TW200820458A - Light-emitting device and method for manufacturing the same - Google Patents

Light-emitting device and method for manufacturing the same Download PDF

Info

Publication number
TW200820458A
TW200820458A TW95138876A TW95138876A TW200820458A TW 200820458 A TW200820458 A TW 200820458A TW 95138876 A TW95138876 A TW 95138876A TW 95138876 A TW95138876 A TW 95138876A TW 200820458 A TW200820458 A TW 200820458A
Authority
TW
Taiwan
Prior art keywords
light
substrate
buffer layer
layer
protective layer
Prior art date
Application number
TW95138876A
Other languages
Chinese (zh)
Other versions
TWI313076B (en
Inventor
Yu-Pin Hsu
Cheng-Ta Kuo
Jui-Yi Chu
Chun-Kai Wang
Original Assignee
Epitech Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epitech Technology Corp filed Critical Epitech Technology Corp
Priority to TW95138876A priority Critical patent/TWI313076B/en
Publication of TW200820458A publication Critical patent/TW200820458A/en
Application granted granted Critical
Publication of TWI313076B publication Critical patent/TWI313076B/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

A light-emitting device and a method for manufacturing the same are described. The light-emitting device comprises a substrate, a protective buffer structure and an illuminant epitaxial structure. The protective buffer structure is deposed on a surface of the substrate, wherein the protective buffer structure comprises a protective layer contacting the surface of the substrate, and a material of the protective layer is Al, In, Mg, Fe, Zn, Cd, Sn, Sb, Te, As, Se or P. The illuminant epitaxial structure is deposed on a surface of the protective buffer structure.

Description

200820458 九、發晒說痛 ..... .. ; ':.:: . ; :: : . .. ; -. 【發明所屬之技術領域】 本發明是有關於一種半導體元件及其製造方法,且特別 是有關於一種發光元件及其製造方法。 【先前技術】 近年來,許多的焦點集中在以氮化物為主的半導體所形 成的發光元件,例如氮化鎵(GaN)、氮化銘鎵(AlGaN)、氮化 ( 銦鎵(InGaN)、以及氮化鋁銦鎵(AiInGaN)等。請參照第i圖, 其係緣示傳統氮化物發光元件之剖面圖。製作氮化物之發光 元件100時,先提供矽基板102。接下來,於矽基板1〇2之表 面上直接成長氮化鎵緩衝層丨〇4,以使後續之發光磊晶結構 1 06能順利成長於矽基板i 〇2之上。然後,再於氮化鎵緩衝層 104之表面上蠢晶成長發光蠢晶結構1〇6,而大致完成發光元 件100之製作。 然而’直接在石夕基板1 0 2上成長氮化鎵緩衝層1 〇 4時, I 叙極谷易與石夕產生反應,而造成氮化鎵緩衝層1 〇4之品質低 劣。如此一來,將進一步影響後續成長在氮化鎵緩衝層1〇4 之表面上的發光磊晶結構106的磊晶品質。因此,不僅會對 發光元件100之電性穩定度造成不良影響,而降低發光元件 1 〇 〇之操作品質,更會造成發光元件1 〇 〇之操作壽命的縮減。 為了避免氮化鎵緩衝層之鎵元素與矽基板產生反應,目 前發展出一種技術,係在矽基板之表面上成長氮化鋁鎵緩衝 層或氮化鋁緩衝層。雖然此種技術可解決鎵元素容易與砍產 6 200820458 之氮化叙鎵層與氮化銘層之阻值 以製作出低電壓的發光元件。 【發明内容】 因此’本發明之目的就是在提供一種發光元件,其基板 設^緩衝結構’而可在後續成長氮化鎵系列之 磊晶層時,有效阻隔磊晶層盘美 m ㈢一 I扳,而可避免鎵與基板產生 反應。因此,可提升磊晶芦所 «之口口貝,進而達到提高發光元件 之電性品質的功效。 本發明之另一目的是名姐糾 &心 疋在^仏一種發光元件之製造方法, 係利用表面處理方式在某杯夕农工^ 土板之表面上形成低阻值的保護緩衝 結構,因此可獲得較低電壓之發光元件。200820458 九, 晒晒痛痛..... .. ; ':.:: . ::: . . . ; -. Technical Field of the Invention The present invention relates to a semiconductor device and a method of manufacturing the same In particular, it relates to a light-emitting element and a method of manufacturing the same. [Prior Art] In recent years, many focus have been placed on light-emitting elements formed of nitride-based semiconductors such as gallium nitride (GaN), gallium nitride (AlGaN), and nitride (inGaN). And aluminum indium gallium nitride (AiInGaN), etc. Please refer to Fig. i, which shows a cross-sectional view of a conventional nitride light-emitting device. When a nitride light-emitting device 100 is fabricated, a germanium substrate 102 is provided first. The gallium nitride buffer layer 丨〇4 is directly grown on the surface of the substrate 1〇2 so that the subsequent luminescent epitaxial structure 106 can be smoothly grown on the 矽 substrate i 〇 2. Then, the GaN buffer layer 104 is further On the surface, the stupid crystal grows into a light-emitting crystal structure 1〇6, and the fabrication of the light-emitting element 100 is substantially completed. However, when the gallium nitride buffer layer 1 〇4 is grown directly on the Shixi substrate 1 0 2 , I The reaction with the stone eve causes the quality of the gallium nitride buffer layer 1 〇 4 to be inferior. Thus, the epitaxial growth of the luminescent epitaxial structure 106 grown on the surface of the gallium nitride buffer layer 1 〇 4 is further affected. Quality, therefore, not only the electrical stability of the light-emitting element 100 The degree of adverse effect is affected, and the operation quality of the light-emitting element 1 is lowered, which further reduces the operational life of the light-emitting element 1 . In order to avoid the reaction between the gallium element of the gallium nitride buffer layer and the germanium substrate, a kind of development has been developed. The technology is to grow an aluminum gallium nitride buffer layer or an aluminum nitride buffer layer on the surface of the germanium substrate. Although this technique can solve the problem that the gallium element is easily blocked with the nitrided layer and the nitride layer of the 200820458 The value is to produce a low-voltage light-emitting element. [Invention] Therefore, the object of the present invention is to provide a light-emitting element whose substrate is provided with a buffer structure and can be effectively used in the subsequent growth of an epitaxial layer of a gallium nitride series. Blocking the epitaxial layer of the disk m m (three) - I pull, and can avoid the reaction between gallium and the substrate. Therefore, the mouth of the threshing reed can be improved, thereby improving the electrical quality of the light-emitting element. Another purpose is to create a low-resistance value on the surface of a cup of a farmer's soil board by using a surface treatment method. Buffer structure, the light emitting element of a lower voltage thus obtained.

