TW200811237A - Composition, associated method and article - Google Patents

Composition, associated method and article Download PDF

Info

Publication number
TW200811237A
TW200811237A TW096127370A TW96127370A TW200811237A TW 200811237 A TW200811237 A TW 200811237A TW 096127370 A TW096127370 A TW 096127370A TW 96127370 A TW96127370 A TW 96127370A TW 200811237 A TW200811237 A TW 200811237A
Authority
TW
Taiwan
Prior art keywords
composition
temperature
curable
cured
bis
Prior art date
Application number
TW096127370A
Other languages
Chinese (zh)
Inventor
Ryan Christopher Mills
Slawomir Rubinsztajn
David Richard Esler
David Andrew Simon
Original Assignee
Momentive Performance Mat Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Momentive Performance Mat Inc filed Critical Momentive Performance Mat Inc
Publication of TW200811237A publication Critical patent/TW200811237A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/243Two or more independent types of crosslinking for one or more polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

A composition is provided that includes a filler, a first curable material, and a second curable material. The first curable material may include an alcohol and an anhydride. At a first temperature (T1) the first curable material may cure and the second curable material may have a degree of conversion that is less than 50 percent. Associated article and method are provided also.

Description

200811237 九、發明說明 【發明所屬之技術領域】 本發明包括關於組成物的體系。本發明包括與該組成 物之製造及使用有關的體系。 【先前技術】 毛細現象底膠樹脂可塡充矽晶片與基質之間的間隙, 以改良組件(assembly)內銲錫隆點的疲勞壽命。雖然毛 細現象塡膠樹脂可改良可靠性,但是在使用彼等時需要花 費額外的加工步驟,因而降低了製造生產力。某些底膠的 施用可包括無流動(η 〇 - f 10-W )底膠(N F U )及晶圓級底膠 (WLU)。該NFU需有適用於流動階段的黏度。該WLU 在施用於晶圓後,需有固體樹脂系統(B階塡膠),而不 致干擾晶圓切割爲各別晶片的操作。爲了達到WLU所需 的固體樹脂系統,可使用溶劑型樹脂系統或部分進階的( partially advanced )可聚合樹脂系統。溶劑型樹脂系統可 能因爲溶劑去除的不完全,而造成空洞的形成。部分進階 的可聚合樹脂可能造成樹脂的過早固化(premature curing)且降低迴銲(reflow)特性。 與目前可得手之樹脂系統具有不同性質及/或特性之 可用作爲WLU的固體樹脂系統乃人們所企求者。與目前 可得手之樹脂系統具有不同性質及/或特性之可用作爲 WLU的固體樹脂系統的形成方法亦爲人們所企求者。 200811237 【發明內容】 簡要說明 > 在一體系中,本發明係提供一組成物。該組成物包括 有塡料、第一種可固化的物質以及第二種可固化的物質。 第一種可固化的物質包括醇及酐。在第一個溫度(T i )下 ,第一種可固化的物質會固化,而第二種可固化物質具有 小於50%的轉化率。 於一體系中,本發明提供一物件。該物件包括晶片、 基板、以及配置於晶片與基板之間的底膠材料。該底膠材 料包括一組成物。該組成物包括塡料、第一種可固化的物 質、以及第二種可固化的物質。第一種可固化物質包括醇 '及酐。在第一個溫度(Ti )下,第一種可固化物質會固化 ,而第二種可固化物質則不會固化。 在一體系中,本發明提供一方法。該方法包括:製備 可B階化的組成物。該可B階化的組成物包括有塡料、 第一種可固化的物質以及第二種可固化的物質。第一種可 固化的物質包括醇及酐。在第一個溫度(T i )下,第一種 可固化的物質會固化,而第二種可固化物質具有小於50% 的轉化率。該方法還包括:令基板與可B階化的組成物接 觸、令電路裝置與可B階化的組成物接觸、以及令可B 階化的組成物固化。 詳細說明 本發明包括與組成物相關的體系。本發明包括與製造 -6 - 200811237 及使用該組成物有關的體系。 在下面的說明書及申請專利範圍中,將會參照到數個 具有下列定義的專門術語。單數形式的用語“一 ”及“該”包 括了複數的指稱對象(referents ),除非文中另有清楚的 指令。在本文及整個說明書及申請專利範圍中所用到的槪 約措辭,其係用來修飾能夠允許變動而不會對與其相關之 基本功能有所改變之定量描述。因此,被諸如「約」之術 語所修飾的數値並不侷限於所指定的確切數値。在某些情 況下,該槪約措辭可對應於供測量數値之儀器的精確性。 同樣地,「不含有」可與數語倂用,且可包括非實質的數 字,或是微量,然而卻依然可被視爲不含有所修飾的術語 。例如,不含有溶劑,以及類似的術語及片語可指稱顯著 部分、某些、或所有溶劑已自溶劑化物質移出的情況。 本文所用到的術語「可」及「可能」係指在一組情況 下發生的可能性;擁有特性性質、特性或功能的可能性; 及/或藉由表達與另一個動詞有關的能力、潛在能力、或 可能性,來定性化該另一個動詞。因此,「可」及「可能 」的用法係指被修飾的術語係明顯地適當、可能或適合用 於所指的能力、功能或用法,然而,卻同時考量到在某些 情況下,該被修飾的術語有時可能係不適當、不能夠或不 適合的。例如,在某些情況下,可預期到某一事件或能力 ,但是,在其他情況下,該事件或能力卻不會發生,此區 別正是「可」及「可能」二術語所捕捉到的。 B階(B-stage )係指可固化物質之一固化階段,其中 200811237 ,例如,該物質可爲橡膠態、固態、或指觸乾燥的,或是 可同時爲固態及指觸乾燥的,且在溶劑內可具有部分溶解 度。可固化物質的B階化,或是相關的術語及片語可包括 :將一物質至少部分固化,藉由將具有不同固化性質之物 質混合物內的複數個可固化物質中的第一個物質固化,來 進行的。指觸乾燥係指一表面在室溫下,不具有感壓型黏 著性。就其中一評量基準來看,指觸乾燥表面在25 °C下 ,不會黏著或附著於與其輕輕接觸的手指,或是所具有之 達氏標準(Dahlquist criterion )顯示儲存模數(G’)係 大於約3x1 05帕斯卡(於室溫下,在10彊/秒下測得) 。固態係指物質在中等應力下不會有可看得到之流動的性 質,或是對於一或多個可能趨於使其變形之力量(例如, 壓縮或拉伸),具有抵抗之確定能力的性質。在一方面, 於正常的條件下,可維持確定的大小及形狀。 在本說明書及申請專利範圍中所用到的安定性係指固 體與可固化物質之混合物在混合後先測得的黏度與混合一 段時間後(例如,——星期、二星期等等之後)所測得之黏 度的比。 根據本發明之一體系的組成物包括第一種可固化的物 質以及第二種可固化的物質。該第一種可固化的物質會回 應第一個刺激而固化,而該第二種.可固化的物質對於該第 一個刺激不會有回應。在一體系中,該第一個刺激可包括 暴露於選自下列類型的能量:熱能或電磁輻射。熱能可包 括:施熱於該第一種可固化的物質,而造成該第一種可固 -8 - 200811237 化物質的溫度增加。電磁輻射則包括:紫外線、電子束、 或微波輻射。 在一體系中,該第二種可固化的物質會回應第二個刺 激而固化,其中,該第二個刺激係異於第一個刺激的。在 一體系中,該二種刺激可爲完全不同的,例如,該第一種 可固化物質可藉由加熱至某一特定溫度(在此溫度下,第 二種可固化物質不會固化)而固化;接著藉由紫外線輻射 ,令第二種可固化物質固化。在一體系中,該二刺激可包 括相同種類的能量(熱或電磁性),然而,所施用之能量 的程度或量則不同。例如,第一種可固化物質可藉由加熱 至第一個溫度而固化,而第二種可固化物質則僅可在較高 的溫度(非T])下固化。 可固化物質可指具有一或多個在暴露於熱能、電磁輻 射、或化學藥劑中之一或多者時可能參與化學反應之反應 基團的物質。可固化物質可包括:單聚物種、寡聚物種、 單聚物種的混合物、寡聚物種的混合物、高分子物種、高 分子物種的混合物、部分交聯的物種、部分交聯之物種的 混合物、或是二或多種前者的混合物。固化係可指造成具 有一或多個反應基團之可固化物質聚合、交聯、或同時聚 合及交聯的反應。已固化可指帶有反應性基團之可固化物 質,其中有多於50%之反應性基團已固化,或是該可固化 物質的轉化率在大於約50%的範圍內。轉化率係指已反應 基團之總數佔反應基團之總數的百分比。 於一體系中,在約1小時以上的期間後,第一種可固 -9- 200811237 化物質的轉化率在第一個溫度下係大於約50% ’且在第一 個溫度下,第二種可固化物質的轉化率則小於約1 〇%。於 一體系中,在約1小時以上的期間後,在第一個溫度下, 第一種可固化物質的轉化率係大於約50% ’而在第一個溫 度下,第二種可固化物質的轉化率係小於約20%。在一體 系中,於約1小時以上的期間後,在第一個溫度下,第一 種可固化物質的轉化率係大於約60%,而在第一個溫度下 ,第二種可固化物質的轉化率則小於約1 〇%。於一體系中 ,於約1小時以上的期間後,在第一個溫度下,第一種可 固化物質的轉化率係大於約6 0 %,而在第一個溫度下,第 二種可固化物質的轉化率則小於約20%。在一體系中,於 約1小時以上的期間後,在第一個溫度下,第一種可固化 物質的轉化率係大於約75%,而在第一個溫度下,第二種 可固化物質的轉化率則小於約1 〇%。在一體系中,於約1 小時以上的期間後,在第一個溫度下,第一種可固化物質 的轉化率係大於約7 5 %,而在第一個溫度下,第二種可固 化物質的轉化率則小於約20%。於一體系中,在約2小時 以上的期間後,第一種可固化物質的轉化率在第一個溫度 下係大於約5 0%,且在第一個溫度下,第二種可固化物質 的轉化率則小於約1 0%。於一體系中,在約5小時以上的 期間後,第一種可固化物質的轉化率在第一個溫度下係大 於約50%,且在第一個溫度下,第二種可固化物質的轉化 率則小於約1 0%。在此以及整個說明書及申請專利範圍中 ’範圍限制係可倂合及/或互換的。如是之特定範圍包括 -10- 200811237 其中所包含的所有子範圍(sub-ranges ),除非 句另有所指。 固化溫度可取決於下列一或多者:反應基團 例如,在第一種可固化物質內之醇及酐的反應性 條件、或是固化劑(例如,催化劑)的存在與否 系中,該第一種可固化的物質可在低於約50°C 的第一個溫度(Ti )下固化。於一體系中,該第 化的物質可在約50°C至約75°C範圍內、約75°C °C範圍內、或是約l〇〇°C至約150°C範圍內的第 (T!)下固化。在一體系中,該第一種可固化的 高於約1 5 0 °C範圍內的第一個溫度(Τ χ )下固化 系中,該第一種可固化的物質尤其會在約5 0 °C至 範圍內的第一個溫度(Ti)下固化。 於一*體系中’該第一·種可固化的物質可在弟 (τ 2 )下固化,該溫度係高於第一個溫度(T i ) 系中,第二個溫度及第一個溫度之間的差異可 100 °c的範圍內。在一體系中,第二個溫度及第 之間的差異可在大於約75 °C的範圍內。在一體 二個溫度及第一個溫度之間的差異可在大於約 圍內。在一'體系中’第一*個溫度及弟一'個溫度之 可在大於約25°C的範圍內。 在一體系中,該第二種可固化的物質可在小 T:範圍內的第二個溫度(T 2 )下固化。於一體系 二種可固化的物質可在約1 5 0 °C至約1 7 5 °C範 文意或語 之化學( )、固化 。在一體 之範圍內 一種可固 至約100 一個溫度 物質可在 。於一體 約 1 5 0 〇C 二個溫度 〇 在一體 在大於約 一個溫度 系中,第 5 0 °C的範 間的差異 於約150 中,該第 圍內、約 -11 - 200811237 1 7 5。(:至約2 0 0 °C範圍內、約2 0 0 °C至約2 5 0 °C範圍內、約 250°C至約275°C範圍內、或是約275 °C至約3 00°C範圍內 的第二個溫度(T2)下固化。在一體系中,該第二種可固 化的物質可在高於約30(TC範圍內的第二個溫度(Τ2)下 固化。於一體系中,該第二種可固化的物質尤其會在約 1 5 0 °C至約3 0 0 °C範圍內的第二個溫度(Τ2 )下固化。 該第一種可固化的物質包括醇及酐。於一體系中,該 醇可包括具有一或多個羥基官能基團的化合物。於一體系 中,該酐可包括具有一或多個環狀酐官能基團的化合物。 環狀酐官能基團可包括具有酐基團且具有4或更多個碳之 環數的閉環結構。 第一種可固化物質的轉化率可取決於下列一或多者: 羥基團數相對於環狀酐基團數之比例、醇的反應性、或酐 之反應性。於一體系中,羥基團相對於環狀酐基團的數目 比係在小於1 /3的範圍內。在一體系中,羥基團相對於環 狀酐基團的數目比係在約1/3至約1/2範圍內、約1/2至 約2/3範圍內、約2/3至約1/1範圍內、約1/1至約3/2 範圍內、約372至約2/1範圍內、約2/1至約8/3範圍內 、或約8/3至約3 /1範圍內。於一體系中,羥基團相對於 環狀酐基團之數目比係在大於約3/1的範圍內。 適當的醇類可包括下列一或多者:經羥基官能化的脂 族、環脂族、或芳族物質。脂族原子團、芳族原子團以及 環脂族原子團可定義如下文: 脂族原子團係具有至少一個碳原子、至少爲一價的有 -12- 200811237 機原子團且可爲直鏈或之鏈的原子排列。脂族原子可包括 雜原子,諸如,氮、硫、矽、硒以及氧,或是可僅由碳及 氫所組成。脂族原子團可包括廣範圍的官能基,諸如,烷 基、燦基、快基、鹵院基、共輒的二燦基、醇基、酸基、 醛基、酮基、羧酸基、醯基(例如,羧酸衍生物,諸如, 酯類及醯胺類)、胺基、硝基等等。例如,4-甲基戊-1 -基原子團係包含甲基的C6脂族原子團,該甲基係官能基 ,其乃一烷基。類似地,4-硝基丁 -1-基係包含硝基的C4 脂族原子團,該硝基係官能基。脂族原子團可爲包括一或 多個相同或互異之鹵素原子的鹵烷基。鹵素原子包括,例 如:氟、氯、溴、及碘。具有一或多個鹵素原子之脂族原 子團包括烷基鹵化物:三氟甲基、溴基二氟甲基、氯基二 氟甲基、六氟基異亞丙基、氯甲基、二氟基亞乙烯基、三 氯甲基、溴基二氯甲基、溴乙基、2-溴基三亞甲基(例如 ,-CH2CHBrCH2-)等等。脂族原子團的其他例子包括: 烯丙基、胺羰基(-CONH2 )、羰基、二氰基異亞丙基( -CH2C(CN)2CH2-)、甲基(-CH3 )、亞甲基(-〇112-)、 乙基、伸乙基、甲醯基(-CHO )、己基、六亞甲基、羥甲 基(-CH2OH )、锍基甲基(-CH2SH )、甲硫基(-SCH3 ) 、甲硫基甲基(-ch2sch3 )、甲氧基、甲氧羰基( CH3OCO-)、硝甲基(-CH2N02 )、硫羰基、三甲基矽烷 基((CH3)3Si-)、第三丁基二甲基矽烷基、三甲氧基矽烷 基丙基((CH3)3SiCH2CH2CH2 -)、乙烯基、亞乙烯基等等 。就進一步的例子而百,「C1-C3G脂族原子團」係含有至 -13- 200811237 少1個但不多於30個的碳原子。甲基(CH3-)乃Cl脂族 原子團的一例。癸基(CH3(CH2)9-)係C1G脂族原子團的 一例。 芳族原子團乃具有至少一價且具有至少一個芳族基團 的原子排列。其可包含雜原子,諸如,氮、硫、硒、砂及 氧,或是可僅由碳及氫所組成。適當的芳族原子團可包括 :苯基、吡啶基、呋喃基、噻吩基、萘基、伸苯基、以及 聯苯基原子團。該芳族基團可爲具有4n + 2「非定域化( delocalized)電子」的環狀結構,其中,「η」係1或更 大的整數,如苯基(n=l )、噻吩基(n=l )、呋喃基( n=l )、萘基(n = 2 )、莫基(n = 2 )、蒽基(n = 3 )等等 所例示者。該芳族原子團亦可包括非芳族的部分。例如, 苄基可爲一芳族原子團,其包括一個苯環(芳族基團)以 及亞甲基(非芳族的部分)。類似地,四氫萘基係一芳族 原子團,其包含與非芳族部分-(CH2)4-稠合之芳族基團( C6H3)。芳族原子團可包括一或多個官能基團,諸如,烷 基、烯基、炔基、鹵烷基、鹵基芳族基團、共軛的二烯基 團、醇基、醚基、醛基、酮基、羧酸基、醯基(例如,羧 酸衍生物,諸如,酯類及醯胺類)、胺基、硝基等等。例 如,4-甲基苯基原子團係包含甲基的C7芳族原子團,該 甲基係官能基,屬於烷基。類似地,2-硝基苯基係包含硝 基的C6芳族原子團,該硝基乃官能基。芳族原子團包括 :鹵化的芳族原子團,諸如,三氟甲基苯基、六氟基異亞 丙基雙(4-苯-1-基氧基)(-〇PhC(CF3)2PhO〇 、氯甲基苯基 -14- 200811237 、3-三氟乙烯基-2-噻吩基、3-三氯甲基苯-1-基(3-CCl3Ph-) 、4- ( 3-溴基丙-1-基)苯-1 -基(BrCH2CH2CH2Ph-)等等 。芳族原子團的其他例子包括:4 -烯丙基苯-1 -氧基、4 -胺 基苯-1-基(H2NPh-) 、3-胺基羰基苯-1-基(NH2COPh-) 、4-苄醯基苯-1-基、二氰基異亞丙基雙(4-苯-1-基氧基 )(-OPhC(CN)2PhO- ) 、3-甲基苯-1-基、亞甲基雙(苯- 4-基氧基)(-OPhCH2PhO- ) 、2-乙基苯-1-基、苯基乙烯 基、3 -甲醯基-2-噻吩基、2-己基-5-呋喃基、六亞甲基-1,6-雙(苯-4-基氧基)(-OPh(CH2)6PhO - ) 、4-羥基甲基 苯-1-基(4-HOCH2Ph- ) 、4 -锍基甲基苯基-1-基(4- HS-CH2Ph- ) 、4-甲硫基苯-1-基(4-CH3SPh-) 、3-甲氧基 苯-b基、2-甲氧羰基苯-1-基氧基(例如,甲基鄰羥苄基 )、2-硝基甲基苯-1-基(-PhCH2N02 ) 、3-三甲基矽烷基 苯-1-基、4-第三丁基二甲基矽烷基苯-1-基、4-乙烯基苯-1-基、亞乙烯基雙(苯基)等等。「C3-C3。芳族原子團」 一詞包括含有至少3個但不多於3 0個碳原子的芳族原子 團。芳族原子團1-咪唑基(C3H2N2-)代表C3芳族原子團 。苄基原子團(C7H7-)代表C7芳族原子團。 環脂族原子團係具有至少一價且具有環狀但非芳族之 原子排列的原子團。環脂族原子團可包括一或多個非環狀 部分。例如,環己基甲基(C6HMCH2-)係一環脂族原子 團,其包括環己基環(環狀但非芳族的原子排列)以及亞 甲基(非環狀部分)。環脂族原子團可包含雜原子,諸如 ,氮、硫、硒、矽以及氧,或是可僅由碳及氫所組成。環 -15- 200811237 脂族原子團可包括一或多個官能基,諸如,院基、嫌基、 炔基、鹵院基、共轭的二儲基、醇基、醚基、醒基、酮基 、竣酸基、醯基(例如,羧酸衍生物,諸如,酯類及_胺 類)、胺基、硝基等等。例如’ 4 -甲基環戊—:ι _基原子團 乃包含甲基的C 6環脂族原子團,該甲基係官能基,隸屬 於烷基。同樣地,2 -硝基環丁 -1 -基原子團係包含硝基的 C4環脂族原子團,該硝基係官能基。環脂族原子團可包 括一或多個相同或互異的鹵素原子。鹵素原子包括,例如 ,氟、氯、溴、及碘。具有一或多個鹵素原子的環脂族原 子團包括:2 -三氟甲基環己-1-基、4 -溴基二氟甲基環辛- 1- 基、2 -氯基二氟甲基環己-1-基、六氟基異亞丙基2,2-雙 (環己-4-基)(-C^HwCCCFshCsHio-) 、2-氯甲基環己-1- 基;3 -一氟基亞甲基環己-1-基、4 -三氯甲基環己-1-基氧基 、4-溴基二氯甲基環己-1-基硫基、2-溴基乙基環戊-1-基、 2- 溴基丙基環己-1-基氧基(例如,CH3CHBrCH2C6Hi。-) 等等。環脂族原子團的其他例子包括:4-烯丙基環己-1 -基、4-胺基環己-1-基(H2NC6H1Q-) 、4-胺基羰基環戊-1-基(NH2COC5H8-) 、4·乙醯基氧基環己-1-基、2,2-二氰基 異亞丙基雙(環己-4-基氧基)(-OCsHioCCCNhC^HioO-) 、3 -甲基環己-1-基、亞甲基雙(環己-4-基氧基)(-0C6H1GCH2C6H1()0-) 、1-乙基環丁 -1-基、環丙基乙烯基 、3 -甲醯基-2 -四氫咲喃基、2 -己基-5-四氫呋喃基、六亞 甲基-1,6-雙(環己-4-基氧基)(-OCsHiiKCKbhC^HioO -) 、4-羥基甲基環己-1-基(4-HOCH2C6Hi() - ) 、4-锍基甲基 -16- 200811237 環己-1-基(4-HSCH2C6H1()-) 、4-甲基硫基環己-卜基(4- CH3SC6H1()-) 、4-甲氧基環己-1-基、2-甲氧羰基環己-卜 基氧基(2-CH3OCOC6H1()0-) 、4-硝基甲基環己-卜基( N02CH2C6H1()-) 、3-三甲基矽烷基環己-1-基、2-第三丁 基二甲基矽烷基環戊-1-基、4-三甲氧基矽烷基乙基環己_ 1_基(例如,(CH30)3SiCH2CH2C6H1()- ) 、4-乙烯基環己 烯-1-基、亞乙烯基雙(環己基)等等。「C3-C3G環脂族 原子團」一詞包括含有至少3個但是不多於1 0個碳原子 的原子團。環脂族原子團2-四氫呋喃基(C4H70-)乃C4 環脂族原子之一代表例。環己基甲基原子團(C^HnCHb-) 係C7環脂族原子團之一代表例。 於一體系中,相對於每一醇分子的羥基平均數目可在 約1的範圍內。在一體系中,相對於每一醇分子的羥基平 均數目可在約2的範圍內。於一體系中,相對於每一醇分 子的羥基平均數目可在約3的範圍內。在一體系中,相對 於每一醇分子的羥基平均數目可在大於約3的範圍內。 在一體系中,該醇可包括脂族物質。該脂族物質可爲 直鏈、支鏈或環脂族。適當的脂族醇類可包括下列一或多 者:乙二醇;丙二醇;1,4-丁二醇;2,2-二甲基-1,3_丙二 醇;2-乙基,2-甲基,1,3-丙二醇;1,3-及1,5-戊二醇; 二丙二醇;2-甲基-1,5-戊二醇;1,6-己二醇;二甲醇十氫 萘;二甲醇二環辛烷;1,4-環己烷二甲醇;三乙二醇; 1,1 〇-辛二醇;二羥基聯苯;雙酚;甘油;三羥甲基丙烷 ;三羥甲基乙烷;異戊四醇;山梨醇;聚醚二醇;以及彼 -17- 200811237 等之衍生物。 於一體系中,該醇可包括羥基官能化的芳族物質。適 當之羥基官能化的芳族物質可包括式(I)所示的結構單 元:200811237 IX. Description of the Invention [Technical Field to Which the Invention Is Alonged] The present invention includes a system relating to a composition. The invention includes systems relating to the manufacture and use of the compositions. [Prior Art] The capillary phenomenon primer resin can fill the gap between the wafer and the substrate to improve the fatigue life of the solder bumps in the assembly. Although the capillary resin can improve reliability, it requires additional processing steps when using them, thereby reducing manufacturing productivity. Some primers may be applied without flow (η 〇 - f 10-W ) primer (N F U ) and wafer level primer (WLU). The NFU needs to have a viscosity suitable for the flow phase. The WLU is required to have a solid resin system (B-stage silicone) after application to the wafer without interfering with wafer dicing into individual wafer operations. To achieve the solid resin system required for WLU, a solvent based resin system or a partially advanced polymerizable resin system can be used. Solvent-based resin systems can cause void formation due to incomplete solvent removal. Partially advanced polymerizable resins may cause premature curing of the resin and reduce reflow characteristics. A solid resin system that can be used as a WLU with different properties and/or characteristics from currently available resin systems is desirable. It is also desirable to form a solid resin system that can be used as a WLU with different properties and/or characteristics from currently available resin systems. 200811237 SUMMARY OF THE INVENTION Brief Description > In one system, the present invention provides a composition. The composition includes a dip material, a first curable substance, and a second curable substance. The first curable materials include alcohols and anhydrides. At the first temperature (T i ), the first curable material will solidify and the second curable material will have a conversion of less than 50%. In one system, the invention provides an article. The article includes a wafer, a substrate, and a primer material disposed between the wafer and the substrate. The primer material comprises a composition. The composition includes a dip material, a first curable substance, and a second curable substance. The first curable material includes alcohol 'and anhydride. At the first temperature (Ti), the first curable material will solidify and the second curable material will not cure. In one system, the present invention provides a method. The method comprises: preparing a B-stageable composition. The B-staged composition includes a dip material, a first curable material, and a second curable material. The first curable materials include alcohols and anhydrides. At the first temperature (T i ), the first curable material will solidify and the second curable material will have a conversion of less than 50%. The method further includes contacting the substrate with a B-staged composition, contacting the circuit device with the B-stageable composition, and curing the B-stageable composition. DETAILED DESCRIPTION The present invention includes systems associated with compositions. The present invention includes systems related to the manufacture of -6 - 200811237 and the use of the composition. In the following description and claims, reference will be made to several specific terms having the following definitions. The singular terms "a", "the", "the" and "the" are meant to refer to the plural referents, unless the context clearly indicates otherwise. The wording of the phrase used herein and throughout the specification and claims is intended to be a Therefore, the number modified by the term "about" is not limited to the exact number specified. In some cases, the graceful wording may correspond to the accuracy of the instrument for measurement. Similarly, "not contained" can be used in several languages and can include insubstantial numbers, or minor amounts, yet can still be considered as containing no modified terms. For example, no solvent, and similar terms and phrases may refer to the case where a significant portion, some, or all of the solvent has been removed from the solvate. The terms "may" and "may" as used herein mean the possibility of occurrence in a group of circumstances; the possibility of possessing the nature, characteristics or function of the property; and/or the ability to express another verb, potential Ability, or possibility, to characterize the other verb. Therefore, the use of "may" and "may" means that the modified term is clearly appropriate, possible or suitable for the indicated ability, function or usage, however, it is considered that in some cases, the Modified terms may sometimes be inappropriate, incapable or unsuitable. For example, in some cases, an event or ability can be expected, but in other cases, the event or ability does not occur. This difference is captured by the terms "may" and "possible". . B-stage refers to a curing stage of a curable substance, wherein 200811237, for example, the substance may be rubbery, solid, or dry to the touch, or may be both solid and dry to the touch, and It may have partial solubility in the solvent. The B-stage of the curable substance, or related terms and phrases, may include: at least partially curing a substance by curing the first of the plurality of curable substances in the mixture of substances having different curing properties , come on. Finger touch drying refers to a surface that does not have a pressure-sensitive adhesive at room temperature. For one of the evaluation criteria, the dry surface of the fingertip does not adhere or adhere to the finger that is in light contact with it at 25 °C, or the Dahlquist criterion shows the storage modulus (G). The ') system is greater than about 3 x 1 05 Pascals (measured at room temperature at 10 sec/sec). Solid state is a property in which a substance does not have a visible flow under moderate stress, or a property that is resistant to one or more forces (eg, compression or stretching) that may tend to deform it. . In one aspect, the determined size and shape can be maintained under normal conditions. The stability used in the specification and the scope of the patent application refers to the viscosity measured after mixing of the mixture of solid and curable substance and after mixing for a period of time (for example, after weeks, two weeks, etc.) The ratio of the viscosity. The composition of one of the systems according to the invention comprises a first curable substance and a second curable substance. The first curable substance will solidify in response to the first stimulus, and the second. curable substance will not respond to the first stimulus. In a system, the first stimulus can include exposure to energy selected from the group consisting of: thermal energy or electromagnetic radiation. Thermal energy can include: applying heat to the first curable material to cause an increase in the temperature of the first curable material. Electromagnetic radiation includes: ultraviolet light, electron beam, or microwave radiation. In a system, the second curable substance will solidify in response to a second stimulus, wherein the second stimulus is different from the first stimulus. In a system, the two stimuli may be completely different, for example, the first curable substance may be heated to a specific temperature at which the second curable substance does not cure. Curing; then curing the second curable substance by ultraviolet radiation. In a system, the two stimuli may comprise the same type of energy (thermal or electromagnetic), however, the extent or amount of energy applied is different. For example, the first curable material can be cured by heating to the first temperature, while the second curable material can only be cured at a higher temperature (not T). A curable substance can refer to a substance having one or more reactive groups that may participate in a chemical reaction upon exposure to one or more of thermal energy, electromagnetic radiation, or chemicals. The curable substance may include: a monomer species, an oligomer species, a mixture of monomer species, a mixture of oligomer species, a polymer species, a mixture of polymer species, a partially crosslinked species, a mixture of partially crosslinked species, Or a mixture of two or more of the former. The curing system may refer to a reaction which causes polymerization, crosslinking, or simultaneous polymerization and crosslinking of a curable substance having one or more reactive groups. Cured may refer to a curable substance with a reactive group in which more than 50% of the reactive groups have solidified or the conversion of the curable material is in the range of greater than about 50%. Conversion rate refers to the percentage of the total number of reactive groups in the total number of reactive groups. In a system, after a period of about one hour or more, the conversion of the first curable-9-200811237 material is greater than about 50% at the first temperature and at the first temperature, second The conversion rate of the curable material is less than about 1%. In a system, after a period of about one hour or more, at a first temperature, the conversion of the first curable substance is greater than about 50% 'and at the first temperature, the second curable substance The conversion rate is less than about 20%. In a system, after a period of about one hour or more, the conversion rate of the first curable substance is greater than about 60% at the first temperature, and the second curable substance is at the first temperature. The conversion rate is less than about 1%. In a system, after a period of about one hour or more, at a first temperature, the conversion of the first curable substance is greater than about 60%, and at the first temperature, the second curable The conversion rate of the substance is less than about 20%. In a system, after a period of about one hour or more, the conversion rate of the first curable substance is greater than about 75% at the first temperature, and the second curable substance is at the first temperature. The conversion rate is less than about 1%. In a system, after a period of about one hour or more, at a first temperature, the conversion of the first curable substance is greater than about 75 %, and at the first temperature, the second curable The conversion rate of the substance is less than about 20%. In a system, after a period of about 2 hours or more, the conversion rate of the first curable substance is greater than about 50% at the first temperature, and at the first temperature, the second curable substance The conversion rate is less than about 10%. In a system, after a period of about 5 hours or more, the conversion rate of the first curable substance is greater than about 50% at the first temperature, and at the first temperature, the second curable substance The conversion rate is less than about 10%. The scope limitations are to be combined and/or interchangeable herein and throughout the specification and claims. The specific scope includes all sub-ranges contained in -10- 200811237, unless otherwise indicated in the sentence. The curing temperature may depend on one or more of the following: the reactive group, for example, the reactivity of the alcohol and anhydride in the first curable substance, or the presence or absence of a curing agent (eg, a catalyst), The first curable material can be cured at a first temperature (Ti) below about 50 °C. In a system, the first material may be in the range of from about 50 ° C to about 75 ° C, in the range of about 75 ° C ° C, or in the range of from about 10 ° C to about 150 ° C. Cured under (T!). In a system, the first curable layer is cured at a temperature below the first temperature (Τ χ ) in the range of about 150 ° C. The first curable material is especially about 50. Curing at °C to the first temperature (Ti) in the range. In the first system, the first curable substance can be cured under the (τ 2 ) temperature, which is higher than the first temperature (T i ) system, the second temperature and the first temperature The difference between the two can be in the range of 100 °c. In a system, the difference between the second temperature and the first may be in the range of greater than about 75 °C. The difference between the two temperatures and the first temperature can be greater than approximately. In a 'system', the first * temperature and the other one's temperature may be in the range of greater than about 25 °C. In a system, the second curable material can be cured at a second temperature (T 2 ) in the range of small T:. In a system, two kinds of curable substances can be cured at a temperature of about 150 ° C to about 175 ° C. Within the scope of one, one can hold up to about 100 temperature substances. In one unit of about 150 ° C, the two temperatures are integrated in more than about one temperature system, and the difference between the 50 ° C degrees is about 150, within the range, about -11 - 200811237 1 7 5 . (: to a range of about 200 ° C, about 200 ° C to about 250 ° C, about 250 ° C to about 275 ° C, or about 275 ° C to about 300 Curing at a second temperature (T2) in the range of °C. In a system, the second curable material can be cured at a second temperature (Τ2) above about 30 TC. In a system, the second curable material will cure, in particular, at a second temperature (Τ2) in the range of from about 150 ° C to about 300 ° C. The first curable material includes Alcohols and anhydrides. In one system, the alcohol may comprise a compound having one or more hydroxyl functional groups. In one system, the anhydride may comprise a compound having one or more cyclic anhydride functional groups. The anhydride functional group may comprise a closed ring structure having an anhydride group and having a ring number of 4 or more carbons. The conversion of the first curable substance may depend on one or more of the following: hydroxyl group number relative to ring The ratio of the number of anhydride groups, the reactivity of the alcohol, or the reactivity of the anhydride. In a system, the ratio of the number of hydroxyl groups to the cyclic anhydride group is less than 1/3. In a system, the ratio of the number of hydroxyl groups to cyclic anhydride groups is in the range of about 1/3 to about 1/2, in the range of about 1/2 to about 2/3, and about 2/3 to Within the range of about 1/1, about 1/1 to about 3/2, about 372 to about 2/1, about 2/1 to about 8/3, or about 8/3 to about 3 / In the range of 1. In a system, the ratio of the number of hydroxyl groups to cyclic anhydride groups is in the range of greater than about 3/ 1. Suitable alcohols may include one or more of the following: hydroxyl functionalized lipids Group, cycloaliphatic, or aromatic materials. Aliphatic radicals, aromatic radicals, and cycloaliphatic radicals can be defined as follows: aliphatic radicals having at least one carbon atom, at least one valence, having -12-200811237 organic radicals And may be a linear or a chain of atoms. The aliphatic atom may include a hetero atom such as nitrogen, sulfur, helium, selenium, and oxygen, or may be composed only of carbon and hydrogen. The aliphatic atom group may include a wide range. Functional group, such as alkyl, cantyl, fast-radical, halogen-based, conjugated di-candiyl, alcohol-based, acid-based, aldehyde-based, keto-based, carboxylic acid-based, thiol-based (eg, carboxy Derivatives such as esters and guanamines, amines, nitro groups, etc. For example, a 4-methylpent-1-yl radical is a C6 aliphatic radical containing a methyl group, the methyl functional group, It is a monoalkyl group. Similarly, a 4-nitrobut-1-yl group contains a C4 aliphatic atomic group of a nitro group, and the nitro group functional group may have one or more identical or different A haloalkyl group of a halogen atom. The halogen atom includes, for example, fluorine, chlorine, bromine, and iodine. The aliphatic atom group having one or more halogen atoms includes an alkyl halide: a trifluoromethyl group, a bromodifluoromethyl group. , chlorodifluoromethyl, hexafluoroisopropylidene, chloromethyl, difluorovinylidene, trichloromethyl, bromodichloromethyl, bromoethyl, 2-bromotrimethylene (for example, -CH2CHBrCH2-) and so on. Other examples of aliphatic radicals include: allyl, aminecarbonyl (-CONH2), carbonyl, dicyanoisopropylidene (-CH2C(CN)2CH2-), methyl (-CH3), methylene (- 〇112-), ethyl, ethyl, methyl ketone (-CHO), hexyl, hexamethylene, hydroxymethyl (-CH2OH), mercaptomethyl (-CH2SH), methylthio (-SCH3) , methylthiomethyl (-ch2sch3), methoxy, methoxycarbonyl (CH3OCO-), nitromethyl (-CH2N02), thiocarbonyl, trimethyldecyl ((CH3)3Si-), third Butyl dimethyl decyl, trimethoxy decyl propyl ((CH 3 ) 3 SiCH 2 CH 2 CH 2 -), vinyl, vinylidene, and the like. In a further example, the "C1-C3G aliphatic atomic group" contains one but not more than 30 carbon atoms to -13-200811237. The methyl group (CH3-) is an example of a Cl aliphatic group. A mercapto group (CH3(CH2)9-) is an example of a C1G aliphatic group. The aromatic atomic group is an atomic arrangement having at least one valence and having at least one aromatic group. It may contain heteroatoms such as nitrogen, sulfur, selenium, sand and oxygen, or may consist solely of carbon and hydrogen. Suitable aromatic radicals may include: phenyl, pyridyl, furyl, thienyl, naphthyl, phenylene, and biphenyl radicals. The aromatic group may be a cyclic structure having 4n + 2 "delocalized electrons", wherein "η" is an integer of 1 or more, such as phenyl (n = 1), thienyl (n=l), furyl (n=l), naphthyl (n = 2), moji (n = 2), sulfhydryl (n = 3), etc. are exemplified. The aromatic radical can also include non-aromatic moieties. For example, the benzyl group can be an aromatic atom group including a benzene ring (aromatic group) and a methylene group (non-aromatic moiety). Similarly, a tetrahydronaphthyl group is an aromatic atom group containing an aromatic group (C6H3) fused to a non-aromatic moiety -(CH2)4-. The aromatic atom group may include one or more functional groups such as an alkyl group, an alkenyl group, an alkynyl group, a haloalkyl group, a halogenated aromatic group, a conjugated diene group, an alcohol group, an ether group, an aldehyde group. A ketone group, a carboxylic acid group, a thiol group (for example, a carboxylic acid derivative such as an ester and a guanamine), an amine group, a nitro group or the like. For example, a 4-methylphenyl atom group is a C7 aromatic atom group containing a methyl group, and the methyl group functional group is an alkyl group. Similarly, the 2-nitrophenyl group is a C6 aromatic atom group containing a nitro group which is a functional group. The aromatic atom group includes: a halogenated aromatic atom group such as trifluoromethylphenyl group, hexafluoroisopropylidene bis(4-phenyl-1-yloxy) (-〇PhC(CF3)2PhO〇, chlorine Methylphenyl-14- 200811237, 3-trifluorovinyl-2-thienyl, 3-trichloromethylphenyl-1-yl (3-CCl3Ph-), 4-(3-bromopropan-1- Benzyl-1-yl (BrCH2CH2CH2Ph-), etc. Other examples of aromatic radicals include: 4-allylbenzene-1-oxy, 4-aminophenyl-1-yl (H2NPh-), 3- Aminocarbonylbenzene-1-yl (NH2COPh-), 4-benzylmercaptophenyl-1-yl, dicyanoisopropylidene bis(4-phenyl-1-yloxy)(-OPhC(CN)2PhO -), 3-methylphenyl-1-yl, methylenebis(phenyl-4-yloxy)(-OPhCH2PhO-), 2-ethylphenyl-1-yl, phenylvinyl, 3-methyl Mercapto-2-thienyl, 2-hexyl-5-furanyl, hexamethylene-1,6-bis(phenyl-4-yloxy)(-OPh(CH2)6PhO-), 4-hydroxyl Phenyl-1-yl (4-HOCH2Ph-), 4-mercaptomethylphenyl-1-yl (4-HS-CH2Ph-), 4-methylthiophenyl-1-yl (4-CH3SPh-) , 3-methoxybenzene-byl, 2-methoxycarbonylphenyl-1-yloxy (eg, methyl o-hydroxybenzyl), 2- Methylphenyl-1-yl (-PhCH2N02), 3-trimethyldecylphenyl-1-yl, 4-tert-butyldimethylammoniophenyl-1-yl, 4-vinylbenzene-1 - a vinylidene bis(phenyl) group, etc. The term "C3-C3.aromatic radical" includes an aromatic radical containing at least 3 but not more than 30 carbon atoms. Aromatic radical 1-imidazole The group (C3H2N2-) represents a C3 aromatic atom group. The benzyl group (C7H7-) represents a C7 aromatic atom group. The cycloaliphatic atom group has an atomic group having at least one valence and having a cyclic but non-aromatic atom arrangement. The radical may comprise one or more acyclic moieties. For example, a cyclohexylmethyl (C6HMCH2-) is a cycloaliphatic radical comprising a cyclohexyl ring (a cyclic but non-aromatic atomic arrangement) and a methylene group (non- Cycloaliphatic radicals may contain heteroatoms such as nitrogen, sulfur, selenium, tellurium, and oxygen, or may be composed solely of carbon and hydrogen. Cyclo-15-200811237 aliphatic radicals may include one or more Functional groups, such as, for example, a hospital base, a stilbene group, an alkynyl group, a halogen-based group, a conjugated di-storage group, an alcohol group, an ether group, a ketone group, a ketone group a base, a decanoic acid group, a fluorenyl group (for example, a carboxylic acid derivative such as an ester and an amine), an amine group, a nitro group, etc. For example, a '4-methylcyclopentane-:ι-based group is included a C 6 cycloaliphatic atomic group of a methyl group, which is a member of the alkyl group. Similarly, the 2-nitrocyclobutane-yl radical is a C4 cycloaliphatic radical containing a nitro group, which is a nitro functional group. The cycloaliphatic radical may comprise one or more identical or mutually different halogen atoms. The halogen atom includes, for example, fluorine, chlorine, bromine, and iodine. A cycloaliphatic radical having one or more halogen atoms includes: 2-trifluoromethylcyclohex-1-yl, 4-bromodifluoromethylcyclooct-1-yl, 2-chlorodifluoromethyl Cyclohex-1-yl, hexafluoroisopropylidene 2,2-bis(cyclohex-4-yl)(-C^HwCCCFshCsHio-), 2-chloromethylcyclohex-1-yl; 3- - Fluoromethylenecyclohex-1-yl, 4-trichloromethylcyclohex-1-yloxy, 4-bromodichloromethylcyclohex-1-ylthio, 2-bromoethyl Cyclopent-1-yl, 2-bromopropylcyclohex-1-yloxy (for example, CH3CHBrCH2C6Hi.-) and the like. Other examples of cycloaliphatic radicals include: 4-allyl cyclohex-1-yl, 4-aminocyclohex-1-yl (H2NC6H1Q-), 4-aminocarbonylcyclopent-1-yl (NH2COC5H8- , 4·Ethyloxycyclohex-1-yl, 2,2-dicyanoisopropylidene bis(cyclohex-4-yloxy)(-OCsHioCCCNhC^HioO-), 3-methyl Cyclohex-1-yl, methylene bis(cyclohex-4-yloxy)(-0C6H1GCH2C6H1()0-), 1-ethylcyclobutan-1-yl, cyclopropylvinyl, 3-methyl Mercapto-2-tetrahydrofuranyl, 2-hexyl-5-tetrahydrofuranyl, hexamethylene-1,6-bis(cyclohex-4-yloxy)(-OCsHiiKCKbhC^HioO-), 4- Hydroxymethylcyclohex-1-yl (4-HOCH2C6Hi() - ), 4-mercaptomethyl-16- 200811237 cyclohex-1-yl (4-HSCH2C6H1()-), 4-methylthio ring Benzyl-(4-CH3SC6H1()-), 4-methoxycyclohex-1-yl, 2-methoxycarbonylcyclohexyl-buyloxy (2-CH3OCOC6H1()0-), 4-nitrate Methylcyclohexyl-buyl (N02CH2C6H1()-), 3-trimethyldecylcyclohex-1-yl, 2-tert-butyldimethylamylcyclopentan-1-yl, 4-trimethyl Oxidylalkylethylcyclohexyl-1-yl (eg, (CH30)3SiCH2CH2C6H1()-), 4- Alkenyl cyclohexene-1-yl, ethenylene bis (cyclohexyl) and the like. The term "C3-C3G cycloaliphatic radical" includes radicals containing at least 3 but no more than 10 carbon atoms. The cycloaliphatic radical 2-tetrahydrofuranyl (C4H70-) is a representative example of one of the C4 cycloaliphatic atoms. A cyclohexylmethyl group (C^HnCHb-) is a representative example of one of the C7 cycloaliphatic radicals. In a system, the average number of hydroxyl groups relative to each alcohol molecule can be in the range of about one. In a system, the average number of hydroxyl groups relative to each alcohol molecule can be in the range of about 2. In a system, the average number of hydroxyl groups relative to each alcohol molecule can be in the range of about 3. In a system, the average number of hydroxyl groups relative to each alcohol molecule can be in the range of greater than about 3. In a system, the alcohol can include an aliphatic material. The aliphatic material may be a linear, branched or cycloaliphatic group. Suitable aliphatic alcohols may include one or more of the following: ethylene glycol; propylene glycol; 1,4-butanediol; 2,2-dimethyl-1,3-propanediol; 2-ethyl, 2-methyl Base, 1,3-propanediol; 1,3- and 1,5-pentanediol; dipropylene glycol; 2-methyl-1,5-pentanediol; 1,6-hexanediol; dimethanol decalin Dimethanol dicyclooctane; 1,4-cyclohexanedimethanol; triethylene glycol; 1,1 decyl-octanediol; dihydroxybiphenyl; bisphenol; glycerol; trimethylolpropane; Methyl ethane; pentaerythritol; sorbitol; polyether diol; and derivatives of -17-200811237. In a system, the alcohol can include a hydroxy-functional aromatic species. Suitable hydroxy-functional aromatic materials may include structural units of formula (I):

