雜訊減少 中之在—個實施例中,逆轉變單元535對在頻域 中之雜訊減少的數 '^ ^ ^ 〇DFT.拔 k唬進仃逆離散傅立葉轉變 時^从得該在時域中之雜訊減少的數位信號。在 =中之雜訊❹的數位信號可以是準備㈣發送至接收 韓拖:L5圖所示,雜訊減少系統500可進-步包含第二 該第二轉換器⑽係與信號處理器$勒接。 辞^換时540接收在時域中之雜訊減少的數位信號並將 :%域中之雜訊減少的數位信號轉變成在時域中之雜訊 日夕的類比κ °在-個實施例中,第二轉換器54〇可以 疋^位至類比㈣器(如⑷o-analog (D/A) converier)。 在日T域中之雜訊減少的類比信號可以是準備好被發送至接 收端的。 。。另外,雜訊減少系統500可包含輸出單元550,該輸 出單元550係與第二轉換器54〇耦接。輸出單元接收 23 93988 200843541 I在時域中之雜訊減少 •減少的類比信號。在一、、二化號亚輪出該在時域令之雜訊 ;聲器。 一固實施例中,輸出單元550包含揚 現在多►昭黨& rs? ’詳細敘述雜訊減少:、广盧符合本發明之-個實施例,將 線性麥克風陣列所_到=用f雜訊減少方法來抑制由 在步驟⑽中,從由號中的雜訊。 Γ· 信號準傷複數個快昭 中給定。在一個^:、二里。該#快照向量係在方程式!8 號及/或在訊㈣包含多個寬頻音訊信 信號。該線性麥克;^列7=路徑環境中的同調音訊 號。所偵測^ ί 1 __測到該等音訊信The processor 530 can further convert the digital noise reduction in the frequency domain back to the noise reduction digital signal in the time domain. The U signal processor 530 can include a transition unit 531, a weighted unit milk, a plurality of multipliers 537, another milk, and an inverse transition 93988 21 200843541 element 535' to perform the functions described above. • For example, the signal processor may include a transition sheet & 531, which is converted to a digit signal in the frequency domain by a digit (4) in the time domain. In an embodiment, the transform unit 531 can perform a Diffracted Fourier Transform (DFT) in the time domain. The progressive message processor 530 may also include a weight vector preparation unit 5%. The weight vector preparation unit 533 receives the digit signal in the frequency domain and calculates a weight vector based on the digital signal received in the frequency domain. The weighted vector preparation unit 533 forms a plurality of snapshot vectors from the received digital signals in the time domain according to Equation 18 = two 9 constitutes a covariance matrix from the snapshot vectors. Then, the weighting is prepared early το 533 to calculate the spectral density moment according to Equation 2〇 and the feature is decomposed into the spectral density matrix to obtain the value and the eigenvector of the spectral density matrix. The spectral density matrix can be decomposed into a noise subspace using the eigenvalues of the spectral density matrix and the extra 榷 vector preparation unit 533. The signal subspace may contain the eigenvalues of the := degree matrix, and the diurnal moment may include a minus moment (four) dragon value corresponding to the == value. By directly ❹ the signal sub-* addition 榷 vector preparation unit 533 can calculate ^ 根据 according to the equation %, thus accurately estimating D0A. Furthermore, the weight vector preparation list ^ milk = thank you to prepare the weight vector. In one embodiment, the gain of the analog signal is maximized) and the weighting is less than the === analog signal (or the ❹ of the analog signal is minimized: Γ/δ 22 93988 200843541 鬌. Once the weight vector is calculated , weighting. The weighting vector is sent to the multiplication method and the digits in the frequency domain; and sum to multiply the weight vector f, k, and t. The weighting vector is in the frequency domain. In the implementation of the helmet, in the implementation - in the middle = less _ ^ ^ ^ is ready to be sent to the receiving end. (four) less digital signal can be - in one embodiment, the signal processor 53 can be included 535, for receiving a digital signal of 2 in the frequency conversion, early το frequency domain, and converting the digit n in the §5 tiger into a noise reduction in the time domain. In one embodiment, the inverse transform unit 535 reduces the amount of noise in the frequency domain by reducing the number of noises in the frequency domain by ^^^^ 〇DFT. The digital signal. The digital signal in the noise of = can be prepared (four) sent to receive Han drag: L5 picture, noise reduction The less system 500 can further include a second second converter (10) coupled to the signal processor $. The 540 receives the digital signal in the time domain and reduces the noise in the % domain: The analog digital signal is converted into an analogy of the noise in the time domain. In one embodiment, the second converter 54 can be clamped to an analog (four) device (eg, (4) o-analog (D/A). The analog signal of the noise reduction in the day T domain may be ready to be sent to the receiving end. In addition, the noise reduction system 500 may include an output unit 550, which is coupled to the second converter. 