生反應的問題’然而所形成 偏南’因此運用此種技術難 鎘(cd)、錫(Sn)、銻(Sb)、碲(Te)、砷(As)、砸(Se)或磷 p广 以及發光蟲晶結構’設於保護缓衝結構之一表面上。 依照本發明一較佳實施例,上述之保護緩衝結構更至少 包括半導體緩衝層成長在保護層上,且半導體緩衝層介於 根據本發明之上述目的’提出一種發光元件,至少包括: 一基板;一保護緩衝結構,設於基板之一表面上,其令此保 護緩衝結構至少包括_保護層,且保護層與基板之表面接 觸,保護層之材料為鋁(A1)、銦(In)、鎂(Mg)、鐵(Fe)、辞(zn)、 保護層與發光磊晶結構之間。 依照本發明另一較佳實施例,前述之半導體緩衝層之材 料為氮化鎵系列(GaN-based)材料,例如氮化銘鎵銦 (AlxInyGa1-x_yN,0$x+y$ 1)。 7 200820458 I勺:據,發明之目的,提出一種發光元件之製造方法,至 >、匕盆··提供—基板;形成—保護緩衝結構於基板之一表面 '、形成保°蔓緩衝結構之步驟至少包括形成一保護層並 使保護層與基板之表面接觸,保護層之材料為銘、麵、鎮、 ?=、鎮、錫、錄、磚、石申、砸或磷;以及形成-發光蟲 日日釔構於保護緩衝結構之一表面上。 依照本發明—較佳實施例’上述形成該保護層之步驟係 利用有機金屬化學氣相沉積_CVD)機台,且保護層之成長 溫度介於實質2〇〇。(:至l4〇(TC之間。 【實施方式】 本發明揭露一種發光元件及其製造方法,係先在基板之 ,面上I成低阻值的保護緩衝結構,因此不僅可有效阻隔後 =長之半導體層與基板,以改善磊晶層之品質,更有利於 獲侍低電壓之發光元件。為了使本發明之敘述更加詳盡與完 備’可參照下列描述並配合第2圖與第3圖之圖式。 本t明之舍光兀件可為發光二極體,例如氮化物發光二 極體。請參昭第 2 f®,甘仏-& …、 H ,、、會不依照本發明一較佳實施例的一 種發光元件之剖面圖。製作發光元件2〇〇a時,先提供基板 202,其中此基板2G2之材料可例如為♦、氧化紹⑷2〇3)或碳 夕(SiC)在本毛明之較佳實施例中,發光元件可利用 有機金屬化學氣相沉積技術來加以製作,因此可將基板2〇2 置入有機金屬化學氣相沉積機台内。 接著’於基板202之表面2〇4上形成保護緩衝結構2〇6&。 8 200820458 在本貝鈿例中,保護緩衝結構2〇6a係由單一保護層2〇8所構 成j因此,在本實施例中製作保護層2〇8時,利用例如有機 化學氣相沉積方式,並在有機金屬化學氣相沉積機台内通入 反應原料’例如鋁、銦、鎂、鐵、鋅、鎘、錫、銻、碲、砷、 石西或磷’以對基板2G2之表面剔進行表面處理,因而直接 在基板202之表面204上形成保護層2〇8。因此,保護層 的材料可為鋁、銦、鎂、鐵、鋅、鎘、錫、銻、碲、砷、硒 或磷。在本發明中,由於保護層2〇8係直接成長在基板Μ? 之表面204上,因此保護層2〇8與基板2〇2之表面接觸, 如第2圖所示。成長保護層2()8時,反應温度較佳係控制在 介於實質20(TC至實質14〇〇t:之間。 土告另一方面,請參照第3圖,其係繪示依照本發明另—較 佳實施例的一種發光元件之剖面圖。在本發明之另一較佳實 施例之發光元件200b中,同樣係在基板2〇〇之表面2〇4上二 接成,保護緩衝結構觸,其中保護緩衝結構鳩係由至少 堆s釔構所構成。在本示範實施例中,保護緩衝結構讣 係由二堆疊結構212a與212b所構成,如第3圖所示,然而, 本發明之保護緩衝結構鳩可僅由_堆疊結構構成。每—個 =:構2广與而主要包括保護層謂以及半導體緩衝 S 10,八中半導體緩衝層210位於保護層2〇8之表面上。 :保護緩衝結構鳩時’先利用例如有機化學氣相沉積方 …並在有機金屬化學氣相沉積機台内通入反 :、姻、鎮、鐵、辞、編、錫、録、碌、神、砸或麟, 土板202之表自2()4進行表面處理,而直接在基板加之表 9 200820458 面204上形成堆最紝 之保護層2〇8時二/之保護層2〇8。成長堆叠結構2l2a 質1峨之間堆,佳係控制在介於實質撕至實 銦、鎮、鐵、鋅二、、、。構212&之保護層208的材料可為紹、 在相同或不相同之::錫、録、蹄、神、砸或磷。接著,可 構212a半導體有機金屬化學氣相沉積機台内成長堆疊結 沉積機台内成^^21(),較佳係在相时機金屬化學氣相 施例中,在同I有機與半導體緩衝層210。在—較佳實 屬化學氣相沉積::學氣相沉積機台内’利用有機金 體緩衝層21。,、而:::呆208之表面上直接成長半導 212a之半導體緩^成堆$結構仙之製作。成長堆疊結構 氮化鎵系列材: 1}。 枓例如氮化鋁鎵銦(A1xInyGai.x.yN,(^x+y$ 、下來,可依製程或元件需求選擇性地形成另一堆疊結 ,或者直接進行後續發Μ晶結構的製作。在本示範實施 ,中’係在第-組堆疊結構212a上以相同製程條件與原料再 製作-組堆疊結構212b’其中後續形成之堆疊結構⑽的保 遵層208係先直接成長在前一堆疊結構2Ua的半導體緩衝層 210的表面上,再於堆疊結構21汕之保護層2〇8的表面上成 長堆疊結構212b之半導體緩衝層21〇。也就是說,本發明之 保護缓衝結構206b可包括依序交錯堆疊之保護層2〇8與半導 體緩衝層210。同樣地,堆疊結構212b之保護層2Q8的材料 可為鋁、銦、鎂、I载、辞、鎘、錫、銻、碲、砷、硒或磷, 200820458The problem of the raw reaction 'however it is formed south' is therefore difficult to use cadmium (cd), tin (Sn), antimony (Sb), antimony (Te), arsenic (As), antimony (Se) or phosphorus. And the luminescent crystal structure is disposed on one surface of the protective buffer structure. According to a preferred embodiment of the present invention, the protection buffer structure further includes at least a semiconductor buffer layer grown on the protective layer, and the semiconductor buffer layer is disposed according to the above object of the present invention. A light-emitting element includes at least: a substrate; A protective buffer structure is disposed on a surface of the substrate, wherein the protective buffer structure comprises at least a protective layer, and the protective layer is in contact with the surface of the substrate, and the material of the protective layer is aluminum (A1), indium (In), and magnesium. (Mg), iron (Fe), word (zn), between the protective layer and the luminescent epitaxial structure. According to another preferred embodiment of the present invention, the material of the semiconductor buffer layer is a GaN-based material such as GaN gallium indium (AlxInyGa1-x_yN, 0$x+y$1). 7 200820458 I scoop: According to the object of the invention, a method for manufacturing a light-emitting element is provided, which comprises: - a substrate, a substrate, a protective buffer structure on one surface of the substrate, and a buffer structure. The method at least includes forming a protective layer and contacting the protective layer with a surface of the substrate, wherein the material of the protective layer is inscription, face, town, ?=, town, tin, mud, brick, stone, bismuth or phosphorus; and forming-emitting The insects are placed on the surface of one of the protective buffer structures. According to the present invention - the preferred embodiment, the step of forming the protective layer is carried out by using an organometallic chemical vapor deposition (CVD) machine, and the growth temperature of the protective layer is substantially 2 Å. (: Between TC and TC. [Embodiment] The present invention discloses a light-emitting element and a method of manufacturing the same, which is a low-resistance protection buffer structure on the surface of the substrate, so that it can be effectively blocked only after The long semiconductor layer and the substrate are used to improve the quality of the epitaxial layer, and are more advantageous for receiving low-voltage light-emitting elements. In order to make the description of the present invention more detailed and complete, the following description can be referred to and cooperate with the second and third figures. The pattern of the present invention can be a light-emitting diode, such as a nitride light-emitting diode. Please refer to the 2nd f®, Ganzi-&, H, ,, will