TW200809274A - Glare-proof polarizing film laminate and liquid crystal display comprising the same - Google Patents

Glare-proof polarizing film laminate and liquid crystal display comprising the same Download PDF

Info

Publication number
TW200809274A
TW200809274A TW096109198A TW96109198A TW200809274A TW 200809274 A TW200809274 A TW 200809274A TW 096109198 A TW096109198 A TW 096109198A TW 96109198 A TW96109198 A TW 96109198A TW 200809274 A TW200809274 A TW 200809274A
Authority
TW
Taiwan
Prior art keywords
glare
layer
film
degrees
polarizing film
Prior art date
Application number
TW096109198A
Other languages
Chinese (zh)
Other versions
TWI514016B (en
Inventor
Hirohiko Yakabe
Tsutomu Furuya
Yuuhei Inokuchi
Original Assignee
Sumitomo Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co filed Critical Sumitomo Chemical Co
Publication of TW200809274A publication Critical patent/TW200809274A/en
Application granted granted Critical
Publication of TWI514016B publication Critical patent/TWI514016B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A glare-proof polarizing film laminate having a glare-proof layer with irregularities on its surface, a linear polarizer and an optically anisotropic layer, in which the glare-proof layer has a haze of 5% or less against vertical incident light, a total reflection definition of 50% or less when the reflection definitions are measured at an incident angle of light of 45 degrees using three optical frequency combs consisting of dark lines and bright lines each having a width of 0.5 mm, 1.0 mm and 2.0 mm, a reflectance R(30) of 2% or less, a reflectance R(40) of 0.003% or less, and a ratio of R(≥60) to R(30) of 0.001 or less, each reflectance being measured against incident light entering at an incident angle of 30 degrees; the surface