54〇coupled. Output unit receives 23 93988 200843541 I Noise reduction in the time domain • Reduced analog signal. The first and second sub-rings emit the noise in the time domain; the sounder. In an embodiment, the output unit 550 includes a plurality of "Phoenix & rs?" detailed description of the noise reduction: - Guanglu is in accordance with an embodiment of the present invention, reducing the linear microphone array _ to = using f noise The method is to suppress the noise from the number in the step (10). Γ· Signal quasi-injury It is given in a fast Zhaozhong. In a ^:, two in. The # snapshot vector is in the equation! 8 and / or in the signal (four) contains a plurality of broadband audio signal. The linear microphone; ^ column 7 = path environment Same tone signal. detected ^ ί 1 __ detected the audio message

Wt 9 ° 5號係在時域巾之音訊信號。該等音 I:處:用離散傅立葉⑽ 在步驟620中,協方差矩陣係由快 :密度矩陣係由該協方差矩陣構成。該協方 “、19中給定,而該光譜密度矩陣係在方程 ^ 二譜密,可包含加權向量。該加權向量可以藉: 壬可適*方法(例如極小方差法)來決定。 在步驟630中,光譜密度矩陣係被特徵分解以獲得複 固特徵向量和複數個特徵值。利用對應 : ::向量用以構成信號子空間。另-方面,利用對應 :; 守寸欲值之特徵向量用以構成雜訊子空間。 在步驟640中,藉由從直接使用信號子空間所導出的 93988 24 200843541 1間光譜來預估音訊信號的dqa — ‘光譜係在方程式26中給I 口以例中’空間 •間與方向向量 忒方私式26係根據信號子空 - 门里之間的歐幾里德距離來決定。 • 在步驟6 5 0中,力避a b〆 doa來準備。在一個,置係依據利用極小方差法之Wt 9 ° 5 is the audio signal in the time domain. The equal tone I: at: using discrete Fourier (10) In step 620, the covariance matrix is composed of fast: density matrix is composed of the covariance matrix. The co-party is given in 19, and the spectral density matrix is in the equation ^2 spectral density, which may include a weighting vector. The weighting vector may be determined by a method that is suitable for (for example, a minimal variance method). In 630, the spectral density matrix is decomposed into features to obtain a complex eigenvector and a plurality of eigenvalues. The corresponding::vector is used to construct the signal subspace. In addition, the corresponding:: eigenvector of the defensive value Used to construct the noise subspace. In step 640, the dqa of the audio signal is estimated by the spectrum between 93988 24 200843541 derived from the direct use of the signal subspace - 'spectral system is given to equation I in equation 26 The middle space and the direction vector are based on the Euclidean distance between the signal subspace and the door. • In step 6 50, the force avoids ab〆doa to prepare. In one, Using minimal variance method

處給予較多w r貫施例中,該加權向量可在該DOA 处口丁孕乂夕的加權,並在 較少的加權。 μ ^ 之外的方向處給予 在步驟660中,雜訊減 向量來獲得。在一個^ ^的曰則“虎係猎由利用加權 之音訊信號相乘,1:二中’該加權向量可與在頻域中 號。然後,藉由使用逆二之雜訊減少咖 的音訊信號轉變成時域 二中之雜訊減少 音訊信號。 侍在恰域中之雜訊減少的 出至ΐ:Γ::,在時域中之雜訊減少的音訊信號係^ 訊信號。接收器可接收到雜訊明顯減少的音 亦有進行上述之雜訊減少過程的電腦握輕. 卜 detects 々考慮定向偵測器(omini-directi〇nal 二二有,個_器係線性排❹彼此w該等 1貝成I裔具有相同頻率特性 π 腦模擬係藉由考慮2〇個日士門 ^ °在此範例中,該電 向量以及漢明窗 /曰’延遲(即心20)的400個快照 中所仏定之I , ammmgwmdow)來計算出在方程式20 r尸/τ'、、σ疋之光譜密度矩陣。 "電知拉擬考慮到三個信號源,各個信號源包含通過 93988 25 200843541 帶通濾波器(band pass filter)之額外的白高斯雜訊(white Gaussian noise )。在此範例中,該等信號源係被實質上等 於五(即乂乃化-5)的陣列間隔參數(array spacing 所延遲。因此,該等信號源能夠如下表示: 信號源1: 信號源2: 信號源3: 1 + 0.371 Ζ^+036 Ζ-2 ? __1_ 、 Ϊ+0Α33Ζ"1 +0.49 Ζ^1 以及 1__ ΐ+0.994 Ζ^1+0.64 Ζ'2 〇 在此範例中,信號源1輸入來自q =一1〇。之第一入射角& 的信號,信號源2輸入來自% =〇。之第二入射角%的信號; 以及信號源3輸入來自θ3=+ι〇。之第二入射角%的信號。在 頻域中之信號源1至3的振幅係圖示於第7圖中。 在此,信號源1至3產生具有中心頻率位在〇·3 Ηζ之 在該電腦模擬中, Y” ),其中 σ^係 為X和y的協方差。 相同功率的信號。信號源U 3的光譜可以彼此重疊。在 電腦模擬中,信號雜訊比(SNR)(其定義為信號之分散與 雜,之分散之間的比)係被認為是零。光譜錢矩陣之DC 分,(卜0)因為不會影響用於定向偵測器之空間光譜的 計算,故從該計算删除光譜密度矩陣之Dc分量(心〇)。 考慮相關性係數Y〃(其定義為 X兵y的協方差,而~和σ〆系分別 在第一種情況中, \=()·585的協方差演算法 該電腦模擬考慮具有相關性係數 ’亚且根據方程式17計算空間光 93988 26 200843541 。曰。k唬子空間為四維,並且白高斯雜訊之相關性矩陣係 -如下給定: 1 0.585 0.585· 0-585 1 0.585 >585 〇·585 1 〇 在該第一種情況中所產生之空間光譜係圖示於第8圖 中。