TW200832883A - Power supply and charger for series-parallel loosely coupled inductive power transfer system - Google Patents

Power supply and charger for series-parallel loosely coupled inductive power transfer system Download PDF

Info

Publication number
TW200832883A
TW200832883A TW96101674A TW96101674A TW200832883A TW 200832883 A TW200832883 A TW 200832883A TW 96101674 A TW96101674 A TW 96101674A TW 96101674 A TW96101674 A TW 96101674A TW 200832883 A TW200832883 A TW 200832883A
Authority
TW
Taiwan
Prior art keywords
converter
parallel
direct current
transformer
control circuit
Prior art date
Application number
TW96101674A
Other languages
Chinese (zh)
Other versions
TWI328923B (en
Inventor
Ching-Tsai Pan
Yuan-Hsin Chao
Jenn-Jong Shieh
Wei-Chih Shen
Original Assignee
Ching-Tsai Pan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ching-Tsai Pan filed Critical Ching-Tsai Pan
Priority to TW96101674A priority Critical patent/TWI328923B/en
Publication of TW200832883A publication Critical patent/TW200832883A/en
Application granted granted Critical
Publication of TWI328923B publication Critical patent/TWI328923B/en

Links

Landscapes

  • Inverter Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A power supply and charger for series-parallel loosely coupled inductive power transfer system are provided. The power supply includes a DC-AC converter, capable of converting a DC voltage and/or current into a AC voltage and/or current, a transformer, a first capacitor, a second capacitor, a full-wave rectifier, a filter, a load and a phase-locked circuitry that output a variable frequency signal into a PWM control circuitry, said phase-locked circuitry controlling the output frequency of said DC-AC converter in order to achieve the output voltage and output current of said DC-AC converter is in-phase.