of the glare-proof layer consisting of Voronoi polygons with an average area of 50 to 1,500 μm2; and the optically anisotropic layer has an optically negative or positive uniaxiality and an optical axis slanting by an angle of 5 to 50 degrees from the normal direction of the layer.

Description

200809274 (1) 九、發明說明 【發明所屬之技術領域】 本發明有關一種適用於液晶顯示器等的防眩 層體及包含彼之液晶顯示器。 ”.【先前技術】 . 液晶顯示器逐漸用於攜帶式TV及筆記大小 Φ 腦等,因爲彼等具有良好的特徵,例如輕質、厚 量消耗等等。最近,該等液晶顯示器也逐漸用於 設備,例如具有大螢幕的TV等等。在例如電視 顯示螢幕的液晶顯示器的情形中,重點放在可見 是從正面看螢幕時的對比度及從斜向看螢幕時的 換言之視角問題。 傳統扭轉向列型(後文中稱之爲「TN」)液 ^ 單元中的液晶材料的預傾斜所引起的折射率各向 ❿ 有足夠的視角性質。然後,JP-A-〇6_2l4l 16提庄 型液晶顯示器的液晶單元與偏光板之間,提供具 軸性及對齊與該片狀物表面相關的歪斜方向的光 狀光學各向異性層。JP-A- 1 0- 1 863 5 6揭示由具有 性液晶態的液晶聚合物所形成之具有固定向列型 之光學補償膜,且描述經由在TN型液晶顯示器 學補償膜而放大視角。也就是說,該TN型液晶 視角係經由使用具有對齊與當作光學補償膜的膜 的歪斜方向的光學軸之光學各向異性層而改善。 偏光膜積 的個人電 度、低能 影像監看 機等用於 度,特別 對比度, 晶由於一 異性而沒 丨,在ΤΝ 有光負單 學軸之片 光正單軸 混合取向 上施加光 顯示器的 表面相關 -5- 200809274 (2) 例如液晶顯示器等的影像顯示裝置在彼等的影像顯示 幕反射外來光時將明顯喪失彼等的可見度。由此,在例如 TV、個人電腦的監視幕等之賦予影像品質和可見度重要性 的應用中,該顯示裝置的螢幕表面通常經處理以防止外來 光的反射。有關用於防止反射的手段,在例如大型個人電 - 腦、監視器、TV等等的應用中較佳爲使用防眩處理,其 . 將在表面上形成細小的不規則以散射入射光且藉以模糊反 Φ 射影像,因爲此處理在較適度的成本下進行。 有關提供此防眩性質的膜,JP-A-2002-3654 1 0揭示具 有細小的不規則形成在其上面的光學膜,其中反射光外廓 滿足當光依從法線· 1 〇度角的方向進入到該膜的表面上且 只觀察從該表面的反射光之特定關係。JP-A-2002-1 891 06 揭示包含透明樹脂膜及具有細小不規則的離子輻射可固化 樹脂層的防眩膜,其係經由固化該離子輻射可固化樹脂層 ^ 同時將該離子輻射可固化樹脂層插入浮凸模與該透明樹脂 # 膜之間以形成此細小不規則,使得三維1 0點平均粗糙度 及在三維表面粗糙度基準面的相鄰凸面部分之間的平均距 離在分別特定範圍內而形成於該透明樹脂膜表面上。 JP-A-2004-901 87揭示製造輥的方法,該輥係用於其 表面上具有細小不規則的膜之製造,該方法包含在浮凸輥 表面上形成鍍敷金屬層,鏡面硏磨該鍍敷金屬層的表面, 利用陶瓷珠噴吹該鍍敷金屬層經鏡面硏磨的轰面,及視需 要地錘打該鍍敷金屬層的步驟。 一般而言,可能必須使用具有至少1 0 %高濁度的防眩 200809274 (3) 膜來保護外來光的反射且確保充分的可見度,且將具有此 高濁度的防眩膜廣泛地用於筆記大小的個人電腦、TV等 等。然而,具有至少1 0%高濁度的防眩膜具有亮室中測到 的對比度由於其寬廣的反射-散射性質而降低的缺點。再 者,該具有高濁度的防眩膜也會降低在暗室中測到的對比 - 度也是其缺點,彼爲液晶顯示器本質上具有的缺點。 . 爲了解決那些問題,JP-A-2006-533 7 1揭示具有低濁 φ 度及特定反射外廓的防眩膜,其利用微細粒子的撞擊在經 硏磨的金屬板上形成不規則,在該金屬板的不規則表面上 無電電鍍鎳以減少不規的深度而形成模,及將該模的表面 不規則轉移至透明樹脂膜的表面而製造。