(I) HO-G-OH 其中,G可爲二價芳族原子團。在一體系中,G基團 之總數的至少約5 0%可爲芳族有機原子團,而剩餘者可爲 脂族、環脂族、或芳族的有機原子團。於一體系中,G可 包括式(II )所示的結構單元:(I) HO-G-OH wherein G may be a divalent aromatic atomic group. In a system, at least about 50% of the total number of G groups can be an aromatic organic atomic group, and the remainder can be an aliphatic, cycloaliphatic, or aromatic organic atomic group. In a system, G may comprise a structural unit represented by the formula (II):

(R2)m I (R!)P I (R3)m I I V ! 1 ϊ t lit S Y (II)(R2)m I (R!)P I (R3)m I I V ! 1 ϊ t lit S Y (II)

其中,Y示芳族原子團,諸如,伸苯基、伸聯苯基、 或是伸萘基。E可爲一鍵結或脂族原子團。於一體系中, E係一鍵結,該醇爲二羥基聯苯。在一體系中,E可爲脂 族原子團,諸如,伸烷基或亞烷基原子團。適當的伸烷基 或亞烷基原子團可包括:亞甲基、伸乙基、亞乙基、伸丙 基、亞丙基、異亞丙基、伸丁基、亞丁基、異亞丁基、伸 戊基、亞戊基、以及異亞戊基。當E示伸烷基或亞烷基時 ,其亦可由二或多個由異於伸烷基或亞烷基之分子片段( moiety)所連結在一起的伸烷基或亞烷基所組成,諸如, 芳族鍵聯;三級胺基鍵聯;醚鍵聯;羰基鍵聯;含矽的鍵 聯(諸如,矽烷或矽氧基);或含硫的鍵聯(諸如,硫化 物、亞礪或颯);或是含磷的鍵聯(諸如,磷醯基或膦醯 -18- 200811237 基)。在一體系中,E可爲環脂族原子團。適當的環脂族 原子團可包括:環亞戊基、環亞己基、3,3,5 -二甲基環亞 己基、甲基環亞己基、2-{2·2·1}-二環亞庚基、新亞戊基 、環亞十五基、環亞十二基、以及亞金剛烷基。R1在各 情況下獨立示氫、單價脂族原子團、單價環脂族原子團、 或是單價芳族原子團,諸如,烷基、芳基、芳烷基、烷芳 基、環烷基、或是二環烷基。R2及R3在各情況下獨立示 :鹵素,諸如,氟、溴、氯及碘;三級氮基團,諸如,二 甲胺基;諸如前文所述之R1的基團;或是烷氧基,諸如 ,OR4,其中R4·可爲脂族、環脂族或芳族原子團。字母「 m」係示0 (包括0 )至Y上可取代之位置數之間的任何 整數;「P」示〇 (包括0 )至E上可取代之位置數之間的 整數;「t」示至少等於1的整數;「s」可爲0或1;且 「u」示包括〇的任何整數。 在式(II )的結構中‘,當有一個以上的化2或及3取代 基出現時,彼等取代基可相同或互異。例如,R1取代基 可爲不同鹵素的組合。若出現有一個以上的R1取代基時 ,彼等R1取代基可相同或互異。當「s」可爲〇且「u」 可不爲〇時,該芳族環可在沒有居間的亞烷基或其他橋鍵 聯的情況下,直接接合。芳族核殘基Y上的羥基、R2或 R3的位置可有鄰位、間位及對位之變化,且組合可呈毗 、不對稱或對稱的關係,其中,烴殘基的二或多個環碳原 子可被羥基、R2或R3原子團所取代。 適當之經羥基官能化的芳族化合物可包括下列一或多 -19- 200811237 者:1,1-雙(4-羥苯基)環戊烷;2,2-雙(3-烯丙基-4-羥 苯基)丙烷;2,2-雙(2-第三丁基-4-羥基-5-甲基苯基) 丙烷;2,2-雙(3-第三丁基-4-羥基-6-甲基苯基)丙烷; 2,2-雙(3_第三丁基-4-羥基-6-甲基苯基)丁烷;1,3-雙 [4-羥苯基-1- ( 1-甲基亞乙基)]苯;1,4-雙[4-羥苯基-1-( 1-甲基亞甲基)]苯;1,3_雙[3-第三丁基-4-羥基-6-甲基苯 基-1-(1-甲基亞乙基)]苯,1,4 -雙[3-弟二丁基-4-經基·6_ 甲基苯基-1- ( 1-甲基亞乙基)]苯;4,45-二羥基聯苯; 2,2’,6,8 -四甲基-3,3 ’,5,5’ -四溴基-4,4’ -二羥基聯苯; 2,2’,6,6’-四甲基-3,3’,5-三溴基-4,4’-二羥基聯苯;1,1-雙 (4-羥苯基)-2,2,2-三氯乙烷;2,2-雙(4-羥苯基-1,1,1,3,3,3-六氟丙烷);1,1-雙(4-羥苯基)-1-氰基乙烷 ;1,1-雙(4-羥苯基)二氰基甲烷;1,1-雙(4-羥苯基)-1-氧基-1-苯基甲院;2,2 -雙(3 -甲基-4 -經苯基)丙院; 1,1_雙(4-羥苯基)正莰;9,9-雙(4-羥苯基)莽;3,3-雙 (4-羥苯基)苯酞;1,2-雙(4-羥苯基)乙烷;1,3-雙(4-羥苯基)丙烯酮;雙(4-羥苯基)硫化物;4,4’-氧基二苯 酚;4,4-雙(4-羥苯基)戊酸;4,4-雙(3,5-二甲基-4-羥 苯基)戊酸;2,2-雙(4-羥苯基)乙酸;2,4’-二羥基苯基 甲烷;2-雙(2-羥苯基)甲烷;雙(4-羥苯基)甲烷;雙 (4-羥基-5-硝基苯基)甲烷;雙(4-羥基-2,6-二甲基-3-甲氧基苯基)甲烷;1,1-雙(4-羥苯基)乙烷;1,1-雙( 4-羥基-2-氯苯基)乙烷;2,2-雙(4-羥苯基)丙烷(雙 酚-Α) ; 1,1-雙(4-羥苯基)丙烷;2,2-雙(3-氯基-4-羥 -20- 200811237 苯基)丙烷;2,2-雙(3-溴基-4-羥苯基)丙烷;2,2-雙( 4-羥基-3-甲苯基)丙烷;2,2-雙(4-羥基-3-異丙基苯基) 丙烷;2,2-雙(3-第三丁基-4-羥苯基)丙烷;2,2-雙(3-苯基-4-羥苯基)丙烷;2,2-雙(3,5-二氯基-4-羥苯基)丙 烷;2,2-雙(3,5-二溴基-4-羥苯基)丙烷;2,2-雙(3,5-二甲基-4-羥苯基)丙烷;2,2-雙(3-氯基-4-羥基-5-甲基 苯基)丙烷;2,2-雙(3-溴基-4-羥基-5-甲基苯基)丙烷 ;2,2-雙(3-氯基-4-羥基-5-異丙基苯基)丙烷;2,2-雙( 3- 溴基-4-羥基-5-異丙基苯基)丙烷;2,2-雙(3-第三丁 基-5-氯基-4 -經本基)丙院;2,2 -雙(3 -漠基-5-第二丁基- 4- 羥苯基)丙烷;2,2-雙(3-氯基-5-苯基-4-羥苯基)丙烷 ;2,2-雙(3-溴基-5-苯基-4-羥苯基)丙烷;2,2-雙(3,5-二異丙基-4-羥苯基)丙烷;2,2-雙(3,5-二第三丁基-4-羥 苯基)丙烷;2,2-雙(3,5-二苯基-4-羥苯基)丙烷;2,2-雙(4-羥基-2,3,5,6-四氯苯基)丙烷;2,2-雙(4-羥基-2,3,5,6-四溴基苯基)丙烷;2,2-雙(4-羥基-2,3,5,6-四甲 基苯基)丙烷;2,2-雙(2,6-二氯基-3,5-二甲基-4-羥苯基 )丙烷;2,2-雙(2,6-二溴基-3,5-二甲基-4-羥苯基)丙烷 ;2,2-雙(4-羥基-3-乙基苯基)丙烷;2,2-雙(4-羥基-3,5-二甲基苯基)丙烷;2,2-雙(3,5,3’,5’-四氯基-4,4’-二 羥基苯基)丙烷;1,1_雙(4-羥苯基)環己基甲烷;2,2-雙(4-羥苯基)-1-苯基丙烷;1,1-雙(4-羥苯基)環己烷 ;1,1_雙(3-氯基-4-羥苯基)環己烷;1,1-雙(3-溴基-4-羥苯基)環己烷;1,1_雙(4-羥基-3-甲基苯基)環己烷; -21 - 200811237 1,1-雙(4-羥基-3-異丙基苯基)環己烷;1,1-雙(3-第三 丁基-4-羥苯基)環己烷;1,1-雙(3-苯基-4-羥苯基)環 己烷;1J-雙(3,5-二氯基-4-羥苯基)環己烷;1,1-雙( 3,5-二溴基-4-羥苯基)環己烷;1,卜雙(3,5-二甲基-4-羥 苯基)環己烷;4,4’-[1-甲基- 4-(1-甲基乙基)-1,3-環己 烷二基]雙酚(1,3 BHPM) ; 4-[1_[3- ( 4-羥苯基)-4-甲 基環己基]-1_甲基-乙基]-酚(2,8 BHPM ) ; 3,8-二羥基- 5 a,1 0 b -二苯基薰草院基-2 ’,3 ’,2,3 -薰草院(c 〇 um ar an e ) (DCBP ) ; 2-苯基-3,3-雙(4-羥苯基)苯甲內醯胺;1,1- 雙(3-氯基-4-羥基-5-甲基苯基)環己烷;1,1-雙(3-溴 基-4-羥基-5-甲基苯基)環己烷;1,1-雙(3-氯基-4-羥—基-5-異丙基苯基)環己烷;1,1-雙(3-溴基-4-羥基-5-異丙基 苯基)環己烷;1,1_雙(3-第三丁基-5-氯基-4-羥苯基) 環己烷;1,1_雙(3-溴基-5-第三丁基-4-羥苯基)環己烷 ;1,1_雙(3-氯基-5-苯基-4-羥苯基)環己烷;1,1-雙(3-溴基-5-苯基-4-羥苯基)環己烷;1,1-雙(3,5-二異丙基-4-羥苯基)環己烷;1,1-雙(3,5-二第三丁基-4-羥苯基) 環己烷;1,1_雙(3,5-二苯基-4-羥苯基)環己烷;1,1-雙 (4-羥基-2,3,5,6-西氯苯基)環己烷;1,1-雙(4-羥基-2,3,5,6-四溴苯基)環己烷;1,1-雙(4-羥基-2,3,5,6-四甲 基苯基)環己烷;1,1-雙(2,6〜二氯基-3,5-二甲基-4-羥苯 基)環己烷;1,1-雙(2,6-二溴基-3,5-二甲基-4-羥苯基) 環己烷;1,1_雙(4-羥苯基)-3,3,5-三甲基環己烷;1,1-雙(3-氯基-4-羥苯基)-3,3,5-三甲基環己烷;1,1-雙(3- -22- 200811237 溴基-4-羥苯基)-3,3,5-三甲基環己烷;1,1-雙(4-羥基-3-甲基苯基)-3,3,5-三甲基環己烷;1,1-雙(4-羥基-3-異丙 基苯基)-3,3,5-三甲基環己烷;1,1-雙(3-第三丁基-4-羥 苯基)-3,3,5-三甲基環己烷;1,1-雙(3-苯基-4-羥苯基 )-3,3,5-三甲基環己烷;1,1-雙(3,5-二氯基-4-羥苯基)- 3.3.5- 三甲基環己烷;1,1-雙(3,5-二溴基-4-羥苯基)- 3.3.5- 三甲基環己烷;1,1-雙(3,5-二甲基_4_羥苯基)- 3.3.5- 三甲基環己烷;1,1-雙(3-氯基-4-羥基-5-甲基苯基 )-3,3,5-三甲基環己烷;1,1-雙(3-溴基-4-羥基-5-甲基苯 基)-3,3,5-三甲基環己烷;1,1-雙(3-氯基-4-羥基-5-異丙 基苯基)-3,3,5-三甲基環己烷;1,1-雙(3-溴基-4-羥基-5-異丙基苯基)-3,3,5-三甲基環己烷;1,1-雙(3-第三丁基-5-氯基-4-羥苯基)-3,3,5-三甲基環己烷;1,1-雙(3-溴基-5-第三丁基-4-羥苯基)-3,3,5-三甲基環己烷;雙(3-氯 基_5_苯基_4_羥苯基_3,3,5-三甲基環己烷;U-雙(3-溴 基-5-苯基-4-羥苯基)-3,3,5-三甲基環己烷;1,1-雙(3,5-二異丙基-4-羥苯基)-3,3,5-三甲基環己烷;1,1-雙(3,5-二第三丁基-4-羥苯基)-3,3,5-三甲基環己烷;1,1-雙( 3.5- 二苯基-4-羥苯基)-3,3,5-三甲基環己烷;1,1-雙.(4-羥基-2,3,5,6-四氯苯基)-3,3,5-三甲基環己烷;1,1-雙( 4-羥基-2,3,5,6-四溴苯基)-3,3,5-三甲基環己烷;1,1-雙 (4-羥基-2,3,5,6-四甲基苯基)-3,3,5-三甲基環己烷; 1,卜雙(2,6-二氯基-3,5-二甲基-4-羥苯基)-3,3,5-三甲基 環己烷;1,1-雙(2,6-二溴基-3,5-二甲基-4-羥苯基)- -23- 200811237 3,3,5-三甲基環己烷;4,4-雙(4-羥苯基)庚烷;I1·雙( 4 -羥苯基)癸烷;1,1 -雙(4 -羥苯基)環十二烷;1,1 -雙 (3,5-二甲基-4-羥苯基)環十二烷;4,4,-二羥基-1,卜聯 苯;4,4,-二羥基-3,3,-二甲基-1,卜聯苯;4,4’-二經基-3,3,-二辛基-15 ;1 -聯苯;4,4,- ( 3,3,5 -三甲基環亞己基)一 酚;4,4,-雙(3,5 -二甲基).二酚;4,4,-二羥基二苯基醚; 4,4,-二羥基二苯基硫醚;1,3-雙(2-(4-羥苯基)_2-丙基 φ )苯;1,3-雙(2-(4-羥基-3 -甲基苯基)-2-丙基)苯; 1,4-雙(2- ( 4-羥苯基)-2-丙基)苯;1,4-雙(2- ( 4-趨 基-3-甲基苯基)-2-丙基)苯;2,4,-二羥基苯基颯;4,4’· 二羥基二苯基礪(BPS );雙(4-羥苯基)甲烷;2,6_ — 羥基萘;苯二酚;間苯二酚;經C1 烷基取代的間苯二 酚;3 - ( 4 -羥苯基)-1,1,3 -三甲基氫茚-5 -醇;卜(4 -經本 基)-1,3,3-三甲基氫茚-5-醇;4,4-二羥基二苯基醚;4,4_ 二羥基-3,3-二氯基二苯基醚;4,4-二羥基-2,5-二經基二苯 • 基醚;4,4-硫基二酚;2,2,2,,2,-四氫-3,3,3,,3’-四甲基_ 1,1,-螺二[1H-茚]-6,6,-二醇;以及彼等之混合物。 於一體系中,所存在之醇的量可在組成物之約5重重 %至約10重量%的範圍內、組成物之約1〇重量%至約20 _ 重量%的範圍內、約2 0重量%至約3 0重量%的範圍內、 或組成物之約30重量%至約40重量%範圍內。在一體系 中,所存在之醇的量可在組成物之約4 0重量%至約5 0重 量%範圍內、組成物之約50重量%至約60重量%範圍內 、組成物之約6 0重量°/。至約7 0重量%範圍內、或組成物 -24 - 200811237 之約70重量%至約80重量%範圍內。於一體系內,所存 在之醇的量可在大於組成物之約8〇重量%。 適當的酐類可包括一或多種環狀酐官能化的有;^或無 機物質。適當的有機酐類可包括下列一或多者··鄰苯二甲 酸酐;鄰苯二甲酸二酐;六氫鄰苯二甲酸酐;六氫鄰苯二 甲酸二酐;4-硝基鄰苯二甲酸酐;4-硝基鄰苯二甲酸二酐 ;甲基-六氫鄰苯二甲酸酐;甲基-六氫鄰苯二甲酸二酐; 萘四羧酸二酐;萘酸酐;四氫鄰苯二甲酸酐;四氫鄰苯二 甲酸二酐;焦蜜石酸酐;環己烷二羧酸酐;2-環己院二殘 酸酐;二環(2·2·1 )庚烷-2,3-二羧酸酐·,二環(m ) 庚-5-烯-2,3-二羧酸酐;甲基二環(2.2.1)庚-5-烯-2,3-二 羧酸酐;順丁烯二酸酐;戊二酸酐;2-甲基戊二酸酐; 2,2-二甲基戊二酸酐;六氟戊二酸酐;2-苯基戊二酸酐; 3,3 -四亞甲基戊二酸酐;依康酸酐;四丙烯基琥珀酸酐; 十八碳烷基琥珀酸酐;2-或正-辛烯基琥珀酸酐;十二碳 烯基琥珀酸酐;十二碳烯基琥珀酸酐;或是彼等之衍生物 〇 適當的無機酸酐類可包括式(III )所示的結構單元Wherein Y represents an aromatic atom group such as a phenyl group, a phenyl group, or a naphthyl group. E can be a bond or an aliphatic radical. In a system, E is a bond, and the alcohol is dihydroxybiphenyl. In a system, E can be an aliphatic radical such as an alkyl or alkylene radical. Suitable alkylene or alkylene radicals may include: methylene, ethyl, ethylene, propyl, propylene, isopropylidene, butyl, butylene, isobutylene, Pentyl, pentylene, and isopentylene. When E is an alkyl or alkylene group, it may also consist of two or more alkyl or alkylene groups bonded together by molecular moieties different from alkyl or alkylene groups. For example, an aromatic linkage; a tertiary amine linkage; an ether linkage; a carbonyl linkage; a ruthenium containing linkage (such as a decane or a decyloxy group); or a sulfur-containing linkage (such as a sulfide, a sub砺 or 飒); or a phosphorus-containing linkage (such as phosphonium or phosphine -18-200811237 base). In a system, E can be a cycloaliphatic radical. Suitable cycloaliphatic radicals may include: cyclopentylene, cyclohexylene, 3,3,5-dimethylcyclohexylene, methylcyclohexylene, 2-{2·2·1}-bicyclic Heptyl, neopentylene, cyclopentadecyl, cyclododedodecyl, and adamantyl. R1 independently represents hydrogen, a monovalent aliphatic atom group, a monovalent cycloaliphatic atomic group, or a monovalent aromatic atom group, such as an alkyl group, an aryl group, an arylalkyl group, an alkylaryl group, a cycloalkyl group, or two, in each case. Cycloalkyl. R2 and R3 are independently shown in each case: halogen, such as fluorine, bromine, chlorine and iodine; tertiary nitrogen group, such as dimethylamino; a group such as R1 as described above; or alkoxy For example, OR4, wherein R4. may be an aliphatic, cycloaliphatic or aromatic atomic group. The letter "m" is any integer between 0 (including 0) and the number of positions that can be replaced by Y; "P" indicates an integer between 〇 (including 0) and the number of positions that can be replaced on E; "t" An integer at least equal to 1; "s" can be 0 or 1; and "u" is any integer including 〇. In the structure of formula (II), when more than one of the 2 or 3 substituents are present, the substituents may be the same or different. For example, the R1 substituent can be a combination of different halogens. Where more than one R1 substituent is present, the R1 substituents may be the same or different. When "s" can be 〇 and "u" is not 〇, the aromatic ring can be directly bonded without intervening alkylene or other bridge linkages. The position of the hydroxyl group, R2 or R3 on the aromatic core residue Y may have an ortho, meta and para position, and the combination may be in a contiguous, asymmetric or symmetrical relationship, wherein two or more hydrocarbon residues are present. The ring carbon atoms may be substituted by a hydroxyl group, an R2 or R3 atom group. Suitable hydroxy-functionalized aromatic compounds may include one or more of the following: -19-200811237: 1,1-bis(4-hydroxyphenyl)cyclopentane; 2,2-bis(3-allyl- 4-hydroxyphenyl)propane; 2,2-bis(2-tert-butyl-4-hydroxy-5-methylphenyl)propane; 2,2-bis(3-tert-butyl-4-hydroxyl) -6-methylphenyl)propane; 2,2-bis(3_t-butyl-4-hydroxy-6-methylphenyl)butane; 1,3-bis[4-hydroxyphenyl-1 - (1-methylethylidene)]benzene; 1,4-bis[4-hydroxyphenyl-1-(1-methylmethylene)]benzene; 1,3_bis[3-third 4-hydroxy-6-methylphenyl-1-(1-methylethylidene)]benzene, 1,4-bis[3-dibutyl-4-transyl-6-methylphenyl -1-(1-methylethylidene)]benzene; 4,45-dihydroxybiphenyl; 2,2',6,8-tetramethyl-3,3 ',5,5'-tetrabromo -4,4'-dihydroxybiphenyl; 2,2',6,6'-tetramethyl-3,3',5-tribromo-4,4'-dihydroxybiphenyl; 1,1- Bis(4-hydroxyphenyl)-2,2,2-trichloroethane; 2,2-bis(4-hydroxyphenyl-1,1,1,3,3,3-hexafluoropropane); , 1-bis(4-hydroxyphenyl)-1-cyanoethane; 1,1-bis(4-hydroxyphenyl)dicyanomethane; 1-bis(4-hydroxyphenyl)-1-oxy-1-phenyl-methyl; 2,2-bis(3-methyl-4-phenyl)propyl; 1,1_double (4 -hydroxyphenyl)-n-decene; 9,9-bis(4-hydroxyphenyl)anthracene; 3,3-bis(4-hydroxyphenyl)phenylhydrazine; 1,2-bis(4-hydroxyphenyl)B Alkenes; 1,3-bis(4-hydroxyphenyl)propenone; bis(4-hydroxyphenyl) sulfide; 4,4'-oxydiphenol; 4,4-bis(4-hydroxyphenyl) Valeric acid; 4,4-bis(3,5-dimethyl-4-hydroxyphenyl)pentanoic acid; 2,2-bis(4-hydroxyphenyl)acetic acid; 2,4'-dihydroxyphenylmethane ; 2-bis(2-hydroxyphenyl)methane; bis(4-hydroxyphenyl)methane; bis(4-hydroxy-5-nitrophenyl)methane; bis(4-hydroxy-2,6-dimethyl 3-methoxyphenyl)methane; 1,1-bis(4-hydroxyphenyl)ethane; 1,1-bis(4-hydroxy-2-chlorophenyl)ethane; 2,2- Bis(4-hydroxyphenyl)propane (bisphenol-indole); 1,1-bis(4-hydroxyphenyl)propane; 2,2-bis(3-chloro-4-hydroxy-20- 200811237 phenyl Propane; 2,2-bis(3-bromo-4-hydroxyphenyl)propane; 2,2-bis(4-hydroxy-3-tolyl)propane; 2,2-bis(4-hydroxy-3) -isopropylphenyl)propane; 2,2-double (3-third 2-hydroxyphenyl)propane; 2,2-bis(3-phenyl-4-hydroxyphenyl)propane; 2,2-bis(3,5-dichloro-4-hydroxyphenyl)propane 2,2-bis(3,5-dibromo-4-hydroxyphenyl)propane; 2,2-bis(3,5-dimethyl-4-hydroxyphenyl)propane; 2,2-double (3-Chloro-4-hydroxy-5-methylphenyl)propane; 2,2-bis(3-bromo-4-hydroxy-5-methylphenyl)propane; 2,2-dual (3 -Chloro-4-hydroxy-5-isopropylphenyl)propane; 2,2-bis(3-bromo-4-hydroxy-5-isopropylphenyl)propane; 2,2-dual (3 - tert-butyl-5-chloro-4 -benzinyl); 2,2-bis(3-indolyl-5-t-butyl-4-hydroxyphenyl)propane; 2,2-double (3-Chloro-5-phenyl-4-hydroxyphenyl)propane; 2,2-bis(3-bromo-5-phenyl-4-hydroxyphenyl)propane; 2,2-double (3 ,5-diisopropyl-4-hydroxyphenyl)propane; 2,2-bis(3,5-di-t-butyl-4-hydroxyphenyl)propane; 2,2-bis(3,5- Diphenyl-4-hydroxyphenyl)propane; 2,2-bis(4-hydroxy-2,3,5,6-tetrachlorophenyl)propane; 2,2-bis(4-hydroxy-2,3 ,5,6-tetrabromophenyl)propane; 2,2-bis(4-hydroxy-2,3,5,6-tetramethylphenyl)propane; 2,2-bis(2,6-di Chloro-3,5-di Methyl-4-hydroxyphenyl)propane; 2,2-bis(2,6-dibromo-3,5-dimethyl-4-hydroxyphenyl)propane; 2,2-bis(4-hydroxyl) 3-ethylphenyl)propane; 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane; 2,2-bis(3,5,3',5'-tetrachloro 4-,4'-dihydroxyphenyl)propane; 1,1-bis(4-hydroxyphenyl)cyclohexylmethane; 2,2-bis(4-hydroxyphenyl)-1-phenylpropane; ,1-bis(4-hydroxyphenyl)cyclohexane; 1,1-bis(3-chloro-4-hydroxyphenyl)cyclohexane; 1,1-bis(3-bromo-4-hydroxyl) Phenyl)cyclohexane; 1,1-bis(4-hydroxy-3-methylphenyl)cyclohexane; -21 - 200811237 1,1-bis(4-hydroxy-3-isopropylphenyl) Cyclohexane; 1,1-bis(3-tert-butyl-4-hydroxyphenyl)cyclohexane; 1,1-bis(3-phenyl-4-hydroxyphenyl)cyclohexane; 1J- Bis(3,5-dichloro-4-hydroxyphenyl)cyclohexane; 1,1-bis(3,5-dibromo-4-hydroxyphenyl)cyclohexane; 1, Bu (3) ,5-dimethyl-4-hydroxyphenyl)cyclohexane; 4,4'-[1-methyl-4-(1-methylethyl)-1,3-cyclohexanediyl] Phenol (1,3 BHPM) ; 4-[1_[3-(4-hydroxyphenyl)-4-methylcyclohexyl]-1_methyl-ethyl]- Phenol (2,8 BHPM); 3,8-dihydroxy-5 a,1 0 b -diphenyl oxalate base-2 ',3 ',2,3 - 薰草院(c 〇um ar an e (DCBP); 2-phenyl-3,3-bis(4-hydroxyphenyl)benzamide; 1,1-bis(3-chloro-4-hydroxy-5-methylphenyl) Cyclohexane; 1,1-bis(3-bromo-4-hydroxy-5-methylphenyl)cyclohexane; 1,1-bis(3-chloro-4-hydroxy-yl-5-iso Propyl phenyl)cyclohexane; 1,1-bis(3-bromo-4-hydroxy-5-isopropylphenyl)cyclohexane; 1,1_bis(3-tert-butyl-5 -Chloro-4-hydroxyphenyl)cyclohexane; 1,1-bis(3-bromo-5-t-butyl-4-hydroxyphenyl)cyclohexane; 1,1_bis(3- Chloro-5-phenyl-4-hydroxyphenyl)cyclohexane; 1,1-bis(3-bromo-5-phenyl-4-hydroxyphenyl)cyclohexane; 1,1-double ( 3,5-diisopropyl-4-hydroxyphenyl)cyclohexane; 1,1-bis(3,5-di-t-butyl-4-hydroxyphenyl)cyclohexane; 1,1_double (3,5-diphenyl-4-hydroxyphenyl)cyclohexane; 1,1-bis(4-hydroxy-2,3,5,6-cis-chlorophenyl)cyclohexane; 1,1- Bis(4-hydroxy-2,3,5,6-tetrabromophenyl)cyclohexane; 1,1-bis(4-hydroxy-2,3,5,6-tetramethylphenyl)cyclohexane 1,1-bis(2,6-dichloro-3,5-dimethyl-4-hydroxyphenyl)cyclohexane; 1,1-bis(2,6-dibromo-3,5 -dimethyl-4-hydroxyphenyl)cyclohexane; 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane; 1,1-bis(3-chloro 4-hydroxyphenyl)-3,3,5-trimethylcyclohexane; 1,1-bis(3--22- 200811237 bromo-4-hydroxyphenyl)-3,3,5- Trimethylcyclohexane; 1,1-bis(4-hydroxy-3-methylphenyl)-3,3,5-trimethylcyclohexane; 1,1-bis(4-hydroxy-3- Isopropylphenyl)-3,3,5-trimethylcyclohexane; 1,1-bis(3-tert-butyl-4-hydroxyphenyl)-3,3,5-trimethylcyclo Hexane; 1,1-bis(3-phenyl-4-hydroxyphenyl)-3,3,5-trimethylcyclohexane; 1,1-bis(3,5-dichloro-4- Hydroxyphenyl)- 3.3.5-trimethylcyclohexane; 1,1-bis(3,5-dibromo-4-hydroxyphenyl)- 3.3.5-trimethylcyclohexane; 1-bis(3,5-dimethyl-4-hydroxyphenyl)-3.3.5-trimethylcyclohexane; 1,1-bis(3-chloro-4-hydroxy-5-methylbenzene -3,3,5-trimethylcyclohexane; 1,1-bis(3-bromo-4-hydroxy-5-methylphenyl)-3,3,5-trimethylcyclohexane Alkane; 1,1-bis(3-chloro-4-hydroxy-5-iso Propyl phenyl)-3,3,5-trimethylcyclohexane; 1,1-bis(3-bromo-4-hydroxy-5-isopropylphenyl)-3,3,5-three Methylcyclohexane; 1,1-bis(3-tert-butyl-5-chloro-4-hydroxyphenyl)-3,3,5-trimethylcyclohexane; 1,1-double ( 3-bromo-5-t-butyl-4-hydroxyphenyl)-3,3,5-trimethylcyclohexane; bis(3-chlorophenyl-5-phenyl-4-hydroxyphenyl) 3,3,5-trimethylcyclohexane; U-bis(3-bromo-5-phenyl-4-hydroxyphenyl)-3,3,5-trimethylcyclohexane; 1,1 -bis(3,5-diisopropyl-4-hydroxyphenyl)-3,3,5-trimethylcyclohexane; 1,1-bis(3,5-di-t-butyl-4- Hydroxyphenyl)-3,3,5-trimethylcyclohexane; 1,1-bis(3.5-diphenyl-4-hydroxyphenyl)-3,3,5-trimethylcyclohexane; 1,1-bis.(4-hydroxy-2,3,5,6-tetrachlorophenyl)-3,3,5-trimethylcyclohexane; 1,1-bis(4-hydroxy-2, 3,5,6-tetrabromophenyl)-3,3,5-trimethylcyclohexane; 1,1-bis(4-hydroxy-2,3,5,6-tetramethylphenyl)- 3,3,5-trimethylcyclohexane; 1, bis(2,6-dichloro-3,5-dimethyl-4-hydroxyphenyl)-3,3,5-trimethyl Cyclohexane; 1,1-bis(2,6-dibromo-3,5-dimethyl-4-hydroxyphenyl)--23- 200811237 3,3,5-trimethylcyclohexane; 4,4-bis(4-hydroxyphenyl)heptane; I1·bis(4-hydroxyphenyl)decane; 1,1-bis(4-hydroxyl Phenyl)cyclododecane; 1,1 -bis(3,5-dimethyl-4-hydroxyphenyl)cyclododecane; 4,4,-dihydroxy-1, buphenyl; 4,4 ,-Dihydroxy-3,3,-dimethyl-1,b-biphenyl; 4,4'-di-based-3,3,-dioctyl-15; 1-biphenyl; 4,4,- (3,3,5-trimethylcyclohexylidene)-phenol; 4,4,-bis(3,5-dimethyl).diphenol; 4,4,-dihydroxydiphenyl ether; 4,-dihydroxydiphenyl sulfide; 1,3-bis(2-(4-hydroxyphenyl)_2-propylφ)benzene; 1,3-bis(2-(4-hydroxy-3-) Phenyl phenyl)-2-propyl)benzene; 1,4-bis(2-(4-hydroxyphenyl)-2-propyl)benzene; 1,4-bis(2-(4-complexyl-3) -methylphenyl)-2-propyl)benzene; 2,4,-dihydroxyphenylhydrazine; 4,4'. dihydroxydiphenylphosphonium (BPS); bis(4-hydroxyphenyl)methane; 2,6_-hydroxynaphthalene; benzenediol; resorcinol; resorcinol substituted by C1 alkyl; 3 - (4-hydroxyphenyl)-1,1,3-trimethylhydroquinone-5 - alcohol; Bu (4 - via the base) -1,3,3-trimethylhydrogen -5-alcohol; 4,4-dihydroxydiphenyl ether; 4,4-dihydroxy-3,3-dichlorodiphenyl ether; 4,4-dihydroxy-2,5-di-diphenyl • ether; 4,4-thiodiphenol; 2,2,2,,2,-tetrahydro-3,3,3,,3'-tetramethyl-1,1,-spiro[1H-茚]-6,6,-diol; and mixtures thereof. In one system, the amount of alcohol present may range from about 5% by weight to about 10% by weight of the composition, from about 1% by weight to about 20% by weight of the composition, about 20%. It is in the range of from about 3% by weight to about 30% by weight, or from about 30% by weight to about 40% by weight of the composition. In one system, the amount of alcohol present may range from about 40% by weight to about 50% by weight of the composition, from about 50% by weight to about 60% by weight of the composition, and about 6% of the composition. 0 weight ° /. It is in the range of about 70% by weight, or about 70% by weight to about 80% by weight of the composition -24 - 200811237. Within a system, the amount of alcohol present may be greater than about 8% by weight of the composition. Suitable anhydrides may include one or more cyclic anhydride functionalized compounds or inorganic materials. Suitable organic anhydrides may include one or more of the following: phthalic anhydride; phthalic acid dianhydride; hexahydrophthalic anhydride; hexahydrophthalic dianhydride; 4-nitroorthobenzene Dicarboxylic anhydride; 4-nitrophthalic acid dianhydride; methyl-hexahydrophthalic anhydride; methyl-hexahydrophthalic acid dianhydride; naphthalene tetracarboxylic acid dianhydride; naphthalene anhydride; tetrahydrogen Phthalic anhydride; tetrahydrophthalic dianhydride; pyrogallite; cyclohexane dicarboxylic anhydride; 2-cyclohexyl diresin; bicyclo (2·2·1) heptane-2, 3-dicarboxylic anhydride·, bicyclo(m)hept-5-ene-2,3-dicarboxylic anhydride; methyl bicyclo(2.2.1)hept-5-ene-2,3-dicarboxylic anhydride; Butic anhydride; glutaric anhydride; 2-methylglutaric anhydride; 2,2-dimethylglutaric anhydride; hexafluoroglutaric anhydride; 2-phenylglutaric anhydride; 3,3-tetramethylene Glutaric anhydride; isocanic anhydride; tetrapropenyl succinic anhydride; octadecyl succinic anhydride; 2- or n-octenyl succinic anhydride; dodecenyl succinic anhydride; dodecenyl succinic anhydride; Is a derivative of them. Suitable inorganic anhydrides may include those represented by formula (III). Structural unit

、Si—X, Si-X

(III) 其中「η」示約0至約5 0範圍的整數,X包括環狀酐 -25-(III) wherein "η" represents an integer ranging from about 0 to about 50, and X includes a cyclic anhydride -25-

200811237 結構單元,且R5、R6、R7、RS、r9及R1G在各情況下 各自獨立示脂族原子團、環脂族原子團、或是芳族原子 。於一體系中,「η」示約1至約1 〇、約1 0至約25、 25至約40、約40至約50範圍內的整數,或是大於約 的整數。在一體系中,R5、R6、r7、r8、R9及R1G可包 鹵素基團,諸如,氟或氯基團。於一體系中,R5、R6、 、R8、R9及R1G中有一或多者可包括··甲基、乙基、丙 、3,3,3-三氟丙基、異丙基、或苯基原子團。 在一體系中,式(III )內的X可包括式(IV )所 團 約 5 0 括 R7 基 示200811237 structural unit, and R5, R6, R7, RS, r9 and R1G each independently represent an aliphatic atom group, a cycloaliphatic atom group, or an aromatic atom. In one system, "η" indicates an integer ranging from about 1 to about 1 Torr, from about 10 to about 25, from 25 to about 40, from about 40 to about 50, or an integer greater than about. In one system, R5, R6, r7, r8, R9 and R1G may comprise a halogen group such as a fluorine or chlorine group. In one system, one or more of R5, R6, R8, R9 and R1G may include methyl, ethyl, propyl, 3,3,3-trifluoropropyl, isopropyl, or phenyl. Atomic group. In a system, X in formula (III) may include a group of formula (IV), including R7.