Description

200832883 ^ 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種弱耦合感應電力傳輸之電源系統,尤指一種串並聯 弱耦合感應電力傳輸之電源供應器與充電器。 【先前技術】 弱耦合感應電力傳輪系統(Loosely Coupled Inductive Power Transfer System ’ LCIPTS)能將電能自一設備傳輸至另一設備,而無需直接透過 電力線傳導。故具有可避免產生火花或觸電危險的優點。此外,因為由 於沒有接觸之賴也有益於該設備壽命之提升。@此已相#_氣密式 儀器設備内部供電或輪環境“魏錢石崎鮮場所_發生電擊 的潛在危險環境之供電系統。 典型之_合感應電力傳輸之電源供絲或充電ϋ,以由諧振反流器 10、可分離式隔離㈣20及可控整流器30三個部份所組成的架構,如 圖1所不。其主要是可分離式之高頻變壓器配合前置反流 器,以將電能由電源端傳輸至系統負載側。然而因為弱輕合非接觸型變 麼器之漏電感甚大,且無可避免之前置反流器之切換損失,因此典型之 弱輕合感應電力傳輸之電雜絲或充電器之電力傳輪鱗甚低。為解 決非接觸型電力傳輸系統傳輸效率不佳_題上,以紐切換技術藉著 以零電壓或零電流切換方式顧於弱搞合感應電力傳輪系統中,來降低 諸振反流器__換損失以提昇系統整體效率,而由於分離式變壓 器先天_合不良的缺陷,系統整體效率之提升相當有限1用外力串聯 5 200832883 或並聯電容在變壓器之一或二次側,利用阻抗匹配的方法來做系統補 償,可以更直接的方法解決隔離式變壓器先天上耦合不良的問題。一般 而言’利用串聯(Series)或並聯(Parallel)於一次側或二次側,皆可達到預 期功效。另一方面,系統為獲得最小輸入伏安容量下的最大的輸出功率 以降低糸統之成本’輸入側必須滿足為零相位角(zer〇 phase angie)。然而 *系統負載變動時,滿足輸入側為零相位頻率的解不只一個,而且此分 岔點的頻率與系統負載及耦合係數有關,不同的分岔點頻率所對應的輸 出功率也不盡相同,因此更增加系統設計與控制的困難度。同時,由於 控制電路設計之回授信號由在弱耦合變壓器的二次側取得,無法確切符 合非接觸型電力傳輸系統之弱耦合變壓器一、二次侧鐵心繞組可分離式 的特性。 爰此,本發明揭示一由一次側控制之串並聯弱耦合感應電力傳輸之電源 供應裔或充電為、外,並提咼该串並聯弱I馬合感應電力傳輸之電源供應器 或充電器之整體傳輸效率。 【發明内容】 在一實施例中,提供一種串並聯弱耦合感應電力傳輸之電源供應 器,其包括:一直交流轉換器,用以將一直流電壓源轉換為一交 流電壓源;一變壓器,具一次側與二次側,該一次側具一第一自感, 該二次側具一第二自感,一第一電容,串聯該變壓器之一次側與該 直交流轉換器之輸出側,一第二電容,並聯該變壓器之二次側;一 全波整流器,並聯該第二電容;一濾波電路,並聯該全波整流器; 一負載,並聯該濾波電路;一鎖相控制電路,輸出一調變頻率信 號至一 PWM控制電路,该鎖相控制電路控制該直交流轉換器之 6 200832883 ΐΐΓΓ解,使得該直交流轉換11之輸出側之-電壓與一電流 =零=;該PWM控制電路,包括:―狀值,一三角波產生 口口 ^ 备、、由· 哭之於一 / ,一比較器;一誤差控制器,該直交流轉換 比争;栌二忒電壓與該設定值之誤差與該三角波經該比較器 換Ϊ二出:轉換器之至少-開關元件娜 之輸_之該電壓與該設定值近乎相等。 在另一實施例中,描板 其包括·一直 種争並聯弱耦合感應電力傳輸之充電器, —一變壓:流:換;,用以將一直流電壓源轉換為-交流電 二次側具一第二自感;_笛_ + — 人n弟目a d Φ ^ λ ^ 弟一電谷,串聯該變壓器之一次側與該直 波IV广:輸出側;—第二電容,並聯該變壓器之二次側;-全 二電容;—渡波電路,並聯該全波整流器;一 慮波電路;—鎖相控制電路,輸出—調變頻率信號 ㈣⑬铺她制電路控制該註流轉換器之輸出 側之頻率,使㈣直交流轉換器之輸出側之-驗與-電流為零 相位;該PWM控制電路,包括二設定值,-三角波產生器, 產生之-三角波;-比較ϋ ; _誤差控·,該直交流轉換器之 輸出側之該電壓與該設定值之誤差與該三肖波_比較器比較 後控制該直交流轉換II之至少1關元件,使得該直交流轉換器 之輸出側之該電壓與該設定值近乎相等。 在又-貫施例中,提供-種-種串並聯弱搞合感應電力傳輸之電源 供應裔’其包括·-直父流轉換II,用以將—直流電壓源轉換為 -交流電流源;-變壓器’具-次側與二次側,該一次側具一第一 自感’該二次側具m _第_電容’串聯該變壓器之一次 側與忒直父流轉換為之輸出側;_第二電容,並聯該變壓器之二次 7 200832883 側;一全波整流器’並聯該第m «路,並聯該全波整 流m並聯波電路;—鎖相㈣電路,輸出一調變 頻率信號至-PWM㈣電路,該鎖相控制電路控制該直交流轉 換益之輸出側之頻率,使得該直交流轉換器之輸出側之一電壓盥 一電流為零相位;該PWM控制電路,包括:_設定值,一三角 波產生器’產生之-三角波;_比較器;—誤差控健,該直交 流轉換器之輸出狀該電流與該設定值之誤差與該三角波經該 比較器比較後控㈣直交流轉換^之至少_開關元件,使得該直 父流轉換為之輸出側之該電流與該設定值近乎相等。 在再一實施例中,提供一種串並聯弱耦合感應電力傳輸之充電器, 其包括:一直交流轉換器,用以將一直流電壓源轉換為一交流電 流源;一變壓器,具一次側與二次側,該一次側具一第一自感,該二 次側具一第二自感;一第一電容,串聯該變壓器之一次側與該直交流 轉換器之輸出側;一第二電容,並聯該變壓器之二次側;一全波整 流菇,並聯該第二電容;一濾波電路,並聯該全波整流器;一負載, 並聯該濾波電路;輸出一調變頻率信號至一 PWM控制電路,一誤 差控制為,該鎖相控制電路控制該直交流轉換器之輸出侧之頻 率,使得該直交流轉換器之輸出側之一電壓與一電流為零相位; 該PWM控制電路,包括:一設定值,一三角波產生器,產生之 一三角波;一比較器;—誤差控制器,該直交流轉換器之輸出側之 該電流與該設定值之誤差與該三角波經該比較器比較後控制該直 交流轉換器之至少一開關元件,使得該直交流轉換器之輸出側之 8 200832883 - 該電流與該設定值近乎相等。 所要求主題的實施例的特性和益處,將會隨著下列的詳細描述而 變得顯而易見,且該描述參考了附圖,其中同樣的附圖標記表示 同樣的部分。 【實施方式】 以下將洋、、、田參知、本發明的較佳實施例。雖然本發明係併同較 佳貝;^例-起描述時’但應理解其本發不限於這些實施例。 相反地’本發明意欲涵蓋所有的替換、修正和等效物,這些都包 括在由Ikiwt睛專利範圍所界定之精神和範圍内。此外,為避免 使本發明的創新之處被不必要地模糊 ,在此並未詳述已知的方 法、程序、元件和電路。 T饮1示玩一例示性方塊圖。其中串聯一串聯補 仏】於可刀離式祕⑼之_姻、觸—並聯麵q於可分離 式隔離變壓器20之二+制 側,以方便說明阻抗匹配電路如何改善非接觸 型電力傳輸纽之電力傳輪紐。軸本發明係併同較佳實施例-起 =二=理解其本發明並不限於這些實施例。相反地,本發明 思右人涵盍所有的替換、修正 利細界定之精神和㈣ &些都包括在由隨附申請專 首先假設系財各元件均為理槪元件,啊 此細式電力編歲貞所示, 以負载,同時輪出電屢亦 9 200832883 為純弦波之交流電壓。 圖2中的符號定義如下: 巧:代表可分離式隔離變壓器20之輸入電壓相量 ζ :代表可分離式隔離變壓器20之輸入電流相量 尽:代表可分離式隔離變壓器20—次側自感 L2 :代表可分離式隔離變壓器20二次側自感 Μ :代表可分離式隔離變壓器20互感 C;:代表可分離式隔離變壓器20—次侧串聯補償電容 C2 :代表可分離式隔離變壓器20二次側並聯補償電容 心:代表系統之負載40 Z2 :代表可分離式隔離變壓器20二次側阻抗 A :代表Z2經由可分離式隔離變壓器20反射至一次側之等效阻抗 A:代表系統輸入阻抗 可求出1/J必(:2與7^之並聯阻抗如下所示。 2 二 RJ = Rac = Rac - jRac2〇)C2 2 — Rac+Vjo?C2 一 1 + 风^2一 i +200832883 ^ IX. Description of the Invention: [Technical Field] The present invention relates to a power supply system for weakly coupled inductive power transmission, and more particularly to a power supply and a charger for series-parallel weakly coupled inductive power transmission. [Prior Art] The Loosely Coupled Inductive Power Transfer System (LCIPTS) can transfer electrical energy from one device to another without direct transmission through the power line. Therefore, it has the advantage of avoiding the risk of sparking or electric shock. In addition, because there is no contact, it is beneficial to the life of the device. @此已相#_Airtight instrument equipment internal power supply or wheel environment "Weiqian Shiqi fresh place _ power supply system of potentially dangerous environment where electric shock occurs. Typical _ inductive power transmission power supply wire or charging ϋ, by The structure consisting of three parts of the resonant inverter 10, the detachable isolation (four) 20 and the controllable rectifier 30 is as shown in Fig. 1. It is mainly a detachable high frequency transformer with a pre-reactor to The power is transmitted from the power supply terminal to the system load side. However, because the leakage inductance of the weak and light non-contact type changer is very large, and the switching loss of the front inverter is inevitable, the typical weak light combined induction power transmission is The electric wire or charger has a very low power transmission scale. In order to solve the problem of poor transmission efficiency of the non-contact power transmission system, the switch technology uses the zero voltage or zero current switching method to take care of the weak induction sensor. In the power transmission system, to reduce the vibration of the vibrating inverter __ to improve the overall efficiency of the system, and due to the defects of the congenital transformer, the overall efficiency of the system is quite limited. 832883 or shunt capacitor on one or the secondary side of the transformer, using impedance matching method for system compensation, can solve the problem of inconsistent coupling failure of isolated transformer in a more direct way. Generally speaking, 'using series or parallel (Parallel) can achieve the expected efficiency on either the primary side or the secondary side. On the other hand, the system reduces the cost of the system to obtain the maximum output power at the minimum input volt-ampere capacity. 'The input side must satisfy the zero phase angle. (zer〇phase angie). However, when the system load changes, there is more than one solution that satisfies the zero phase frequency of the input side, and the frequency of this branching point is related to the system load and the coupling coefficient, and the corresponding branching point frequency corresponds. The output power is also different, which increases the difficulty of system design and control. At the same time, because the feedback signal of the control circuit design is obtained from the secondary side of the weakly coupled transformer, it cannot accurately meet the weakness of the non-contact power transmission system. The detachable characteristic of the primary and secondary side core windings of the coupling transformer. Accordingly, the present invention discloses that the primary side is controlled by the primary side. The power supply of the parallel weakly coupled inductive power transmission is either charged or charged, and the overall transmission efficiency of the power supply or charger of the series-parallel weak I-inductive power transmission is improved. [Invention] In an embodiment Providing a power supply for series-parallel weakly coupled inductive power transmission, comprising: a constant AC converter for converting a DC voltage source into an AC voltage source; and a transformer having a primary side and a secondary side, the primary The side has a first self-inductance, the second side has a second self-inductance, a first capacitor, a primary side of the transformer and an output side of the direct current converter, a second capacitor, and a second parallel transformer a secondary wave; a full-wave rectifier, paralleling the second capacitor; a filter circuit, paralleling the full-wave rectifier; a load, paralleling the filter circuit; a phase-locked control circuit, outputting a frequency-modulated frequency signal to a PWM control circuit, The phase lock control circuit controls the 6200832883 of the direct current converter, so that the voltage on the output side of the direct current conversion 11 and a current = zero =; the PWM control circuit , including: "value", a triangular wave to generate a mouth ^, , by · crying in a /, a comparator; an error controller, the direct AC conversion ratio; the second voltage and the set value error And the triangular wave is switched by the comparator: the voltage of at least the switching element of the converter is nearly equal to the set value. In another embodiment, the stencil includes a charger that has been contending for parallel coupled weakly coupled inductive power transmission, a transformer: stream: change; and is used to convert the dc source to an ac secondary side. The second self-inductance; _ flute _ + - person n brothers ad Φ ^ λ ^ brother one electric valley, the first side of the transformer and the straight wave IV wide: the output side; - the second capacitor, parallel to the transformer two Secondary side; - all two capacitors; - wave circuit, parallel to the full wave rectifier; a wave circuit; - phase lock control circuit, output - modulation frequency signal (four) 13 shop her circuit control the output side of the stream converter The frequency is such that the output side of the (four) direct-to-AC converter is - and the current is zero phase; the PWM control circuit includes two set values, - a triangular wave generator, a generated - triangular wave; - a comparison ϋ; _ error control, The error of the voltage on the output side of the direct current converter and the set value is compared with the three oscillating-comparator to control at least one off component of the direct current conversion II, so that the output side of the direct current converter The voltage is approximately equal to this setting. In a further embodiment, a power supply provider of a series-parallel weakly integrated inductive power transmission is provided, which includes a direct parental flow conversion II for converting a DC voltage source into an AC current source; - the transformer 'has a secondary side and a secondary side, the primary side has a first self-inductance 'the secondary side has a m _ _ capacitor' series connected to the primary side of the transformer and the straight parent flow is converted to the output side; _ second capacitor, parallel to the secondary 7 200832883 side of the transformer; a full-wave rectifier 'parallel to the mth road, parallel the full-wave rectified m parallel wave circuit; - phase-locked (four) circuit, output a frequency-modulated frequency signal to a PWM (four) circuit, the phase lock control circuit controls a frequency of the output side of the direct current conversion, such that a voltage of one of the output sides of the direct current converter is zero phase; the PWM control circuit includes: _ set value , a triangular wave generator 'generating-triangular wave; _ comparator; - error control, the output of the direct current converter, the error of the current and the set value is compared with the triangular wave after the comparator is controlled (four) direct AC conversion ^ at least _ switching components, so The stream converter parent whom the direct current output side of the nearly equal to the set value. In still another embodiment, a charger for series-parallel weakly coupled inductive power transmission is provided, comprising: a constant AC converter for converting a DC voltage source into an AC current source; and a transformer having a primary side and a second a secondary side, the primary side has a first self-inductance, the secondary side has a second self-inductance; a first capacitor is connected in series with the primary side of the transformer and the output side of the direct current converter; a second capacitor, Parallel to the secondary side of the transformer; a full-wave rectifier mushroom, paralleling the second capacitor; a filter circuit, paralleling the full-wave rectifier; a load, paralleling the filter circuit; outputting a modulated frequency signal to a PWM control circuit, An error control is that the phase lock control circuit controls a frequency of an output side of the direct current converter such that a voltage of one side of the output side of the direct current converter is zero phase with a current; the PWM control circuit includes: a setting Value, a triangular wave generator, generating a triangular wave; a comparator; - an error controller, an error of the current on the output side of the direct current converter and the set value and the triangular wave Comparison of the comparator controlling at least one switching element of the DC to AC converter, such that the output of the linear 8200832883 AC side of the converter - this current nearly equal to the set value. The features and advantages of the embodiments of the present invention are apparent from the following detailed description. [Embodiment] Hereinafter, preferred embodiments of the present invention will be described. Although the present invention is also preferred, it should be understood that the present invention is not limited to the embodiments. Rather, the invention is intended to cover all alternatives, modifications, and equivalents, which are within the spirit and scope defined by the scope of the invention. In addition, well known methods, procedures, components, and circuits have not been described herein in order to avoid unnecessarily obscuring the innovations of the present invention. T Drink 1 shows an example block diagram. Among them, a series connection in series can be used to improve the non-contact power transmission of the detachable isolation transformer 20 The power transmission wheel. The invention is based on the preferred embodiment - the same as the second embodiment. It is understood that the invention is not limited to the embodiments. On the contrary, the present invention covers all the alternatives, the spirit of the definition of the definition and the (4) & some are included in the attached application, the first assumption is that the components of the system are the rational components, ah, this fine power According to the age of the 贞, the load is simultaneously charged and the power is repeated 9 200832883 is the AC voltage of pure sine wave. The symbols in Figure 2 are defined as follows: Clever: represents the input voltage phasor of the separable isolation transformer 20: represents the input current phasor of the separable isolation transformer 20: represents the separable isolation transformer 20 - secondary side self-inductance L2: represents the secondary side self-inductance of the separable isolation transformer 20: represents the detachable isolation transformer 20 mutual inductance C; represents the separable isolation transformer 20 - the secondary side series compensation capacitor C2: represents the separable isolation transformer 20 Secondary side shunt compensation capacitor core: represents the load of the system 40 Z2: represents the separable isolation transformer 20 secondary side impedance A: represents the equivalent impedance of Z2 reflected to the primary side via the separable isolation transformer 20 A: represents the system input impedance It can be found that 1/J must be (the parallel impedance of 2:7 and 7^ is as follows. 2 2 RJ = Rac = Rac - jRac2〇) C2 2 — Rac+Vjo?C2 A 1 + wind ^ 2 ai +