JP-A-2006-535 1 1 揭示包含防眩層、線性偏光膜及光學各向異性層的防眩偏 光膜,彼等依此順序積層,其中將該防眩層分成各自具有 指定面積的領域,且說明當此防眩偏光膜被應用於TN型 ~ 液晶顯示器時,將改善該液晶顯示器的可見度。 【發明內容】 本發明之一目的在於提供具有高防眩性質及改良可見 度而不會提高濁度的防眩偏光膜。 本發明的另一個目的在於提供一種液晶顯示器,其包 含根據本發明的防眩偏光膜且具有充分防眩性質還有良好 顯示特性的液晶顯示器。 本發明係以JP_A-2006_53511的防眩偏光膜積層體爲 基礎,其包含依下列順序積層的防眩層、線性偏光膜及光 200809274 (4) 學各向異性層,將具有JP-A-2006-5 3 3 7 1所揭示的改良反 射外廓之防眩膜應用於該防眩偏光膜積層體。接著,進行 不同硏究以進一步改良此防眩偏光膜積層體的防眩性質。 結果,據發現當防眩偏光膜積層體具有線性偏光膜之一表 面上所提供之具有特定表面形狀及特定光學特性的防眩層 葬 及該線性偏光膜之另一個表面上所提供之具有自該層的法 . 線方向傾斜的光學軸之各向異性層時,該防眩偏光膜積層 φ 體將具有低濁度,且當此防眩偏光膜積層體應用於液晶顯 示器時,將可進一步改善該顯示器的對比度。接著,本發 明經過進一步硏究之後已經完成。 因此,本發明提供一種防眩偏光膜積層體,其包含在 表面上具有細小不規則之防眩層、線性偏光膜及光學各向 異性層,彼等係依此順序積層,其中 該防眩層具有對垂直入射光爲5%或更小的濁度、當 使用由各自具有0.5 mm、1.0 mm及2.0 mm寬度的暗線和 φ 亮線所組成的三種光頻梳在45度光入射角下測量反射清 晰度時爲50%或更小的總反射清晰度、對30度入射角進 入的入射光具有2 %或更小之3 0度反射角下的反射率R ( 3〇)、對40度入射角進入的入射光具有0.003%或更小之 40度反射角下的反射率R(40)、及0.001或更小之R( 2 60 )對R ( 30 )的比例,其中R ( > 60 )爲對30度入射 角進入的入射光在60度或更大反射角下任意方向的反射 率; 該防眩層表面由具有50 μηι2至1,500 μπι2,較佳爲 -8- 200809274 (5) 3 00μιη2至1,〇〇〇μπι2的平均面積之多邊形所組成,其中該 等多邊形係藉由作爲母點的表面不規則之凸面部分的頂點 之芙諾分割所形成;以及 該光學各向異性層具有光負或光正單軸性及自該層的 法線方向傾斜5至5 0度角的光學軸。 ^ 在本發明的防眩偏光膜積層體中,該防眩層有利地由 . 表面上具有細小不規則的樹脂膜所組成,該樹脂膜之製備 φ 係經由微細粒子的撞擊在經硏磨的金屬板上形成不規則, 在該金屬板的不規則表面上經無電鍍敷鎳以形成模,將該 模的表面不規則轉移至透明樹脂膜的表面,並自該模移除 該樹脂膜。在此,該透明樹脂膜可爲UV可固化樹脂或熱 塑性樹脂的膜。 再者,本發明提供一種液晶顯示器,其包含液晶單元 ,該液晶單元包含一對電極基板及夾在該等電極基板之間 ’ 的ΤΝ型液晶,以及置於該液晶單元之兩個表面上的偏光 # 板,其中置於顯示器表面側上的偏光板係由本發明的防眩 偏光膜積層體所組成,放置該防眩偏光膜積層體使其光學 各向異性層側面向該液晶單元。 儘管防眩偏光膜積層體的表面上具有細小不規則以達 到防眩性質,但是本發明的防眩偏光膜積層體具有低濁度 。當防眩偏光膜積層體應用於液晶顯示器,特別是,經由 控制ΤΝ型液晶的取向狀態而顯示影像的液晶顯示器時, 本發明的防眩偏光膜積層體將可達到高對比度。再者,根 據本發明的液晶顯示器具有高防眩性質,也可達到高對比 -9- 200809274 (6) 度,因此其優於顯示影像的亮度及可見度。 【實施方式】 本發明將對照隨附的圖形來說明。 參照第1圖,本發明的防眩偏光膜積層體1 0包含防 - 眩層1 1、線性偏光膜30及光學各向異性層40,彼等係依 . 此順序積層在頂部。