因為在該第—種情況中的信號係微弱相關的,使用方 程式17用以計算該空間光譜之該協方差演算法已足以精 ( 確預估DOA。 該電腦模擬考慮具有相關性係數 ,並且根據方程式17計算空間光 ’並且白高斯雜訊之相關性矩陣係 在第二種情況中, \=α9的協方差演算法 譜。信號子空間為四維 如下給定: ^ 1 0-9 0.9' 0.9 1 〇·9 〇·9 0.9 1 j。 ί 在該第二種情況中,因為在該第二情況中的相關性係 數\大於在第-種情況中的相關係數,所以信號比在第— 種情況中的信號更加相關。因此,在第二種情況中的信號 可被指為中度相關的(intermediately correlated)。在第二 種情況中所產生之光譜密度係圖示於第9圖中。如圖所 示,信號源1至3之DOA在空間光譜中係仍舊清楚可區 別的'然而,SDOA處之空間光譜的振幅已明顯地減少。 在第三種情況中,該電腦模擬首先考慮具有相關性係 93988 27 200843541 並且根據方程式17計算空間光 數Y”, = 1.0的協方差演算法 谱。相關性矩陣變成Where more is given, the weighting vector can be weighted at the DOA and less weighted. Given in a direction other than μ ^ In step 660, the noise subtraction vector is obtained. In a ^ ^ 曰 "Tiger hunting by multiplying the weighted audio signal, 1: two in the 'weight vector can be associated with the frequency domain. Then, by using the inverse two noise to reduce the coffee audio The signal is converted into noise in the time domain 2 to reduce the audio signal. The noise in the field is reduced to ΐ: Γ::, the noise signal in the time domain is reduced by the signal signal. Receiver The sound that can be received by the noise is obviously reduced. The computer that performs the above-mentioned noise reduction process is also light. Bu detects 々 Consider the orientation detector (omini-directi〇nal 22 has two _ _ _ linear line ❹ each other w The 1st phenotype has the same frequency characteristics. The π brain simulation system considers 2 日 日 门 ^ ^ In this example, the electric vector and the Hamming window / 曰 'delay (ie the heart 20) 400 I, ammmgwmdow) determined in the snapshot to calculate the spectral density matrix of the equation 20 r corp / τ ', σ 。. " 知 知 pull to consider three signal sources, each source contains 93988 25 200843541 Extra white Gaussian noise with band pass filter n noise ). In this example, the signal sources are delayed by an array spacing parameter (array spacing) that is substantially equal to five (ie, 乂-5). Therefore, the sources can be represented as follows: Source 1 : Source 2: Source 3: 1 + 0.371 Ζ^+036 Ζ-2 ? __1_ , Ϊ+0Α33Ζ"1 +0.49 Ζ^1 and 1__ ΐ+0.994 Ζ^1+0.64 Ζ'2 〇 In this example Signal source 1 inputs a signal from q = 1 〇. The first angle of incidence & signal source 2 inputs a signal from % = 〇. The second angle of incidence %; and source 3 input from θ3 = + ι第二. The signal of the second incident angle %. The amplitudes of the signal sources 1 to 3 in the frequency domain are shown in Fig. 7. Here, the signal sources 1 to 3 are generated with the center frequency bit at 〇·3 Ηζ In this computer simulation, Y"), where σ^ is the covariance of X and y. Signals of the same power. The spectra of signal source U 3 may overlap each other. In computer simulations, the signal-to-noise ratio (SNR), which is defined as the ratio of the dispersion and dispersion of the signal, is considered to be zero. The DC component of the spectral money matrix, (b 0), removes the Dc component (heart 〇) of the spectral density matrix from this calculation because it does not affect the calculation of the spatial spectrum used for the orientation detector. Consider the correlation coefficient Y〃 (which is defined as the covariance of X y, while the ~ and σ 〆 are respectively in the first case, the covariance algorithm of \=()·585 is considered to have a correlation coefficient. 'Ya and calculate the spatial light according to Equation 17 93988 26 200843541. The k 唬 subspace is four-dimensional, and the white Gaussian noise correlation matrix is given as follows: 1 0.585 0.585· 0-585 1 0.585 >585 〇 · 585 1 空间 The spatial spectrum produced in this first case is shown in Figure 8. Since the signal in this first case is weakly correlated, Equation 17 is used to calculate the spatial spectrum. The covariance algorithm is sufficient to accurately predict DOA. The computer simulation considers the correlation coefficient and calculates the spatial light according to Equation 17 and the correlation matrix of white Gaussian