其中RH-R17可爲氫、鹵素、脂族原子團、環脂族 子團或芳族原子團。R18可爲氧或C-R19,其中,R19係 氫、鹵素、脂族原子團、環脂族原子團或芳族原子團選 的任何二者。 於一體系中,所存在之酐的量可在組成物之約5重 %至約10重量%範圍內、組成物之約10重量%至約20 量%範圍內、組成物之約20重量%至約30重量%範圍 、或是組成物之約3 0至約40重量%範圍內。在一體系 ,所存在之酐的量可在組成物之約40重量%至約50重 原 白 出 量 重 內 中 量 -26- 200811237 %範圍內、約5 0重量%至約6 0重量%範圍內、約6 0重量 %至約70重量%範圍內,或是約70重量%至約80重量% 範圍內。於一體系中,所存在之酐的量可在大於組成物之 約80重量%的範圍內。 在一體系中,第一種可固化的物質可在第一個溫度下 ,固化至B階。B階係指可固化物質之一固化階段,其中 ,部分固化的物質可爲橡膠態、固態、指觸乾燥的’或是 在溶劑內可具有部分溶解度。於一體系中,第一種可固化 物質可藉由下列一或多者固化至B階:增加組成物的數平 均分子量(例如,在聚合期間)、形成互穿高分子網路、 或是藉由化學交聯法。在某些體系中,第一種可固化的物 質可藉由二或多種前述方法的組合來固化,例如,固化反 應可包括:數平均分子量的增加以及交聯的形成。於一體 系中,該第一種可固化的物質可藉由增加組成物的數平均 分子量,固化至B階。在一體系中,酐可在第一個溫度下 與醇反應,以增加組成物的數平均分子量。 第二種可固化的物質可包括高分子前驅物,其具有一 或多個可在第二個溫度下固化但不會在第一個溫度下固化 的官能基。高分子前驅物可包括:單聚物種、寡聚物種、 單聚物種的混合物、寡聚物種的混合物、高分子物種、高 分子物種的混合物、部分交聯物種、部分交聯物種的混合 物、或是二或多種前者之混合物。在一體系中,第二種可 固化的物質可包括官能基團,彼等可經由自由基聚合法、 原子轉移自由基聚合法、開聚合法、開環移位聚合法、 -27 - 200811237 陰離子聚合法、或是陽離子聚合法’形成固化的物質。於 一體系中,第二種可固化的物質可包括下列一或多者:丙 烯酸酯、氨基甲酸酯、脲、三聚氰胺、酚、異氰酸酯、氰 酸酯、或其他適當的可固化官能基團。 在一體系中,第二種可固化的物質可包括雜環官能基 。該雜環官能基可回應第二個溫度但非第一個溫度而開環 。適當的雜環物質可包括下列一或多者:醯胺、環氧乙烷 (諸如,環氧基)、或環氧丙院官能基。於一體系中,該 第二種可固化的物質實質上包括環氧乙烷官能基。在一體 系中,該第二種可固化的物質實質上包括環氧丙烷官能基 〇 適當的環氧丙烷官能基可衍生自下列一或多者:3 -溴 甲基-3-羥甲基環氧丙烷;3,3-雙-(乙氧甲基)環氧丙烷 :3,3_雙-(氯甲基)環氧丙烷;3,3-雙-(.甲氧基甲基) 環氧丙烷;3,3-雙-(氟甲基)環氧丙烷;3-羥甲基-3-甲 基環氧丙烷;3,3-雙-(乙醯氧甲基)環氧丙烷;3,3-雙-(羥甲基)環氧丙烷;3-辛氧基甲基-3-甲基環氧丙烷;3-氯甲基-3-甲基環氧丙烷;3-疊氮基甲基-3-甲基環氧丙烷 ;3,3-雙-(碘甲基)環氧丙烷;3 -碘甲基-3-甲基環氧丙 烷;3-丙基甲基-3-甲基環氧丙烷;3-硝酸基甲基-3-甲基 環氧丙烷;3-二氟基胺基甲基-3-甲基環氧丙烷;3,3-雙-(二氟基胺基甲基)環氧丙烷;3,3-雙-(甲基硝酸基甲基 )環氧丙烷;3-甲基硝酸基甲基-3-甲基環氧丙烷;3,3-雙-(疊氮基甲基)環氧丙烷;或是3 -乙基- 3-( (2 -乙基 -28- 200811237 己氧基)甲基)環氧丙烷。 該第二種可固化物質可爲單官能或多官能的。若 官能的,則該第二種可固化物質可包括複數個化學上 的的官能基,例如,丙烯酸酯及環氧丙烷官能基。於 系中,該第二種可固化的物質實質上包括四個或更多 能基。在一體系中,該第二種可固化的物質實質上包 個或更多個官能基。於一體系中,該第二種可固化的 實質上包括八個或更多個官能基。 該第二種可固化的物質可包括有機或無機高分子 物。適當的有機物質於主鏈上,可實質上僅包括碳-聯(例如,烯屬烴類)或是碳-雜原子-碳鍵聯(例如 類、酯類等等)。可作爲高分子前驅物之有機物質的 例可包括下列一或多者:烯屬烴所衍生的高分子前驅 例如,乙烯、丙烯、以及彼等之混合物;甲基丙烷所 的高分子前驅物,例如,丁二烯、異丙烯、以及彼等 合物;不飽和羧酸類以及彼等之官能衍生物之高分子 物,例如,丙烯酸系化合物,諸如,丙烯酸烷酯類、 丙烯酸烷酯類、丙烯醯胺類、丙烯腈類、以及丙烯酸 基芳族高分子前驅物,例如,苯乙烯、α -甲基苯乙 乙烯基甲苯、以及經橡膠改性的苯乙烯類;醯胺類, ,尼龍-6、尼龍-6,6、尼龍-1,1、以及尼龍-1,2 ;酯類 如,二羧酸伸烷酯,尤指對苯二甲酸乙二醇酯、對苯 酸1,4-丁二醇酯、對苯二甲酸丙二醇酯、萘酸乙二醇 萘酸丁二醇酯、對苯二甲酸環己烷二甲醇酯、環己烷 爲多 互異 一體 個官 括六 物質 前驅 碳鍵 ,醚 適當 物, 衍生 之混 前驅 甲基 ;烯 烯、 例如 ;諸 二甲 酯、 二甲 -29- 200811237 醇-對苯二甲酸乙二醇酯共聚物、以及1,4-環甲烷二甲基-1,4-環己烷二羧酸酯以及芳烴二酸烷二醇酯;碳酸酯;酯 碳酸酯(estercarbonates );楓類;醯亞胺類;環芳硫醚 :硫醚颯類;以及醚類,諸如,芳醚類、苯醚類、醚楓類 、醚醯亞胺類、醚爵類、醚醚酮類;或是彼等之摻合物、 均聚物或共聚物。 適當無機高分子前驅物實質上可包括碳-碳鍵聯或碳-雜原子-碳鍵聯之外的主鍵聯,例如,在矽氧烷類或倍半 矽氧烷類的矽-氧-矽鍵聯。於一體系中,該第二種可固化 的物質實質上包括無機高分子前驅物。在一體系中,該第 二種可固化的物質實質上包括帶有一或多個環氧基官能基 團的無機高分子前驅物。於一體系中,該第二種可固化的 物質實質上包括帶有一或多個環氧基官能基團的矽氧烷高 分子前驅物。在一體系中,該第二種可固化的物質實質上 包括帶有一或多個環氧丙烷官能基團的無機高分子前驅物 。於一體系中,該第二種可固化的物質實質上包括帶有一 或多個環氧丙烷官能基團的矽氧烷高分子前驅物。 適合作爲第二種可固化物質之經環氧丙烷官能化之物 質的範例可包括式(V )至(X )所示的的結構單元: -30- 200811237Wherein RH-R17 may be hydrogen, halogen, an aliphatic atomic group, a cycloaliphatic group or an aromatic atomic group. R18 may be oxygen or C-R19, wherein R19 is any one of hydrogen, halogen, aliphatic radical, cycloaliphatic radical or aromatic radical. In one system, the amount of anhydride present may range from about 5% by weight to about 10% by weight of the composition, from about 10% by weight to about 20% by weight of the composition, and about 20% by weight of the composition. It is in the range of about 30% by weight, or about 30% to about 40% by weight of the composition. In one system, the amount of anhydride present may range from about 40% by weight to about 50% by weight of the composition in the range of from -26 to 200811237%, from about 50% to about 60% by weight. Within the range of from about 60% by weight to about 70% by weight, or from about 70% by weight to about 80% by weight. In one system, the amount of anhydride present may be in the range of greater than about 80% by weight of the composition. In a system, the first curable material can be cured to the B-stage at the first temperature. B-stage refers to a curing stage in which a partially cured material may be rubbery, solid, dry to the touch or may have partial solubility in a solvent. In a system, the first curable material can be cured to the B-stage by one or more of the following: increasing the number average molecular weight of the composition (eg, during polymerization), forming an interpenetrating polymer network, or borrowing By chemical crosslinking method. In some systems, the first curable material may be cured by a combination of two or more of the foregoing methods. For example, the curing reaction may include an increase in the number average molecular weight and formation of crosslinks. In the unitary system, the first curable substance can be cured to the B-stage by increasing the number average molecular weight of the composition. In a system, the anhydride can be reacted with an alcohol at the first temperature to increase the number average molecular weight of the composition. The second curable substance may comprise a polymeric precursor having one or more functional groups which are curable at a second temperature but which do not cure at the first temperature. The polymer precursor may include: a monomer species, an oligomer species, a mixture of monomer species, a mixture of oligomer species, a polymer species, a mixture of polymer species, a partially crosslinked species, a mixture of partially crosslinked species, or It is a mixture of two or more of the former. In a system, the second curable substance may include functional groups, which may be via free radical polymerization, atom transfer radical polymerization, open polymerization, ring opening shift polymerization, -27 - 200811237 anion The polymerization method or the cationic polymerization method 'forms a solidified substance. In one system, the second curable material can include one or more of the following: acrylates, urethanes, ureas, melamines, phenols, isocyanates, cyanates, or other suitable curable functional groups. In a system, the second curable material can include a heterocyclic functional group. The heterocyclic functional group can be ring opened in response to a second temperature but not the first temperature. Suitable heterocyclic materials can include one or more of the following: guanamine, ethylene oxide (such as an epoxy group), or a propylene oxide functional group. In a system, the second curable substance substantially comprises an oxirane functional group. In a system, the second curable material substantially comprises a propylene oxide functional group. Suitable propylene oxide functional groups can be derived from one or more of the following: 3-bromomethyl-3-hydroxymethyl ring Oxypropane; 3,3-bis-(ethoxymethyl) propylene oxide: 3,3_bis-(chloromethyl) propylene oxide; 3,3-bis-(.methoxymethyl) epoxy Propane; 3,3-bis-(fluoromethyl) propylene oxide; 3-hydroxymethyl-3-methyl propylene oxide; 3,3-bis-(ethyl methoxymethyl) propylene oxide; 3-bis-(hydroxymethyl) propylene oxide; 3-octyloxymethyl-3-methyl propylene oxide; 3-chloromethyl-3-methyl propylene oxide; 3-azidomethyl 3-methyl propylene oxide; 3,3-bis-(iodomethyl) propylene oxide; 3-iodomethyl-3-methyl propylene oxide; 3-propylmethyl-3-methyl ring Oxypropane; 3-nitromethyl-3-methyl propylene oxide; 3-difluoroaminomethyl-3-methyl propylene oxide; 3,3-bis-(difluoroaminomethyl) ) propylene oxide; 3,3-bis-(methylnitrylmethyl) propylene oxide; 3-methylnitromethyl-3-methyl propylene oxide; 3,3-bis-(azido) Methyl) propylene oxide; or 3-ethyl-3-((2-ethyl-28-) 200811237 Hexyloxy)methyl) propylene oxide. The second curable substance can be monofunctional or polyfunctional. If functional, the second curable material can include a plurality of chemical functional groups, such as acrylate and propylene oxide functional groups. In the system, the second curable substance substantially comprises four or more energy groups. In a system, the second curable substance substantially comprises one or more functional groups. In a system, the second curable comprises substantially eight or more functional groups. The second curable substance may comprise an organic or inorganic polymer. Suitable organic materials in the backbone may comprise substantially only carbon-linked (e.g., olefinic hydrocarbons) or carbon-heteroatom-carbon linkages (e.g., classes, esters, etc.). Examples of the organic substance which can be used as the polymer precursor include one or more of the following: a polymer precursor derived from an olefinic hydrocarbon such as ethylene, propylene, and a mixture thereof; a polymer precursor of methyl propane, For example, butadiene, isopropylene, and the like; polymers of unsaturated carboxylic acids and functional derivatives thereof, for example, acrylic compounds such as alkyl acrylates, alkyl acrylates, propylene Amidoxime, acrylonitrile, and acrylic-based aromatic polymer precursors, for example, styrene, α-methyl styrene vinyl toluene, and rubber-modified styrenes; guanamines, nylon- 6, nylon-6,6, nylon-1,1, and nylon-1,2; esters such as alkyl dicarboxylate, especially ethylene terephthalate, 1,4-benzoic acid Butylene glycol ester, propylene terephthalate, butylene glycol ethylene naphthalate, butane phthalate, cyclohexane, and cyclohexane are multi-individually integrated Bond, ether suitable, derivatized mixed precursor methyl; enene, For example; dimethyl ester, dimethyl -29-200811237 alcohol-ethylene terephthalate copolymer, and 1,4-cyclomethane dimethyl-1,4-cyclohexane dicarboxylate and aromatic hydrocarbons Alkyl diol diesters; carbonates; estercarbonates; maples; quinones; cyclic aryl sulfides: thioethers; and ethers, such as aryl ethers, phenyl ethers, ethers Maple, ether quinone imines, ethers, ether ether ketones; or blends, homopolymers or copolymers thereof. Suitable inorganic polymeric precursors may substantially comprise a primary linkage other than a carbon-carbon linkage or a carbon-heteroatom-carbon linkage, for example, a ruthenium-oxygen-oxime in a oxane or sesquioxane. Bonding. In a system, the second curable substance substantially comprises an inorganic polymeric precursor. In a system, the second curable material substantially comprises an inorganic polymeric precursor having one or more epoxy functional groups. In a system, the second curable material substantially comprises a pyrithionic high molecular precursor having one or more epoxy functional groups. In a system, the second curable material substantially comprises an inorganic polymeric precursor having one or more propylene oxide functional groups. In a system, the second curable material substantially comprises a pyrithion polymer precursor having one or more propylene oxide functional groups. Examples of propylene oxide-functionalized materials suitable as the second curable substance may include structural units represented by the formulae (V) to (X): -30- 200811237

(VII) ‘(VII) ‘

(VIII)(VIII)

於一體系中,該第二種可固化的物質可包括式(XI) 所示的結構單元: (XI) MaMb,DcDd,TeTf,Qg 其中,下標「a」、「b」、「c」、「d」、「e」、 「1及「8」係獨自示〇或正的整數;且整數「1>」、「d 」及「f」的總和大於或等於1 ;且其中, -31 - 200811237 Μ具有下式: (XII) Μ’具有下式: (XIII) D具有下式: (XIV) D ’具有下式: (XV) Τ具有下式: (XVI) Τ,具有下式: (XVII) R20R21R22SiO1/2, (Z)R23R24Si01/2, R25R26Si02/2,In a system, the second curable substance may comprise a structural unit represented by the formula (XI): (XI) MaMb, DcDd, TeTf, Qg, wherein the subscripts "a", "b", "c" , "d", "e", "1" and "8" are independent or positive integers; and the sum of the integers "1>", "d" and "f" is greater than or equal to 1; and, -31 - 200811237 Μ has the following formula: (XII) Μ ' has the following formula: (XIII) D has the following formula: (XIV) D ' has the following formula: (XV) Τ has the following formula: (XVI) Τ, with the following formula: (XVII) R20R21R22SiO1/2, (Z)R23R24Si01/2, R25R26Si02/2,

(Z)R27Si02/2, R28Si03/2, (Z)Si03/2, 且Q具有下式: (XVIII) Si04/2, 其中,r2G至R28在各情況下,係獨自示脂族原子團 、芳族原子團、或是環脂族原子團且z包含環氧丙烷官能 基團。式(XI)之結構單元的適當例包括:經環氧丙烷官 能化的環狀聚矽氧烷類、經環氧丙烷官能化的線性聚矽氧 烷類、或是經環氧丙烷官能化的倍半矽氧烷類。經環氧丙 烷官能化之倍半矽氧烷類的適當例包括一或多個式(XIX )至(XXI)所示之結構: -32- 200811237(Z) R27Si02/2, R28Si03/2, (Z)Si03/2, and Q has the formula: (XVIII) Si04/2, wherein r2G to R28 in each case are aliphatic groups, aromatics An atomic group, or a cycloaliphatic radical, and z contains a propylene oxide functional group. Suitable examples of structural units of formula (XI) include: propylene oxide functionalized cyclic polyoxanes, propylene oxide functionalized linear polyoxyalkylenes, or propylene oxide functionalized Sesquiterpenoids. Suitable examples of sesquiterpoxyalkylene functionalized by propylene oxide include one or more structures of the formula (XIX) to (XXI): -32- 200811237

(XIX)(XIX)

(XXI)(XXI)

R29R29

其中,R29包括式(XXII)之環氧丙烷分子片段:Wherein R29 comprises a propylene oxide molecular fragment of formula (XXII):

(XXII) 於一體系中,所存在之該第二種可固化物質的量可在 組成物之約1 〇重量%至約20重量%範圍內、組成物之約 2 0重量%至約2 5重量%範圍內、組成物之約2 5重量%至 約30重量%範圍內、或是組成物之約30重量%至約4〇重 量%範圍內。在一體系中’所存在之該第二種可固化物質 -33- 200811237 的量可在組成物之約40重量%至約45重量%範圍內、組 成物之約45重量%至約50重量%範圍內、組成物之約50 重量%至約5 5重量%範圍內、或是組成物之約5 5重量% 至約60重量%範圍內。於一體系中,所存在之該第二種 可固化物質的量係在大於組成物之約6 0重量%的範圍內 〇 在一體系中,該第二種可固化物質可包括觸媒。該觸 媒可催化(加速)該第二種可固化物質回應第二個溫度( 非回應第一個溫度)所發生的固化反應。該觸媒可藉由自 由基機轉、原子轉移機轉、開環機轉、開環移位機轉、陰 離子機轉、或陽離子機轉,來催化固化反應。 於一體系中,該觸媒包括會催化該第二種可固化物質 之固化反應的陽離子起始劑。適當的陽離子起始劑可包括 下列一或多者··鐵鹽、路易士酸或烷化劑。適當的路易士 酸觸媒可包括:乙醯乙酸銅硼(copper boron acetoacetate )、乙醯乙酸銘硼(cobalt boron acetoacetate)、或是同 時包括乙醯乙酸銅硼及乙醯乙酸鈷硼。適當的烷化劑可包 括:芳基磺酸酯類,例如,對甲苯磺酸甲酯或三氟甲烷磺 酸甲酯。適當的鐺鹽類可包括下列一或多者:碘鑰鹽、氧 鑰鹽、硫鐵鹽、亞礪鑰鹽、鳞鹽、金屬硼乙醯乙酸鹽、叁 (五氟苯基)硼、或是芳基磺酸酯類。在一體系中,適當 的陽離子起始劑可包括:二芳基碘鐵鹽、三芳基硫鑰鹽、 或四芳基鳞鹽。適當的二芳基碘鏺鹽可包括下列一或多者 :六氟基銻酸二(十二碳烷基苯基)碘鑰;六氟基銻酸( -34- 200811237 辛氧基苯基,苯基)碘鑰鹽;或肆(五氟基苯基)硼酸二 芳基碘鑰鹽。適當的四芳基鐵鹽可包括溴化四苯基鳞。 於一體系中,該觸媒可包括可催化第二種可固化物質 之固化反應的自由基起始劑。適當之產生自由基的化合物 可包括下列一或多者:芳族四甲基乙二醇類、安息香烷基 醚類、有機過氧化物、以及彼等之二或多者的組合。在一 體系中,該觸媒可包括鐵鹽連同自由基產生劑。該產生自 由基的化合物在相對較低的溫度下,可加速鑰鹽的降解。 其他適當的固化觸媒可包括下列一或多者:胺類、經 烷基取代的咪唑類、咪唑鑰鹽類、膦類、金屬鹽類(諸如 ,乙醯乙酸鋁(A1 ( acac ) 3 )、或是含氮化合物與酸性 化合物的鹽類、以及彼等之組合。該含氮化合物可包括, 例如,胺化合物、二氮雜化合物、三氮雜化合物、多胺化 合物、以及彼等之組合。該酸性化合物可包括:酚類、經 有機基取代的酚類、羧酸類、磺酸類以及彼等之組合。適 當的觸媒可爲含氮化合物的鹽類。含氮化合物之鹽類可包 括,例如,1,8-二氮雜二環(5,4,0 ) -7-十一碳烷。適當 的觸媒可包括下列一或多者:三苯基膦(TPP ) 、N-甲基 咪唑(NMI)、以及二月桂酸二丁基錫(DiBSn)。該觸 媒所存在之量可爲總組成物之約10 ppm至約10重量%。 如前文所提及的,該固化觸媒僅可在第二個溫度下( 高於第一個溫度),催化第二種可固化物質的固化反應。 於一體系中,該第二種可固化物質於低於該第二個溫度的 溫度範圍內、觸媒存在下且於一段特定的時間內,亦可爲 -35- 200811237 安定的。在一體系中,該第二種可固化物質於約2〇 °C至 約75 t範圍內的溫度下、觸媒存在下,在長於約1 〇分鐘 的期間內,可爲安定的。於一體系中,第二種可固化物質 於約751至約150艺範圍內的溫度下、觸媒存在下,在長 於約10分鐘的期間內,可爲安定的。在一體系中,第二 種可固化物質於約150 °C至約200 °C範圍內的溫度下、觸 媒存在下,在長於約10分鐘的期間內,可爲安定的。於 一體系中,第二種可固化物質於約200 °C至約300°C範圍 內的溫度下、觸媒存在下,在長於約1 〇分鐘的期間內, 可爲安定的。 可採用硬化劑。適當的硬北劑可包括下列一或多者: 胺硬化劑、酚系樹脂、羥基芳族化合物、羧酸酐、或酚醛 型硬化劑。 適當的胺硬化劑可包括:芳族胺類、脂族胺類、或是 彼等之組合。芳族胺類可包括,例如,間苯二胺、4,4 ’ -甲. 二苯胺、二胺基二苯基碾、二胺基二苯基醚、甲苯二胺、 聯大茴香胺、以及胺類的摻合物。脂族胺類可包括,例如 ,乙二胺類、環己二胺類、經烷基取代的二胺類、甲烷二 胺類、異佛爾酮二胺、以及芳族二胺類的氫化版本。可使 用胺硬化劑的組合。 適當的酚系硬化劑可包括酚-醛縮合產物,俗稱爲酚 醛型或甲酚樹脂。此等樹脂可爲不同酚類與各種莫耳比列 之甲醛的縮合產物。如是之酚醛型硬化劑可包括市面上可 購得的物質,諸如,可分別購自 Arakawa Chemical -36 - 200811237(XXII) In a system, the amount of the second curable material present may range from about 1% by weight to about 20% by weight of the composition, from about 20% by weight to about 25% of the composition. Within the range of wt%, from about 25 wt% to about 30 wt% of the composition, or from about 30 wt% to about 4 wt% of the composition. The amount of the second curable substance - 33 - 200811237 present in a system may range from about 40% by weight to about 45% by weight of the composition, from about 45% by weight to about 50% by weight of the composition. Within the range of from about 50% by weight to about 5% by weight of the composition, or from about 5% by weight to about 60% by weight of the composition. In a system, the amount of the second curable material present is in a range greater than about 60% by weight of the composition. In a system, the second curable material can include a catalyst. The catalyst catalyzes (accelerates) the curing reaction of the second curable material in response to a second temperature (not responding to the first temperature). The catalyst can be catalyzed by a free radical transfer, an atom transfer machine, an open loop machine, an open loop shifter, an anion machine, or a cation machine. In a system, the catalyst comprises a cationic initiator which catalyzes the curing reaction of the second curable material. Suitable cationic initiators may include one or more of the following: iron salts, Lewis acids or alkylating agents. Suitable Lewis acid catalysts may include copper boron acetoacetate, cobalt boron acetoacetate, or both copper acetate boron and acetoacetate cobalt boron. Suitable alkylating agents may include: aryl sulfonates such as methyl p-toluenesulfonate or methyl trifluoromethanesulfonate. Suitable onium salts may include one or more of the following: an iodine salt, an oxonium salt, a pyrithione salt, a sulfonium salt, a scale salt, a metal boroacetate acetate, ruthenium (pentafluorophenyl) boron, or It is an aryl sulfonate. In a system, suitable cationic starters may include: a diaryl iodide salt, a triaryl sulfide salt, or a tetraaryl scale salt. Suitable diaryliodonium salts may include one or more of the following: hexafluorodecanoic acid bis(dodecylphenyl) iodine; hexafluorodecanoic acid (-34-200811237 octyloxyphenyl, Phenyl) iodine salt; or bis(pentafluorophenyl)borate diaryl iodine salt. Suitable tetraaryl iron salts can include tetraphenyl bromide scales. In a system, the catalyst can include a free radical initiator that catalyzes the curing reaction of the second curable material. Suitable free radical generating compounds may include one or more of the following: aromatic tetramethyl glycols, benzoin alkyl ethers, organic peroxides, and combinations of two or more thereof. In a system, the catalyst can include an iron salt along with a free radical generator. The free radical-generating compound accelerates the degradation of the key salt at relatively low temperatures. Other suitable curing catalysts may include one or more of the following: amines, alkyl substituted imidazoles, imidazolium salts, phosphines, metal salts (such as aluminum acetoacetate (A1 ( acac ) 3 ) Or a salt of a nitrogen-containing compound and an acidic compound, and a combination thereof. The nitrogen-containing compound may include, for example, an amine compound, a diaza compound, a triaza compound, a polyamine compound, and combinations thereof. The acidic compound may include: phenols, organic-substituted phenols, carboxylic acids, sulfonic acids, and combinations thereof. Suitable catalysts may be salts of nitrogen-containing compounds. Salts of nitrogen-containing compounds may include For example, 1,8-diazabicyclo(5,4,0)-7-undecane. Suitable catalysts may include one or more of the following: triphenylphosphine (TPP), N-A Imidazole (NMI), and dibutyltin dilaurate (DiBSn). The catalyst may be present in an amount from about 10 ppm to about 10% by weight of the total composition. As mentioned above, the curing catalyst is only Catalyzable second curable at a second temperature (higher than the first temperature) Curing reaction. In a system, the second curable substance is stable in the temperature range below the second temperature, in the presence of a catalyst, and for a certain period of time, or -35-200811237 In a system, the second curable substance may be stable at a temperature in the range of from about 2 ° C to about 75 t in the presence of a catalyst for a period of longer than about 1 minute. In one system, the second curable material may be stable in the presence of a catalyst at a temperature in the range of from about 751 to about 150 art, for a period of longer than about 10 minutes. In one system, the second The curable substance can be stabilized in the presence of a catalyst at a temperature ranging from about 150 ° C to about 200 ° C for a period of longer than about 10 minutes. In one system, the second curable substance is It may be stable for a period of time longer than about 1 minute in the presence of a catalyst at a temperature in the range of from about 200 ° C to about 300 ° C. A hardener may be employed. Suitable hard north agents may include one or the following Many: amine hardeners, phenolic resins, hydroxyaromatics, carboxylic anhydrides, A phenolic type hardener. Suitable amine hardeners may include: aromatic amines, aliphatic amines, or a combination thereof. The aromatic amines may include, for example, m-phenylenediamine, 4,4'-A a blend of diphenylamine, diaminodiphenyl milling, diaminodiphenyl ether, toluenediamine, diandenamide, and amines. The aliphatic amines may include, for example, ethylenediamines. A hydrogenated version of cyclohexanediamines, alkyl substituted diamines, methane diamines, isophorone diamines, and aromatic diamines. A combination of amine hardeners can be used. The hardener may include a phenol-aldehyde condensation product, commonly known as a phenolic type or a cresol resin. These resins may be condensation products of different phenols and various molar ratios of formaldehyde. For example, the phenolic type hardener may be commercially available. Commercially available substances, such as those available from Arakawa Chemical -36 - 200811237