該防眩層1 1具有其上面形成細小不 φ 規則的防眩表面,對垂直入射光爲5%或更小的濁度,當 使用由各自分別具有0.5 mm、1.0 mm及2.0 mm寬度的暗 線和亮線所組成的三種光頻梳在45度光入射角下測量反 射清晰度時爲50%或更小的總反射清晰度,對30度入射 角進入的入射光具有2%或更小之30度反射角下的反射率 R ( 30 ),對40度入射角進入的入射光具有0.003 %或更 小之40度反射角下的反射率R( 40),及0.001或更小之 " R ( 2 60 )對R ( 30 )的比例,其中R ( 2 60 )爲對30度 • 入射角進入的入射光在60度或更大反射角下任意方向的 反射率;且該防眩層表面由具有50 μιη2至1,500 μηι2,較 佳爲300 μπι2至1,000 μιη2的平均面積之多邊形所組成, 其中該等多邊形係藉由作爲母點的表面不規則之凸面部分 的頂點之芙諾分割所形成。該光學各向異性層40具有光 負或光正單軸性及自該層的法線方向傾斜5至5 0度角的 光學軸。 現在,說明該防眩層1 1。該防眩層1 1較佳爲經由下 列說明的方法來製造,且具有細小不規則形成在其上面的 • 10 - 200809274 (7) 防眩表面,及對該垂直入射光之5%或更小的濁度。儘管 該防眩層11的表面上具有細小不規則’但是當其應用液 晶顯示器時,其將具有低濁度且由此其可抑制對比度的降 低。 該防眩層11具有對於45度入射光之50%或更小的總 - 反射清晰度。該反射清晰度可藉由JIS K 7105所述的方法 . 來測量。在此JIS K 7105的方法中,定義且使用由各自具 H 有0.125 mm、0·5 mm、1·0 mm及2.0 mm寬度之暗線和亮 線(暗線寬度與亮線寬度的比例爲1 : 1 )所組成的四種光 頻梳。在本發明中,在使用四種光頻梳來測量的反射清晰 度中,並未將使用具有0.125毫米的寬度之光頻梳所獲得 者加至總和,因爲就使用根據本發明的防眩膜而言此光頻 梳所獲得的反射清晰度太小以致測量値具有較大的誤差。 由此,在本發明中,該總反射清晰度爲使用由各自具有 秦 0.5毫米、1.0毫米及2.0毫米的寬度的暗線及亮線所組成 • 的三種光頻梳測得的反射清晰度總和。由此,根據上述定 義的總反射清晰度可能的最大値爲300%。當該總反射清 晰度超過50 %時,例如光源影像等的影像將被反射以致本 發明的防眩偏光膜積層體之防眩性質變差。 當該總反射清晰度爲50%或更小時,可能難以僅從該 總反射清晰度來評估該防眩性質的優越性,因爲若該總反 射清晰度爲50%或更小時,使用由各自具有0.5 mm、1.0 mm及2.0 mm寬度之三種光頻梳測得的各自反射清晰度爲 至多約1 0至20%,所以無法忽略測量誤差造成的反射清 -11 - 200809274 (8) 晰度波動。 接著’參照第2及3圖來說明反射率對反射角的依賴 度’其係當作用於評估防眩性質的另一個標準。第2圖爲 顯示與防眩層(防眩膜)相關的光入射方向與反射方向的 槪要透視圖。根據本發明,當R ( 3 0 )定義成相對於從該 一 防眩層1 1的法線1 5的3 0度角下進入的入射光1 6,依3 0 - 度反射角方向,也就是說,反射方向17,的反射光的反射 φ 率時R ( 3〇 )爲2%或更小。該反射率R ( 30 )較佳爲 1.5%或更小,更佳地〇·7%或更小。當該反射率R(30)超 過2%時’該防眩層可能不具有充分的防眩性質以致該顯 示器的可見度降低。在第2圖中,在任意角Θ下的反射光 方向以編號1 8來表示,且在反射率測量時該反射光的方 向1 7及1 8存在於包括該入射光的方向1 6及該膜的法線 1 5之平面1 9中。 " 第3圖爲描繪與從第2圖的防眩層1 1法線1 5 3 0度 • 角下進入的入射光16相關的反射光18之反射率,對該反 射角度的圖形的例子。顯示反射率與反射角的關係之圖形 ,或從各自反射角的圖形讀取的反射率係稱爲「反射外廓 」。如第3圖所示,該反射率R ( 3 0 )爲與在3 0度角下 進入的入射光16有關的反射率峰値,且反射率傾向隨反 射方向偏離該反射方向而降低。 根據本發明,當R ( 40 )定義成相對於從第2圖所示 的防眩層1 1的法線1 5的30度角下進入的入射光1 6,依 40度反射角方向的反射光反射率時R( 40)爲0.003%或 -12- 200809274 (9) 更小。當R ( 40 )超過0.0 03 %時,該顯示影像傾 由此,R ( 4 0 )較佳爲不那麼大。