noise is in the second case, \= The covariance algorithm spectrum of α9. The signal subspace is given in four dimensions as follows: ^ 1 0-9 0.9' 0.9 1 〇·9 〇·9 0.9 1 j. ί In the second case, because in the second The correlation coefficient in the case is greater than in the first case Correlation coefficient, so the signal is more relevant than the signal in the first case. Therefore, the signal in the second case can be referred to as intermediately correlated. In the second case The spectral density is shown in Figure 9. As shown, the DOA of sources 1 to 3 are still clearly distinguishable in the spatial spectrum. However, the amplitude of the spatial spectrum at SDOA has been significantly reduced. In three cases, the computer simulation first considers the correlation coefficient 93988 27 200843541 and calculates the covariance algorithm spectrum of the spatial light number Y", = 1.0 according to Equation 17. The correlation matrix becomes

第二種情況表不多路徑環 ^ r — 兄兵〒輸入k唬係同調作 5虎。如弟10圖所不,作缺、码〗 ϋ , L唬源1至3之DOA在空間光譁中 係不再是可區別的。然而,在相 曰 1 + 1 在相冋條件下,該電腦模擬藉 由直接使用信號子空間而妒楠古於Λ 猎 — ]而根據方程式26再一次計算用於 弟二種情況的空間光譜。根墟 很像万紅式26所產生之空間光言並 係圖示於第11圖中。如筮&quot;曰 口 τ刘昂11圖所不,DOA現在在該空間 光譜中係清楚可區別的。因此,兮免μ 1 p J囚此該電腦模擬已展示出方程 式26之空間光譜能精破預仕力炙 月隹頂怙在夕路徑ί哀中之同調信號及/ 或信號的DOA。 對熟習該技術領域者而言,藉由考慮到在此所提供之 i本發明的說明書及貫施,符合本發明的其它實施例將變得 顯而易見。本說明書係意欲被認為是例示性且僅作說明性 用,而本發明之範疇與精神係由所附之申請專利範圍所指 示者。 【圖式簡單說明】 構成本說明書之一部分的隨附圖式說明了符合本發 明之各種實施例和態樣,並且伴隨著敘述來解釋本發明的 原理。 第1圖說明用於接收來自信號源以及雜訊源之音訊信 28 93988 200843541 #號的線性麥克風陣列。 - 第2Α和2Β屬公士、α口一 -快昭向量所建構之^ 纟請方差輯以及由複數個 • η =里所建構之二維光譜密度矩陣。 ,第3圖說明在複數平面(_咖piane)中之由雜訊空 間的特徵向量所組成之多項式的根。斤之由n 第4圖说明在複數平面中之由#梦办H w 組成之多項式的根。中之由…間的特徵向量所 第5圖說明符合本發明的雜訊減少系統。 第6圖說明符合本發明的雜訊減少方法。 弟7圖祝明根據符合本發明之電腦模擬的三個模型 號源的振幅。 ' a 第8圖說明根據使用協方差演算法 相關信號的空間光譜。 、規日骑 第9圖說明根據使用協方差演算法之電腦模疑的中产 相關信號的空間光譜。 &amp; 第10圖說明根據使用協方差演算法之電腦模疑的同 調信號的空間光譜。 第11圖說明根據使用直接使用信號子空間⑴um)、、寅 算法之電腦模疑的同調信號的空間光譜。 〜 【主要元件符號說明】 11 信號源 12 雜訊源 110 線性偵測器陣列 112、114、116 偵測器 93988 29 200843541 120 水平軸 • 130 垂直轴 * 210 、 250 正方形 220 ^ 270 第一轴 230 、 280 第二軸 240 時間延遲方向 260 時間頻率方向 500 雜訊減少系統 510 輸入單元 512 第一偵測器 514 第二偵測器 516 第三偵測器 520 第一轉換器 530 信號處理器 531 轉變單元 533 加權向量準備單元 535 逆轉變單元. 537 ^ 538 &gt; 539 乘法器 540 第二轉換器 550 輸出單元 步驟 610 、 620 、 630 、 640 、 650 、 660 、 670 30 93988In the second case, there is not a multi-path ring ^ r — the brother-in-law input k唬 is the same as the 5 tiger. If the younger brother does not have a picture, the DOA of the L唬 source 1 to 3 is no longer distinguishable in the spatial aperture. However, in the case of phase + 1 + 1 under the relative conditions, the computer simulation calculates the spatial spectrum for the two cases again according to Equation 26 by directly using the signal subspace. The root market is very similar to the space light produced by Wan Hong 26 and is shown in Figure 11. If 筮&quot;曰口 τ刘昂11 is not, DOA is now clearly distinguishable in this spatial spectrum. Therefore, the computer simulation of the μ 1 p J prisoner has shown that the spatial spectrum of Equation 26 can be used to break the DOA of the coherent signal and/or signal in the eve path. Other embodiments consistent with the present invention will become apparent to those skilled in the <RTIgt; The description is intended to be illustrative, and is only illustrative, and the scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The various embodiments and aspects of the invention are set forth in the accompanying drawings, and the description Figure 1 illustrates a linear microphone array for receiving audio signals from the source and the noise source 28 93988 200843541 #. - The 2nd and 2nd sects, the α-one-fast-vectors constructed by the ^ 方 方 方 方 方 方 方 方 方 方 方 方 方 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 。 。 。 。 。 。 。 。 。 。 。 。 