=K · K \ + {RccdC2)2 Jl + (R^C2Y 三n ⑴ 其次,吾人可利用電路學基本原理求出Z2經由可可分離式隔離變壓器20 反射至一次側之等效阻抗4: z 二(—ο2 r j〇^L2 + Z2 200832883 (ωΜ)2 一R2+j(〇)H) _{ωΜ)2[Κ2-]{ωΙ^ΧΊ)-\ —~~^2+(ωΐ2^χ2γ~~ (2) =_^〇2·及—+ .p (^m)2.(^i2~x2) Κ22+(ω12-Χ2)2 -R+jXr=K · K \ + {RccdC2)2 Jl + (R^C2Y three n (1) Secondly, we can use the basic principle of circuit to find the equivalent impedance of Z2 reflected to the primary side via the cocoa separation transformer 20: z (—ο2 rj〇^L2 + Z2 200832883 (ωΜ)2 A R2+j(〇)H) _{ωΜ)2[Κ2-]{ωΙ^ΧΊ)-\——~~^2+(ωΐ2^χ2γ~ ~ (2) =_^〇2· and -+ .p (^m)2.(^i2~x2) Κ22+(ω12-Χ2)2 -R+jXr

最後由式(2)吾人可求得圖2系統之輸入阻抗AFinally, by equation (2), we can find the input impedance A of the system of Figure 2.

Zlr)=Zr+J^Ll +—Zlr)=Zr+J^Ll +—

Rr + j[wLx + ^] (3) K +, 由於圖2纽係假設該電力傳齡絲其他耗損,邮其輸岭功率將會 等於輸入之實功率。而輸入複數功率;ζ可求得如下·· 曰 V=%Rr + j[wLx + ^] (3) K +, since Figure 2 New Zealand assumes that the power is older, the power will be equal to the input real power. And input the complex power; ζ can be obtained as follows·· 曰 V=%

—► 2 VP—► 2 VP

Z/” Rin-jXin —RJTX %Z/” Rin-jXin — RJTX %

RR

VPVP

XX

K ^,2+xPp+jQP (4) 因由能量减定律ϋ可財得輸_負叙功率“PS(^AA)K ^, 2+xPp+jQP (4) Because of the energy reduction law, you can lose money _ negative power "PS (^AA)