當R ( 4 〇 )太小 防眩層可能沒有充分的防眩性質。由此,R ( 40 ) 至少0.00 005%。然而,要嚴密測定R ( 40 )的較仓 當困難,因爲反射或變白係以眼睛及反映使用者偏 ^ 性主觀地判定。 - 再者,根據本發明,R ( 2 60 )對R ( 30 )的 φ 0.001或更小,其中R(2 60)爲在60度或更大反 任意方向的反射率。此比例較佳爲〇』〇〇5或更小 地0.000 1或更小。在此,「在60度或更大反射角 方向」意指介於60度與90度之間的範圍之反射角 所述的方法所製造的防眩膜具有第3圖所示的典型 廓,且在此防眩膜的情形中,該反射率經常具有依 向的峰且隨著該反射角增加而逐漸降低。因此,富 Γ 6 0 ) /R ( 3 0 )比例可藉由 R ( 6 0 ) /R ( 3 0 )來表示 φ R ( 60 )爲60度反射角下的反射率。當R ( 2 60 ) )比例超過0.001時,該防眩層將見到白色以致顯 可見度變差。也就是說,當顯示幕上顯示黑色影像 該螢幕前面提供該防眩層時,整個螢幕將見到反射 的白色。 在第3圖所示的反射外廓情形中,該反射率R 爲約 0.4%,R ( 40 )爲約 0.0006%,且 R ( 60 0.00 0 03% ° 除了上述的特定反射外廓之外,根據本發明的 變白。 時,該 較佳爲 範圍相 好的特 比例爲 射角之 ,更佳 之任意 。下文 反射外 反射方 ^ R ( > ,其中 /R ( 30 示幕的 加上在 外來光 (30) )爲約 防眩層 -13- 200809274 (10) 表面由具有50 μιη2至1,500 μιη2,較佳爲3 00 μιη2至 1,000 μπι2,平均面積之多邊形組成,其中該等多邊形係 使用表面不規則的凸面部分的頂點當作母點而芙諾分割該 表面所形成。 將說明的是用於測定防眩層不規則表面的凸面部分頂 - 點的演繹法。當注意力集中在該防眩層表面上的一個任意 . 點時,若該任意點周圍沒有比該任意點更高的高度,且該 φ 不規則表面上的任意點高度比該不規則表面上的最高點高 度及最低點高度之間的中間値更高時,該任意點即爲該凸 面部分的頂點。具體而Η,如第4圖所示,在防眩層表面 上挑選任意點8 1。使用該點8 1當作與該防眩層的基底平 面83平行的平面內的圓中心來描繪半徑2 μιη至5 μπι的 圓。當沒有比經由投影在該防眩層的表面83上所描繪的 圓84中的點8 1的高度高的點,且該點8 1的高度比該不 卜 規則表面上的最高點高度和最低點高度之間的中間値高時 φ ,將該點81判定爲該凸面部分的頂點。在此情形中,投 影的圓84具有未將樣品表面上的微細不規則計入的半徑 ,且該圓84並不包括多個凸面部分。由此,該圓8 4的半 徑較佳爲約3 μηι。經由上述的方法,也可計數該不規則 表面每單位面積的凸面部分數目。 爲了達到良好可見度而不會引起反射或變白,上述方 法所計數的凸面部分數目較佳爲在2 0 0 μ m X 2 0 0 μ m的視 野中50至1 50個。若該防眩層不規則表面上的凸面部分 的數目少,像素干擾將產生眩光以致顯示的影像變得難以 -14- 200809274 (11) 注視,特別是當該防眩偏光膜積層體與具有高清晰度的顯 示裝置合倂使用時。再者,該顯示影像的紋理將變差。當 凸面部分的數目太多時,不規則形狀的傾斜角變得非常陡 以致該影像傾向於變白。在200 μιηχ200 μιη的視野中的凸 面部分的數目較佳爲120個或更少及70個或更多。 - 現在,將說明該芙諾分割。當平面上散佈數個點(即 - ,母點)時,——圖,其可經由決定該平面上的任意點最接 φ 近的母點而分割該平面,爲芙諾圖形,且經由此圖形的平 面分割被稱爲芙諾分割。第5圖爲描述使用表面上的凸面 部分頂點當作母點而芙諾分割防眩層的表面之芙諾分割例 子。在第5圖中,點85爲母點,且包括一個母面的各自 多邊形86爲經由該芙諾分割所形成的區,且此多邊形被 稱爲芙諾區域芙諾多邊形,且後文中稱爲芙諾多邊形。第. 5圖周圍變暗的區87將在後文中說明。在該芙諾圖形中, 母點數目等於芙諾多邊形數目。簡單的說,在第5圖中, • 編號85及86分別指示一部分母點及一部分多邊形。 