Figure 3 illustrates the root of the polynomial consisting of the eigenvectors of the noise space in the complex plane (_ coffee piane). Figure 4 illustrates the root of the polynomial consisting of #梦办H w in the complex plane. The feature vector between the two is illustrated in Fig. 5 to illustrate a noise reduction system in accordance with the present invention. Figure 6 illustrates a method of noise reduction in accordance with the present invention. Figure 7 shows the amplitude of three model source sources according to computer simulations in accordance with the present invention. ' a Figure 8 illustrates the spatial spectrum of the correlation signal based on the use of the covariance algorithm. Day Riding Figure 9 illustrates the spatial spectrum of a medium-relevant signal based on a computer model using a covariance algorithm. & Figure 10 illustrates the spatial spectrum of a homology signal that is suspected by a computer using a covariance algorithm. Figure 11 illustrates the spatial spectrum of a coherent signal suspected by a computer using the signal subspace (1) um), 寅 algorithm. ~ [Main component symbol description] 11 Signal source 12 Noise source 110 Linear detector array 112, 114, 116 Detector 93988 29 200843541 120 Horizontal axis • 130 Vertical axis * 210, 250 Square 220 ^ 270 First axis 230 280 second axis 240 time delay direction 260 time frequency direction 500 noise reduction system 510 input unit 512 first detector 514 second detector 516 third detector 520 first converter 530 signal processor 531 transition Unit 533 weight vector preparation unit 535 inverse transformation unit. 537 ^ 538 &gt; 539 multiplier 540 second converter 550 output unit steps 610, 620, 630, 640, 650, 660, 670 30 93988

Claims (1)

200843541 •、申請專利範圍: 一種雜訊減少系統,包括: 瞬時二包含:線性债測器陣列’用於在複數個 盥^k仏就’错此建構在時域中之類比信號; 與该輸入單元轉接之第一轉換器,該第 接收該等在時域中 寻換m —中1比尨號並將該等在時域中之類 嶋轉《在時域中之數位信號;以及 等在ίΐΐί —f換,接之信號處理器,用於接收該 才5之i:位信號,該信號處理器進一步包括: ’用於將該等在時域中之數位信號轉換 成在頻域中之數位信號;以及 、 、雜訊抑制單元,組構成藉由將加權向量與該等在 頻域中之數位信號相乘來抑财該等在頻域中^數位 信號中的雜訊,以獲得在頻域中之雜訊減少的數位信 號0 。 2.如申請專利範圍第〗項之系統,其中: —該信號處理器進一步包括逆轉變單元,用於接收 該等在頻域中之雜訊減少的數位信號,並將該等在頻 域+之雜訊減少的數位信號轉換成在時域令之雜訊減' 少的數位信號。 ° ' 3.如申請專利範圍第2項之系統,進一步包括: 與該b號處理盗耦接之第二轉換器,該第二轉換 器接收該等在時域中之雜訊減少的數位信號,並^該 等在時域t之雜訊減少的數位信號轉變成在時域中之 93988 31 200843541 雜訊減少的類比信號。 4. 5· 如申請專利範圍第3項之系統,其中: ^第二轉換器包括數位至類比轉換器。 如申請專利範圍第3項之系統,進—步包括: 3出單元,用於輪出該等在時域中 類比信號。 讯減少# 6. 如中請專利範圍第5項之系統,其中: 該輪出單元包括揚聲器。 7. 如中請專利範圍第1項之系統,其中: 8. ,造偵測器陣列包含複數個偵測器 态係線性排列且彼此等距分隔。 、“ 如申請專利範圍第7項之系統,並中. 9· 一種通訊設備,包括: 如申請專利範圍第8項之系統。 .如申請專利範圍第7項之系統,其中: 該等偵測器包括妥綠 ^ 磁輻射信號。 該等類比信號包括電 11· 如申請專利範圍第 該第一轉換器 比至數位轉換器。 1項之系統,其中: 包括具有大約16 KHz之取樣率的類 12·如申請專利範 該轉變單 圍第2項之系統,其中: 凡執仃離散傅立葉轉變,並且該逆轉變 93988 32 200843541 單元執行逆離散傅立葉轉變。 .13.如申請專利範圍第1項之系統,其中: • 該雜汛抑制單元進一步包括加權 該加權向量車锯留-加μ # 里+備早儿, .w绍丰備早7°根據猎由使用該等類比信號之空 !4.如申請專财^達方向(職)”“該加權向量。 Τ明寻利靶圍第13項之系統,其中: 該加權向量準備單元藉由 計曾出兮, 干稽田1接使用h號子空間而 #出μ工間光譜,該信 被分解。 ϋ丁二間係攸先瑨密度矩陣 15.如申請專利範圍第“項之系統,並中. 传向量準備單元根據從該等在時域令之數位 二、1數個快照向量所構成㈣方差 該光譜密度矩陣。 平啲冲^出 16·如申請專利範圍第1項之系統,i中. 該=抑制單元進-步包括複數個乘法器,用於 將加推向1與該等在頻域中之數位俨铗ia千 以 b相乘,以獲得 頌4 f之竑矾減少的數位信號。 17· —種信號處理器,包括: 轉變單元,組構成接收在時域中之數位 、乜旎,且該轉變單元組構成將該等在時域中之 欠位L旒轉換成在頻域中之數位信號;以及 雜訊抑制單元,組構成接收該等在頻域中之數位 “虎以及抑制該等在頻域中之數位信號中的雜訊,以 93988 33 200843541 獲得在頻域中之雜訊減少的數位信號,該等雜訊減少 的數位信號係藉由將加權向量與該等在頻域中之雜訊 減少的數位信號相乘而獲得。 18·如申請專利範圍第17項之信號處理器,進一步包括·· 逆轉交單元,用於將該等在頻域中之雜訊減少的 數位U虎轉換成在時域甲之雜訊減少的數位信號,並 且輸出,亥等在時域中之雜訊減少的數位信號以供進一 步的處理。 19.如申請專利範圍第17項之信號處理器,其中: 該雜訊抑制單元係進一步組構成: 旦.根據該等在時域中之數位信號建構複數個快照向 ^據依照該等快照向量㈣義之協方差矩陣建構 九瑨密度矩陣; 間·將該光Ή度矩陣分解成信號子空間和雜訊子空 預仕=直接使用該信號子空間所獲得之空間光譜而 預估到達方向;以及 20如申ΪΪ該等到達方向而計算出該加權向量。 器,其中: .如申,專利範圍第19項之信號處理 將該等在頻域中之數位信號的增益最 21·如申請專利範圍笼 靶阗罘19項之信號處理 達方二1二抑制早7°藉由使用該加權向量而在該等到 運方向(DOA) 大化。 器,其中·· 93988 34 200843541 該雜訊抑制單元藉由使用該加權 專到達方向—之外之方向將該等在頻:了: • 位信號的增益最小化。 &lt; 之數 .22· 種通訊設備,包括·· 如申請專利範圍第19項之信號處理哭。 準備該等音肺號之複數彳目快照向量; 從該等快照向量建構協方差矩陣, 差矩陣建構光譜密度矩陣; 、’使該協方 特徵分解該光譜密度矩陣以 和複數個魏值,因㈣得==目^向量 藉由從直接使用該信號子,:、,子空間; 而預估該等音訊信號之到達方向;V出之空間光譜 根據該等到達方向準傷加權向量. ^該加權向量獲得雜訊減少的音 輸出該等雜訊減少的音訊 以及 24·如申請專利範圍第23項之丰 包含多個寬頻信號。 ,,其中,該等音訊信號 25·如申請專利範圍第23項之方法, 包含在多路徑環境中之同調\ ’、,該等音訊信號 26·如申請專利範圍第23項之方#&quot;、 將該等音訊信號轉變成 進步包括· 27·如申請專利範圍第23項之方、、’、域中之音訊信號。 去’其中’獲得該等雜訊 93988 35 200843541 , 減少的音訊信號進一步包括: 將該加權向量與該等在頻域中之音訊信號相乘以 -獲得在頻域中之雜訊減少的音訊信號。 28.如申請;利範圍第27項之方法,進一步包括: 轉又忒等在頻域中之雜訊減少的音訊信號以獲得 該等在時域中之雜訊減少的音訊信號。 29. 