Industries and Schenectady International 的 758 及 HRJ 1 5 83。 適當的羥基芳族化合物可包括下列一或多 、間苯二酚、鄰苯二酚、甲基苯二酚、甲基間 甲基鄰苯二酚。適當的酐硬化劑可包括下列一 基六氫鄰苯二甲酸酐;甲基四氫鄰苯二甲酸酐 烷二羧酸酐;二環(2.2.1)庚-5-烯-2,3-二羧j 二環(2.2.1)庚-5-烯-2,3-二羧酸酐;鄰苯二 蜜石酸二酐;六氫鄰苯二甲酸酐;十二碳烯基 二氯順丁烯二酸酐;四氯鄰苯二甲酸酐等等。 至少二種酸酐系硬化劑的組合。酸酐類可氫化 用於助銲(fluxing )。於某些體系中,可單獨 的矽氧烷酐作爲硬化劑,或使用其與至少一種 的組合。此外,固化觸媒或含羥基分子片段的 可與酐硬化劑一起添加。 本發明之組成物可包括添加劑。適當的添 特定用途之性能需求,來選擇。例如,需要有 可選用阻燃添加劑;可採用流動調節劑來影響 性;當需要有熱導性時,可添加熱導性物質等 於一體系中,可將反應性有機稀釋劑添加 。反應性有機稀釋劑包括單官能化合物(具有 官能基團),且可添加至組成物中以增加其黏 稀釋劑的適當例包括:3-乙基-3-羥甲基環氧 烷基縮水甘油醚;4-乙烯基-1-環己烷二環氧 TAMANOL I :苯二酚 苯二酚以及 或多者:甲 ,1,2 -環己 駿酐;甲基 甲酸酐;焦 琥珀酸酐; 可使用包含 爲羧酸,供 使用二官能 其他硬化劑 有機化合物 加劑可參照 耐燃性時, 流變或搖變 等。 至組成物中 一個反應性 度。反應性 丙烷;十二 化物;二( -37- 200811237 冷-(3,4-環氧基環己基)乙基)四甲基二矽氧烷等等。反 應性有機稀釋劑可包括單官能環氧化物及/或含有至少一 個環氧基官能的化合物。如是稀釋劑的代表例可包括酚縮 水甘油醚的烷基衍生物,諸如,3- ( 2-壬基苯氧基)-1,2-環氧基丙烷或3- (4-壬基苯氧基)-1,2-環氧基丙烷。可採 用的其他稀釋劑可包括:酚本身的縮水甘油醚以及經取代 的酚,諸如,2-甲基酚、4-甲基酚、3-甲基酚、2-丁基酚 、4-丁基酚、3-辛基酚、4-辛基酚、4-第三丁基酚、4-苯 基酚以及4-(苯基異亞丙基)酚。亦可將不具反應性的 稀釋劑添加至組成物,以增加調配物的黏度。不具反應性 稀釋劑的例子包括:甲苯、乙酸乙酯、乙酸丁酯、乙酸 1 -甲氧基丙酯、乙二醇、二甲醚、以及彼等之組合。 在一體系中,組成物可包括有增黏劑。適當的增黏劑 可包括下列一或多者:三烷氧基有機矽烷類(例如,r -胺基丙基三甲氧基矽烷、3-縮水甘油醚基丙基三甲氧基矽 烷、以及二(三甲氧基矽烷基丙基)反丁烯二酸酯)。若 存在時,該增黏劑可以有效量來添加。有效量可在總最終 組成物的約〇 · 〇 1重量%至約2重量%的範圍內。 於一體系中,組成物可包括有阻燃劑。組燃劑之適當 例可包括下列一或多者:磷醯胺類v磷酸三苯酯(τρρ ) 、間苯二酚二磷酸酯(RDP )、雙酚Α·二磷酸酯(ΒΡΑ-Dp)、有機磷氧化物、鹵化的環氧樹脂(四溴基雙酸Α) 、金屬氧化物、金屬氫氧化物、以及彼等之組合。當存在 時,阻燃劑可在約〇.5重量%至約20重量% (相對於總重 -38- 200811237 量)的範圍內。 在一體系中,組成物可包括塡料,以形成經塡 成物。可倂入塡料以控制經塡充組成物的下列一或 質:電性、熱性、或機械性質。於一體系中,塡料 係基於由組成物所形成之層的電性、熱性、或是電 性二者。該塡料可包括複數粒子。該複數粒子可以 或多者爲特徵:平均粒子大小、粒子大小分佈、平 表面積、粒子形狀、或粒子橫斷面幾何形狀。 於一體系中,塡料的平均粒子大小可在小於約 (nm )的範圍內。在一體系中,塡料的平均粒子 在約1奈米至約1 〇奈米的範圍內、約1 0奈米至約 米的範圍內、約25奈米至約50奈米的範圍內、約 米至約7 5奈米的範圍內、或是約7 5奈米至約1 0 0 範圍內。於一體系中,塡料的平均粒子大小可在約 米至約〇. 5微米的範圍內、約〇 ·5微米至約1微米 內、約1微米至約5微米的範圍內、約5微米至於 米的範圍內、約1 〇微米至約2 5微米的範圍內、 2 5微米至約5 0微米的範圍內。在一體系中’該塡 均粒子大小可在約5 0微米至約1 0 0微米的範圍 1 0 0微米至約2 0 0微米的範圍內、約2 0 0微米至約 米的範圍內、約4 0 〇微米至約6 0 0微米的範圍內、 微米至約800微米的範圍內、或是約800微米至/ 微米的範圍內。於一體系中’該塡料的平均粒子大 大於約1 000微米的範圍內。在另一體系中’可將 充的組 多種性 的選擇 性及熱 下列一 均粒子 1奈米 大小可 丨25奈 50奈 奈米的 〇·1微 的範圍 J 10微 或是約 料的平 內、約 400微 約600 ^ 10 0 0 小可在 具有二 -39- 200811237 個不同大小範圍(雙峰分佈)的塡料粒子倂入組成物內: 第一個範圍係由約1奈米至約250奈米,而第二個範圍則 係由0.5微米(或500奈米)至約10微米(在此,於第 二個大小範圍內的塡料粒子可稱作爲「微米大小的塡料」 )。桌一個範圍可由約〇 · 5微米至約2微米,或是約2微 米至約5微米。 塡料粒子可具有各式各樣的形狀及橫斷面幾何形狀, φ 部分取決於用來產生彼等粒子的過程。於一體系中,塡料 粒子可具有球狀、棒狀、管狀、片狀、纖維狀、平板狀' 或鬚狀的形狀。該塡料可包括具有二或多種前述形狀的粒 子。在一體系中,粒子的橫斷面幾何形狀可爲下列一或多 者:環形、橢圓形、三角形、長方形、或多角形。於一體 系中,該塡料可實質上由球形粒子所組成。在一體系中, 該粒子在表面上可包括一或多個活性截止位置 (active termination sites ),諸如,經基。 φ 在倂入組成物之前或甚至在倂入組成之後,該塡料可 爲凝集體(aggregates)或聚集體(agglomerates)。凝集 體可包括一個以上相互呈物理接觸狀態的塡料粒子,而聚 集體則可包括一個以上相互呈物理接觸狀態的凝集體。於 一體系中,該塡料粒子可爲非強力凝集及/或聚集的,因 而粒子可相對容易地分散於高分子基質內。該塡料粒子可 進行機械性或化學性處理,以改善該塡料於高分子基質內 的分散性。在一體系中,在分散於可固化物質之前,該塡 料可進行機械性處理,例如,高剪切混合。於一體系中, -40- 200811237 在分散於可固化物質之前,該塡料可進行化學性處理。化 學性處理可包括:由塡料粒子的一或多個表面,去除極性 基團(例如’經基)’以減少凝集體及/或聚集體的形成 。化學性處理亦可包括:用可改良塡料與高分子基質之間 之相容性的官能基團’將該塡料粒子的一或多個表面官能 化’以減少凝集體及/或聚集體的形成,或是同時改良塡 料與可固化物質之間的相容性以及減少凝集體及/或聚集 體的形成。 於一體系中,塡料可包括電絕緣或導電粒子。適當的 導電粒子可包括下列一或多者:金屬、半導性物質、碳物 質(諸如,碳黑或奈米碳管)、或是導電性聚合物。適當 的電絕緣粒子可包括下列一或多者:矽物質、金屬水合物 、金屬氧化物、金屬硼化物、或金屬氮化物。 在一體系中,塡料可包括複數熱導粒子。適當的熱導 粒子可包括下列一或多者:矽物質(諸如,燻製(fumed )二氧化矽、熔融二氧化矽或膠態二氧化矽)、碳物質、 金屬水合物、金屬氧化物、金屬硼化物、或金屬氮化物。 於一體系中,塡料可包括二氧化矽且該二氧化矽可爲 膠態二氧化矽。膠態二氧化矽可爲次微米大小之二氧化矽 (Si02 )粒子於含水或其他溶劑介質內所形成的分散液。 膠態二氧化矽可含有高達約85重量%的二氧化矽(Si02 )、以及高達約80重量%的二氧化矽。二氧化矽的總含 量可在總組成物重量之約0.00 1重量%至約1重量%範圍 、約1重量%至約1 〇重量%範圍內、約1 0重量%至約20 -41 - 200811237 重量%範圍內、約20重量%至約50重量%範圍內、或是 約50重量%至約90重量%範圍內。 在一體系中,膠態二氧化矽可包括經相容化( compatibilized )且鈍化的膠態二氧化砂。經相容化且鈍 化的二氧化矽可用來降低組成物的熱膨脹係數(CTE )、 可用作爲間隙粒子(spacers)以控制介面厚度,或是兼具 二者之功用。於一體系中,複數粒子(亦即二氧化矽塡料 )可藉由至少一種有機烷氧基矽烷以及至少一種有機矽氮 烷的處理,而相容化及鈍化。該二成分的處理可依序先後 進行或同時進行。在依序先後進行處理中,該有機烷氧基 矽烷可用於或反應於塡料表面上之至少一部分活性截止位 置,且該有機矽氮烷可用於或反應於至少一部分活性截止 位置(在與有機烷氧基矽烷反應後所剩下者)。 在與有機烷氧基矽烷反應之後,其他之相位不相容( phase incompatible )塡料在有機或非極性液相中,可爲 相對地較相容的或可分散的。塡料在有機基質內的相容性 或分散性增加,在此可稱作爲「相容化的」。用於將膠態 二氧化矽官能化的有機烷氧基矽烷可包括於下式(XXIII ) 的範圍內: (XXIII) (R30)kSi(OR31)4.k 其中,在各情況下可獨立示脂族原子團、芳族原 子團、或是環脂族原子團,任意進一步經丙烯酸烷酯、甲 基丙烯酸烷酯、環氧乙烷、或環氧基團官能化;R31可爲 氫原子、脂族原子團、芳族原子團、或是環脂族原子團; -42- 200811237 且「k」可爲1至3(包括3)的整數。該有機烷氧基矽烷 可包括下列一或多者:苯基三甲氧基矽烷、2- ( 3,4_環氧 基環己基)乙基三甲氧基矽烷、3-縮水甘油醚基丙基三甲 氧基矽烷、或是甲基丙烯醯氧基丙基三甲氧基矽烷。 即使藉由與有機烷氧基矽烷反應而使得塡料與側懸的 有機基團呈相位相容(phase compatible )的,塡料表面 上的剩餘活性截止位置可起始過早的化學反應、可增加吸 水性、可影響某些波長的透明性、或是具有其他非所欲的 副作用。在一體系中,該相位相容塡料可藉用鈍化劑(諸 如,有機矽氮烷),將活性截止位置封鎖,而被鈍化。有 機基矽氮烷的例子可包括下列一或多者:六甲基二矽氮烷 (“HMDZ”)、四甲基二矽氮烷、二乙烯基四甲基二矽氮 烷、或是二苯基四甲基二矽氮烷。該相位相容、鈍化的塡 料可與組成物摻合在一起,且可形成安定的塡充組成物。 該有機烷氧基矽烷及有機矽氮烷分別爲相位相容劑及鈍化 劑的範例。 經塡充之包括相容化且鈍化之粒子的塡充組成物與其 中之膠態二氧化矽未經鈍化的調配物相較之下,顯示出相 對較佳的室溫安定性。在某些情況下,樹脂調配物之室溫 安定性的增加,可允許較高裝塡率的固化劑、硬化劑及觸 媒,否則彼等基於保存期限的限制,有可能係蔽多於利的 。藉由彼等裝塡率的增加,可達到較高程度的固化、較低 的固化溫度、或是更加明確界定的固化溫度分佈。 塡料之量可參考特定應用所需之性能要求、塡料粒子 -43- 200811237 的大小、或是塡料粒子的形狀來決定。在一體系中’所存 在之該塡料之量可在小於組成物之約1 〇重量%範圍內。 於一體系中,所存在之塡料之量可在組成物之約10重量 %至約15重量%範圍內、約15重量%至約25重量%範圍 內、約2 5重量%至約3 0重量%範圍內、或是約3 0重量% 至約40重量%範圍內。 在一體系中,具有膠態且官能化二氧化矽之塡料可進 一步包括微米大小的熔融二.氧化矽。當有存在時,該熔融 二氧化矽塡料可以有效量來添加,以提供CTE的進一步 降低;作爲間隙粒子,以控制介面厚度,等等。去泡劑、 染料。顏料等等亦可倂入組成物中。如是添加劑的量可由 最終用途來決定。 經塡充之組成物的熔融黏度可取決於下列一或多者: 塡料裝塡率、塡料粒子形狀、塡料粒子大小、第一種可固 化物質的分子量、第二種可固化物質的分子量、溫度或轉 化率。於一體系中,經塡充的組成物在特定溫度下,具有 流動性質(例如,黏度),使得經塡充的組成物可在二表 面之間流動,例如,在晶片及基板之間流動。根據本發明 一體系之經塡充的組成物可爲不含溶劑的。根據本發明一 體系之不含溶劑的經塡充組成物可具有足夠低的黏度,而 使得該組成物可流動至晶片及基板之反面所界定的空間內 〇 在一體系中,當塡料之量在大於經塡充組成物之約 1 〇重量%範圍內時,經塡充的組成物可具有在小於約 -44- 200811237 20000厘泊範圍內的室溫黏度。於一體系中,當塡料之量 在大於經塡充組成物之約10重量%範圍內時,經塡充的 組成物所具有的室溫黏度係在約1〇〇厘泊至約1 000厘泊 範圍內、約1 000厘泊至約2000厘泊範圍內、約2000厘 泊至約5000厘泊範圍內、約5000厘泊至約1 0000厘泊範 圍內、約 1 0000厘泊至約1 5000厘泊範圍內、或是約 1 5 0 0 0厘泊至約2 0 0 0 0厘泊範圍內。 經塡充組成物的安定性亦可取決於下列一或多者:塡 料裝塡率、溫度、周圍條件、或轉化率。在一體系中,該 經塡充的組成物可在大於約2 0 °C範圍內的溫度下,於長 於約一天的期間,呈安定狀態。於一體系中,該經塡充組 成物可在約2 0 °C至約5 0 °C、約5 0 °C至約7 5 °C、約7 5 °C 至約1 0 0 °C、約1 0 0 °C至約1 5 0 °C、或約1 5 0 °C至約1 7 5 °C 範圍的溫度下,於長於一天的期間,呈安定狀態。在一體 系中,該經塡充的組成物可在大於約1 75 °C範圍的溫度下 ,於長於約一天的期間,呈安定狀態。於一體系中,該經 塡充的組成物可在大於約1 75 °C範圍的溫度下,於長於約 1 〇天的期間,呈安定狀態。於一體系中,該經塡充的組 成物可在大於約175°c範圍的溫度下,於長於約30天的 期間,呈安定狀態。在一體系中,經塡充的組成物可於未 冷藏的條件下,儲存長於約一天的期間。 經塡充的組成物可用作爲下列一或多者:電性接點( electrical connects )、散熱介面材料、導電性接著劑(例 如,黏晶用接著劑)、或是電子封裝裝置內的底膠材料( -45- 200811237 underfill materials)。就某一特定用途而言,經塡充組成 物的適當性乃取決於經塡充組成物之電、熱、機械或流動 性質中的一或多者。因此,舉例而言,電性接點可能需要 具導電性的組成物,然而底膠材料則需要有呈電絕緣性且 具有熱性質(諸如,熱膨脹係數、熱疲勞等等)的塡充組 成物。 在一體系中,底膠材料可包括經塡充的組成物。底膠 材料係可塗佈的(dispensable)且可用於裝置上,諸如, 固態裝置及/或電子裝置(諸如,電腦或半導體),或是 需要底膠、雙料成型、或彼等之組合的裝置。該底膠材料 可用作爲接著劑,例如,用來強化連接晶片及基板之電性 內連線(electrical interconnects)的物理、機械、及電性 質。於某些體系中,該底膠材料可具有自熔(self-fluxing )能力。 在一體系中,底膠材料可在第一個溫度下固化而形成 B階的層。於一體系中,底膠材料可固化而形成固化的底 膠層。該固化的底膠層可藉由將底膠直接加熱至第二個溫 度,或是依序先加熱至第一個溫度(形成B階的層),然 後接著加熱至第二個溫度而形成的。在依序連續加熱期間 ’ B階的層可冷卻至室溫、暴露於其他的加工步驟、然後 ,接著加熱形成固化的底膠層。在一體系中,該底膠材料 包括在小於約1 50°C範圍內之溫度下固化的第一種可固化 物質,以及在約150°C至約3 00°C範圍內之溫度下固化的 第二種可固化物質。將第一種可固化物質固化,可導致形 -46- 200811237 成B階的層,而接著所進行之第二種可固化物質的固化可 導致形成固化的底膠層。 於一體系中,第一種及第二種可固化物質的轉化率皆 可大於固化底膠層的約5 0%。在一體系中,第一種及第二 種可固化物質的轉化率皆可大於固化底膠層的約60%。於 一體系中,第一種及第二種可固化物質的轉化率皆可大於 固化底膠層的約75%。在一體系中,第一種及第二種可固 化物質的轉化率皆可大於固化底膠層的約90%。於一體系 中,第一種可固化物質的轉化率可大於固化底膠層的約 75%且第二種可固化物質的轉化率可大於固化底膠層的約 5 0% ° 在一體系中,固化的底膠層可將晶片牢牢固定於基板 上。於一體系中,固化的底膠可功能性地支援晶片及基板 之間的一或多個電性接點(electrical connects)。該固化 的底膠層可藉由下列一或多種方式來提供功能性的支援: 強化內連線、吸收應力、降低熱疲勞、或是呈電絕緣狀態 。熱疲勞係因晶片及基板之熱膨脹係數的不相匹配,而發 生於晶片及基板之間。於一體系中,該固化的底膠層可藉 由具有可降低匹配誤差之熱膨脹係數,來將低所產生的熱 疲勞。 由於多種因素(諸如,塡料量),固化底膠層的熱膨 脹係數可選擇爲小於約5 0 p p m / °C、小於約4 0 p p m / °C 、或是小於約30 ppm/ °C。在一體系中,該熱膨脹係數 可在約1 〇 p p m / °C至約2 0 p p m / °c範圍內、約2 0 p P m / -47- 200811237 °C 至約 3 0 p p m / °C 範圍內、約 3 0 p p m / °C 至約 4 0 p p m / °C範圍內、或是大於約40 ppm/ °C範圍內。 固化之底膠層的機械性質(諸如,模數)及熱性質亦 可取決於組成物的玻璃相轉化溫度。於一體系中,固化底 膠層的玻璃相轉化溫度可大於約150°C、大於約200°C、 大於約250°C、大於約30(TC、或是大於約3 50°C。在一 體系中,固化底膠層的模數可在大於約2000 MPa (百萬 巴)範圍內、大於約3000 MPa範圍內、大於約5000 MPa 範圍內、大於約 7000 MPa範圍內、或是大於約 1 0000 MPa範圍內。 底膠材料的電絕緣性質可取決於數種因素,諸如,塡 料種類及濃度。於一體系中,固化底膠層之電阻率可在大 約1 0 _3歐姆•公分範圍內、大於約1 CT4歐姆•公分範圍 內、1〇_5歐姆•公分、或是1(Τ6歐姆•公分。除了係爲電 絕緣之外,固化底膠亦可爲導熱的,視需要,可作爲散熱 介面材料。在作爲散熱介面材料時,底膠層可加速晶片至 基板的熱轉移。該基板依次可連結至散熱單元,諸如,散 熱器、熱交換器、或是均熱片。與電性質相似地,固化底 膠層的熱導性(或電阻率)數値亦可取決於數種因素,諸 如,塡料的種類及濃度。於一體系中,固化底膠層的熱導 率可在大於約1 W/ mK ( 100°c下)範圍內、大於約2 W / mK ( l〇〇°C下)範圍內、大於約5 W / mK ( 100°C下) 範圍內、大於約1 0 W / mK ( 1 0 〇 °C下)範圍內、或是大 於約20 W / mK ( 100°C下)範圍內。 -48- 200811237 固化的底膠層亦需要在操作溫度下係呈安定的。於一 體系中,固化的底膠材料可在大於約10%的溼度及高於約 2 0°C的溫度下呈安定的、在大於約50%的溼度及高於約 20 °C的溫度下呈安定的、在大於約80%的溼度及高於約 20 °C的溫度下呈安定的、在大於約10%的溼度及高於約 40°C的溫度下呈安定的、在大於約10%的溼度及高於80 °C的溫度下呈安定、或是在大於約80%的溼度及高於約 8〇°C的溫度下呈安定的。 在一體系中,固化的底膠層可具有晶圓級底膠所需的 透明度。適當的透明度係定義爲能夠透射足夠的光,而不 致遮蔽用於晶圓切割的對位標誌(guide marks )。於一體 系中,固化底膠層的透明度係在大於約50%可見光透射的 範圍內、在約5 0 %至約7 5 %可見光透射的範圍內、在約 75%至約85%可見光透射的範圍內、約85%至約90%可見 光透射的範圍內、或是大於約90%可見光透射。在一體系 中’該透明度可參照可見光譜外之波長的光來測量。在如 是體系中,光的透射可足使偵測器或感測器能夠辨別晶圓 切割的對位標誌。 於一體系中,該底膠材料(固化前或固化後)可不含 溶劑或其他揮發物。揮發物可在一或多個加工步驟的過程 中,例如,將第一種可固化物質固化形成B階之層的步驟 ’造成空洞(voids)的形成。空洞會造成非所要的缺陷 形成。在一體系中,第一種可固化的物質在固化前、固化 期間、或固化後,所產生之氣體的量不足以形成肉眼可察 -49- 200811237 覺的空洞。 如前文已指出的,固化的底膠層可膠晶片牢牢固定於 基板上。該固化底膠層將晶片牢牢固定於基板上的有效性 可取決於數個因素,諸如,底膠層與晶片或基板之間的界 面黏著性(inter facial adhesion )、或是底膠層固化後的 收縮(若有的話)。底膠材料與晶片或基板之間的界面性 質可藉由選用具有所要之界面性質(例如,黏著性質)的 第二種可固化物質,而獲得改善。於一體系中,該第二種 可固化物質在固化前,可與基板形成連續的界面接觸。在 一體系中,該第二種可固化的物質在固化前,可與晶片形 成連續的界面接觸。於一體系中,固化的底膠層在固化後 ,可與基板及晶片形成連續的界面接觸。 一物件可包括置於晶片及基板之間的底膠材料。一物 件可包括固態裝置及/或電子裝置(諸如,電腦或板導體 )、或是需要底膠、雙料成型、或彼等之組合的裝置。該 底膠材料可固化形成固化的底膠層,如前文所述地。於一 體系中,該固化的底膠層可晶片牢牢固定於裝置內的基板 上。 在一體系中,一物件還可包括電性接點且該固化的底 膠層可用於功能性地支援晶片及基板之間的電性接點,防 止熱疲勞。於一體系中,該電性接點可包括銲錫凸塊( solder bumps),且該固化的底膠層具有接著劑的功能, 例如’以強化銲錫凸塊的物理、機械、及電性質。電性內 連線可包括鉛或不含鉛。不含鉛的內連線可包括導電性粒 -50- 200811237 子或分散於高分子基質內的導電粒子。於一體系中,該第 二種可固化的物質可在大約內連線的銲錫(含鉛)或交聯 (不含鉛)溫度下固化。 本發明提供了一種製造根據本發明之一體系的組成物 (經塡充或未經塡充)的方法。該方法包括:令第一種可 固化物質與第二種可固化物質接觸,而形成未固化的組成 物(未塡充的)。該第一種可固化的物質及第二種可固化 的物質亦可與一塡料接觸,而形成經塡充的組成物。該接 觸的步驟可包括固態、熔融態的混合/摻合、或是溶液混 合。 可固化物質的固態或溶融態摻合可涉及使用一或多種 剪切力、壓縮力、超音波能量、電磁能、或是熱能。摻合 可在一加工設備中進行,其中,前述力量可藉由下列一或 多者來行使:單螺桿、多螺桿、嚙合式同向轉動或反向轉 動螺桿、非嚙合式同向轉動或反向轉動螺桿、往復式螺桿 、裝備有銷(pins)的螺桿、裝備有銷的圓筒(barrels) 、輥筒、撞槌機、或螺旋轉子。彼等物質可用手工來混合 ,但是亦可利用諸如下列的混合裝備來混合:搓揉混合機 (dough mixers )、鏈罐混合機(chain can mixers)、行 星式混合機、雙螺桿擠壓機、二或三輥筒硏磨機、巴斯密 練機(B u s s K n e a d e r )、漢塞混合機(H e n s e h e 1 )、賀立 可混合機(H e 1 i c o ir e s )、羅思混合機(R 〇 s s m i x e r s )、 萬馬力機(Banbury )、輥筒硏磨機、成型機(諸如,射 出成型機、真空成型機、中空成型機)等等。摻合可以批 -51 - 200811237 次、連續或半連續的模式來進行。例如,就批次模式反應 而言,所有的反應物成分可倂合在一起且反應直到大多數 的反應物已消耗掉爲止。爲了讓反應的繼續行進,反應必 須一旦停止且添加額外的反應物。就連續條件而言,反應 無需停下來添加更多的反應物。溶液摻合亦可使用額外的 能量,諸如,剪切力、壓縮、超音波振動、或類似的能量 ,以促進組成物成份(諸如,該二種可固化物質或塡料( 若存在)與可固化物質)的均化。經塡充或未塡充組成物 亦可在摻合之前或摻合之後,與固化觸媒接觸。 於一體系中,經塡充的組成物可藉由將第一種可固化 物質、第二種可固化物質、以及塡料溶液摻合而製備得。 在一體系中,彼等可固化的物質可懸浮於一液體內,然後 ,與塡料一起導入超音波振盪器內,而形成一混合物。可 藉由將該混合物超音波振盪一段可有效將塡料粒子分散於 彼等可固化物質內的時間,而將該混合物溶液摻合。於一 體系中,在超音波振盪的操作期間,該液體可使可固化物 質膨脹。可固化物質的膨脹可使塡料在溶液摻合期間充滿 可固化物質的能力獲得改善,因而改善分散性。 在一體系中,於溶液摻合期間,塡料與任意的添加劑 可和高分子前驅物一起進行超音波振盪。高分子前驅物可 包括一或多種單體、二聚體、三聚體或類似物,彼等可反 應形成所要的高分子基質。諸如溶劑的液體可與塡料及高 分子前驅物一起導入超音波振盪器。超音波振盪的期間係 足以促進塡料組成物被高分子前驅物所包覆。在包覆後’ -52- 200811237 高分子前驅物可接著被聚合而形成具有分散塡料的可固化 物質。 溶劑可用於組成物的溶液摻合。溶劑可用作爲黏度調 節劑,或是用來促使塡料組成物的分散及/或懸浮。可採 用液態非質子溶劑,諸如,下列一或多者:碳酸丙烯酯、 碳酸乙烯酯、丁內酯、丙腈、苄腈、硝基甲烷、硝基苯、 環丁颯、二甲基甲醯胺、N-甲基吡咯啶酮或類似物。亦可 使用極性質子溶劑,諸如,下列一或多者:水、甲醇、乙 腈、硝基甲烷、乙醇、丙醇、異丙醇、丁醇、或類似物。 還可使用其他非極性溶劑,諸如,下列一或多者:苯、甲 苯、二氯甲院、四氯化碳、己院、乙醚、四氫呋晡、或類 似物。亦可使用共溶劑(eo-solvent),其包含至少一種 非質子極性溶劑以及至少一種非極性溶劑。溶劑可在組成 物摻合前、摻合期間及/或摻合後蒸發。摻合後,溶劑可 藉由加熱或施用真空或二者同時使用,被移除。溶劑自膜 的移除可藉由分析技術來測量及定性化,諸如,紅外光譜 術、核磁共振光譜術、熱重分析法、示差掃描熱量分析法 以及類似的技術。 於一體系中,該塡料可包括膠態二氧化矽且該膠態二 氧化矽可在摻合前(固態,融熔或溶液摻合),進行相容 化及鈍化。將相容化劑添加至膠態二氧化矽的水性分散液 (其中已添加了脂族羥基化合物),可使膠態二氧化矽相 容化。結果所得到的組成物(包括在脂族羥基化合物內% 相容化二氧化矽粒子以及相容化劑)在此可被定義爲預分 -53- 200811237 散液。該脂族羥基化合物可選自:異丙醇、第三丁醇、2-丁醇、以及彼等之組合。脂族羥基化合物的量可在水性膠 態二氧化矽預分散液內所存在之二氧化矽量的約1倍至約 1 〇倍(基於重量)範圍內。 可用酸或鹼來中和結果所得到之有機相容化二氧化矽 粒子的pH。可採用酸或鹼連同其他促進矽醇與烷氧基矽 烷基之縮合的觸媒,來幫助相容化過程。如是觸媒可包括 有機矽酸.鹽以及有機錫化合物,諸如,四丁基錫酸鹽、異 丙氧基雙(乙醯丙酮)錫、二月桂酸二丁基錫、或是彼等 之組合。在某些情況下,可將安定劑,諸如,4-羥基-2,2,6,6-四甲基哌啶氧基(亦即,4-羥基TEMPO)添加至 預分散液中。結果所得到的預分散液可在約5 0 t:至約100 °C範圍內,在約1小時至約1 2小時範圍內的時間內加熱 。在約1小時至約5小時的固化時間範圍係充足的。 可用如本文所揭示的鈍化劑,來進一步處理冷卻的透 明預分散液,以形成最終分散液。任意地,在此加工步驟 過程中,可添加可固化的高分子前驅物及脂族溶劑。適當 之額外溶劑可選自:異丙醇、1-甲氧基-2-丙醇、乙酸1-甲氧基-2-丙酯、甲苯、以及其中之二或多者的組合。可 用酸或鹼或用離子交換樹脂,來處理相容化且鈍化之粒子 的最終分散液,以去除酸性或鹼性雜質。 取決於受用途影響的因素,該相容化且鈍化之粒子的 最終分散液(已如本文所揭示地相容化且鈍化)可以人工 加以混合,或是藉由下列一或多者加以混合:搓揉混合機 -54- 200811237 、鏈式混合機、或行星式混合機。如是之因素包括:黏度 、反應性、粒子大小、批次大小及加工參數(諸如,溫度 )。分散液成份的摻合可以批次、連續或半連續模式來進 行。 該相容化且鈍化之粒子的最終分散液可在約0.5托爾 (Torr)至約250托爾範圍的真空中,約20°C至約140°C 範圍內的溫度下,進行濃縮,以去除任何低沸點成份,諸 如,溶劑、剩餘的水、以及彼等之組合,而得到相容化且 鈍化之二氧化矽粒子的透明分散液,其可任意含有可固化 的單體,在此稱作爲最終濃縮分散液。在此,低沸點成份 的去除可定義爲:去除低沸點成分,以得到含有約1 5重 量%至約80重量%之濃縮二氧化矽的分散液。 在某些情況下,可進一步用相容劑及/或鈍化劑,來 處理該相容化且鈍化之二氧化矽粒子的預分散液或最終分 散液。低沸點成分至少可被部分去除。接著,可添加第二 種封鎖劑或鈍化劑,其可與相容化且鈍化之粒子內剩餘的 經基官能基(經過第一個相容化及鈍化過程所剩下者)皮 應,其量係在預分散液或最終分散液內之二氧化矽量之約 〇 · 〇 5倍至約1 0倍範圍內。低沸點成份的部分移除可移除 低沸點成份總量的至少約10重量%、低沸點成份總量的 約1 0重量%至約5 0重量%範圍內或大於低沸點成份總量 的約50重量%之低沸點成份的量。至少就第二個通過相 容化及鈍化的加工過程而言,有效量之封鎖劑可與該相容 化且鈍化之粒子的表面官能基反應。在一體系中,在最終 -55- 200811237 的加工之後,與未鈍化之粒子的對應基團相較之下,該相 容化且鈍化的粒子所具有之自由羥基基團少了至少1 0重 量%、至少20重量%、或是至少3 5重量%。 根據本發明之一體系所製備得的經塡充或未塡充組成 物可被加熱至第一個溫度,以固化第一種可固化的物質。 第一種可固化之物質的固化可導致生成B階組成物,其係 指觸乾燥的、或固態的或是同時爲指觸乾燥且固態的。過 後,該B階組成物可被加熱至第二個溫度(其係高於第一 個溫度),以固化第二種可固化物質。 在一體系中,於B階之前,經塡充或未塡充的組成物 (底膠)可配置(dispose )於晶片的表面、晶僵的表面 、基板的表面、或是晶片及基板之間。配置該底膠組成物 的方法可被稱爲「底膠充塡」。底膠充塡可包括:毛細現 象底膠充塡(capillary underfilling )、無流動底膠充塡 (no-flow underfilling )、轉移成型底膠充塡(transfer mold underfilling )、晶圓級底膠充塡(wafer level underfilling)以及類似的方法。 毛細現象底膠充塡包括:將內圓角或珠粒形式的底膠 材料,沿著晶片之一或多邊的邊緣延伸,進行點膠,並且 讓底膠材料藉由晶片的毛細現象作用進行流動,而塡滿晶 片與基板之間的所有空隙。可使用針,在組件表面積( component footprint area)的中心,以點的圖樣,進行底 膠的點膠。其他適當的點膠方法可包括:噴嘴式方法(飛 散(fly )或直線模式的點)、以及DJT-9 000 Dispense Jet -56- 200811237 ,其係購自 Asymtek ( Carlsbad,California)。轉移成 型底膠充塡的方法包括:將晶片及基板置於一模穴內並且 將底膠材料推壓入模穴內。推壓底膠材料會使得底膠材料 塡滿晶片及基板之間的空間。 無流動底膠充塡的方法包括:第一,先將底膠材料點 膠於基板或板導體裝置上,第二,將覆晶置於該底膠的頂 部,以及第三,進行電性接點(銲錫凸塊)迴銲,以形成 電性接點(銲點)且同時將底膠固化。晶圓級的底膠充塡 方法包括:在晶圓切割爲個別的晶片之前,將底膠點膠於 晶圓上,彼等晶片接著可藉由覆晶類型操作,黏著於最終 結構上。 可採用自動化取置裝置,將該覆晶晶粒貼裝(place )於基板的頂部。該貼裝力及貼裝頭停留時間係加以控制 ,以使得該方法的循環時間及產率達最佳化。 該構裝(construction )可被加熱至熔融或是迴銲彼 等電氣接點(例如,銲錫),形成電性內連線且最後將底 膠固化。該加熱操作通常可在迴銲爐內的輸送機上進行。 該底膠(根據一體系的第二種可固化物質)的固化動力學 可經過調整,以符合該迴銲周期的溫度曲線。該無流動或 晶圓級底膠可在該底膠達到膠凝點之前,讓內連線(銲點 )形成且可在加熱循環結束時,形成固態底膠層。 無流動或晶圓級底膠可使用二種不同的迴銲溫度曲線 ,進行固化。第一種溫度曲線可稱作爲「高原型」溫度曲 線,其包括在該銲錫之熔點之下的均熱區(soak zone ) - 57- 200811237 。該第二種溫度曲線可稱作爲「火山型」溫度曲線,以恆 定的加熱速率,升高溫度,直至達到最高溫度爲止。在迴 銲期間的最高溫度係取決於該銲錫組成物且可比銲錫球的 熔點或銲'錫球的迴銲溫度(不含鉛的情況),高出約1 〇 °C至約40 °c。該加熱循環可在約3分鐘至約5分鐘之間 、或是約5分鐘至約1 0分鐘之間。於一體系中,該固化 的底膠層可在約150°C至約180°C範圍內之溫度下、約 180°C至約200°C範圍內的溫度下、約200°C至約250°C範 圍內的溫度下、或是約250 °C至約300 °C範圍內的溫度下 ,在一段約1小時至約4小時範圍內的時間內,進行後固 化。 在一體系中,經塡充或未塡充的組成物點膠於基板上 ,而形成無流動的底膠。該第一種可固化的物質係於第一 個溫度下,固化形成B階無流動底膠。覆晶係貼裝於B 階底膠的頂部,而形成電組件。接著可將該電組件加熱, 以迴銲電性內連線(銲錫),而形成電性接點(銲點)。 在迴銲過程中,該第二種可固化物質可同時固化,而形成 固化的底膠層。第二種可固化物質的固化溫度(第二個固 化溫度)以及迴銲溫度可予以調節,而使得固化及迴銲同 時發生。 於一體系中,經塡充或未塡充的組成物可點膠於晶圓 上,而形成晶圓級的底膠。該第一種可固化物質可在第一 個溫度下,固化形成B階晶圓級底膠。將該晶圓切割爲個 別的晶片並且將個別的晶片貼裝於基板的頂部,而形成電 -58- 200811237 組件。接著,將該電組件加熱,以迴銲電性內連線(銲錫 )且形成電性接點(銲點)。在迴銲過程中,該第二種可 固化物質可同時固化,而形成固化的底膠層。第二種可固 化物質的固化溫度(第二個固化溫度)以及迴銲溫度可予 以調節,而使得固化及迴銲同時發生。在一體系中,底膠 材料特別可適用作爲晶圓級底膠。 藉由採用前述底膠充塡方法中之一者,可將晶片封裝 形成電子組件。可採用底膠組成物來封裝的晶片包括半導 體晶片及LED晶片。適當的晶片可包括:半導體材料, 諸如,矽、鎵、鍺或銦,或是其中二或多者的組合。電子 組件可用於電子裝置、積體電路、半導體裝置、以及類似 物。採用底膠材料的積體電路及其他電子裝置可用於範圍 廣泛的用途,包括:個人電腦、控制系統、電話網路、以 及大量其他消費性及工業產品的。 【實施方式】 實施例 下面的實施例係僅供例示根據本發明的方法及體系, 因此不應被闡釋爲加諸於申請專利範圍的限制。除非另有 特別說明,所有的成分皆可購自一般的化學藥品供應商, 諸如,Alpha Aesar,Inc· (Ward Hill,Massachusetts)、 Sigma Aldrich、Spectrum Chemical Mf g. C o rp. (Gardena, California)等等 ° -59- 200811237 實施例1 令一單官能的醇,3-乙基-3-羥甲基-1-環氧丙烷(可 以UVR600 0之商品名’購自Dow Chemicals)與甲基六氫 鄰苯二甲酸酐(NHHPA )混合。該混合係於室溫下、採 用磁性攪拌器且在無溶劑存下進行的。在加熱及分析之前 ,將結果所得到的混合物塗覆於玻璃載片上。 藉由改變羥基基團與酐基團的比例,製備出二種不同 的試樣。試樣1係採用1 : 1莫耳比.之UVR6000 : MHHPA ,而製備得的。試樣2係採用1 : 3莫耳比之UVR6000 : MHHPA,而製備得的。將試樣i及2力口熱至10(rc的溫度 ,歷時1小時的期間,並且以目視來檢視結果所得到之組 成物的性質,黏度/黏著性。表1示試樣組成物以及該二 試樣在加熱後的最終性質。 表1 :試樣的B階性質 試樣 羥基與酐基的比例 組成物的起始狀態 組成物加熱後的最終狀態 1 1:1 液體 高度黏稠的液體 2 1:3 液體 高度黏稠的液體 實施例2 令一多官能的醇,1,2-丙二醇與甲基六氫鄰苯二甲酸 酐(MHHPA )混合。該混合係於室溫下、採用磁性攪拌 器且在無溶劑存下進行的。在加熱及分析之前,將結果所 得到的混合物塗覆於玻璃載片上。 藉由改變羥基基團與酐基團的比例,製備出二種不同 -60 - 200811237 的試樣。試樣3係採用1 : 1莫耳比之丨,2 -丙二醇: MHHPA,而製備得的。試樣4係採用1 : 3莫耳比之1,2-丙二醇:MHHPA,而製備得的。將試樣3及4加熱至100 °C的溫度,歷時1小時的期間,並且以目視來檢視結果所 得到之組成物的性質,黏度/黏著性。表2示試樣組成物 以及該二試樣在加熱後的最終性質。 表2 :試樣的B階性質 試樣 羥基與酐基的比例 組成物的起始狀態 組成物加熱後的最終狀態 3 1:1 液體 稍微黏著的固體 4 1:3 液體 黏著的液體 實施例3 令一多官能的醇,甘油與甲基六氫鄰苯二甲酸酐( MHHPA )混合。該混合係於室溫下、採用磁性攪拌器且 在無溶劑存下進行的。在加熱及分析之前,將結果所得到 的混合物塗覆於玻璃載片上。 藉由改變羥基基團與酐基團的比例,製備出三種不同 的試樣。試樣5係採用1 : 3莫耳比之羥基基團:酸酐基 團,而製備得的。試樣6係採用1 : 1莫耳比之經基基團 :酐基團,而製備得的。試樣7係採用3 : 1莫耳比之羥 基基團·野基團’而製備得的。將試樣5、6及7加熱至 100°C的溫度,歷時1小時的期間,並且以目視來檢視結 果所得到之組成物的性質,黏度/黏著性。表3示試樣組 成物以及該三試樣在加熱後的最終性質。 -61 - 200811237 表3 :試樣的B階性質 試樣 羥基與酐基的比例 組成物的起始狀態 組成物加熱後的最終狀態 5 1:3 液體 稍微黏著的固體 6 1:1 液體 指觸乾燥的固體 7 3:1 液體 指觸乾燥的固體 實施例4 將一定量的3-溴甲基-3-甲基環氧丙烷(82.5 g,0.5 mol )添加至裝備有機械性攪拌裝置及冷凝器的圓底瓶內 。依序先後將甲基苯二酚(31.04 g,0.25 mol)及25 g 水添加至該燒瓶內。將溴化四丁基銨(8.0 g,0.025 mol )緩慢地添加至所得到的混合物中。接著,將該混合物加 熱至75 °C並且逐滴地添加氫氧化鉀(35.5 g,於50 g水 中)。於80°C下,將所得到的混合物加熱1 8小時。將該 混合物冷卻至室溫並且予以過濾,接著用水稀釋並且用二 氯甲烷萃取。將二氯甲烷蒸發後,可產生42. lg粗製產物 ,接著令該粗製產物自熱己烷再結晶析出,而得到3 1.7g 淺黃色固體,甲基苯二酚環氧丙烷(MeHQ〇x)。 實施例5 根據下列程序來製備不含觸媒的原液(master batch )。於一圓底燒瓶內,添加相容化且鈍化的二氧化矽、 MeHQOx (實施例4所製備得的)、MHHPA及甘油,並且 予以混合物’而形成一均質溶液。然後,經由旋轉蒸發法 -62 - 200811237 (其包括:在過了以肉眼觀察到溶劑的去除已停止的時點 之後,於90°C及完全真空下,加熱30分鐘),將溶劑去 除。表4例示可用於製備原液的調配物。 表4 :原液調配物 組成份 重量(g) 固體% 相容化且鈍化的二氧化矽(於甲氧基丙醇內) 11.36 26.4 MeHQOx 5.09 MHHPA 5.84 續 甘油 1.07 - 最終組成物 15.00 20.0 實施例6 將觸媒(溴化四苯基鳞,TPPB )摻合至實施例5製 備得的原液中。表5顯示用於製備最終組成物的調配物。 試樣8及9經過脫氣並且轉置於注射針內且測量了彼等的 B階及固化性質。 表5 :含觸媒的調配物 最終物質組成物 試樣8 試樣9 原液(g) 4 4 TPPB (g) 0.17 0.257 觸媒的重量% 4.3% 6.4% 塡料的重量% 20.0% 20.0% 實施例7 對於液體試樣8及9的玻璃相轉化溫度(Tg )、固化 動力學、以及黏度,進行測試。採用示差掃描熱量法( -63- 200811237 DSC ),藉由在30 °C /分鐘的加熱速率下加熱,來測定 Tg及固化動力學。DSC曲線顯示分別以ll〇°C及240°C爲 中心,有二個不同的放熱,如第1圖所示者。起始的放熱 (DSC固化1 )可歸因於B階反應(酐的醇解),而第二 個放熱(DSC固化2)係代表整體(bulk)樹脂固化(環 氧丙烷樹脂的固化)。 表6 :液體試樣的黏度、Tg及固化線特性 性質 試樣8 試樣9 室溫黏度(cPs) 2610 2680 Tg(DSC,。C) 71 74 DSC固化1開始(°C) 77 74 DSC固化1峰(°C) 110 107 反應熱1 (J/g) 48 43 DSC固化2開始(°C) 187 181 DSC固化2峰(°C) 243 236 反應熱2 (J/g) 171 162 竇施例8 藉由在1 〇〇°C下,將液體試樣8及9加熱2小時,將 彼等B階化,而產生硬的指觸乾燥膜。以目視來測定該二 膜的B階硬度。使用DSC,藉由在30°C /分鐘的加熱速 率下加熱,來測試B階試樣的固化特性。在進行DSC分 析時,僅剩下以24 0°C爲中心的固化峰,如第2圖所示者 。此外,此峰的反應熱値係與自液態固化之試樣(實施例 7 )所測得者相等。在B階化期間,沒有整體樹脂固化發 生。 -64 - 200811237 表7 :B階試樣的固化特性 性質 試〕 隱 試樣8 試樣9 在loot:下加熱2小時後的B階性質 固體 固體 DSC固化1開始(它) 一 一 DSC固化1峰(°C) 一 反應熱1 (J/g) 一 _ DSC固化2開始(°C) 182 176 DSC固化2峰(°C) 239 229 反應熱2 (J/g) 155 151 下文係關於在與根據本發明揭示內容之一或多種其他 物質、組成份或成份第一次接觸、於反應現場形成、摻合 或混合之前存在的物質、組成份或成份。被認定爲反應產 物、結果所得到之混合物或彼等之類似物的物質、組成份 或成份,可透過在接觸、反應現場形成、摻合或混合操作 期間的化學反應或轉換反應,獲得性質或特性上的認定, 若是該操作係根據本發明之揭示內容、應用常識及習於此 藝之士(例如,化學家)的普通技術來進行的。該化學反 應物或起始物轉換爲化學產物或最終物質的反應係連續進 展的過程,不論其發生速度如何。因此,由於如是轉換過 程係行進中的,所以會有起始物及最終物質、還有中間物 種的混合物;視動力壽命(kinetic lifetime)而定,藉由 習於此藝之士目前已知的分析技術,起始物、最終物質、 以及中間物種的偵測可爲容易或困難的。 在本說明書或申請專利範圍內,以化學名或化學式所 -65- 200811237 提到的反應物或組成份(不論係以單數或複 被認定爲在與以化學名或化學種類提到之物 他反應物或溶劑)接觸之前,係既已存在的 到之混合物、溶液、或反應介質內所發生之 化學變化、轉換、或反應(若有發生時), 間物種、原液、以及類似物,且彼等之利用 產物或最終物之利用性。其他後續的變化、 可在根據本揭示內容所要求的條件下,令特 /或組成份集合在一起,而產生。在此等其 轉換或反應中,被集合在一起的反應物、成 認定或表示爲反應產物或最終物質。 前述實施例係例示了本發明之某些特徵 專利範圍係欲請求如所構想地一般寬廣的發 呈現的實施例係用來例示自多種所有可能體 。因此,申請人的意圖在於:附屬的申請專 選擇的實施例侷限於例示的本發明特徵。如 中所用到者,「包含」及其語法上的變體邏 且包括程度上有變化且不同的片語,諸如, 限於)·· 「實質上由------所組成」及「由- 。在需要的場合,已提供範圍,且彼等範圍 有亞範圍(sub-ranges )。此等範圍的變異 此技藝具有普通技術之士所顯而易知的,且 大眾的情況下,附屬的申請專利應涵蓋彼等 技術上的進步可做出目前由於言語的不嚴密 數提到時)可 質(例如,其 。在結果所得 初步或過渡性 可被認定爲中 性可異於反應 轉換、或反應 定的反應物及 他後續變化、 分或組成份可 。附屬的申請 明,且本文所 系選出之體系 利範圍不被所 申請專利範圍 輯上亦正對於 例如(但不侷 ------所組成」 涵蓋之間的所 被預期是對於 在尙未呈獻於 變異。科學及 而無法預測的 -66 - 200811237 均等物及取代;此等變異應涵蓋在附屬的申請範圍內。 【圖式簡單說明】 第1圖係一根據本發明之體系的組成物的示差掃描熱 量法熱譜圖。 第2圖係一根據本發明之體系的組成物的示差掃描熱 量法熱譜圖。 - 67-Industries and Schenectady International's 758 and HRJ 1 5 83. Suitable hydroxyaromatic compounds may include one or more of the following, resorcinol, catechol, methyl benzene phenol, methyl m-methyl catechol. Suitable anhydride hardeners may include the following monohexahydrophthalic anhydride; methyltetrahydrophthalic anhydride alkyldicarboxylic anhydride; bicyclic (2. 2. 1) Gh-5-ene-2,3-dicarboxyl j bicyclic (2. 2. 1) hept-5-ene-2,3-dicarboxylic anhydride; phthalic acid dianhydride; hexahydrophthalic anhydride; dodecenyl dichloromaleic anhydride; tetrachloroortho Dicarboxylic anhydride and the like. A combination of at least two acid anhydride hardeners. The anhydrides can be hydrogenated for fluxing. In some systems, a separate phthalic anhydride may be used as the hardener or in combination with at least one of them. Further, the curing catalyst or the hydroxyl group-containing molecular fragment may be added together with the anhydride hardener. The composition of the present invention may include an additive. Choose the appropriate performance requirements for specific uses. For example, an optional flame retardant additive is required; a flow regulator can be used to influence the effect; when thermal conductivity is required, a thermally conductive substance can be added to a system to add a reactive organic diluent. Suitable examples of the reactive organic diluent include a monofunctional compound (having a functional group), and may be added to the composition to increase its viscosity diluent include: 3-ethyl-3-hydroxymethyl epoxyalkyl glycidol Ether; 4-vinyl-1-cyclohexane diepoxide TAMANOL I: benzenediol phenol and more or more: methyl, 1,2-cyclohexanal anhydride; methyl anhydride; pyro-succinic anhydride; When a carboxylic acid is used and a difunctional other hardener organic compound additive is used, the flame resistance may be referred to, rheological or rocking. To the composition a degree of reactivity. Reactive propane; dodecene; di(-37-200811237 cold-(3,4-epoxycyclohexyl)ethyl)tetramethyldioxane, and the like. The reactive organic diluent can include a monofunctional epoxide and/or a compound containing at least one epoxy functional. Representative examples of the diluent may include alkyl derivatives of phenol glycidyl ether, such as 3-(2-mercaptophenoxy)-1,2-epoxypropane or 3-(4-mercaptophenoxyl). Base)-1,2-epoxypropane. Other diluents which may be employed may include: glycidyl ethers of phenol itself and substituted phenols such as 2-methylphenol, 4-methylphenol, 3-methylphenol, 2-butylphenol, 4-butyl Phenolic, 3-octylphenol, 4-octylphenol, 4-tert-butylphenol, 4-phenylphenol, and 4-(phenylisopropylidene)phenol. A non-reactive diluent can also be added to the composition to increase the viscosity of the formulation. Examples of non-reactive diluents include: toluene, ethyl acetate, butyl acetate, 1-methoxypropyl acetate, ethylene glycol, dimethyl ether, and combinations thereof. In a system, the composition can include a tackifier. Suitable tackifiers may include one or more of the following: trialkoxyorganodecanes (eg, r-aminopropyltrimethoxydecane, 3-glycidylpropylpropyltrimethoxydecane, and Trimethoxydecylpropyl) fumarate). If present, the tackifier can be added in an effective amount. An effective amount may range from about 1% to about 2% by weight of the total final composition. In a system, the composition can include a flame retardant. Suitable examples of the grouping agent may include one or more of the following: phosphonium amine v triphenyl phosphate (τρρ ), resorcinol diphosphate (RDP), bisphenol quinone diphosphate (ΒΡΑ-Dp) , an organic phosphorus oxide, a halogenated epoxy resin (tetrabromobismuth bismuth hydride), a metal oxide, a metal hydroxide, and combinations thereof. When present, the flame retardant can be in about 〇. From 5 wt% to about 20 wt% (relative to the total weight -38 to 200811237). In a system, the composition can include a dip to form a warp. The dip material can be incorporated to control the following quality of the tethered composition: electrical, thermal, or mechanical. In a system, the coating is based on the electrical, thermal, or electrical properties of the layer formed by the composition. The dip can include a plurality of particles. The plurality of particles may be characterized by one or more of: average particle size, particle size distribution, flat surface area, particle shape, or particle cross-sectional geometry. In a system, the average particle size of the dip can be in the range of less than about (nm). In a system, the average particle size of the dip in the range of from about 1 nanometer to about 1 nanometer, in the range of about 10 nanometers to about meters, in the range of about 25 nanometers to about 50 nanometers, From about 5 meters to about 75 nanometers, or from about 7 5 nanometers to about 100 squares. In a system, the average particle size of the dip can range from about metre to about 〇.  In the range of 5 microns, in the range of about 5 micrometers to about 1 micrometer, in the range of about 1 micrometer to about 5 micrometers, in the range of about 5 micrometers to meters, in the range of about 1 micrometer to about 25 micrometers, 2 5 microns to about 50 microns. In a system, the average particle size can range from about 50 microns to about 1000 microns in the range of from about 10 microns to about 200 microns, in the range of from about 200 microns to about meters. It is in the range of from about 40 Å micrometers to about 6,000 micrometers, in the range of micrometers to about 800 micrometers, or in the range of about 800 micrometers to one micrometer. In a system, the average particle size of the dip is greater than about 1 000 microns. In another system, the selectivity and heat of the group can be varied. The following average particle size: 1 nanometer size can be 25 nanometer 50 nanometer 〇·1 micro range J 10 micro or approximate flat , about 400 micro about 600 ^ 100 0 small can enter the composition in the dip particle with two -39-200811237 different size ranges (bimodal distribution): the first range is from about 1 nm to about 250 nm, while the second range is 0. 