要計算經由使用該等凸面部分的頂點當作母點而芙諾 分割所獲得的芙諾多邊形平均面積,利用例如共焦顯微鏡 、干擾顯微鏡、原子力顯微鏡(AFM )等等的適當裝置來 觀察防眩層的表面形狀,且測定三維座標値。接著,根據 下列演繹法而芙諾分割該防眩層表面,且計算該芙諾多邊 形的平均面積。也就是說,根據上述演繹法來決定防眩層 的不規則表面,接著在該防眩層基底平面上投影凸面部分 的頂點。之後,將所有經由表面形狀測量所獲得的三維座 -15- 200809274 (12) 標投影在該基底平面上,且將所有的投影點指定給最接近 的母面而進行該芙諾分割。計算所有芙諾多邊形的面積且 予以平均以獲得該芙諾多邊形的平均面積。在此測量中’ 不把毗鄰測量視野邊界的芙諾多邊形面積算入以使誤差降 至最低。也就是說,在第5圖的情形中,平均面積的計算 一 中並不包括測量視野邊界附近變暗的芙諾多邊形8 7。此外 - ,爲了使測量誤差降至最低,較佳地,在各自具有200 φ μπι X 200 μπι的視野之至少三個視野內計算該芙諾多邊形 的平均値,且再將所有平均値予以均勻並當作測量値。 如上所述,在本發明中,具有充當母點之防眩層不規 則表面上的凸面部分頂點之芙諾多邊形的平均面積爲50 μπι2 至 1,5〇〇 μπι2,較佳爲 300 μιη2 至 1,〇〇〇 μπι2。當該芙 諾多邊形平均面積小於5 0 μπι2時,該防眩層表面不規則 的形狀傾斜角度將變得非常陡峭以致影像變白。當該芙諾 • 多邊形的平均面積超過1,500 μπι2時,該防眩層的不規則 • 表面將變得粗糙,以致產生眩光且影像的紋理變差,特別 是當該防眩偏光膜積層體與高清晰度的顯示裝置合倂使用 時。 使用在此測得的三維座標,可計算斷面曲線的算術平 均高度Pa及最大斷面高度Pt,彼等係藉由JIS Β 0601 ( =1 SO 42 87)來定義。再者,可以矩形圖的方式描述在該 防眩層不規則表面上的各自點高度。爲了達到良好的可見 度而不會引起反射或變白,該斷面曲線的算術平均高度Pa 較佳爲0.0 8 μ m至0.1 5 μ m,且該最大斷面高度P t較佳爲 -16- 200809274 (13) 0.4 μηι至0.9 μπι。當該算術平均高度Pa小於〇·〇8 μπι時 ,該防眩層的表面實質上爲平坦的以致其沒有防眩性質。 當該算術平均高度Pa超過0·15 μπι時,該防眩層的表面 形狀將變得粗糙,以致引起例如變白及眩光等的問題。當 該最大斷面高度Pt小於0.4 μπι時,該防眩層的表面又再 - 實質上變平的以致其沒有防眩性質。當該最大斷面高度Pt . 超過〇. 9 μ m時,該防眩層的表面形狀又再變得粗糙,以 φ 致引起例如變白及眩光等的問題。 當以矩形圖的方式描述該防眩層不規則表面上的點高 度時,該矩形圖的峰較佳爲存在該不規則表面上的最高點 高度(100%高度)與最低點高度(0%高度)之間的中間 値(50%高度)±20%範圍內。這意指該矩形圖的峰較佳爲 存在最高點高度與最低點高度的高度差之30%與70%之間-的範圍內。若該峰不存在該中間値的±20%範圍內,換句話 • 說,該峰存在該最高點高度之大於70%或小於30%的範圍 φ 中,該防眩層的表面形狀將變得粗糙,以致眩光傾向不欲 地發生。此外,外觀的紋理傾向變差。 爲了描述該等高度的矩形圖,測定該防眩層(防眩膜 )表面上的高度最高和最低點,然後以各自測量點高度和 最低點高度的差異(即測量點高度)除以最高點高度與最 低點高度的差異(即最大高度差)而獲得各點的相對高度 。接著’利用最高高度爲100%且最低高度爲〇%的矩形圖 來描述所得的相對高度而獲得該矩形圖中各自點的峰位置 。該矩形圖應分割成數段以避免數據錯誤的影響,且一般 -17- 200809274 (14) 而言其係分成約1 0至約30段。舉例來說,以5%間距分 割從最低點(0%高度)至最高點(100%高度)的間隔, 且測定該峰的位置。 組成具有上述特徵的防眩層之防眩表面具有被實質上 沒有平坦平面的不規則所覆蓋的形狀。具有此表面形狀的 - 防眩表面可有利地經由利用微細粒子撞擊而在硏磨金屬板 . 上形成不規則,在該金屬板的不規則表面上無電鍍敷鎳以 φ 形成模,將該模的表面不規則轉移至透明樹脂膜的表面, 並自該模移除具有經轉移的不規則之透明樹脂膜而製得。 