如申請:利範圍第23項之方法,進一步包括: ( 巧在Λ彳°號子空間與方向向量之間的歐幾里德 I 距離。 30. 如申請專利範圍第29項之方法,其中: 該空間光譜⑻係給定為 DUSS (句 1 一 d2(0), 係對應於該等到達方向(D0A)的&amp; 而_係該信號子空間盘 (0A)的角度, 德距離。 /、βχ方向向量之間的該歐幾里 31.如申請專利範圍第23項之方法,1 料魏值包含㈣特 32·如申請專利範圍第31項之方法 知试值。 該k號子空間包括對應於兩、 向量,而該雜訊子空間包:對夺寺徵值的該等特徵 徵向量。 子應於零特徵值的該等特 33.如申請專利範圍第23項之 使用極小方差法來準備該加::量。 93988 36200843541 •, the scope of application for patents: A noise reduction system, including: Instantaneous two inclusion: linear debt detector array 'for analog signals in the time domain in multiple 盥^k仏; wrong with this input; a first converter of unit switching, the receiving said to replace the m-medium 1 apostrophe in the time domain and to convert the digital signal in the time domain to a digital signal in the time domain; In addition, the signal processor is configured to receive the i:bit signal of the 5, the signal processor further comprising: 'for converting the digital signal in the time domain into the frequency domain The digital signal; and the noise suppression unit are configured to suppress the noise in the digital signal in the frequency domain by multiplying the weight vector by the digital signal in the frequency domain to obtain the noise signal. The noise signal in the frequency domain is reduced by the digital signal 0. 2. The system of claim </ RTI> wherein: - the signal processor further comprises an inverse transform unit for receiving the digital signal of the noise reduction in the frequency domain and for the frequency domain + The noise-reduced digital signal is converted into a digital signal with less noise in the time domain. ° ' 3. The system of claim 2, further comprising: a second converter coupled to the processing of the number B, the second converter receiving the digital signal of the noise reduction in the time domain And the digital signal reduced by the noise in the time domain t is converted into an analog signal of the 93988 31 200843541 noise reduction in the time domain. 4. 5. The system of claim 3, wherein: ^ The second converter comprises a digital to analog converter. For example, in the system of claim 3, the further steps include: 3 out units for taking turns out the analog signals in the time domain.讯减减# 6. The system of claim 5, wherein: the wheel unit comprises a speaker. 7. The system of claim 1 wherein: 8. The detector array comprises a plurality of detector states that are linearly arranged and equally spaced from one another. "A system for applying for a patent scope, item 7, and a medium. 9. A communication device, including: a system as claimed in claim 8 of the patent application. For example, the system of claim 7 of the patent scope, wherein: The apparatus includes a green magnetic radiation signal. The analog signals include electricity. 11. The first converter to digital converter according to the patent application. The system of the first item, wherein: includes a class having a sampling rate of about 16 KHz. 12. If the patent application model is to change the system of item 2, where: the discrete Fourier transform is performed, and the inverse transform 93988 32 200843541 unit performs the inverse discrete Fourier transform. 13. If the patent application scope is the first item The system, wherein: • the chowder suppression unit further comprises weighting the weighting vector of the car saw to stay-plus μ #里+备早儿, .w Shaofeng early 7° according to the hunting by using the analog signal space! For example, apply for special wealth ^ direction (job) "" the weight vector. The system of the 13th item of the target of the search for the target, where: the weight vector preparation unit is used by the meter, the dry quiz 1 is connected with the h number Subspace Between the #出μ inter-spectral spectrum, the letter is decomposed. The 二丁二间攸攸攸 density matrix 15. As in the patent application scope of the "item of the system, and the transmission vector preparation unit according to from the time domain Let the number two and one number of snapshot vectors form (4) the variance of the spectral density matrix.