R 上式中 (5) 11 200832883R above (5) 11 200832883

R (ωΜ)2 ? Xin=1〇)Ll J___(ωΜ)2(ω12-Χ2)S 飞2+« - Z2 )2 本發明之目標即在首先決定C;與C2i最佳參數值俾獲得最大的輸出功率 A,此點可利用微積分求極值的方法由下列三必要條件解得之: ^Ps _ dC' " =0 (6a) 死· dC2 =0 (6b) 9PS. 8ω :0 (6c) 將式(5)代入⑹可得下列三方程式: dc, => dR (ωΜ)2 ? Xin=1〇)Ll J___(ωΜ)2(ω12-Χ2)S Fly 2+« - Z2 )2 The object of the present invention is to first determine C; and C2i optimal parameter value 俾 get the maximum The output power A, which can be obtained by calculus to find the extremum, is solved by the following three necessary conditions: ^Ps _ dC' " =0 (6a) Dead · dC2 =0 (6b) 9PS. 8ω : 0 ( 6c) Substituting equation (5) into (6) yields the following three equations: dc, => d

R ac^,2+x 「)= 〇 => dR ac^, 2+x ") = 〇 => d

R dC^R^X:) V in in / in ,/^r m ifi 9Cj dC} 5C】 => (X 2 - R 2)^-- 27? Xr^ = 0 dCxR dC^R^X:) V in in / in , /^r m ifi 9Cj dC} 5C] => (X 2 - R 2)^-- 27? Xr^ = 0 dCx

dC ⑺ da => ddC (7) da => d

R ac/i?,2+x => a R, dC2(R2^Xin2) 12 200832883R ac/i?, 2+x => a R, dC2(R2^Xin2) 12 200832883

1 ^·(RJ + Xm2) — 2Rit^ — 2IL ·X^ dX da v/;7 夂 m ⑻ =>(X 2-R 2)^-2R X ^ = 0 \ !H ΠΊ ^ in in ,/ oC, oC, 0 dPs_ δω => a1 ^·(RJ + Xm2) — 2Rit^ — 2IL ·X^ dX da v/;7 夂m (8) =>(X 2-R 2)^-2R X ^ = 0 \ !H ΠΊ ^ in in , / oC, oC, 0 dPs_ δω => a

R =>R =>

d R ;) = 〇 θω(Κιη2+Χιη2) 0 dR'-2R.jd〇 δω in in δω =>(X 2-R 2)&-2RX ^ = 0 \ in in / ^ in in οω οω ⑼ 將式(7)、(8)與(9)用商業軟體MATLAB計算,並將其結果重新整理可得 dPs= ^LxL2k2Rac (Α6ω6 + Α4ω4 + Α,ω2 + Rj) dc, " ς3.[{l2c2rJ . +(l22 -il2c2rc^2+Rjf 上式中 A6=Lf,L22C22Rj{k2-\)4 = (Z2C九)2 + 似CVC ·(2- P) A^-ILARJ-L'C'IC dPs _ -2LxL22k2Rj · ω2 · (Ββω6 + ΒΑωΑ + Β2ω2 -1) δς = Q2 -[{L2C2RJ - ωΑ + (L22 - 2L2C2RJ)^ + RJ]2 上式中 (10) 0 (ii) B^L'W/iJc4 - 2k2+l) 13 (12)200832883 B^LxCr{2L2C2+LxC,)\k2 B2 = L2C2 + LXCX -(2-k2) d(° 上式中 +/d R ;) = 〇θω(Κιη2+Χιη2) 0 dR'-2R.jd〇δω in in δω =>(X 2-R 2)&-2RX ^ = 0 \ in in / ^ in in οω οω (9) Calculate the equations (7), (8) and (9) with the commercial software MATLAB, and rearrange the results to obtain dPs= ^LxL2k2Rac (Α6ω6 + Α4ω4 + Α, ω2 + Rj) dc, " ς3.[ {l2c2rJ . +(l22 -il2c2rc^2+Rjf where A6=Lf, L22C22Rj{k2-\)4 = (Z2C9)2 + like CVC ·(2- P) A^-ILARJ-L'C' IC dPs _ -2LxL22k2Rj · ω2 · (Ββω6 + ΒΑωΑ + Β2ω2 -1) δς = Q2 -[{L2C2RJ - ωΑ + (L22 - 2L2C2RJ)^ + RJ]2 (10) 0 (ii) B^L 'W/iJc4 - 2k2+l) 13 (12)200832883 B^LxCr{2L2C2+LxC,)\k2 B2 = L2C2 + LXCX -(2-k2) d(° in the above formula +/

A = A ^\2^22C22Rac2 * (2A:4 - 4^2 + 2^A = (2Ac^ca/)(AC1+i2c2).(^ D2 = -L22 + (L2c2 + L.C,)· 2RJ ”+(Ας!2)2·(ρ -2^2+i) 而由式(10)、(11)與(12)最後吾人可得Ci及c如下 Q 一 」_= 11 必灿-1)(灸+1)_^1^c2 = ^r ω212 其中灸為可分離式隔離變壓器20,其定義如下: (13) (14) k =A = A ^\2^22C22Rac2 * (2A:4 - 4^2 + 2^A = (2Ac^ca/)(AC1+i2c2).(^ D2 = -L22 + (L2c2 + LC,)· 2RJ ” +(Ας!2)2·(ρ -2^2+i) and by equations (10), (11) and (12), we can get Ci and c as follows: Q_"_= 11 must be -1) (Moxibustion +1) _^1^c2 = ^r ω212 where moxibustion is a separable isolation transformer 20, which is defined as follows: (13) (14) k =

,〇<灸<1 (15) 事實上在上述導演過程中,是假設圖2中元件均為理想元件,沒有其他損 耗,因此吾人亦可由工程設計之觀點來求解(^與。2如下: 首先欲獲得最小輪入伏安容量以降低成本,吾人可令式(4)中之虛功率^ 為零而求得q。 --- 2 令 0X,C2)== 〇 一 14 =0 ^ ^ = 0200832883 3 coL'--- 1 ωΟλ {ωΜ)\ωΙ^ΧΊ) R22+^L2-X2)2 ^ — = co2 L· — ς ω^Μ\ω11-Χ1), 〇 < moxibustion < 1 (15) In fact, in the above director process, it is assumed that the components in Figure 2 are ideal components, there is no other loss, so we can also solve from the perspective of engineering design (^ and. 2 as follows : Firstly, to obtain the minimum round-turn volt-ampere capacity to reduce the cost, we can obtain the virtual power ^ in equation (4) to obtain q. --- 2 Let 0X, C2) == 〇一 14 =0 ^ ^ = 0200832883 3 coL'--- 1 ωΟλ {ωΜ)\ωΙ^ΧΊ) R22+^L2-X2)2 ^ — = co2 L· — ς ω^Μ\ω11-Χ1)

Rl^L2-X2f (16) --±1^— (Ζ2+Ζ3)·ΐ4 上式中Rl^L2-X2f (16) --±1^— (Ζ2+Ζ3)·ΐ4

Zi = 〇/L22C22Rj - 2o?2L22C2RJ + Rj + ων2 χ2 = - ω4Σ22α22Καο2) χ3 = (^2L22k2C2Rac2 + ω%^2 - Rj - ω2Σ22 + ω2^2) X, = c〇2Lx 其次再將(5)式代入(6b)式可得 _2① L' k6Rj (ω2L2C2 __ (^%2C22RJ - 2^l2c2rj+RJ+c〇\y = 0 (17) 因此由式(17)吾人可得和(6b)相同結果,然後再將所得ς值代入(16) 式中便可得ς最佳值,其結果與(14)完全相同。至此吾人可知式(6a)、 (6b)與(6c)的結果,在假設理想元件條件下即相當於要求輸入伏安容量 為最小值。由於在最佳ς參數值條件下,以0或者相當於式(4) 中之為零’亦即 X丨„=〇)L「Zi = 〇/L22C22Rj - 2o?2L22C2RJ + Rj + ων2 χ2 = - ω4Σ22α22Καο2) χ3 = (^2L22k2C2Rac2 + ω%^2 - Rj - ω2Σ22 + ω2^2) X, = c〇2Lx Next, then (5) Substituting (6b) can get _21 L' k6Rj (ω2L2C2 __ (^%2C22RJ - 2^l2c2rj+RJ+c〇\y = 0 (17) Therefore, we can get the same result as (6b) from equation (17) Then, the obtained devaluation value is substituted into (16), and the best value is obtained. The result is exactly the same as (14). So far we can know the results of equations (6a), (6b) and (6c), under the assumption Under ideal component conditions, the input volt-ampere capacity is required to be the minimum value. Because it is 0 or equivalent to zero in equation (4) under the optimal parameter value, ie X丨„=〇)L"