not be in accordance with the present invention. A cross-sectional view of a light-emitting element according to a preferred embodiment. When the light-emitting element 2a is fabricated, the substrate 202 is first provided, wherein the material of the substrate 2G2 can be, for example, ♦, oxidized (4) 2 〇 3) or carbon etched (SiC). In the preferred embodiment of the present invention, the light-emitting element can be fabricated by an organometallic chemical vapor deposition technique, so that the substrate 2〇2 can be placed in the organometallic chemical vapor deposition machine. A protective buffer structure is formed on the surface 2〇4 2〇6& 8 200820458 In the present example, the protective buffer structure 2〇6a is composed of a single protective layer 2〇8. Therefore, when the protective layer 2〇8 is formed in the present embodiment, for example, organic chemistry is utilized. Vapor deposition method, and in the organometallic chemical vapor deposition machine into the reaction raw materials 'such as aluminum, indium, magnesium, iron, zinc, cadmium, tin, antimony, antimony, arsenic, or phosphorus' to the substrate The surface of the 2G2 is surface-treated, thereby forming a protective layer 2〇8 directly on the surface 204 of the substrate 202. Therefore, the material of the protective layer may be aluminum, indium, magnesium, iron, zinc, cadmium, tin, antimony, antimony, Arsenic, selenium or phosphorus. In the present invention, since the protective layer 2〇8 is directly grown on the surface 204 of the substrate, the protective layer 2〇8 is in contact with the surface of the substrate 2〇2, as shown in Fig. 2 When the protective layer 2 () 8 is grown, the reaction temperature is preferably controlled between substantially 20 (TC to substantially 14 〇〇 t:. On the other hand, please refer to Fig. 3, which is shown in accordance with A cross-sectional view of a light-emitting element in accordance with another preferred embodiment of the present invention. The optical element 200b is also connected to the surface 2〇4 of the substrate 2〇〇 to protect the buffer structure, wherein the protection buffer structure is composed of at least a stack of s structures. In the exemplary embodiment, the protection The buffer structure is composed of two stacked structures 212a and 212b, as shown in Fig. 3. However, the protective buffer structure of the present invention may be composed only of a stacked structure. Each of the structures is broad and mainly includes The protective layer and the semiconductor buffer S 10, the bazhong semiconductor buffer layer 210 is located on the surface of the protective layer 2〇8: When the buffer structure is protected, the first use of, for example, organic chemical vapor deposition... and chemical vapor deposition in the organic metal Inside the machine, the anti-invention: marriage, town, iron, rhetoric, editing, tin, recording, rushing, god, 砸 or lin, the surface of the earth plate 202 is surface treated from 2 () 4, and directly on the substrate plus the table 9 200820458 The surface of the stack 204 is formed with the last protective layer 2〇8时2/protective layer 2〇8. The stacking structure 2l2a is stacked between the masses 1,, and the best control is between the actual tears to the real indium, town, iron, zinc, and. The material of the protective layer 208 of the structure 212 & may be the same or different: tin, hoof, hoof, god, sputum or phosphorus. Then, the 212a semiconductor organometallic chemical vapor deposition machine can be grown into a stacking deposition machine to form ^^21(), preferably in the phase timing metal chemical vapor application, in the same organic and semiconductor Buffer layer 210. The organic gold buffer layer 21 is utilized in a preferred chemical vapor deposition: vapor deposition apparatus. , and::: 208 on the surface of the direct growth of the semi-conductor 212a of the semiconductor slow ^ pile of $ structure of the production of the fairy. Growth stack structure GaN series: 1}. For example, aluminum gallium indium nitride (A1xInyGai.x.yN, (^x+y$, down, another stack junction can be selectively formed according to the process or component requirements, or the subsequent twinning structure can be directly fabricated. In the exemplary implementation, the middle layer is formed on the first-group stack structure 212a by the same process conditions and the raw material is re-fabricated-group stack structure 212b', wherein the subsequently formed stack structure (10) is directly grown in the previous stack structure. On the surface of the 2Ua semiconductor buffer layer 210, the semiconductor buffer layer 21 of the stacked structure 212b is grown on the surface of the protective layer 2〇8 of the stacked structure 21汕. That is, the protective buffer structure 206b of the present invention may include The protective layers 2〇8 and the semiconductor buffer layer 210 are sequentially staggered. Similarly, the material of the protective layer 2Q8 of the stacked structure 212b may be aluminum, indium, magnesium, I, cadmium, tin, antimony, antimony, arsenic. , selenium or phosphorus, 200820458