啲 啲 ^ 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16铗ia thousand is multiplied by b to obtain a digital signal that is reduced by 颂4 f. 17. A signal processor, comprising: a transform unit, the group constituting a digit received in the time domain, 乜旎, and the transition unit group is configured to convert the under-order L旒 in the time domain into the frequency domain a digital signal; and a noise suppression unit, the group is configured to receive the digital bits in the frequency domain and to suppress the noise in the digital signals in the frequency domain, and obtain the interference in the frequency domain with 93988 33 200843541 The reduced digital signal is obtained by multiplying the weight vector by the digital signal of the noise reduction in the frequency domain. 18. The signal of claim 17 The processor further includes: a reverse transfer unit, configured to convert the digital U tiger whose noise in the frequency domain is reduced into a digital signal reduced in the time domain A, and output, and the like in the time domain The noise signal of the reduced noise is further processed. 19. The signal processor of claim 17 wherein: the noise suppression unit is further configured: dan. according to the time domain digit The signal constructs a plurality of snapshots to construct a nine-density matrix according to the covariance matrix of the snapshot vectors (fourth); interpolating the pupil matrices into signal subspaces and noise subspaces = directly using the signals The spatial spectrum obtained by the space is used to estimate the direction of arrival; and 20 is calculated by applying the direction of arrival to the direction of the weighting vector. In the case of: Shen, the signal processing of the 19th patent range is in the frequency domain. The gain of the digital signal in the most is 21. As in the patent application, the signal processing of the cage target 阗罘19 is suppressed by 7 degrees by 7° in the arrival direction (DOA) by using the weight vector. , 93880 34 200843541 The noise suppression unit minimizes the gain of the bit signal by using the weighted direction of the direction other than the direction of the direction: &lt; the number of .22 communications Equipment, including · · Signal processing as claimed in item 19 of the patent scope. Prepare the complex snapshot vector of the lungs; construct a covariance matrix from these snapshot vectors, construct the difference matrix a spectral density matrix; , 'decompose the covarian feature to decompose the spectral density matrix and a plurality of Wei values, because (4) obtains == mesh ^ vector by directly using the signal sub, :, , subspace; The direction of arrival of the audio signal; the spatial spectrum of the V is based on the arrival direction of the weighting vector. ^ The weight vector obtains the noise reduction of the noise output and the noise reduction of the noise and 24 · as claimed in the 23rd The abundance includes a plurality of broadband signals, wherein the audio signals 25 are as in the method of claim 23, including homology in a multipath environment, and the audio signals 26 are as claimed. The 23rd party #&quot;, converts the audio signals into advances including: 27, as in the 23rd of the patent application scope, the audio signal in the ', domain. Going to 'where' to obtain the noise 93988 35 200843541, the reduced audio signal further includes: multiplying the weighting vector with the audio signals in the frequency domain to obtain an audio signal with reduced noise in the frequency domain . 28. The method of claim 27, further comprising: transducing the noise signal of the noise reduction in the frequency domain to obtain the noise signal of the noise reduction in the time domain. 29. If applying, the method of item 23 of the scope of interest, further includes: (The Euclidean I distance between the subspace and the direction vector of the Λ彳° number. 