5 micrometers (or 500 nanometers) to about 10 micrometers (here, the pigment particles in the second size range can be referred to as "micron-sized dips"). The table may range from about 5 microns to about 2 microns, or from about 2 microns to about 5 microns. The mash particles can have a wide variety of shapes and cross-sectional geometries, and φ depends in part on the process used to create their particles. In a system, the tanning particles may have a spherical, rod-shaped, tubular, sheet-like, fibrous, flat-like or whisker-like shape. The dip may include particles having two or more of the foregoing shapes. In a system, the cross-sectional geometry of the particles can be one or more of the following: a ring, an ellipse, a triangle, a rectangle, or a polygon. In a unitary system, the dip can consist essentially of spherical particles. In a system, the particles may include one or more active termination sites on the surface, such as a warp group. φ may be aggregates or agglomerates before breaking into the composition or even after breaking into the composition. The agglomerates may comprise more than one dip particle in physical contact with one another, and the agglomerate may comprise more than one agglomerate in physical contact with each other. In a system, the pigment particles may be non-aggregating and/or agglomerating, so that the particles are relatively easily dispersed in the polymer matrix. The mash particles can be mechanically or chemically treated to improve the dispersion of the mash in the polymer matrix. In a system, the material can be mechanically treated, for example, with high shear mixing, prior to dispersion in the curable material. In a system, -40- 200811237, the dip can be chemically treated before being dispersed in the curable substance. Chemical treatment can include the removal of polar groups (e.g., 'trans-bases'' from one or more surfaces of the pigment particles to reduce the formation of aggregates and/or aggregates. The chemical treatment may also include: functionalizing one or more surfaces of the pigment particles with a functional group that improves the compatibility between the tantalum and the polymeric matrix to reduce aggregates and/or aggregates. The formation, or both, improves the compatibility between the tantalum and the curable material and reduces the formation of aggregates and/or aggregates. In a system, the dip can include electrically insulating or electrically conductive particles. Suitable conductive particles may include one or more of the following: a metal, a semiconducting substance, a carbonaceous material (such as carbon black or a carbon nanotube), or a conductive polymer. Suitable electrically insulating particles can include one or more of the following: cerium materials, metal hydrates, metal oxides, metal borides, or metal nitrides. In a system, the dip can include a plurality of thermal conductive particles. Suitable thermally conductive particles may include one or more of the following: cerium materials (such as fumed cerium oxide, molten cerium oxide or colloidal cerium oxide), carbon materials, metal hydrates, metal oxides, metals Boride, or metal nitride. In a system, the tantalum may include cerium oxide and the cerium oxide may be colloidal cerium oxide. The colloidal cerium oxide can be a dispersion of submicron sized cerium oxide (SiO 2 ) particles in an aqueous or other solvent medium. The colloidal cerium oxide may contain up to about 85% by weight of cerium oxide (SiO 2 ), and up to about 80% by weight of cerium oxide. The total content of cerium oxide can be about 0% of the total composition weight. 00 from 1% by weight to about 1% by weight, from about 1% by weight to about 1% by weight, from about 10% by weight to about 20-41 - 200811237% by weight, from about 20% by weight to about 50% by weight Within the range, or in the range of from about 50% by weight to about 90% by weight. In a system, the colloidal ceria may comprise compatibilized and passivated colloidal silica. The compatibilized and passivated ceria can be used to reduce the coefficient of thermal expansion (CTE) of the composition, can be used as interstitial spacers to control the interface thickness, or both. In a system, the plurality of particles (i.e., cerium oxide) can be compatibilized and passivated by treatment with at least one organo alkoxy decane and at least one organic decane. The treatment of the two components can be carried out sequentially or simultaneously. In sequential treatment, the organoalkoxydecane can be used or reacted on at least a portion of the active cutoff position on the surface of the dip, and the organoazane can be used or reacted in at least a portion of the active cutoff position (in organic The remaining after the alkoxydecane reaction). After reaction with the organoalkoxydecane, other phase incompatible feedstocks may be relatively more compatible or dispersible in the organic or non-polar liquid phase. The compatibility or dispersibility of the dip in the organic matrix is increased and can be referred to herein as "compatibilized." The organoalkoxydecane used to functionalize the colloidal cerium oxide can be included in the range of the following formula (XXIII): (XXIII) (R30) kSi (OR31) 4. k wherein, in each case, an aliphatic atomic group, an aromatic atomic group, or a cycloaliphatic atomic group may be independently represented, optionally further functionalized with an alkyl acrylate, an alkyl methacrylate, an ethylene oxide, or an epoxy group. R31 may be a hydrogen atom, an aliphatic atomic group, an aromatic atomic group, or a cycloaliphatic atomic group; -42- 200811237 and "k" may be an integer of 1 to 3 (including 3). The organoalkoxydecane may include one or more of the following: phenyltrimethoxydecane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxydecane, 3-glycidyl ether propyltrimethyl Oxydecane or methacryloxypropyltrimethoxydecane. Even if the tantalum is phase compatible with the pendant organic groups by reaction with the organoalkoxydecane, the remaining active cut-off position on the surface of the tantalum can initiate premature chemical reactions. Increased water absorption, can affect the transparency of certain wavelengths, or have other undesirable side effects. In a system, the phase compatible material can be passivated by means of a passivating agent (e.g., organic decazane) that blocks the active cutoff position. Examples of the organoquinone azane may include one or more of the following: hexamethyldioxane ("HMDZ"), tetramethyldiazepine, divinyltetramethyldiazepine, or two Phenyltetramethyldiazepine. The phase compatible, passivated material can be blended with the composition and form a stable tonic composition. The organoalkoxydecane and the organic decazane are examples of phase compatibilizers and passivating agents, respectively. The supplemental composition comprising the compatibilized and passivated particles exhibits relatively good room temperature stability compared to the unpassivated formulation of the colloidal ceria. In some cases, the increase in room temperature stability of the resin formulation may allow higher loading rates of curing agents, hardeners and catalysts, otherwise they may be more than beneficial based on shelf life limitations. of. A higher degree of cure, a lower cure temperature, or a more well defined cure temperature profile can be achieved by increasing their mounting ratio. The amount of dip can be determined by reference to the performance requirements of the particular application, the size of the pellets -43-200811237, or the shape of the pellets. The amount of the stock present in a system may be less than about 1% by weight of the composition. In one system, the amount of the dip in the range may range from about 10% to about 15% by weight of the composition, from about 15% to about 25% by weight, from about 25% to about 30%. Within the range of % by weight, or in the range of from about 30% by weight to about 40% by weight. In a system, the colloidal and functionalized ceria can further include a micron-sized melt. Yttrium oxide. When present, the molten cerium oxide can be added in an effective amount to provide a further reduction in CTE; as interstitial particles to control interface thickness, and the like. Defoamer, dye. Pigments and the like can also be incorporated into the composition. The amount of the additive can be determined by the end use. The melt viscosity of the filled composition may depend on one or more of the following: the dressing rate of the dressing, the shape of the seed particles, the size of the seed particles, the molecular weight of the first curable substance, and the second curable substance. Molecular weight, temperature or conversion. In a system, the filled composition has flow properties (e.g., viscosity) at a particular temperature such that the filled composition can flow between the two surfaces, e.g., between the wafer and the substrate. The filled composition according to the system of the present invention may be solvent free. The solvent-free composition of the solvent according to the present invention may have a sufficiently low viscosity that the composition can flow into the space defined by the opposite side of the wafer and the substrate in a system. When the amount is greater than about 1% by weight of the by-charged composition, the filled composition may have a room temperature viscosity in the range of less than about -44 to 2008112372000 centipoise. In a system, when the amount of the dip is greater than about 10% by weight of the composition of the crucible, the composition of the crucible has a room temperature viscosity of from about 1 to about 1 000. Within the range of about 1 000 centipoise to about 2000 centipoise, about 2000 centipoise to about 5000 centipoise, about 5,000 centipoise to about 1 000 centipoise, about 1 000 centipoise to about 1 Within 5000 centipoise, or approximately 15,000 centipoise to approximately 2,000 centipoise. The stability of the composition may also depend on one or more of the following: the dressing rate, temperature, ambient conditions, or conversion rate. In a system, the filled composition can be in a stable state for a period of time greater than about one day at temperatures greater than about 20 °C. In a system, the composition may be from about 20 ° C to about 50 ° C, from about 50 ° C to about 75 ° C, from about 75 ° C to about 100 ° C, At a temperature ranging from about 10 ° C to about 150 ° C, or from about 150 ° C to about 175 ° C, it is in a stable state for a period longer than one day. In a unitary system, the filled composition can be in a stable state for a period of time greater than about one day at temperatures greater than about 1 75 °C. In a system, the entangled composition can be in a stable state for a period of time greater than about 1 75 ° C for longer than about 1 day. In a system, the filled composition can be in a stable state for a period of time greater than about 175 ° C for longer than about 30 days. In a system, the filled composition can be stored for less than about one day under unrefrigerated conditions. The filled composition can be used as one or more of the following: electrical contacts, thermal interface materials, conductive adhesives (eg, adhesives for adhesive bonding), or primers in electronic packaging devices. Materials (-45- 200811237 underfill materials). For a particular use, the suitability of the entangled composition will depend on one or more of the electrical, thermal, mechanical or flow properties of the entangled composition. Thus, for example, an electrical contact may require a conductive composition, whereas a primer material requires a conductive composition that is electrically insulating and has thermal properties such as thermal expansion coefficient, thermal fatigue, and the like. . In a system, the primer material can include a filled composition. The primer material is dispensable and can be used on devices such as solid state devices and/or electronic devices (such as computers or semiconductors), or devices that require primer, dual material molding, or a combination thereof. . The primer material can be used as an adhesive, for example, to strengthen the physical, mechanical, and electrical properties of the electrical interconnects connecting the wafer to the substrate. In some systems, the primer material can have a self-fluxing capability. In a system, the primer material can be cured at the first temperature to form a B-stage layer. In a system, the primer material can be cured to form a cured primer layer. The cured primer layer can be formed by directly heating the primer to a second temperature, or sequentially heating to a first temperature (forming a B-stage layer) and then heating to a second temperature. . The layers of the B-stage can be cooled to room temperature during the sequential continuous heating, exposed to other processing steps, and then heated to form a cured make layer. In a system, the primer material comprises a first curable material that cures at a temperature in the range of less than about 150 ° C, and is cured at a temperature in the range of from about 150 ° C to about 300 ° C. The second curable substance. Curing the first curable material can result in a B-stage layer of the shape -46-200811237, and subsequent curing of the second curable material can result in the formation of a cured make layer. In a system, the conversion of the first and second curable materials can be greater than about 50% of the cured make layer. In one system, the conversion of the first and second curable materials can be greater than about 60% of the cured make layer. In one system, the conversion of the first and second curable materials can be greater than about 75% of the cured make layer. In one system, the conversion of the first and second curable materials can be greater than about 90% of the cured make layer. In a system, the conversion rate of the first curable substance may be greater than about 75% of the cured make layer and the conversion rate of the second curable substance may be greater than about 50% of the cured make layer. The cured primer layer secures the wafer to the substrate. In one system, the cured primer can functionally support one or more electrical contacts between the wafer and the substrate. The cured make layer can provide functional support in one or more of the following ways: strengthening the interconnect, absorbing stress, reducing thermal fatigue, or being electrically insulated. Thermal fatigue occurs between the wafer and the substrate due to a mismatch in the thermal expansion coefficients of the wafer and the substrate. In a system, the cured primer layer can be thermally fatigued by having a thermal expansion coefficient that reduces the matching error. The coefficient of thermal expansion of the cured make layer can be selected to be less than about 50 p p m / ° C, less than about 40 p p m / ° C, or less than about 30 ppm / ° C due to a variety of factors, such as the amount of dip. In a system, the coefficient of thermal expansion can range from about 1 〇ppm / °C to about 20 ppm / °c, from about 20 p P m / -47 to 200811237 °C to about 30 ppm / °C Internal, from about 30 ppm / °C to about 40 ppm / °C, or greater than about 40 ppm / °C. The mechanical properties (e.g., modulus) and thermal properties of the cured make layer may also depend on the glass phase transition temperature of the composition. In a system, the glassy phase transition temperature of the cured make layer can be greater than about 150 ° C, greater than about 200 ° C, greater than about 250 ° C, greater than about 30 (TC, or greater than about 350 ° C. In the system, the modulus of the cured make layer can be in the range of greater than about 2000 MPa (million bars), greater than about 3000 MPa, greater than about 5000 MPa, greater than about 7000 MPa, or greater than about 1 Within 0000 MPa The electrical insulating properties of the primer material can depend on several factors, such as the type and concentration of the coating. In a system, the cured primer layer can have a resistivity in the range of about 10 _3 ohms • cm. , greater than about 1 CT4 ohm•cm, 1〇_5 ohm•cm, or 1(Τ6 ohm•cm. In addition to being electrically insulated, the cured primer can also be thermally conductive, as needed, Thermal interface material. When used as a heat dissipation interface material, the primer layer accelerates the heat transfer from the wafer to the substrate. The substrate can be sequentially connected to a heat dissipation unit such as a heat sink, a heat exchanger, or a heat spreader. Similarly, curing the thermal conductivity of the make layer (or The resistivity number can also depend on several factors, such as the type and concentration of the dip. In a system, the thermal conductivity of the cured make layer can be in the range of greater than about 1 W/mK (100 ° c). Within the range of greater than approximately 2 W / mK (under l〇〇°C), greater than approximately 5 W / mK (at 100 °C), greater than approximately 10 W / mK (at 1 0 〇 °C) Internal, or greater than about 20 W / mK (at 100 ° C). -48- 200811237 The cured primer layer also needs to be stable at the operating temperature. In a system, the cured primer material can be At a humidity greater than about 10% and at a temperature above about 20 ° C, at a humidity greater than about 50% and at a temperature above about 20 ° C, at a humidity greater than about 80% And at a temperature above about 20 ° C, at a temperature greater than about 10% and at a temperature above about 40 ° C, at a temperature greater than about 10% and at a temperature above 80 ° C It is stabilized or stabilized at a temperature greater than about 80% and at a temperature above about 8 ° C. In a system, the cured make layer can have the desired transparency of the wafer level primer. Appropriate transparency is defined as the ability to transmit sufficient light without obscuring the guide marks for wafer dicing. In one system, the transparency of the cured make layer is in the range of greater than about 50% visible light transmission. Within, in the range of from about 50% to about 75% visible light transmission, in the range of from about 75% to about 85% visible light transmission, from about 85% to about 90% visible light transmission, or greater than about 90 % visible light transmission. In a system, this transparency can be measured with reference to light at wavelengths outside the visible spectrum. In such a system, the transmission of light is sufficient to enable the detector or sensor to identify the alignment mark of the wafer. In a system, the primer material (before or after curing) may be free of solvents or other volatiles. The volatiles can be formed during the course of one or more processing steps, e.g., the step of solidifying the first curable material to form a layer B, resulting in the formation of voids. Cavities can cause undesirable defects to form. In a system, the amount of gas produced by the first curable material before, during, or after curing is insufficient to form a void that is visible to the naked eye. As previously indicated, the cured primer layer can be securely attached to the substrate. The effectiveness of the cured make layer to secure the wafer to the substrate can depend on several factors, such as inter-face adhesion between the make-up layer and the wafer or substrate, or cure of the make-up layer. After the contraction (if any). The interfacial properties between the primer material and the wafer or substrate can be improved by selecting a second curable material having the desired interfacial properties (e.g., adhesive properties). In a system, the second curable material can form a continuous interface contact with the substrate prior to curing. In a system, the second curable material can form a continuous interface contact with the wafer prior to curing. In a system, the cured primer layer, after curing, forms a continuous interface contact with the substrate and the wafer. An article can include a primer material disposed between the wafer and the substrate. An item may include a solid state device and/or an electronic device (such as a computer or board conductor), or a device that requires a primer, a dual material, or a combination thereof. The primer material is curable to form a cured make layer as previously described. In a system, the cured make layer can be firmly secured to the substrate within the device. In one system, an article can also include electrical contacts and the cured primer layer can be used to functionally support electrical contacts between the wafer and the substrate to prevent thermal fatigue. In a system, the electrical contacts can include solder bumps, and the cured make layer has the function of an adhesive, such as 'to enhance the physical, mechanical, and electrical properties of the solder bumps. Electrical interconnects may include lead or lead. The lead-free interconnect may include conductive particles -50 - 200811237 or conductive particles dispersed in a polymer matrix. In a system, the second curable material can be cured at a temperature of approximately interconnected solder (lead-containing) or cross-linked (lead-free). The present invention provides a method of making a composition (either entrenched or unfilled) in accordance with one of the systems of the present invention. The method includes contacting a first curable material with a second curable material to form an uncured composition (unfilled). The first curable material and the second curable material can also be contacted with a dip to form a filled composition. The contacting step can include mixing/blending in a solid state, molten state, or solution mixing. Solid or molten state blending of the curable material can involve the use of one or more shear forces, compressive forces, ultrasonic energy, electromagnetic energy, or thermal energy. Blending can be carried out in a processing apparatus wherein the aforementioned force can be exercised by one or more of the following: single screw, multi-screw, meshing co-rotating or counter-rotating screw, non-intermeshing co-rotating or counter-rotating A rotating screw, a reciprocating screw, a screw equipped with a pin, a barrel equipped with a pin, a roller, a ram, or a spiral rotor. These materials can be mixed by hand, but can also be mixed using mixing equipment such as: dough mixers, chain can mixers, planetary mixers, twin screw extruders, Two or three roller honing machine, B uss K neader, Hensehe 1 , He ico ir es, Rouse mixer R 〇ssmixers ), Banbury, roller honing machines, forming machines (such as injection molding machines, vacuum forming machines, blow molding machines) and the like. Blending can be carried out in batches -51 - 200811237 times, continuous or semi-continuous mode. For example, in the case of a batch mode reaction, all of the reactant components can be combined and reacted until most of the reactants have been consumed. In order for the reaction to continue, the reaction must be stopped once and additional reactants are added. In the case of continuous conditions, the reaction does not have to be stopped to add more reactants. Solution blending may also use additional energy, such as shear, compression, ultrasonic vibration, or the like, to promote compositional components (such as the two curable materials or materials (if present) and Homogenization of the solidified material). The filled or unfilled composition may also be contacted with the curing catalyst prior to or after blending. In a system, the filled composition can be prepared by blending a first curable substance, a second curable substance, and a tanning solution. In a system, the curable materials can be suspended in a liquid and then introduced into the ultrasonic oscillator together with the dip to form a mixture. The mixture solution can be blended by ultrasonically oscillating the mixture for a period of time effective to disperse the dip particles in their curable materials. In a system, the liquid expands the curable material during operation of the ultrasonic oscillation. The expansion of the curable material improves the ability of the dip to be filled with the curable material during solution blending, thereby improving dispersibility. In a system, the dip and optional additives can be ultrasonically oscillated with the polymeric precursor during solution blending. The polymeric precursor may comprise one or more monomers, dimers, trimers or the like which are reactive to form the desired polymeric matrix. Liquids such as solvents can be introduced into the ultrasonic oscillator along with the dip and high molecular precursors. The period of ultrasonic oscillation is sufficient to promote the coating of the binder composition