(ωΜ)2(ωΣ?-ΧΊ) Κ22+(ω12^Χ^ =0 (18) 15 200832883 將式(18)重新整理可得下列7V〇)多項式方程式 Ν{ω) - Ε6ω6 + Ε,ω4 + Ε2ω2 - R2ac = 0 (19) 上式中 £6^(Z1CΛ2C2X^L1L22^C1C2¾c2)(ωΜ)2(ωΣ?-ΧΊ) Κ22+(ω12^Χ^ =0 (18) 15 200832883 The equation (18) can be rearranged to obtain the following 7V〇) polynomial equation Ν{ω) - Ε6ω6 + Ε, ω4 + Ε2ω2 - R2ac = 0 (19) In the above formula, £6^(Z1CΛ2C2X^L1L22^C1C23⁄4c2)

Ea = (^eC^Rj-^L.qL,2 ^L22C22Rac2 ^C^C.RJ-LxL22k2Cx) E2=^L22 + 1L2C2RJ+L^RJ) 由於(14)知最佳C2值必須滿足仍2 = 1/(Z2C2)之關係式,因此吾人可將 州>)表示成下列形式 Ν{ω) = (ω2Ea = (^eC^Rj-^L.qL, 2 ^L22C22Rac2 ^C^C.RJ-LxL22k2Cx) E2=^L22 + 1L2C2RJ+L^RJ) Since (14) know that the best C2 value must be satisfied still 2 = 1/(Z2C2) relationship, so we can express state >) to the following form Ν{ω) = (ω2

LA -)χ (αω2 + Βω + ο)χ(άω2 +βω + /) = 0 (20) 將式(19)與(20)兩式之係數比較吾人可得 ad^{L:-C^Rj) ae + bd = 0 (af + be + cd ad、 L22.C22.Rj.(k2-2) l2c2 l_k2 +l23c2-l2LA -)χ (αω2 + Βω + ο)χ(άω2 +βω + /) = 0 (20) Comparing the coefficients of the equations (19) and (20), we can get ad^{L:-C^Rj ) ae + bd = 0 (af + be + cd ad, L22.C22.Rj.(k2-2) l2c2 l_k2 +l23c2-l2

R bf + ce-^^ = o ce — l2c2 af + be+ cd l2c2 [-L22+2L2.C2.RJHL’^^)] bf + ce Z2C2 cf l2c2R bf + ce-^^ = o ce — l2c2 af + be+ cd l2c2 [-L22+2L2.C2.RJHL’^^)] bf + ce Z2C2 cf l2c2

R (21)(22) (23) (24) (25) (26) (27) 16 (28)200832883 因此由(20)式吾人可由分解之因式求得其它解 αω2 +δω + ο = 0 dco + + = 0 由式(28)取正實數解可得叫如下 * (^2 V^") )=-^--- L 2.L,C2.Rac.(l - k2) 同理,由式(29)取正實數解可得%如下 如'如2 -石3) C〇 =----- H 2.L2.C2.Ra,(l-k2) 上二解中4及之定義如下 (2^ = Z>2 * (^2 — 1) a2={L2-L2-k2 -2-C^Rj +C2-RJ -k1) a3 = ^Ja'· oc2 cc'=mk、C,Ram a2 = (L2-L2-k2-4-C2-Rc2+3-C2-Rc^k2) (29) (30) (31) 由上述結果可知: (一)該串並聯型可分離式隔離感應電力傳輸系統電力傳輸系統在其最大輸 出功率之充分條件下共有三個可工作於最小輸入伏安容量的工作頻 率,即巧、%=-^=1=及%。其中^及%與交流電阻負載I及耦合 17 200832883 係射有關,但%則相對的保持定值。 (-)通例咐尺_峨㈣編舰⑽隸 匹配非接觸型魏器之A、^及从特性,以獲得最大輸出功率/月匕 ' ,‘"m由113可知本發日·輸人電μ為弦波且頻率為 '吟與’正如理論·«輸人視在神|s|確實等於於 功率相位差θ=0)〇 、則 另一方面’由式(16)求得的叫公式代入系統輸人阻抗么吾人可得 d (32) 由式(13)可得"°=1/疯公式,將其彳να統輸人阻抗&吾人可得R (21)(22) (23) (24) (25) (26) (27) 16 (28)200832883 Therefore, by equation (20), we can find other solutions αω2 +δω + ο = 0 from the factor of decomposition. Dco + + = 0 The positive real solution from equation (28) can be called the following * (^2 V^") )=-^--- L 2.L,C2.Rac.(l - k2) From the equation (29), the positive real number solution can be obtained as follows, such as 'such as 2 - stone 3' C〇=----- H 2.L2.C2.Ra, (l-k2) The definition is as follows (2^ = Z>2 * (^2 - 1) a2={L2-L2-k2 -2-C^Rj +C2-RJ -k1) a3 = ^Ja'· oc2 cc'=mk, C, Ram a2 = (L2-L2-k2-4-C2-Rc2+3-C2-Rc^k2) (29) (30) (31) From the above results, we can see that: (1) The series-parallel type separable The isolated inductive power transmission system power transmission system has three operating frequencies that can operate at a minimum input volt-ampere capacity under sufficient conditions of maximum output power, ie, %=-^=1= and %. Where ^ and % are related to the AC resistance load I and the coupling 17 200832883, but the % remains relatively constant. (-) General rule 峨 峨 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四The electric μ is a sine wave and the frequency is '吟 and ' as the theory · «Entering the human god | s| is indeed equal to the power phase difference θ = 0) 〇, on the other hand, the equation obtained by the equation (16) The formula is substituted into the system's input impedance. We can get d (32). From equation (13), we can get "°=1/mad formula, and let 彳να all input the impedance &

Ll (33) 由式(Π)求知的⑺"公式代入系統輸入阻抗&吾人可得 H (34) 由式(32)、(33)與(34)可知當w ς、C2及㈣為定值時: 1·听^時心與心成反比 2· 時&與心成正比 3·妒^時ζί>?與心成反比 其次,假設無損耗電路,根據能量不滅定律,可知變壓器二次側的輪出 18 (35) 200832883 功率巧等於輸入功率PpLl (33) (7)" formulas obtained by the formula (Π) are substituted into the system input impedance & we can get H (34). From equations (32), (33) and (34), we know that w ς, C2 and (4) When the value is: 1 · Listening ^ When the heart is inversely proportional to the heart 2 · When & is proportional to the heart 3 · 妒 ^ ζ ί ί ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ The secondary side of the wheel 18 (35) 200832883 power is equal to the input power Pp