經由對照第6圖來說明上述方法來製造防眩層(防眩 膜)的較佳方法,其槪要地顯示使用金屬板當作模本體將 該模的不規則轉移至該樹脂膜而製得其表面上具有不規則 的模之步驟的斷面圖。第6A圖顯示經鏡面硏磨之後該金 屬板21的斷面,其具有經硏磨的表面22。利用微細粒子 ’ 撞擊(或噴吹)該金屬板21的經硏磨的表面22而在該表 # 面22上形成不規則。第6B圖槪要地顯示經撞擊之後該金 屬板2 1的斷面,其具有半球形細小凹面部分23。接下來 ,利用鎳無電鍍敷具有撞擊所形成的不規則之表面以滅小 該等不規則的深度。第6C圖槪要地顯示經鎳的無電鍍敷 之後該金屬板21的斷面。在第6C圖中,在具有細小凹面 部分的金屬板2 1表面上形成鍍鎳層24,且該鍍鎳層24具 有相較於第6B圖的表面26經由鎳的無電鍍敷而減小深度 的不規則’也就是說,使該金屬板表面的不規則形狀變鈍 。由此,當該金屬板2 1之具有半球形的細小凹面部分23 -18- 200809274 (15) 利用鎳來無電鍍敷時,可獲得實質上沒有平坦平面及適於 製造具有較佳光學性質的防眩膜的不規則之模。 第6D圖槪要地顯示將先前步驟所形成之第6C圖的模 不規則轉移至樹脂膜的步驟。也就是說,在該鍍鎳層24 的不規則表面上形成樹脂膜。藉以,獲得具有經轉移的不 * 規則形狀之膜11。該膜11可由單一熱塑性透明樹脂膜所 _ 組成。在此情形中,將加熱狀態下的熱塑性樹脂膜壓至該 φ 模的不規則表面26且經由熱壓成形。或者,如第6D圖所 示,該膜11可由透明基材膜12及積層在該基材膜12表 面上的可離子輻射固化的樹脂層1 3所組成。在此情形中 ,使該可離子輻射固化的樹脂層1 3與該模的不規則表面 26接觸且經由離子輻射照射以固化該樹脂層1 3。藉以, 將該模的不規則形狀轉移至該可離子輻射固化的樹脂層1 3’ 。這些膜將在後文中說明。第6E圖槪要地顯示從該模移 ^ 除之後的膜1 1的斷面圖。 • 在第6圖所示的方法中,用於該模的製造之金屬較佳 例子包括鋁、鐵、銅、不鏽鋼等等。彼等當中,較佳爲易 利用微細粒子撞擊而變形的金屬,也就是說,沒有太高硬 度者。特別是,較佳爲使用鋁、鐵、銅等等。就成本的觀 點來看,更佳爲鋁及軟質鐵。該模可呈平坦金屬板或圓柱 形金屬輥的形式。當使用輥狀模時,可連續製造該防眩膜 〇 利用微細粒子來撞擊或噴吹具有經硏磨表面的金屬。 特別是,該金屬較佳被硏磨成接近鏡面的狀態,因爲該金 -19- 200809274 (16) 屬板或輥經常藉由例如切削或硏磨經機械加工而達到所欲 的精確度,且藉以加工記號經常都留在金屬本體表面上。 若留下深的記號,該金屬本體的表面利用微細粒子撞擊之 後可能還有痕量的記號,因爲有些記號的深度比利用微細 粒子所形成的不規則深度大,以致痕量的深記號可能對該 ^ 防眩層的光學性質有意想不到的影響。 - 用於硏磨該金屬表面的方法並沒有限定,且機械硏磨 φ 、電解硏磨及化學硏磨之中任何者都可使用。該機械硏磨 的例子包括超精細(ultra-finishing )法、精硏、流體硏 磨法、擦光輪硏磨法等等。以中心線平均粗糙度R a來看 ,硏磨之後的表面粗糙度表爲1微米或更小,較佳爲0.5 微米或更小,更佳爲〇. 1微米或更小。當Ra太大時,變 形之前表面粗糙度的影響在利用微細粒子撞擊使金屬表面 變形之後可能還在。Ra的下限可能沒有限制,而是從加 工時間、加工成本等等的觀點可能受限。 # 以微細粒子撞擊該金屬表面的方法較佳爲噴吹處理法 。該噴吹法的例子包括噴砂法、噴九法及液體搪磨法( liquid honing)等等。有關用於這些處理法的粒子,具有 接近球形的形狀者比具有尖銳邊緣者更佳。再者,硬質材 料的粒子較佳,因爲彼等在加工以形成尖銳邊緣時並不會 破裂。滿足那些性質的瓷陶粒子的較佳例子爲球形氧化錆 粒、氧化鋁粒等等。較佳的金屬粒子的例子由鋼、不鏽鋼 等等。再者,可使用包含藉由樹脂接合劑上帶有陶瓷或金 屬粒的粒子組成。 -20- 200809274 (17) 當具有10至75 μηι,較佳爲10至35 μιη的平均粒子 尺寸之粒子,特別是,球形微細粒子當作撞擊在該金屬表 面上的微細粒子時,可製造一種防眩膜,其滿足包括在50 μηι2 至 1,500 μπι2,較佳爲 300 μηι2 至 1,000 μηι2 範圍內之 根據本發明定義的芙諾多邊形平均面積的形狀因子。