且=長堆豎結構2l2b之保護層208時,反應溫度較佳係控制 在"於貝質2〇〇。〇至實質14〇〇〇c之間。而且,堆疊結構21几 之材料可為氮化鎵系列材料,例如氮化鋁鎵銦(AlxInyGai + yN 〇$X+y$丨)’且成長堆疊結構212b之半導體緩衝層210時, 反應溫度較佳係控制在介於實質200°C至實質1400°C之間。 在本發明中,每個堆疊結構212之保護層2〇8之材料可 相同,亦可不同,同樣地,每個堆疊結構212之半導體緩衝 【層210之材料可相同,亦可不同。此外,整個保護緩衝結構 206b之各結構層可在同一有機金屬化學氣相沉積機台内製 作。 在本發明中,在尚未成長發光磊晶結構前,先直接在基 板之表面上成長保護緩衝結構,因而可有效阻隔半導體元素 基板產生反應’而可獲得南品質之蠢晶結構,進而可提升 發光元件之電性品質。因此,可達到延長發光元件之壽命、 提升元件之操作品質、及增進元件之特性的功效。 δ月同日守參照弟2圖與第3圖’於基板202之表面204上 L 直接成長保護緩衝結構206a或206b後,較佳可在同一有機 金屬化學氣相沉積機台内’蠢晶成長發光蠢晶結構2 2 〇,即可 大致上完成發光元件200a或200b之製作。保護緩衝結構2〇6a 或保護緩衝結構206b介於發光磊晶結構220與基板202之 間。隨後,即可進行發光元件200a或200b之電極的設置。 在本發明之一實施例中’成長發光蟲晶結構220時,利用例 如有機金屬化學氣相沉積技術,依序形成第一電性半導體層 214於保護緩衝結構206a或206b上、主動層216於第一電性 11 200820458 半‘體層214上、以及第二電性半導體層218於主動層216 上’其_第一電性與第二電性之電性相反。 由於發光磊晶結構220係成長在保護緩衝結構2〇6a或保 護緩衝結構206b之表面上,而保護緩衝結構2〇6a或保護緩 衝結構206b可在發光磊晶結構22〇製作期間有效隔開基板 202與發光磊晶結構220,因此可避免基板2〇2與發光磊晶結 構220之元素產生反應,如此可使所成長之發光磊晶結構22〇 • 具有相當高之品質。 f ' . 由上述本發明較佳實施例可知,本發明之一優點就是因 為本發明之發光元件的表面上設有保護緩衝結構,而可在後 續成長例如氮化鎵系列之半導體磊晶層時,有效阻隔磊晶層 與基板,而可避免半導體元素與基板產生反應。因此,可提 升磊晶層之品質,進而達到提高發光元件之電性品質的功效。 由上述本發明較佳實施例可知,本發明之另一優點就是 因為本發明之發光元件之製造方法利用表面處理方式在基板 之表面上形成低阻值的保護緩衝結構,因此可順利獲得較低 I 電壓之發光元件。 雖然本發明已以一較佳實施例揭露如上,然其並非用以 限定本發明,任何在此技術領域中具有通常知識者,在不脫 離本發明之精神和範圍内,當可作各種之更動與潤飾,因此 本發明之保護範圍當視後附之申請專利範圍所界定者為。 明 說 單 簡 式 圖 第1圖係繪示傳統氮化物發光元件之剖面圖。 12 200820458 第2圖係緣示依照本發明一較佳實施例的一種發光元件 之剖面圖。 第3圖係繪示依照本發明另一較佳實施例的一種發光元 件之剖面圖。 【主要元件符號說明】 206a 二And = when the protective layer 208 of the long stack vertical structure 2l2b, the reaction temperature is preferably controlled in " 〇 to the actual 14〇〇〇c. Moreover, the material of the stacked structure 21 may be a gallium nitride series material, such as aluminum gallium indium nitride (AlxInyGai + yN 〇 $X+y$丨)', and the reaction temperature is higher when the semiconductor buffer layer 210 of the stacked structure 212b is grown. The best control is between 200 ° C and 1400 ° C. In the present invention, the material of the protective layer 2〇8 of each stacked structure 212 may be the same or different, and similarly, the semiconductor buffer of each stacked structure 212 [the material of the layer 210 may be the same or different. Further, the respective structural layers of the entire protective buffer structure 206b can be fabricated in the same organometallic chemical vapor deposition machine. In the present invention, before the luminescent epitaxial structure is grown, the protective buffer structure is directly grown on the surface of the substrate, thereby effectively blocking the reaction of the semiconductor element substrate to obtain a south-quality stupid crystal structure, thereby improving luminescence. The electrical quality of the component. Therefore, the effect of prolonging the life of the light-emitting element, improving the operation quality of the element, and enhancing the characteristics of the element can be achieved. In the same day, the same as in the same organic metal chemical vapor deposition machine, the growth of the buffer structure 206a or 206b is preferably performed on the surface 204 of the substrate 202. The abrupt crystal structure 2 2 〇 can substantially complete the fabrication of the light-emitting element 200a or 200b. The protective buffer structure 2〇6a or the protective buffer structure 206b is interposed between the light emitting epitaxial structure 220 and the substrate 202. Subsequently, the arrangement of the electrodes of the light-emitting elements 200a or 200b can be performed. In an embodiment of the present invention, when the luminescent crystal structure 220 is grown, the first electrical semiconductor layer 214 is sequentially formed on the protective buffer structure 206a or 206b, and the active layer 216 is formed by, for example, an organometallic chemical vapor deposition technique. The first electrical property 11 200820458 and the second electrical semiconductor layer 218 on the active layer 216 are opposite in electrical conductivity to the second electrical property. Since the luminescent epitaxial structure 220 is grown on the surface of the protection buffer structure 2〇6a or the protection buffer structure 206b, the protection buffer structure 2〇6a or the protection buffer structure 206b can effectively separate the substrate during the fabrication of the luminescent epitaxial structure 22〇. 202 and the light-emitting epitaxial structure 220, thereby preventing the substrate 2〇2 from reacting with the elements of the light-emitting epitaxial structure 220, so that the grown light-emitting epitaxial structure 22 has a relatively high quality. According to the preferred embodiment of the present invention, one of the advantages of the present invention is that the surface of the light-emitting element of the present invention is provided with a protective buffer structure, which can be used for subsequent growth of a semiconductor epitaxial layer such as a gallium nitride series. , effectively blocking the epitaxial layer and the substrate, and avoiding the reaction between the semiconductor element and the substrate. Therefore, the quality of the epitaxial layer can be improved, thereby improving the electrical quality of the light-emitting element. According to the preferred embodiment of the present invention, another advantage of the present invention is that the manufacturing method of the light-emitting element of the present invention can form a low-resistance protection buffer structure on the surface of the substrate by using a surface treatment method, so that the method can be smoothly obtained. I voltage light-emitting element. Although the present invention has been described above in terms of a preferred embodiment, it is not intended to limit the invention, and it is intended that various modifications may be made without departing from the spirit and scope of the invention. And the scope of protection of the present invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing a conventional nitride light-emitting element. 12 200820458 Fig. 2 is a cross-sectional view showing a light-emitting element in accordance with a preferred embodiment of the present invention. Figure 3 is a cross-sectional view showing a light emitting device in accordance with another preferred embodiment of the present invention. [Main component symbol description] 206a II