Vp 2 lz,J 一 Ip Z,Vp 2 lz, J Ip Z,

PsPs

RR

•H (36) 當系統在電壓源與或電流源輪入昧 八¥,为別操作在上述三個諧振頻率叫、 必0及叫時,電路有以下之六種操作模式。 Α·變壓器輸入電源形式為定電壓源(阿為定旬 杈式“―叫時心與4成反比,可以推得電路的輸出特性為-定電流源 (Is為定值),而且 C2 Α·(卜灸2) (37) 定電壓 拉式2.㈣”狀成正比,可轉得電路的輸出特性為一 源(vs為定值),而且 k• H (36) When the system is in the voltage source and or the current source, the circuit has the following six operation modes: when the above three resonant frequencies are called, must be 0 and called. Α·Transformer input power supply form is a constant voltage source (A is a ten-day-style “--called the time center is inversely proportional to 40%, and the output characteristic of the circuit can be derived as a constant current source (Is is a fixed value), and C2 Α· (Acupuncture 2) (37) The constant voltage pull type 2. (four)" is proportional to the output characteristic of the circuit can be converted to a source (vs is a fixed value), and k

V. 模式3·仍時&與心成反比, 為定值),而且 (38) 可以推付f路的輪特料_ ^電流源V. Mode 3 · still & inversely proportional to the heart, is the fixed value), and (38) can push the wheel specials of the f road _ ^ current source

VP C2 丨 V(u) β.變壓器輸入電源形式為定電流源(f|為定值) 19 (39) 200832883 模式4· ”與心成反比,可以推得電路的輸出特性為一定電壓 源(|5|為定值),而且 V(u) (40) c2 核式5· ω必〇時27„與(成正比,可以推得電路的輸出特性為一定電流 源(Is為定值),而且 (41) '弋 ⑺"時Z〜與&成反比,可以推得電路的輸出特性為_定電壓 源(冗為定值),而且 .V(u) (42) 電路特性及數學關係 V ~ξ~~ 最後,吾人將上述在交流輸出情況下六種操作模式之 式重新整理於表1中。 系示上所述,當系統工作頻率 _ 、 、手馮外叫與咚牯,可以滿足最小輸入伏 =…麵,靖撒娜谢電歷源或 疋)柄’即可饥_細_—^賴源奴電麵,虚輸出電 阻心無關。所以當輪出負载 、戟文動時,。人可_變頻rnmm統輸入側 為零相位頻率外,同時利用脈波寬 源或定電流源,即可… μ輸人魏形式為定輕 杯明可、 達成控制系統輪出為定糕(定電流)之目的。因此 十在_合變壓器的一次側,以輕易實現單_ 制電路,並可提高軸合感Α 見早、如工 。力傳輸之電源供應器或充電器之整體傳輸 20 200832883 效率。為更明確說明本發明之實施架構,圖4闡示一例示性串並聯型弱耦 合感應電力傳輸之電源供應器實施例的簡化方塊圖;圖5闡示一例示性 串並聯型弱耦合感應電力傳輸之充電器實施例的簡化方塊圖。 本文使用的術與措辭是描述性而非局限性之術語,社便用這❺魯丁 立辭〗並未思从排除其他與這裏所揭示和描述的特徵(或特徵的— ⑽寺同物’且應該意識到的是,在中請專利範圍内,本發明可 肢。本《財締在其他—些料、_及倾。申請專 摩已圍應涵蓋所有這些等同物。VP C2 丨V(u) β. Transformer input power supply is a constant current source (f| is constant) 19 (39) 200832883 Mode 4· ” is inversely proportional to the heart, and the output characteristic of the circuit can be derived as a certain voltage source ( |5| is a fixed value), and V(u) (40) c2 nucleus 5· ω must be 27 与 and (in proportion to, the output characteristic of the circuit can be derived as a constant current source (Is is a fixed value), Moreover, (41) '弋(7)" When Z~ is inversely proportional to &, the output characteristic of the circuit can be derived as _ constant voltage source (redundancy is fixed), and .V(u) (42) circuit characteristics and mathematical relationship V ~ξ~~ Finally, we have reorganized the above six operating modes in the case of AC output in Table 1. As shown in the above description, when the system operating frequency _, , hand feng outside and 咚牯, can Meet the minimum input volt = ... face, Jing Shanna Xie electric calendar source or 疋) handle 'can be hungry _ fine _- ^ Laiyuan slave electrical surface, virtual output resistance has nothing to do. So when the load is out and the movement is stopped, People can _ frequency conversion rnmm system input side zero phase frequency outside, at the same time use pulse wave source or constant current source, you can... μ input person Wei form for the light cup Mingke, reach the control system round out for the fixed cake (fixed The purpose of current). Therefore, on the primary side of the transformer, it is easy to realize the single-circuit circuit, and it can improve the sense of shafting. See the early work. Overall transmission of power supply or charger for transmission 20 200832883 Efficiency. To further clarify the implementation architecture of the present invention, FIG. 4 illustrates a simplified block diagram of an exemplary power supply embodiment of a series-parallel type weakly coupled inductive power transmission; FIG. 5 illustrates an exemplary series-parallel type weakly coupled inductive power. A simplified block diagram of a transport charger embodiment. The techniques and wording used in this article are descriptive rather than limited terms, and the Society uses this ❺鲁丁立辞〗 to not exclude other features (or features - (10) Temple with the features disclosed and described here. It should be appreciated that the present invention is exemplified within the scope of the patent application. This "financial" is in other materials, _ and plunging.

200832883 【圖式簡單說明】 圖1典型可分離式隔離感應電力傳輸系統基本架構圖。 圖2本發明之串並聯型非接觸式電力傳輸系統。 圖3本發明頻率β對視在功率|S|、輸出功率巧及相位差(9的變化波形 圖。 圖4本發明之一實施例。 圖5本發明之另一實施例。 【主要元件符號說明】 10 :諧振反流器 20 :可分離式隔離變壓器 30 :可控整流器 40:負載 50:全波整流器 60:電壓源 70:分壓器 80:電流感測器 90:濾波電路 100:直交流轉換器 200:PWM控制電路 210:開關驅動器 220:比較器 270:鎖相控制電路 280:誤差控制器 290:三角波產生器 22200832883 [Simple diagram of the diagram] Figure 1 shows the basic architecture of a typical detachable isolated inductive power transmission system. 2 is a series-parallel contactless power transmission system of the present invention. Figure 3 is a diagram showing the variation of the frequency β versus apparent power |S|, output power, and phase difference (9). Figure 4 is an embodiment of the present invention. Figure 5 is another embodiment of the present invention. Description] 10: Resonant inverter 20: separable isolation transformer 30: controllable rectifier 40: load 50: full-wave rectifier 60: voltage source 70: voltage divider 80: current sensor 90: filter circuit 100: straight AC converter 200: PWM control circuit 210: Switch driver 220: Comparator 270: Phase lock control circuit 280: Error controller 290: Triangle wave generator 22

Claims (1)