by the polymer precursor. After coating, the polymer precursor can be subsequently polymerized to form a curable material having dispersed tantalum. The solvent can be used for solution blending of the composition. The solvent can be used as a viscosity modifier or to promote dispersion and/or suspension of the coating composition. A liquid aprotic solvent may be employed, such as one or more of the following: propylene carbonate, ethylene carbonate, butyrolactone, propionitrile, benzonitrile, nitromethane, nitrobenzene, cyclobutyl hydrazine, dimethylformamidine Amine, N-methylpyrrolidone or the like. Polar protic solvents may also be used, such as one or more of the following: water, methanol, acetonitrile, nitromethane, ethanol, propanol, isopropanol, butanol, or the like. Other non-polar solvents may also be used, such as one or more of the following: benzene, toluene, dichlorocarb, carbon tetrachloride, hexanyl, diethyl ether, tetrahydrofurazan, or the like. It is also possible to use an eo-solvent comprising at least one aprotic polar solvent and at least one non-polar solvent. The solvent can be evaporated before, during, and/or after blending of the composition. After blending, the solvent can be removed by heating or applying a vacuum or both. The removal of solvent from the membrane can be measured and characterized by analytical techniques such as infrared spectroscopy, nuclear magnetic resonance spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and the like. In one system, the dip can include colloidal ceria and the colloidal ceria can be compatibilized and passivated prior to blending (solid, melt or solution blending). The compatibilizing agent is added to an aqueous dispersion of colloidal cerium oxide (in which an aliphatic hydroxy compound has been added) to make the colloidal cerium oxide compatible. As a result, the obtained composition (including the % compatibilized ceria particles and the compatibilizing agent in the aliphatic hydroxy compound) can be defined herein as a pre-split -53-200811237 dispersion. The aliphatic hydroxy compound may be selected from the group consisting of: isopropanol, tert-butanol, 2-butanol, and combinations thereof. The amount of the aliphatic hydroxy compound may range from about 1 time to about 1 Torr (by weight) based on the amount of cerium oxide present in the aqueous colloidal cerium oxide predispersion. The pH of the organically compatibilized ceria particles obtained by neutralization can be neutralized with an acid or a base. The compatibilization process can be aided by the use of an acid or a base together with other catalysts which promote the condensation of the sterol with the alkoxyalkylene group. If the catalyst is available, it can include organic tannins. Salts and organotin compounds such as tetrabutyl stannate, isopropoxy bis(acetonitrile) tin, dibutyltin dilaurate, or combinations thereof. In some cases, a stabilizer such as 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxy (i.e., 4-hydroxy TEMPO) may be added to the predispersion. As a result, the resulting predispersion can be heated in the range of from about 50 Torr to about 100 ° C for a period of from about 1 hour to about 12 hours. The curing time range from about 1 hour to about 5 hours is sufficient. The cooled transparent predispersion can be further treated with a passivating agent as disclosed herein to form a final dispersion. Optionally, a curable polymeric precursor and an aliphatic solvent may be added during this processing step. Suitable additional solvents may be selected from the group consisting of: isopropanol, 1-methoxy-2-propanol, 1-methoxy-2-propyl acetate, toluene, and combinations of two or more thereof. The final dispersion of compatibilized and passivated particles can be treated with an acid or base or with an ion exchange resin to remove acidic or basic impurities. The final dispersion of the compatibilized and passivated particles (compatibilized and passivated as disclosed herein) can be artificially mixed or mixed by one or more of the following depending on factors affected by the application:搓揉 Mixer -54- 200811237, chain mixer, or planetary mixer. Factors such as viscosity, reactivity, particle size, batch size, and processing parameters (such as temperature). The blending of the dispersion components can be carried out in batch, continuous or semi-continuous mode. The final dispersion of the compatibilized and passivated particles can be at about 0. Concentration in a vacuum ranging from 5 Torr to about 250 Torr to a temperature in the range of from about 20 ° C to about 140 ° C to remove any low boiling components such as solvents, residual water, and These combinations result in a clear dispersion of compatibilized and passivated cerium oxide particles, optionally containing a curable monomer, referred to herein as the final concentrated dispersion. Here, the removal of the low-boiling component can be defined as: removing the low-boiling component to obtain a dispersion containing about 15% by weight to about 80% by weight of concentrated cerium oxide. In some cases, a pre-dispersion or final dispersion of the compatibilized and passivated ceria particles may be further treated with a compatibilizer and/or a passivating agent. The low boiling component can be at least partially removed. Next, a second blocking or passivating agent can be added which is compatible with the remaining functional groups in the compatibilized and passivated particles (which are left after the first compatibilization and passivation process). The amount is in the range of from about 5 times to about 10 times the amount of cerium oxide in the pre-dispersion or final dispersion. Partial removal of the low-boiling component removes at least about 10% by weight of the total low-boiling component, from about 10% by weight to about 50% by weight of the total low-boiling component or greater than the total amount of the low-boiling component. 50% by weight of the low boiling component. At least for the second pass through the process of compatibility and passivation, an effective amount of blocking agent can react with the surface functional groups of the compatibilized and passivated particles. In a system, after processing at final -55-200811237, the compatibilized and passivated particles have at least 10 weight less free hydroxyl groups than the corresponding groups of unpassivated particles. %, at least 20% by weight, or at least 35 % by weight. The filled or unfilled composition prepared according to one of the systems of the present invention can be heated to a first temperature to cure the first curable material. Curing of the first curable material can result in the formation of a B-stage composition which is dry, or solid, or both dry and solid. Thereafter, the B-stage composition can be heated to a second temperature (which is higher than the first temperature) to cure the second curable substance. In a system, before or after the B-stage, the filled or unfilled composition (primer) can be disposed on the surface of the wafer, the surface of the crystal, the surface of the substrate, or between the wafer and the substrate. . The method of arranging the primer composition can be referred to as "primer filling". The underfill can include: capillary underfilling, no-flow underfilling, transfer mold underfilling, wafer-level underfilling. (wafer level underfilling) and similar methods. Capillary primers include: a primer material in the form of a fillet or bead, extending along one or a multilateral edge of the wafer, dispensing, and allowing the primer material to flow through the capillary action of the wafer And fill all the gaps between the wafer and the substrate. The needle can be dispensed at the center of the component footprint area, in a dot pattern, using a needle. Other suitable dispensing methods may include: a nozzle method (point of flying or linear mode), and DJT-9 000 Dispense Jet - 56-200811237, which is commercially available from Asymtek ( Carlsbad, California). The method of transferring the molding primer comprises: placing the wafer and the substrate in a cavity and pushing the primer into the cavity. Pushing the primer material causes the primer material to fill the space between the wafer and the substrate. The method for filling the non-flowing primer includes: first, dispensing the primer material onto the substrate or the plate conductor device, secondly, placing the flip chip on the top of the primer, and third, electrically connecting The dots (solder bumps) are reflowed to form electrical contacts (solder joints) while curing the primer. The wafer level underfill method includes dispensing the underlay onto the wafer before the wafer is diced into individual wafers, and the wafers can then be bonded to the final structure by flip chip type operation. The flip chip can be placed on top of the substrate using an automated pick-and-place device. The placement force and head time of the placement head are controlled to optimize the cycle time and yield of the process. The construction can be heated to melt or reflow the electrical contacts (e.g., solder) to form an electrical interconnect and finally cure the primer. This heating operation can usually be carried out on a conveyor in a reflow furnace. The curing kinetics of the primer (based on a second curable material of a system) can be adjusted to meet the temperature profile of the reflow cycle. The no-flow or wafer-level primer allows the interconnect (solder joint) to form before the primer reaches the gel point and forms a solid make layer at the end of the heating cycle. No flow or wafer level primers can be cured using two different reflow profiles. The first temperature profile can be referred to as the "high prototype" temperature curve, which includes the soak zone below the melting point of the solder - 57-200811237. This second temperature profile can be referred to as a "volcano-type" temperature profile, with a constant heating rate, increasing the temperature until the maximum temperature is reached. The maximum temperature during reflow depends on the solder composition and can be about 1 〇 ° C to about 40 ° C higher than the melting point of the solder ball or the solder reflow temperature of the solder ball (in the absence of lead). The heating cycle can be between about 3 minutes and about 5 minutes, or between about 5 minutes and about 10 minutes. In a system, the cured make layer can be at a temperature in the range of from about 150 ° C to about 180 ° C, at a temperature in the range of from about 180 ° C to about 200 ° C, from about 200 ° C to about 250 Post-curing is carried out at a temperature in the range of °C or at a temperature ranging from about 250 ° C to about 300 ° C over a period of from about 1 hour to about 4 hours. In a system, the filled or unfilled composition is dispensed onto the substrate to form a no-flow primer. The first curable material is cured at the first temperature to form a B-stage no-flow primer. The flip chip is mounted on top of the B-stage primer to form an electrical component. The electrical component can then be heated to reflow the electrical interconnect (solder) to form an electrical contact (solder joint). During the reflow process, the second curable material can be cured simultaneously to form a cured make layer. The curing temperature (second curing temperature) and reflow temperature of the second curable substance can be adjusted so that curing and reflow occur simultaneously. In a system, the filled or unfilled composition can be dispensed onto the wafer to form a wafer level primer. The first curable material can be cured at the first temperature to form a B-stage wafer level primer. The wafer is diced into individual wafers and individual wafers are mounted on top of the substrate to form an electrical -58-200811237 component. The electrical component is then heated to reflow the electrical interconnect (solder) and form electrical contacts (solder joints). During the reflow process, the second curable material can be cured simultaneously to form a cured make layer. The curing temperature (second curing temperature) of the second curable material and the reflow temperature can be adjusted so that curing and reflow occur simultaneously. In a system, the primer material is particularly useful as a wafer level primer. The wafer can be packaged to form an electronic component by employing one of the foregoing methods of filling the underfill. Wafers that can be encapsulated with a primer composition include semiconductor wafers and LED wafers. Suitable wafers may include semiconductor materials such as germanium, gallium, germanium or indium, or a combination of two or more thereof. Electronic components can be used in electronic devices, integrated circuits, semiconductor devices, and the like. Integral circuits and other electronic devices using primer materials can be used in a wide range of applications, including personal computers, control systems, telephone networks, and a host of other consumer and industrial products. [Embodiment] The following examples are merely illustrative of the methods and systems according to the present invention and therefore should not be construed as limiting the scope of the claims. Unless otherwise stated, all ingredients are available from general chemical suppliers such as Alpha Aesar, Inc. (Ward Hill, Massachusetts), Sigma Aldrich, and Spectrum Chemical Mf g.  C o rp.  (Gardena, California), etc. ° -59- 200811237 Example 1 A monofunctional alcohol, 3-ethyl-3-hydroxymethyl-1-epoxypropane (available under the trade name UVR600 0 from Dow Chemicals) ) mixed with methylhexahydrophthalic anhydride (NHHPA). The mixing was carried out at room temperature using a magnetic stirrer and in the absence of solvent. The resulting mixture was applied to a glass slide prior to heating and analysis. Two different samples were prepared by varying the ratio of hydroxyl groups to anhydride groups. Sample 1 is a 1: 1 molar ratio. UVR6000: MHHPA, prepared. Sample 2 was prepared using a 1:3 molar ratio of UVR6000: MHHPA. The samples i and 2 were heated to a temperature of 10 (rc) for a period of 1 hour, and the properties of the composition obtained by visual observation, viscosity/adhesion were visually observed. Table 1 shows the sample composition and the The final properties of the two samples after heating. Table 1: The B-order properties of the sample. The ratio of the hydroxyl group to the anhydride group. The initial state of the composition. The final state of the composition after heating. 1 1:1 Liquid highly viscous liquid 2 1:3 Liquid highly viscous liquid Example 2 A polyfunctional alcohol, 1,2-propanediol, was mixed with methylhexahydrophthalic anhydride (MHHPA) at room temperature using a magnetic stirrer. And in the absence of solvent. The resulting mixture was applied to a glass slide before heating and analysis. Two differentities were prepared by changing the ratio of hydroxyl groups to anhydride groups -60 - 200811237 Sample 3. Sample 3 was prepared using 1:1 molar ratio, 2-propanediol: MHHPA, and sample 4 was 1:3 molar ratio of 1,2-propanediol:MHHPA. Prepared. Samples 3 and 4 were heated to a temperature of 100 ° C for a period of 1 hour. The properties of the composition obtained by visual observation, viscosity/adhesiveness were visually observed. Table 2 shows the sample composition and the final properties of the two samples after heating. Table 2: Sample B-order properties of the sample The ratio of the hydroxyl group to the anhydride group is the initial state of the composition. The final state after heating. 3 1:1 Liquid slightly adhered to the solid 4 1:3 Liquid-adhered liquid Example 3 A polyfunctional alcohol, glycerol and methyl Hexahydrophthalic anhydride (MHHPA) was mixed at room temperature using a magnetic stirrer and stored in the absence of solvent. The resulting mixture was applied to the glass before heating and analysis. On the sheet, three different samples were prepared by changing the ratio of the hydroxyl group to the anhydride group. Sample 5 was prepared by using a hydroxyl group of 1:3 molar ratio: anhydride group. 6 was prepared using a 1: 1 molar ratio of a radical group: an anhydride group. Sample 7 was prepared using a 3:1 molar ratio hydroxyl group·wild group'. Samples 5, 6 and 7 were heated to a temperature of 100 ° C for a period of 1 hour and The properties, viscosity/adhesiveness of the composition obtained by visual inspection were examined visually. Table 3 shows the sample composition and the final properties of the three samples after heating. -61 - 200811237 Table 3: B-order properties of the sample The ratio of the hydroxyl group to the anhydride group of the sample is the initial state of the composition. The final state after heating. 5 1:3 Liquid slightly adhered to the solid 6 1:1 Liquid refers to the dry solid 7 3:1 Liquid refers to the dry solid Example 4 A certain amount of 3-bromomethyl-3-methyl propylene oxide (82. 5 g,0. 5 mol ) was added to a round bottom bottle equipped with a mechanical stirrer and condenser. In the same order, methylphenol (31. 04 g,0. 25 mol) and 25 g of water were added to the flask. Will be tetrabutylammonium bromide (8. 0 g,0. 025 mol) was slowly added to the resulting mixture. Next, the mixture was heated to 75 ° C and potassium hydroxide was added dropwise (35. 5 g in 50 g of water). The resulting mixture was heated at 80 ° C for 18 hours. The mixture was cooled to room temperature and filtered, then diluted with water and extracted with dichloromethane. After evaporating the dichloromethane, it can produce 42.  Lg crude product, and then the crude product is recrystallized from hot hexane to give 3 1. 7 g pale yellow solid, methyl benzene phenol propylene oxide (MeHQ 〇 x). Example 5 A master batch containing no catalyst was prepared according to the following procedure. Compatibilized and passivated cerium oxide, MeHQOx (prepared in Example 4), MHHPA and glycerin were added to a round bottom flask, and a mixture was added to form a homogeneous solution. Then, the solvent was removed by a rotary evaporation method -62 - 200811237 (which included: heating at 90 ° C and full vacuum for 30 minutes after the time when the removal of the solvent was observed by the naked eye was observed). Table 4 illustrates formulations that can be used to prepare stock solutions. Table 4: stock solution formulation composition weight (g) solid % compatibilized and passivated cerium oxide (in methoxypropanol) 11. 36 26. 4 MeHQOx 5. 09 MHHPA 5. 84 continued glycerin 1. 07 - Final composition 15. 00 20. 0 Example 6 A catalyst (tetraphenylphosphonium bromide, TPPB) was blended into the stock solution prepared in Example 5. Table 5 shows the formulations used to prepare the final composition. Samples 8 and 9 were degassed and transferred to the injection needle and their B-stage and curing properties were measured. Table 5: Catalyst-containing formulation Final material composition Sample 8 Sample 9 Stock solution (g) 4 4 TPPB (g) 0. 17 0. 257 % by weight of catalyst 4. 3% 6. 4% by weight of the feed 20. 0% 20. 0% Example 7 The glass phase transition temperature (Tg), curing kinetics, and viscosity of liquid samples 8 and 9 were tested. The Tg and curing kinetics were determined by differential scanning calorimetry (-63-200811237 DSC) by heating at a heating rate of 30 ° C / min. The DSC curve shows two different exotherms centered around ll 〇 ° C and 240 ° C, as shown in Figure 1. The initial exotherm (DSC cure 1) is attributable to the B-stage reaction (alcoholization of the anhydride), while the second exotherm (DSC cure 2) represents the bulk resin cure (cure of the propylene oxide resin). Table 6: Viscosity, Tg and Curing Line Properties of Liquid Samples Sample 8 Sample 9 Room Temperature Viscosity (cPs) 2610 2680 Tg (DSC, .C) 71 74 DSC Curing 1 Start (°C) 77 74 DSC Curing 1 Peak (°C) 110 107 Heat of Reaction 1 (J/g) 48 43 DSC Curing 2 Start (°C) 187 181 DSC Curing 2 Peaks (°C) 243 236 Heat of Reaction 2 (J/g) 171 162 Dorsal Example 8 By heating the liquid samples 8 and 9 at 1 ° C for 2 hours, they were B-staged to produce a hard finger-dried dry film. The B-stage hardness of the two films was measured visually. The curing characteristics of the B-stage sample were tested by heating at a heating rate of 30 ° C / min using DSC. In the DSC analysis, only the solidification peak centered at 240 °C is left, as shown in Fig. 2. Further, the reaction enthalpy of this peak was equal to that measured from the liquid-solidified sample (Example 7). During the B-stage, no overall resin cure occurred. -64 - 200811237 Table 7: Curing properties of B-stage samples. Test] Implicit sample 8 Sample 9 B-stage nature of solid solid DSC curing after heating for 2 hours at loot: (it) One-by-one DSC curing 1 Peak (°C)-reaction heat 1 (J/g) _ DSC curing 2 start (°C) 182 176 DSC curing 2 peaks (°C) 239 229 Reaction heat 2 (J/g) 155 151 A substance, component or ingredient that is present prior to first contact with one or more other substances, components or ingredients in accordance with the present disclosure, formed, blended or mixed at the reaction site. A substance, component or component identified as a reaction product, resulting in a mixture or analog thereof, may be obtained by chemical reaction or conversion reaction during contact, reaction site formation, blending or mixing operations to obtain properties or The identification of the characteristics is carried out according to the disclosure of the present invention, the application of common sense, and the ordinary techniques of the art (for example, a chemist). The reaction of the chemical reactant or starting material into a chemical product or a reaction of the final material continues, regardless of its rate of occurrence. Therefore, since the conversion process is in progress, there will be a mixture of the starting material and the final material, as well as the intermediate species; depending on the kinetic lifetime, it is currently known by the art. Analytical techniques, detection of starting materials, final materials, and intermediate species can be easy or difficult. In the context of this specification or the patent application, the reactants or constituents referred to by the chemical name or chemical formula -65-200811237 (whether in singular or complex, are identified as being in the chemical or chemical species) The reactant, or solvent, prior to contacting, the chemical changes, transitions, or reactions (if any) that occur within the mixture, solution, or reaction medium that have occurred, intervening species, stock solutions, and the like, and Their utilization of the product or the utilization of the final product. Other subsequent variations may be made by bringing together the special components or components under the conditions required by the present disclosure. In such conversions or reactions, the reactants that are brought together are identified or expressed as reaction products or final materials. The foregoing embodiments are illustrative of certain features of the invention. The scope of the invention is intended to be construed as the invention. Accordingly, Applicant's intent is that the dependent application-selected embodiments are limited to the features of the invention as illustrated. As used herein, "contains" and its grammatical variants, including variations and different phrases, such as, for example, are "substantially composed of ------" and " By - where necessary, ranges have been provided, and their ranges have sub-ranges. Variations of such ranges are well known to those of ordinary skill, and in the case of the general public, Affiliated patent applications should cover that their technological advances can be made at the time of the inaccurate speech (eg, when they are mentioned. The initial or transitional results obtained can be considered neutral to be different from the reaction). The conversion, or reaction, of the reactants and subsequent changes, sub-compositions, or components may be included in the accompanying application, and the scope of the system selected in this document is not covered by the scope of the patent application, for example (but not in- -----Composed between the coverage of the coverage is not intended to be presented to the mutation. Scientific and unpredictable -66 - 200811237 Equals and substitutions; such variations should be covered by the scope of the attached application [Simplified BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a differential scanning calorimetry thermogram of a composition according to the system of the present invention. Fig. 2 is a differential scanning calorimetry thermogram of a composition according to the system of the present invention.