100 :發光元件 1 04 :氮化蘇緩衝層 2 00a :發光元件 202 :基板 206a :保護緩衝結構 208 :保護層 212a :堆疊結構 1〇2 :矽基板 1〇6 :發光磊晶結構 200b :發光元件 2 0 4 :表面 206b :保護緩衝結構 210:半導體緩衝層 212b :堆疊結構 2 16 ·主動層 220 :發光磊晶結構 13100: light-emitting element 104: nitriding buffer layer 2 00a: light-emitting element 202: substrate 206a: protective buffer structure 208: protective layer 212a: stacked structure 1〇2: germanium substrate 1〇6: light-emitting epitaxial structure 200b: light Element 2 0 4 : surface 206b: protective buffer structure 210: semiconductor buffer layer 212b: stacked structure 2 16 · active layer 220: light emitting epitaxial structure 13

Claims (1)

200820458 十、申請專龜圍 1· 一種發光元件,至少包括: 一基板; 一保護緩衝結構,設於該基板之一表面上,其中該保護 緩衝結構至少包括一保護層,且該保護層與該基板之該表面 • 接觸’該保護層之材料為鋁(A1)、銦(In)、鎂(Mg)、鐵(Fe)、 鋅(Zn)、編(Cd)、錫(Sn)、銻(Sb)、碲(Te)、砷(As)、砸(Se) f % 或磷(P);以及 一發光蟲晶結構,設於該保護緩衝結構之一表面上。 2·如申請專利範圍第1項所述之發光元件,其中該保 護緩衝結構更至少包括一半導體緩衝層成長在該保護層 上,且該半導體緩衝層介於該保護層與該發光磊晶結構之 間。 U 3·如申明專利範圍第2項所述之發光元件,其中該半 導體緩衝層之材料為氮化鎵系列(GaN_based)材料。 4·如申請專利範圍第2項所述之發光元件,其中該半 導體緩衝層之材料為氮化鋁鎵銦(A1 JnyGai ”N,〇 $ x + y ^ 1)。 5.如申請專利範圍第1 項所述之發光元件,其中該基 14 200820458 板之材料為矽。 6·如申請專利範圍第1項所述之發光元件,其中該基 板之材料為氧化鋁(Al2〇3)。 7·如申請專利範圍第丨項所述之發光元件,其中該基 板之材料為碳化矽(Sic)。 8· 一種發光元件,至少包括: 一基板; 一保護緩衝結構,設於該基板之一表面上,其中該保護 緩衝結構至少包括一第一堆疊結構,且該第一堆疊結構至少 包括一第一保護層以及一第一半導體緩衝層位於該第一保 言蒦芦 I 丄 k 曰’该第一保護層與該基板之該表面接觸,該第一保護 層之材料為鋁、銦、鎂、鐵、鋅、鎘、錫、銻、碲、砷、硒 或碟;以及 一發光磊晶結構,設於該保護緩衝結構之一表面上。 _ 9·如申請專利範圍第8項所述之發光元件,其中該第 一半導體緩衝層之材料為氮化鎵系列材料。 一 〃 10·如申晴專利範圍第8項所述之發光元件,其中該第 半導體緩衝層之材料為氮化銘鎵銦(AlxInyGau-yN,〇 ‘ 15 200820458 u·如申請專利範圍第8頊所述之發光元件,其中該基 板之材料為矽。 11 2 ·如申請專利範圍第8頊所述之發光元件,其中該基 板之材料為氧化鋁。 1 3 ·如申請專利範圍第8項戶斤述之發光元件,其中该基 板之材料為碳化矽。 ^ 14·如申請專利範圍第8項所述之發光元件,其中該保 类緩衝結構更包括至少一第二堆疊結構位於該第一堆疊結 2與5亥發光磊晶結構之間,其中該第二堆疊結構至少包括一 〜保遵層以及一第二半導體缓衝層依序堆疊在該第二半 導體緩衝層之表面上。 ’ 15·如申請專利範圍第14項所述之發光元件,其中該 第一 〜保護層之材料與該第一保護層之材料相同。 1 6·如申請專利範圍第1 4項所述之發光元件,其中該 〜保護層之材料與該第一保護層之材料不同。 1 7 ·如申請專利範圍第14項所述之發光元件,其中該 2 〜保護層之材料為鋁、銦、鎂、鐵、辞、鎘、錫、銻、碲、 200820458 坤、磁或碟。 18·如申請專利範圍第14項所述之發光元件,其中該 第二半導體緩衝層之材料與該第一半導體緩衝層之材料不 同。 19_如申請專利範圍第14項所述之發光元件,其中該 第二半導體緩衝層之材料與該第一半導體緩衝層之材料相 同0 20·如申請專利範圍第14項所述之發光元件,其中該 第一半導體緩衝層之材料為氮化鎵系列材料。 21·如申請專利範圍第14項所述之發光元件,其中該 第二半導體緩衝層之材料為氮化鋁鎵銦(AlxInyGai.x_yN,〇 $ x + y S 1) 〇 22· —種發光元件之製造方法,至少包括: 提供一基板; 形成一保護緩衝結構於該基板之一表面上,其中形成該 保護緩衝結構之步驟i w . _ ^ 至^包括形成一保濩層並使該保護層 與該基板之該表面接觸,該保護層之材料為銘、銦、鎂、鐵、 鋅、鑛、錫、録、碲、钟、砸或磷;以及 形成一發光磊晶結構於該保護緩衝結構之一表面上。 17 200820458 23·如申請專利範圍第22項所述之發光元件之製造方 法’其中形成該保護層之步驟係利用一有機金屬化學氣相沉 積(MOCVD)機台。 24.如申請專利範圍第23項所述之發光元件之製造方 法’其中遠保遵層之成長溫度介於實質2〇〇。〇至實質1400 °C之間。200820458 X. Application for a turtle shell 1· A light-emitting component comprising at least: a substrate; a protective buffer structure disposed on a surface of the substrate, wherein the protective buffer structure comprises at least a protective layer, and the protective layer The surface of the substrate • The material of the protective layer is aluminum (A1), indium (In), magnesium (Mg), iron (Fe), zinc (Zn), braided (Cd), tin (Sn), tantalum ( Sb), tellurium (Te), arsenic (As), strontium (Se) f% or phosphorus (P); and a luminescent crystal structure disposed on one surface of the protective buffer structure. The light-emitting device of claim 1, wherein the protective buffer structure further comprises at least a semiconductor buffer layer grown on the protective layer, and the semiconductor buffer layer is interposed between the protective layer and the luminescent epitaxial structure between. The light-emitting element according to claim 2, wherein the material of the semiconductor buffer layer is a gallium nitride-based (GaN-based) material. 4. The light-emitting element according to claim 2, wherein the material of the semiconductor buffer layer is aluminum gallium indium nitride (A1 JnyGai ”N, 〇$ x + y ^ 1). The illuminating element according to the above aspect, wherein the material of the substrate of the substrate of the invention is the illuminating element according to claim 1, wherein the material of the substrate is alumina (Al 2 〇 3). The illuminating element according to the above aspect of the invention, wherein the material of the substrate is bismuth carbide (Sic). 8. A illuminating element comprising at least: a substrate; a protective buffer structure disposed on a surface of the substrate The protective buffer structure includes at least a first stacked structure, and the first stacked structure includes at least a first protective layer and a first semiconductor buffer layer at the first proof gourd I 丄k 曰 'the first The protective layer is in contact with the surface of the substrate, and the material of the first protective layer is aluminum, indium, magnesium, iron, zinc, cadmium, tin, antimony, bismuth, arsenic, selenium or dish; and a luminescent epitaxial structure is provided. The protection buffer structure The light-emitting element of claim 8, wherein the material of the first semiconductor buffer layer is a gallium nitride series material. A 〃 10 · as described in the eighth paragraph of the Shen Qing patent scope The light-emitting element, wherein the material of the first semiconductor buffer layer is arsenide gallium indium (AlxInyGau-yN, 〇'15 200820458 u. The light-emitting element according to claim 8 of the patent application, wherein the material of the substrate is germanium. The light-emitting element according to claim 8 wherein the material of the substrate is alumina. 