200832883 十、申請專利範圍: 1. 一種串並聯弱耦合感應電力傳輸之電源供應器,其包括: 一直交流轉換器,用以將一直流電壓源轉換為一交流電壓 源; 一變壓器,具一次側與二次側,該一次側具一第一自感,該二 次側具一第二自感; 一第一電容,串聯該變壓器之一次側與該直交流轉換器之輸出 侧; 一第二電容,並聯該變壓器之二次侧; 一全波整流器,並聯該第二電容; 一濾波電路,並聯該全波整流器; 一負載,並聯該濾波電路; 一鎖相控制電路,輸出一調變頻率信號至一 PWM控制電 路,該鎖相控制電路控制該直交流轉換器之輸出側之頻率, 使得該直交流轉換器之輸出側之一電壓與一電流為零相位; 該PWM制電路,包括: 一設定值; 一三角波產生器,產生之一三角波; 一比較器; 一誤差控制器,該直交流轉換器之輸出側之該電壓與該設定 值之誤差與該三角波經該比較器比較後控制該直交流轉換 器之至少一開關元件,使得該直交流轉換器之輸出側之該電 壓與該設定值近乎相等。 2. 如申請專利範圍第1項之電源供應器,該變壓器之一次側與二 次側可分離。 3. 如申請專利範圍第1項之電源供應器,該PWM控制電路進一 23 200832883 步包括一開關驅動器。 4. 如申請專利範圍第1項之電源供應器,該直交流轉換器之輸 出側之一電壓由一分壓器取出。 5. 如申請專利範圍第1項之電源供應器,該直交流轉換器之輸 出側之一電流由一電流感測器取出。 6. 一種串並聯弱耦合感應電力傳輸之充電器,其包括: 一直交流轉換器,用以將一直流電壓源轉換為一交流電壓 源; 一變壓器,具一次側與二次側,該一次側具一第一自感,該二 次側具一第二自感; 一第一電容,串聯該變壓器之一次側與該直交流轉換器之輸出 側; 一第二電容,並聯該變壓器之二次側; 一全波整流器,並聯該第二電容; 一濾波電路,並聯該全波整流器; 一負載,並聯該濾波電路; 一鎖相控制電路,輸出一調變頻率信號至一 PWM控制電 路,該鎖相控制電路控制該直交流轉換器之輸出側之頻率, 使得該直交流轉換器之輸出側之一電壓與一電流為零相位; 該PWM控制電路,包括: 一設定值; 一三角波產生器,產生之一三角波; 一比較器; 一誤差控制器,該直交流轉換器之輸出側之該電壓與該設定 值之誤差與該三角波經該比較器比較後控制該直交流轉換 器之至少一開關元件,使得該直交流轉換器之輸出側之該電 24 200832883 壓與該設定值近乎相等。 7·如申請專利範圍第6項之充電器,該變壓器之一次側與二次側 可分離。 8·如申請專利範圍第6項之充電器,該PWM控制電路進一步 包括一開關驅動器。 9·如申請專利範圍第6項之充電器,該直交流轉換器之輸出側 之一電壓由一分壓器取出。 10.如申請專利範圍第6項之充電器,該直交流轉換器之輸出側 之一電流由一電流感測器取出。 11· 一種串並聯弱耦合感應電力傳輸之電源供應器,其包括: 一直交流轉換器,用以將一直流電壓源轉換為一交流電流 源; ; 一變壓器,具一次側與二次側,該一次側具一第一自感,該二 次側具一第二自感; 一第一電容,串聯該變壓器之一次側與該直交流轉換器之輸出 侧; 一第二電容,並聯該變壓器之二次側; 一全波整流器,並聯該第二電容; 一濾波電路,並聯該全波整流器; 一負載’並聯該濾波電路; 鎖相控制電路,輸出一調變頻率信號至一 PWM控制電 路,該鎖相控制電路控制該直交流轉換器之輸出側之頻率, 使知该直交流轉換器之輸出侧之一電壓與一電流為零相位; 該PWM控制電路,包括·· 一設定值; 二角波產生器,產生之一三角波; 25 200832883 一比較器; -誤差口控制器’該直交流轉換器之輸出側之該電流與該設定 ,之決差與m經該比較器比較後控制該直交流轉換 &之至> n件,使得該直交流轉換器之輸出側之該電 流與遠设定值近乎相等。 12. 13. 14. 15. 16. 如申凊專利範圍第u項之電源供應器,該變壓 二次側可分離。 如申凊專利關第11項之電源供應H,該PWM控制電路進 一步包括一開關駆動器。 如申晴專利範’ u項之魏供應器,該直交流轉換器之輸 出側之一電壓由一分壓器取出。 如申晴專利範’ 11項之電源供應器,該直交流轉換器之輸 出側之-電流由_電流感測器取出。 種串並聯弱_合感應電力傳輸之充電ϋ,其包括: 直交流轉換器’用以將—直流電壓源轉換為-交流電流 -變壓器,具-次側與二次側,該一次側具—第一自感,該二 次側具一第二自感; 第-電容,串聯該變壓H之—次側與該直交流轉換器之輸出 侧; 一第二電容,並聯該變壓器之二次側; 一全波整流器,並聯該第二電容; 濾波電路,並聯該全波整流器; 一負載,並聯該濾波電路; 輪出一調變頻率信號至一 PWM控制電路,一誤差控制器, 忒鎖相控制電路控制該直交流轉換器之輸出側之頻率,使得 26 200832883 該直交流轉換器之輸出側之一電壓與一電流為零相位; 該PWM控制電路,包括: 一設定值; 一三角波產生器,產生之一三角波; 一比較器; 1 一誤差控制器,該直交流轉換器之輸出側之該電流與該設定 值之誤差與該三角波經該比較器比較後控制該直交流轉換 器之至少一開關元件,使得該直交流轉換器之輸出側之該電 流與該設定值近乎相等。 17·如申請專利範圍第16項之充電器,該變壓器之一次側與二次 側可分離。 18. 如申請專利範圍第16項之充電器,該PWM控制電路進一步 包括一開關驅動器。 19. 如申請專利範圍第16項之充電器,該直交流轉換器之輸出側 之一電壓由一分壓器取出。 20. 如申請專利範圍第16項之充電器,該直交流轉換器之輸出側 之一電流由一電流感測器取出。 27200832883 X. Patent application scope: 1. A power supply for series-parallel weakly coupled inductive power transmission, comprising: a constant AC converter for converting a DC voltage source into an AC voltage source; a transformer with a primary side And the secondary side, the primary side has a first self-inductance, the secondary side has a second self-inductance; a first capacitor is connected in series with the primary side of the transformer and the output side of the direct current converter; Capacitor, parallel to the secondary side of the transformer; a full-wave rectifier, parallel to the second capacitor; a filter circuit, parallel to the full-wave rectifier; a load, parallel to the filter circuit; a phase-locked control circuit, output a modulation frequency The signal is connected to a PWM control circuit, and the phase lock control circuit controls the frequency of the output side of the direct current converter such that a voltage on the output side of the direct current converter is zero phase with a current; the PWM circuit includes: a set value; a triangular wave generator generating a triangular wave; a comparator; an error controller, the voltage on the output side of the direct current converter The error of the set value after comparing the triangular wave comparator controlling at least one switching element of the DC to AC converter such that the voltage set value approximately equal to the output of the inverter section of the side. 2. If the power supply of the first application of the patent scope is applied, the primary side and the secondary side of the transformer can be separated. 3. If the power supply of claim 1 is applied, the PWM control circuit includes a switch driver. 4. If the power supply of the first application of the patent range is applied, the voltage on the output side of the direct current converter is taken out by a voltage divider. 5. As in the power supply of claim 1, the current on the output side of the direct current converter is taken out by a current sensor. 6. A charger for series-parallel weakly coupled inductive power transmission, comprising: a constant AC converter for converting a DC voltage source into an AC voltage source; a transformer having a primary side and a secondary side, the primary side Having a first self-inductance, the secondary side has a second self-inductance; a first capacitor connected in series with the primary side of the transformer and the output side of the direct current converter; a second capacitor connected in parallel with the transformer a full-wave rectifier, parallel to the second capacitor; a filter circuit, parallel to the full-wave rectifier; a load, parallel to the filter circuit; a phase-locked control circuit, outputting a modulation frequency signal to a PWM control circuit, a phase lock control circuit controls a frequency of an output side of the direct current converter such that a voltage of the output side of the direct current converter is zero phase with a current; the PWM control circuit includes: a set value; a triangular wave generator a triangular wave; a comparator; an error controller, the voltage on the output side of the direct current converter and the set value error and the triangular wave After the comparison in the comparator controlling the DC to AC converter of the at least one switching element, such that the electrical output of the DC to AC converter and the pressure side of 24200832883 approximately equal to the set value. 7. If the charger of claim 6 is applied, the primary side and the secondary side of the transformer may be separated. 8. The charger of the sixth application of the patent scope, the PWM control circuit further comprising a switch driver. 9. If the charger of claim 6 is applied, the voltage on the output side of the direct current converter is taken out by a voltage divider. 10. As claimed in claim 6, the current of one of the output sides of the direct current converter is taken out by a current sensor. 11· A power supply for series-parallel weakly coupled inductive power transmission, comprising: a constant AC converter for converting a DC voltage source into an AC current source; and a transformer having a primary side and a secondary side, The first side has a first self-inductance, the second side has a second self-inductance; a first capacitor is connected in series with the primary side of the transformer and the output side of the direct current converter; a second capacitor is connected in parallel with the transformer a secondary wave; a full-wave rectifier, paralleling the second capacitor; a filter circuit, paralleling the full-wave rectifier; a load 'parallel to the filter circuit; a phase-locked control circuit, outputting a frequency-modulated frequency signal to a PWM control circuit, The phase lock control circuit controls the frequency of the output side of the direct current converter so that a voltage of one of the output sides of the direct current converter is zero phase with a current; the PWM control circuit includes a set value; An angular wave generator that generates a triangular wave; 25 200832883 a comparator; - an error port controller 'the current on the output side of the direct current converter and the setting, M after a difference between comparator which compares the DC to AC converter controls & matter > n member, such that the far current setpoint output of the DC to AC converter side of the nearly equal. 12. 13. 14. 15. 16. For the power supply of paragraph u of the patent scope, the secondary side of the transformer can be separated. The PWM control circuit further includes a switch actuator, such as the power supply H of claim 11 of the patent application. For example, the Shenzhou Patent Model 'u's Wei supplier, the voltage on the output side of the direct AC converter is taken out by a voltage divider. For example, the power supply of the Shenqing Patent Model '11', the current on the output side of the DC converter is taken out by the _ current sensor. A series-parallel weak-inductive power transmission charging port, comprising: a direct AC converter for converting a DC voltage source into an -AC current-transformer, with a secondary side and a secondary side, the primary side device - a first self-inductance, the second side has a second self-inductance; a first capacitor, connected in series with the transformer H - the secondary side and the output side of the direct current converter; a second capacitor connected in parallel with the transformer a full-wave rectifier, parallel to the second capacitor; a filter circuit, parallel to the full-wave rectifier; a load, parallel to the filter circuit; a variable frequency signal to a PWM control circuit, an error controller, shackle The phase control circuit controls the frequency of the output side of the direct current converter such that a voltage of one of the output sides of the direct current converter is zero phase with a current; the PWM control circuit includes: a set value; a triangular wave generation a triangular wave; a comparator; 1 an error controller, the error of the current on the output side of the direct current converter and the set value is compared with the triangular wave after the comparator At least one switching element is made of the DC to AC converter, such that the current set value of the output side of the DC to AC converter of nearly equal. 17. If the charger of claim 16 is applied, the primary side and the secondary side of the transformer may be separated. 18. The charger control circuit further includes a switch driver as claimed in claim 16 of the patent scope. 19. For the charger of claim 16 of the patent scope, one of the voltages on the output side of the direct current converter is taken out by a voltage divider. 20. As claimed in claim 16 of the patent scope, one of the currents on the output side of the direct current converter is taken out by a current sensor. 27
TW96101674A 2007-01-17 2007-01-17 Power supply and charger for series-parallel loosely coupled inductive power transfer system TWI328923B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96101674A TWI328923B (en) 2007-01-17 2007-01-17 Power supply and charger for series-parallel loosely coupled inductive power transfer system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96101674A TWI328923B (en) 2007-01-17 2007-01-17 Power supply and charger for series-parallel loosely coupled inductive power transfer system