Claims (1)

200811237 十、申請專利範圍 1.一種經塡充的組成物,其包含: 塡料; 第一種可固化的物質,包含醇及酐,以及 ~ 第二種可固化的物質,且在第一個溫度(Td下,第 « —種可固化的物質會固化,而第二種可固化的物質則具有 小於5 0 %的轉化率。 φ 2.如申請專利範圍第1項之經塡充的組成物,其中在 高於第一個溫度(Ti )的第二個溫度(τ2)下,第二種可 亂化的物質會固化。 3 .如申請專利範圍第1項之經塡充的組成物,其中該 醇包含一或多個羥基官能基團,且 該酐包含一或多個環狀酐官能基團; 其中該酐會在第一個溫度下與該醇反應,而使組成物 的數平均分子量增加。 φ 4.如申請專利範圍第1項之經塡充的組成物,其中該 塡料包含選自下列一或多者的複數粒子:熱導粒子、電絕 緣粒子、或導電粒子。 5. 如申請專利範圍第4項之經塡充的組成物,其中該 * 熱導粒子包含下列一或多者:矽物質、碳物質、金屬水合 物、金屬氧化物、金屬硼化物、或金屬氮化物。 6. 如申請專利範圍第4項之經塡充的組成物,其中該 電絕緣粒子包含下列一或多者:矽物質、金屬水合物、金 屬氧化物、金屬硼化物、或金屬氮化物。 -68- 200811237 7·如申請專利範圍第4項之經塡充的組成物,其中該 導電粒子包含下列一或多者:金屬、半導性物質、碳物質 、或導電性聚合物。 8 ·如申請專利範圍第1項之經塡充的組成物,其中該 塡料包含相容化(compatibilized )及鈍化(passivated ) 的二氧化矽。 9·如申請專利範圍第2項之經塡充的組成物,其還包 含觸媒,其中該觸媒能夠催化第二種可固化物質回應第二 個溫度但非回應第一個溫度所發生的固化反應。 1〇·如申請專利範圍第1項之經塡充的組成物,其中 所存在之塡料的量係大於該經塡充之組成物的約1 0重量 %。 1 1 ·如申請專利範圍第1項之經塡充的組成物,其中 當所存在之塡料的量大於經塡充之組成物的約1 〇重量% 時,該經塡充之組成物的室溫黏度係小於約2Ό000厘泊。 12.如申請專利範圍第1項之經塡充的組成物,其中 該經塡充的組成物於約20°C至約175°C範圍內的溫度下, 在大於約1天的期間係安定的。 1 3 .如申請專利範圍第1項之經塡充的組成物,其中 未固化之經塡充的組成物具有足夠低的黏度,而可流動至 晶片及基板之反面所界定的空間內。 I4·如申請專利範圍第1項之經塡充的組成物,其中 該經塡充的組成物包括少於1重量%的溶劑。 1 5 · —種底膠材料,其包含申請專利範圍第1項之組 -69- 200811237 成物。 16·如申請專利範圍第15項之底膠材料,其還包含硬 化劑、反應性稀釋劑、或同時包含硬化劑及反應彳生稀釋齊g 〇 17.如申請專利範圍第15項之底膠材料,其中第—種 可固化的物質於第一個溫度(T 1 )(在約7 5 t至約丨5 〇。〇 範圍內)下固化;且 第二種可固化的物質在第一個溫度(Tl)下的固化或 交聯係小於10%;且該第二種可固化的物質係於高於15〇 °C的第二個溫度(Τ2 )下固化。 1 8 · —種固化的底膠層,其包含申請專利範圍第1 7項 之底膠材料。 19.如申請專利範圍第18項之固化的底膠層,其中該 固化的底膠層具有之熱膨脹係數係小於約5 0 ppm/ °C。 20·如申請專利範圍第18項之固化的底膠層,其中該 固化的底膠層具有大於約2000 MPa (百萬巴)的模數。 2 1 .如申請專利範圍第1 8項之固化的底膠層,其中該 固化的底膠層具有大於約0.001歐姆•公分的電阻率。 22. 如申請專利範圍第18項之固化的底膠層,其中該 固化的底膠層在大於約80%的溼度及高於約8〇°C的溫度 下係呈安定的。 23. 如申請專利範圍第18項之固化的底膠層,其中第 一種可固化的物質在固化前、固化期間或固化後,所產生 的氣體量不足以形成肉眼可察覺的空洞。 -70- 200811237 24. 如申請專利範圍第18項之固化的 二種可固化的物質在固化前,和與其接觸 的界面接觸。 25. —種物件,其包含: 晶片; 基板;以及 配置於該晶片及基板之間的底膠材料 其中該底膠材料包含一種組成物,其 一種可固化的物質(包含醇及酐)、以及 物質;且在第一個溫度(T!)下,第一種 固化,而第二種可固化的物質則不會固化 2 6.如申請專利範圍第25項之物件, 固化形成固化的底膠材料,且該固化的底 片固定於基板上。 27.如申請專利範圍第26項之物件, 至基板的電性內連線,其係被該固化的底 援,以預防熱循環疲勞。 2 8 .如申請專利範圍第27項之物件, 不含鉛的。 29.—種方法,其包含: 製備一可B階化的組成物,該組成物 塡料; 第一種可固化的物質,包含醇及酐; 第二種可固化的物質;且在第一個溫 底膠層,其中第 的基板形成連續 包含:塡料、第 第二種可固化的 可固化的物質會 〇 其中該底膨材料 膠層係用來將晶 其還包含由晶片 膠層功能性地支 其中該內連線係 包含: 以及 度(T i )下,第 -71 - 200811237 一種可固化的物質會固化,而第二種可固化的物質則 小於50%的轉化率; 令一基板與該可B階化的組成物接觸; 令一電路裝置與該可B階化的組成物接觸;以及 令該可B階化的組成物固化。 3 0.如申請專利範圍第29項之方法,其中配置該可B 階化的組成物,使其與電路裝置之表面接觸的方法包含: 將該可B階化的組成物配置於晶圓的表面; 將該可B階化的組成物加熱至第一個溫度,使第一種 可固化的物質固化至B階;以及 將該晶圓切割形成一或多個電路裝置。 -72-200811237 X. Patent application scope 1. A compounded composition comprising: a dip; a first curable substance comprising an alcohol and an anhydride, and a second curable substance, and in the first Temperature (Td, the «th curable substance will solidify, while the second curable substance has a conversion of less than 50%. φ 2. The compounded composition of claim 1 The second repulsable material is solidified at a second temperature (τ2) above the first temperature (Ti). 3. The composition of the invention as claimed in claim 1 Wherein the alcohol comprises one or more hydroxyl functional groups, and the anhydride comprises one or more cyclic anhydride functional groups; wherein the anhydride reacts with the alcohol at the first temperature, and the number of constituents The average molecular weight is increased. φ 4. The filled composition of claim 1, wherein the pigment comprises a plurality of particles selected from one or more of the following: thermally conductive particles, electrically insulating particles, or electrically conductive particles. 5. For example, the supplemental composition of claim 4 Wherein the *thermal conductive particles comprise one or more of the following: germanium, carbon, metal hydrate, metal oxide, metal boride, or metal nitride. 6. as claimed in claim 4 a composition, wherein the electrically insulating particles comprise one or more of the following: a ruthenium material, a metal hydrate, a metal oxide, a metal boride, or a metal nitride. -68- 200811237 7 · as claimed in claim 4 The additive composition, wherein the conductive particles comprise one or more of the following: a metal, a semiconducting substance, a carbon substance, or a conductive polymer. 8 · The compounded composition of claim 1 of the patent scope, Wherein the dip consists of compatibilized and passivated cerium oxide. 9. The accommodating composition of claim 2, further comprising a catalyst, wherein the catalyst is capable of catalyzing The second curable substance responds to the second temperature but does not respond to the curing reaction occurring at the first temperature. 1〇·If the compound of claim 1 is filled, the material present therein The amount is greater than about 10% by weight of the compounded composition. 1 1 · The compounded composition of claim 1 wherein the amount of the material present is greater than the composition of the supplement The room temperature viscosity of the filled composition is less than about 2 000 centipoise at about 1% by weight of the article. 12. The compounded composition of claim 1 wherein the supplemented composition The composition is stable for a period of time greater than about 1 day at a temperature in the range of from about 20 ° C to about 175 ° C. 1 3. The compounded composition of claim 1 wherein the composition is uncured The filled composition has a sufficiently low viscosity to flow into the space defined by the opposite side of the wafer and substrate. I4. The filled composition of claim 1, wherein the supplemented composition comprises less than 1% by weight of a solvent. 1 5 · A primer material comprising the group of the patent application scope -69-200811237. 16) The primer material of claim 15 which further comprises a hardener, a reactive diluent, or a hardener and a reaction twin dilution. 如 17. The primer of claim 15 a material wherein the first curable substance is cured at a first temperature (T 1 ) (within a range of from about 75 Torr to about 〇 5 〇. ;); and the second curable substance is at the first The cure or crosslink at temperature (Tl) is less than 10%; and the second curable material is cured at a second temperature (Τ2) above 15 °C. 1 8 · A cured primer layer comprising the primer material of claim 17 of the patent application. 19. The cured primer layer of claim 18, wherein the cured make layer has a coefficient of thermal expansion of less than about 50 ppm/[deg.]C. 20. The cured primer layer of claim 18, wherein the cured make layer has a modulus greater than about 2000 MPa (million bars). 2 1. A cured make layer as claimed in claim 18, wherein the cured make layer has a resistivity greater than about 0.001 ohms. 22. The cured primer layer of claim 18, wherein the cured make layer is stable at a temperature greater than about 80% and at a temperature above about 8 °C. 23. The cured primer layer of claim 18, wherein the first curable material produces insufficient amount of gas before, during or after curing to form a visually detectable void. -70- 200811237 24. The two curable materials cured as in claim 18 of the patent application are in contact with the interface in contact with them prior to curing. 25. An article comprising: a wafer; a substrate; and a primer material disposed between the wafer and the substrate, wherein the primer material comprises a composition, a curable substance (including alcohol and anhydride), and Substance; and at the first temperature (T!), the first cure, while the second curable material does not cure. 2. 6. The article of claim 25 is cured to form a cured primer. Material, and the cured backsheet is fixed to the substrate. 27. The article of claim 26, the electrical interconnect to the substrate, which is supported by the cure to prevent thermal cycling fatigue. 2 8. If the object of claim 27 is not lead-free. 29. A method comprising: preparing a B-staged composition, the composition material; a first curable substance comprising an alcohol and an anhydride; a second curable substance; and at the first a warm subbing layer, wherein the first substrate is formed continuously: the dip material, the second curable curable material, wherein the undergrowth material layer is used to crystallize the wafer layer Wherein the interconnecting system comprises: and, under the degree (T i ), a curable substance is cured, and the second curable substance is less than 50% conversion; Contacting the B-stageable composition; contacting a circuit device with the B-stageable composition; and curing the B-stageable composition. The method of claim 29, wherein the method of arranging the B-staged composition to be in contact with a surface of the circuit device comprises: arranging the B-stageable composition on a wafer Surface; heating the B-staged composition to a first temperature to cure the first curable material to the B-stage; and dicing the wafer to form one or more circuit devices. -72-
TW096127370A 2006-08-11 2007-07-26 Composition, associated method and article TW200811237A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US50352706A 2006-08-11 2006-08-11