1 3 · The light-emitting element of the eighth item of the patent application, wherein the material of the substrate is tantalum carbide The light-emitting element of claim 8, wherein the protection buffer structure further comprises at least one second stacked structure between the first stacked junction 2 and the 5 luminescent epitaxial structure, wherein the The second stack structure includes at least a layer and a second semiconductor buffer layer sequentially stacked on the surface of the second semiconductor buffer layer. The light-emitting device of claim 14, The material of the first protective layer is the same as the material of the first protective layer. The light-emitting element of claim 14, wherein the material of the protective layer and the first protective layer The light-emitting element according to claim 14, wherein the material of the 2~protective layer is aluminum, indium, magnesium, iron, cadmium, tin, antimony, antimony, 200820458 Kun, magnetic The light-emitting element of claim 14, wherein the material of the second semiconductor buffer layer is different from the material of the first semiconductor buffer layer. The light-emitting element according to claim 14, wherein the material of the second semiconductor buffer layer is the same as the material of the first semiconductor buffer layer. The material of the first semiconductor buffer layer is a gallium nitride series material. The light-emitting element according to claim 14, wherein the material of the second semiconductor buffer layer is aluminum gallium indium nitride (AlxInyGai.x_yN, 〇$x + y S 1) 〇22· The manufacturing method includes at least: providing a substrate; forming a protective buffer structure on a surface of the substrate, wherein the step of forming the protective buffer structure iw . _ ^ to ^ comprises forming a protective layer and bonding the protective layer Contacting the surface of the substrate, the material of the protective layer is indium, indium, magnesium, iron, zinc, ore, tin, lanthanum, lanthanum, lanthanum, cerium or phosphorus; and forming a luminescent epitaxial structure in the protective buffer structure On the surface. The method of manufacturing a light-emitting element according to claim 22, wherein the step of forming the protective layer utilizes an organometallic chemical vapor deposition (MOCVD) machine. 24. The method of manufacturing a light-emitting device according to claim 23, wherein the growth temperature of the remote protection layer is substantially 2 〇〇. 〇 to the actual 1400 °C. 緩衝層於該保護層上。 2 5項所述之發光元件之製造方 ,之步驟係利用該有機金屬化學 26·如申請專利範圍第, 法,其中形成該半導體緩衝層 氣相沉積機台。 項所述之發光元件之製造方 成長溫度介於實質200°C至實質 27.如申請專利範圍第 法,其中該半導體緩衝層之 1400°C 之間。 28.如申請專利範圍第 法,其中該半導體緩衝層之 項所述之發光元件之製造方 材料為氮化鎵系列材料。 18 200820458 29·如中#專利範m帛25項所述之發光元件之製造方 法’其中該半導體緩衝層之材料為氮化鋁鎵銦 (AlxIriy Ga 1 ,x_yN, x+y ^ 〇 30.如申請專利範圍第22項所述之發光元件之製造方 法’其中該基板之材料為石夕。 3 1.如申請專利範圍第22項所述之發光元件之製造方 法’其中該基板之材料為氧化銘。 32·如申請專利範圍第22項所述之發光元件之製造方 法’其中該基板之材料為峻化石夕。 33· —種發光元件之製造方法,至少包括: 提供一基板; 形成一保護緩衝結構於該基板之一表面上,其中形成該 保瘦緩衝結構之步驟至少皂括形成一第一堆疊結構,且該形 成該第一堆疊結構至少包括: 形成一第一保護層直接位於該基板之該表面上,其 中遠弟一保遵層之材料為铭、銦、鎂、鐵、辞、錦、錫、 録、蹄、坤、砸或碟;以及 形成一第一半導體緩衝層位於該第一保護層上;以 及 形成一發光磊晶結構於該保護缓衝結構之一表面上。 19 200820458 34·如申請專利範圍第33項所述之發光元件之製造方 法其中七成該第一保護層之步驟係利用一有機金屬化學氣 相沉積機台。 35·如申請專利範圍第34項所述之發光元件之製造方 法’其中該第一保護層之成長溫度介於實質200°C至實質 1400°C 之間。 36·如申請專利範圍第34項所述之發光元件之製造方 法’其中形成該第一半導體緩衝層之步驟係利用該有機金屬 化學氣相沉積機台。 3 7 ·如申清專利範圍第3 6項所述之發光元件之製造方 法’其中該第一半導體緩衝層之成長溫度介於實質200〇c至 實質1400°C之間。 38. 如申凊專利範圍第項所述之發光元件之製造方 法’其中該第一半導體緩衝層之材料為氮化鎵系列材料。 39. 如申請專利範圍第33項所述之發光元件之製造方 法’其中該第一半導體緩衝層之材料為氮化鋁鎵銦 (AlxInyGa卜x-yN,〇$ x+y$ 1) 〇 20 200820458 40·如申請專利範圍第33項所述之發光元件之努、& 、 衣k方 法,其中該基板之材料為石夕。 41·如申請專利範圍第33項所述之發光元件之製造方 法’其中該基板之材料為氧化|呂。 42·如申請專利範圍第33項所述之發光元件之製造 法,其中該基板之材料為碳化石夕。 43.如申請專利範圍第33項所述之發光元件之 衣造方 法’其中形成該保護緩衝結構之步驟更至少包括形成至+ 第二堆疊結構介於該第一堆疊結構與該發光磊晶結構 間,其中該第二堆疊結構至少包括依序堆疊在該第二之 緩衝層之表面上之一第二保護層以及一第二半導體緩衝層 ^ 44·如申請專利範圍第43項所述之發光元件之製造 I 法,其中該第二保護層之材料與該第一保護層之材料相^方 45.如申請專利範圍第43項所述之發光元件之製造方 法,其中该弟一保護層之材料與該第一保護層之材料不^。 46·如申請專利範圍第43項所述之發光元件之製造方 去’其中该弟一保護層之材料為銘、銦、鎂、鐵、辞、録 錫、錄、蹄、碎、叾西或碟。 21 200820458 47·如申請專利範圍第43項所述之發光元件之製造方 法,其中該第二半導體緩衝層之材料與該第一半導體緩衝層 之材料不同。 48.如申請專利範圍第43項所述之發光元件之製造方 法,其中該第二半導體緩衝層之材料與該第一半導體緩衝層 之材料相同。 49. 如申請專利範圍第43項所述之發光元件之製造方 法,其中該第二半導體緩衝層之材料為氮化鎵系列材料。 50. 如申請專利範圍第43項所述之發光元件之製造方 法,其中該第二半導體緩衝層之材料為氮化鋁鎵銦 (AlxIriyGai-x-yN, 〇$ x+y‘ 1)。 5 1 ·如申請專利範圍第43項所述之發光元件之製造方 法’其中形成該第二保護層係利用一有機金屬化學氣相沉積 法0 52·如申請專利範圍第5 1項所述之發光元件之製造方 法,其中該第二保護層之成長溫度介於實質200°C至實質 140(TC 之間。 22 200820458 53. 如申請專利範圍第43項所述之發光元件之製造方 法,其中形成該第二半導體緩衝層係利用一有機金屬化學氣 相沉積法。 54. 如申請專利範圍第53項所述之發光元件之製造方 法,其中該第二半導體緩衝層之成長溫度介於實質20(TC至 實質1400°C之間。A buffer layer is on the protective layer. The manufacturing method of the light-emitting element according to the item 5, wherein the step of using the organometallic chemistry is as described in the patent application, wherein the semiconductor buffer layer vapor deposition machine is formed. The illuminating element described herein has a growth temperature of between substantially 200 ° C and substantially 27. The method of claim 301, wherein the semiconductor buffer layer is between 1400 ° C. 28. The method of claim 1, wherein the material of the light-emitting element of the semiconductor buffer layer is a gallium nitride series material. 18 200820458 29. The method for manufacturing a light-emitting device according to the invention, wherein the material of the semiconductor buffer layer is aluminum gallium indium nitride (AlxIriy Ga 1 , x_yN, x+y ^ 〇 30. The method for producing a light-emitting device according to the above-mentioned claim, wherein the material of the substrate is the same as the method of manufacturing the light-emitting device according to claim 22, wherein the material of the substrate is oxidized. 