Publications (2)

Publication Number Publication Date
TW200832883A true TW200832883A (en) 2008-08-01
TWI328923B TWI328923B (en) 2010-08-11

Family

ID=44819001

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96101674A TWI328923B (en) 2007-01-17 2007-01-17 Power supply and charger for series-parallel loosely coupled inductive power transfer system

Country Status (1)

Country Link
TW (1) TWI328923B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120072739A1 (en) * 2010-09-22 2012-03-22 Michael Isaacson Short circuit control for high current pulse power supply
TWI565187B (en) * 2015-09-15 2017-01-01 至美科技股份有限公司 Llc charger and controlling method thereof, and tx-rx transformer

Also Published As

Publication number Publication date
TWI328923B (en) 2010-08-11

Similar Documents

Publication Publication Date Title
Wu et al. A dual-sided control strategy based on mode switching for efficiency optimization in wireless power transfer system
Auvigne et al. A dual-topology ICPT applied to an electric vehicle battery charger
JP5480296B2 (en) Converter for single-phase and three-phase operation, DC power supply and battery charger
US9231494B2 (en) Power supply device with a resonant bridge circuit control unit
Lian et al. Design of a double-sided LC compensated capacitive power transfer system with capacitor voltage stress optimization
Waltrich et al. Multiport converter for fast charging of electrical vehicle battery
Liu et al. A soft-switched power-factor-corrected single-phase bidirectional AC–DC wireless power transfer converter with an integrated power stage
Li et al. A novel IPT system based on dual coupled primary tracks for high power applications
Yang et al. Interoperability improvement for wireless electric vehicle charging system using adaptive phase-control transmitter
Zhang et al. The charging control and efficiency optimization strategy for WPT system based on secondary side controllable rectifier
CN110277904A (en) A kind of circuit of power factor correction and Vehicular charger
Wang et al. An MMC-based IPT system with integrated magnetics and ZVS operations
TW200832883A (en) Power supply and charger for series-parallel loosely coupled inductive power transfer system
Yuan et al. Research on input-parallel single-switch WPT system with load-independent constant voltage output
CN105515434B (en) Transformer circuit and device comprising same
Xue et al. Magnetic-Free Wireless Self-Direct Drive Motor System for Biomedical Applications With High-Robustness
Zou et al. A gan variable-frequency series resonant dual-active-bridge bidirectional ac-dc converter for battery energy storage system
Lu et al. An impedance mapping-based t-compensation network and control strategy for WPT system with full-bridge active rectifier
CN109951089A (en) The control method of single-phase quasi-single-stage formula AC-DC converter
JP2014072966A (en) Non-contact power receiving device
Feng et al. Design and Optimization of a Bilayer Quadrature Double-D Coil for Electric Vehicle Wireless Charging System
Petersen et al. Development of a 5 kW inductive power transfer system including control strategy for electric vehicles
Su et al. Analysis on safety issues of capacitive power transfer system
Li et al. Enhancing V2G Applications: Analysis and Optimization of a CC/CV Bidirectional IPT System with Wide Range ZVS
TW200810315A (en) Power circuit component parameters design method for compensating the loosely coupled inductive power transfer system