Publications (1)

Publication Number Publication Date
TW200811237A true TW200811237A (en) 2008-03-01

Family

ID=38659762

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096127370A TW200811237A (en) 2006-08-11 2007-07-26 Composition, associated method and article

Country Status (2)

Country Link
TW (1) TW200811237A (en)
WO (1) WO2008019152A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3632964B1 (en) * 2018-10-03 2022-09-28 3M Innovative Properties Company Curable precursor of a structural adhesive composition

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19757591A1 (en) * 1996-12-24 1998-07-02 Dlw Ag Composition for production of floor and wall coverings and insulating material
US20030138650A1 (en) * 1998-03-05 2003-07-24 Omnova Solutions Inc. Polyester coetherified melamine formaldehyde copolymers
CN1377392A (en) * 1999-07-30 2002-10-30 匹兹堡玻璃板工业俄亥俄股份有限公司 Flexible coating compositions having improved scratch resistance, coated substrates and methods related thereto
US6623791B2 (en) * 1999-07-30 2003-09-23 Ppg Industries Ohio, Inc. Coating compositions having improved adhesion, coated substrates and methods related thereto
WO2003018642A1 (en) * 2001-08-23 2003-03-06 John Lyndon Garnett Preparation of polymer composites
US6852771B2 (en) * 2001-08-28 2005-02-08 Basf Corporation Dual radiation/thermal cured coating composition
US6989411B2 (en) * 2001-11-14 2006-01-24 Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) Epoxy dispersions for use in coatings
DK1507819T3 (en) * 2002-05-22 2008-05-05 Basf Constr Polymers Gmbh Use of water-soluble polymers as drying aids in the preparation of polymeric dispersants
EP1615966B2 (en) * 2003-04-02 2019-10-09 Swimc Llc Aqueous dispersions and coatings

Also Published As

Publication number Publication date
WO2008019152A1 (en) 2008-02-14

Similar Documents

Publication Publication Date Title
Li et al. Biobased epoxy resin with low electrical permissivity and flame retardancy: from environmental friendly high-throughput synthesis to properties
Han et al. A catalyst-free epoxy vitrimer system based on multifunctional hyperbranched polymer
TWI379864B (en) Combinations of resin compositions and methods of use thereof
TWI425028B (en) A compound containing silicon, a hardened composition and a hardened product
Lipic et al. Nanostructured thermosets from self-assembled amphiphilic block copolymer/epoxy resin mixtures
TW200829622A (en) Oxetane composition, associated method and article
Choi et al. Morphology and curing behaviors of phenolic resin-layered silicate nanocomposites prepared by melt intercalation
US20060147719A1 (en) Curable composition, underfill, and method
TWI332514B (en)
TW200813109A (en) Composition and associated method
TWI545154B (en) Liquid compression molding encapsulants
Hou et al. Low-dielectric polymers derived from biomass
TWI487724B (en) Coating compositions
Konnola et al. Mechanical, thermal, and viscoelastic response of novel in situ CTBN/POSS/epoxy hybrid composite system
TWI425031B (en) A compound containing silicon, a hardened composition and a hardened product
Lu et al. Cure kinetics and properties of high performance cycloaliphatic epoxy resins cured with anhydride
TW201231557A (en) Heat conductive silicone composition and cured product with excellent transparency
EP3134456B1 (en) Use of a composition of a vitrimer-type thermosetting resin for the production of electrical insulating parts
Asif et al. Hydroxyl terminated poly (ether ether ketone) with pendant methyl group‐toughened epoxy clay ternary nanocomposites: Preparation, morphology, and thermomechanical properties
TW200829639A (en) Syneretic composition, associated method and article
US20080039608A1 (en) Oxetane composition, associated method and article
Qi et al. Low dielectric poly (imide siloxane) films enabled by a well-defined disiloxane-linked alkyl diamine
TW200900451A (en) Compositions and methods for polymer composites
Zheng et al. Eugenol-based siloxane acrylates for ultraviolet-curable coatings and 3D printing
CN115943062A (en) Dual cure additive manufacturing resin for producing flame retardant objects