32. The method of manufacturing a light-emitting device according to claim 22, wherein the material of the substrate is a stone. The method for manufacturing a light-emitting device includes at least: providing a substrate; forming a protection The buffering structure is disposed on a surface of the substrate, wherein the step of forming the thin buffer structure comprises at least forming a first stacked structure, and the forming the first stacked structure comprises: forming a first protective layer directly on the substrate On the surface, the material of the Yuandi Guardian layer is Ming, Indium, Magnesium, Iron, Ci, Jin, Tin, Record, Hoof, Kun, 砸 or Dish; and forming a first semiconductor buffer layer On the first protective layer; and forming a luminescent epitaxial structure on one surface of the protective buffer structure. 19 200820458 34. The method for manufacturing a light-emitting element according to claim 33, wherein 70% of the The method of manufacturing a light-emitting element according to the invention of claim 34, wherein the growth temperature of the first protective layer is substantially 200 ° C. The method of manufacturing the light-emitting element of the invention of claim 34, wherein the step of forming the first semiconductor buffer layer utilizes the organometallic chemical vapor deposition machine. The method for manufacturing a light-emitting device according to claim 36, wherein the growth temperature of the first semiconductor buffer layer is between substantially 200 〇c and substantially 1400 ° C. 38. The method for manufacturing a light-emitting device according to the invention, wherein the material of the first semiconductor buffer layer is a gallium nitride-based material. 39. The manufacture of the light-emitting device according to claim 33 The method of the first semiconductor buffer layer is aluminum gallium indium nitride (AlxInyGab x-yN, 〇$x+y$1) 〇20 200820458 40. The light-emitting element according to claim 33 The method of manufacturing the light-emitting element according to the invention of claim 33, wherein the material of the substrate is oxidized | Lu. The method for producing a light-emitting device according to the above-mentioned aspect, wherein the material of the substrate is a carbonized stone. The method for fabricating a light-emitting device according to claim 33, wherein the protective buffer structure is formed. The step further includes at least forming a + second stacked structure between the first stacked structure and the luminescent epitaxial structure, wherein the second stacked structure comprises at least one of sequentially stacking on a surface of the second buffer layer And a second semiconductor buffer layer, wherein the material of the second protective layer is opposite to the material of the first protective layer. If applying The method for manufacturing a light-emitting device according to Item 43, wherein the material of the protective layer and the material of the first protective layer are not. 46. If the manufacturer of the light-emitting element described in claim 43 is to go to 'the material of the protective layer of the brother is inscription, indium, magnesium, iron, rhetoric, tin, recorded, hoof, broken, daisy or dish. The method of manufacturing the light-emitting device of claim 43, wherein the material of the second semiconductor buffer layer is different from the material of the first semiconductor buffer layer. The method of manufacturing a light-emitting device according to claim 43, wherein the material of the second semiconductor buffer layer is the same as the material of the first semiconductor buffer layer. 49. A method of fabricating a light-emitting device according to claim 43, wherein the material of the second semiconductor buffer layer is a gallium nitride series material. 50. A method of fabricating a light-emitting device according to claim 43, wherein the material of the second semiconductor buffer layer is aluminum gallium indium nitride (AlxIriyGai-x-yN, 〇$x+y'1). 5. The method of manufacturing a light-emitting device according to claim 43, wherein the second protective layer is formed by an organometallic chemical vapor deposition method, as described in claim 5, wherein The method of manufacturing a light-emitting element, wherein the growth temperature of the second protective layer is between 200 ° C and substantially 140 (TC 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The second semiconductor buffer layer is formed by an organic metal chemical vapor deposition method. The method for fabricating a light-emitting device according to claim 53, wherein the growth temperature of the second semiconductor buffer layer is substantially 20 (TC to substantially 1400 ° C. 23twenty three
TW95138876A 2006-10-20 2006-10-20 Light-emitting device and method for manufacturing the same TWI313076B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95138876A TWI313076B (en) 2006-10-20 2006-10-20 Light-emitting device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95138876A TWI313076B (en) 2006-10-20 2006-10-20 Light-emitting device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW200820458A true TW200820458A (en) 2008-05-01
TWI313076B TWI313076B (en) 2009-08-01