30. For the method of claim 29, Where: the spatial spectrum (8) is given as DUSS (sentence 1 - d2 (0), which corresponds to the direction of arrival (D0A) and _ is the angle of the signal subspace disk (0A), the distance. /, the χ 之间 之间 之间 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 The space includes corresponding to two vectors, and the noise subspace package: the feature vectors for the sign of the temple. The sub-segment should be such that the zero feature value is 33. The use of the 23rd item of the patent application is extremely small. Variance method to prepare the addition:: quantity. 93988 36
TW96121284A 2007-04-24 2007-06-13 Noise reduction system and method TW200843541A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/790,206 US20080130914A1 (en) 2006-04-25 2007-04-24 Noise reduction system and method

Publications (1)

Publication Number Publication Date
TW200843541A true TW200843541A (en) 2008-11-01

Family

ID=44839740

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96121284A TW200843541A (en) 2007-04-24 2007-06-13 Noise reduction system and method

Country Status (1)

Country Link
TW (1) TW200843541A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023115269A1 (en) * 2021-12-20 2023-06-29 深圳市韶音科技有限公司 Voice activity detection method and system, and voice enhancement method and system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023115269A1 (en) * 2021-12-20 2023-06-29 深圳市韶音科技有限公司 Voice activity detection method and system, and voice enhancement method and system

Similar Documents

Publication Publication Date Title
US20080130914A1 (en) Noise reduction system and method
WO2020042708A1 (en) Time-frequency masking and deep neural network-based sound source direction estimation method
Mohan et al. Localization of multiple acoustic sources with small arrays using a coherence test
Gershman et al. Wideband direction-of-arrival estimation of multiple chirp signals using spatial time-frequency distributions
US9689959B2 (en) Method, apparatus and computer program product for determining the location of a plurality of speech sources
JP5814476B2 (en) Microphone positioning apparatus and method based on spatial power density
TWI530201B (en) Sound acquisition via the extraction of geometrical information from direction of arrival estimates
US20140003635A1 (en) Audio signal processing device calibration
CN105976826B (en) Voice de-noising method applied to dual microphone small hand held devices
Salvati et al. Incoherent frequency fusion for broadband steered response power algorithms in noisy environments
US9562970B2 (en) Proximity detecting apparatus and method based on audio signals
JP2017503388A5 (en)
Talagala et al. Binaural sound source localization using the frequency diversity of the head-related transfer function
US11632626B2 (en) Audio encoding device and method
Epain et al. Independent component analysis using spherical microphone arrays
Huleihel et al. Spherical array processing for acoustic analysis using room impulse responses and time-domain smoothing
Lin Reverberation-robust localization of speakers using distinct speech onsets and multichannel cross correlations
Beit-On et al. Focusing and frequency smoothing for arbitrary arrays with application to speaker localization
Gaubitch et al. Calibration of distributed sound acquisition systems using TOA measurements from a moving acoustic source
Li et al. Sound source localization for mobile robot based on time difference feature and space grid matching
Gao et al. An order-aware scheme for robust direction of arrival estimation in the spherical harmonic domain
TW200843541A (en) Noise reduction system and method
Zeng et al. Sparse-representation algorithms for blind estimation of acoustic-multipath channels
Thomas et al. Optimal 3D beamforming using measured microphone directivity patterns
CN110907892A (en) Method for estimating arrival angle of voice signal of spherical microphone array