Family

ID=44770169

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95138876A TWI313076B (en) 2006-10-20 2006-10-20 Light-emitting device and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI313076B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI491063B (en) * 2008-05-15 2015-07-01 Epistar Corp High efficiency light-emitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104037335A (en) * 2013-03-07 2014-09-10 海洋王照明科技股份有限公司 Organic light emission diode and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI491063B (en) * 2008-05-15 2015-07-01 Epistar Corp High efficiency light-emitting device

Also Published As

Publication number Publication date
TWI313076B (en) 2009-08-01

Similar Documents

Publication Publication Date Title
CN104009130B (en) Growth substrates, nitride compound semiconductor device and its manufacture method
TWI413279B (en) Group iii nitride semiconductor light emitting device, process for producing the same, and lamp
JP5899160B2 (en) Single crystal nitride semiconductor substrate and high quality nitride light emitting device manufacturing method using the same
CN102403428B (en) III group-III nitride nanorod light emitting device and manufacture method thereof
TWI496321B (en) Semiconductor light emitting element and manufacturing method of semiconductor light emitting element
CN101262037B (en) Nitride semiconductor light emitting device
TW550835B (en) III group nitride based semiconductor element and method for manufacture thereof
CN101405879B (en) Method for manufacturing gallium nitride compound semiconductor light-emitting device, gallium nitride compound semiconductor light-emitting device and lamp using same
EP1930957B1 (en) Method for manufacturing indium gallium aluminium nitride thin film on silicon substrate
TW201222869A (en) Gallium nitride LED devices with pitted layers and methods for making the same
JP2004193617A5 (en)
US7473570B2 (en) Method for forming epitaxial layers of gallium nitride-based compound semiconductors
TW200921941A (en) Light emitting device of III-nitride based semiconductor and manufacturing method thereof
TW200834995A (en) Compound semiconductor light-emitting element and manufacturing method thereof
TW200834670A (en) Process for producing III group nitride compound semiconductor, III group nitride compound semiconductor light emitting element, and lamp
TW201539786A (en) Method for manufacturing N-P-N nitride-semiconductor light-emitting element, and N-P-N nitride-semiconductor light-emitting element
JP2008047762A (en) Group iii nitride compound semiconductor light emitting element, process for fabricating the same, and lamp
JP2008294188A (en) Semiconductor light emitting device and method of manufacturing the same
US20130075755A1 (en) Light emitting device and manufacturing method thereof
TW200910645A (en) Light optoelectronic device and forming method thereof
JP2008047763A (en) Group iii nitride compound semiconductor light emitting element, process for fabricating the same, and lamp
TW200820458A (en) Light-emitting device and method for manufacturing the same
TW201114065A (en) Group III nitride semiconductor light emitting element, production method thereof, and lamp
TW564484B (en) Method for manufacturing group-III nitride compound semiconductor, group-III nitride compound semiconductor device, and group-III nitride compound semiconductor luminous device
KR20080070656A (en) Method for fabircating high quallty semiconductor light-emitting device on silicon substrates