有關 ' 該等微細粒子,具有均勻粒子尺寸者,也就是說,特佳爲 . 單一分佈的粒子。當該等微細粒子的平均粒子尺寸太小時 φ ,將難以滿足該金屬表面上的不規則。此外,不規則形狀 的傾向角度變得非常陡以致影像傾向變白。當該等微細粒 子太大時,該等表面不規則變得粗糙以致眩光可能發生, 且該影像的紋理可能變差。 具有上述方法所形成的不規則之金屬表面接著利用鎳 無電鍍敷以減小該等不規則的深度。深度減少的程度取決 於金屬種類、噴吹所形成的不規則的尺寸及深度等等、鍍 ^ 敷鎳的種類及厚度等等。控制深度減少程度的最重要因子 # 可爲鍍敷鎳的厚度。若該無電鍍敷鎳的厚度太小,噴吹所 形成的不規則深度等等可能無法有效地減少,以致具有從 該模轉移的不規則之防眩膜的光學性質可能無法·充分改善 。當該無電鍍敷鎳的厚度太大時,生產力將降低。由此, 該無電鍍敷鎳的厚度較佳爲約3至70 μπι,更佳爲至少5 μ m及5 0 μ m或更小。 爲了在金屬表面上形成鍍敷層,較佳爲使用可在該金 屬板或輥上形成具有巨觀均勻厚度的鍍敷層之無電鍍敷, 特別是,提供具有高硬度的鍍敷層之無電鎳鍍敷。該無電 -21 - (18) 200809274 鎳鍍敷的較佳例子包括使用含有例如硫、鎳-磷合金鍍敷 (低磷型、中磷型或高磷型)等的光澤劑之鍍敷浴的光澤 鎳鍍敷、鎳-硼合金鍍敷等等。 若使用JP-A-2002- 1 89 1 06所述的硬質鉻鍍敷’特別是 ,電解鉻鍍敷,電場傾向集中在該金屬板或輥的邊緣以致 * 中心及邊緣的鍍敷金屬厚度可能不同。因此,若經由噴吹 . 等等在該金屬板或輥整個表面上形成具有均勻深度的不規 φ 則,鍍敷的深度減小程度可能在該金屬板或輥整個表面上 隨著位置不同而變化,結果,該等不規則的深度改變。因 此,電解電鍍用於本發明中並不適宜。 再者,該硬質鉻鍍敷可形成粗糙表面且由此不適合用 於製造該防眩層的模之製造。爲了移除該粗糙表面,通常 硏磨該硬質鉻鍍敷的表面。然而,如下文說明的該鍍敷表 面的硏磨並不宜用於本發明中。 然而,本發明不包括在該無電鎳鍍敷之後,在最外表 φ 面形成薄鉻鍍敷,也就是說,所謂的閃鍍鉻,以提供表面 硬度。若進行閃鍍鉻,該閃鍍鉻層的厚度儘可能小以避免 充當底層的無電鍍敷鎳層的形狀變差,且較佳應爲3 μηι 或更小,更佳爲1 μπι或更小。 而且,本發明中不宜在如 JP-A-2004-901 87所揭示的 方式鍍敷之後硏磨該金屬板或輥。若硏磨經鍍敷的表面, 最外表面可能具有平坦部分以致該防眩層的光學性質可能 變差,且該不規則的形狀幾乎無法以良好生產力予以控制 ’因爲形成控制因子的數目將會提高。第7圖槪要地顯示 -22- 200809274 (19) 經由硏磨具有微細粒子撞擊所形成的不規則之表面而在其 上面形成平坦平面的金屬板,該等不規則的深度已被無電 鎳鍍敷減小。也就是說,第7圖相當於硏磨該鍍鎳層24 的表面之第6C圖的無電鍍敷金屬板。由於硏磨的結果, 形成在該金屬板21上的鍍鎳層24上的表面不規則26的 ^ 凸面部分的一部分被硏磨且藉以形成該平坦平面29。 . 根據本發明,使用第6C圖所示的具有形成在其表面 φ 上的不規則之模,且將該等不規則的形狀轉移至該膜1 1 的表面以形成防眩表面。在此情形中,該模的表面形狀可 經由任何傳統方法轉移至該膜表面。舉例來說,將熱塑性 樹脂膜熱壓至該模的不規則表面26以將該模的表面不規 則轉移至該樹脂膜的表面;在透明樹脂膜表面上塗佈可離 子輻射固化的樹脂,接著將未固化狀態下的可離子輻射固 化的樹脂塗層緊緊地黏到該模的不規則表面26且透過該 ' 透明樹脂膜利用離子化輻射來照射以固化該可離子輻射固 φ 化的樹脂而將該模的表面不規則轉移至經固化的可離子輻 射固化的樹脂的表面。轉移之後,如第6E圖所示從該模 移除該膜而得到該防眩膜11。就例如防止表面裂縫等的機 械強度觀點來看較佳爲使用可離子輻射固化的樹脂的後面 方法。 用於上述後面方法中的透射樹脂可爲具有實質光透明 度的任何膜。該透明樹脂的指定例子包括纖維素樹脂(例 如三乙醯基纖維素、二乙醯基纖維素、纖維素醋酸酯丙酸 酯等等)、環烯烴聚合物、聚碳酸酯、聚甲基丙烯酸甲酯 -23- 200809274 (20) 、聚楓、醚醚颯、聚氯乙烯等等。該環烯烴聚合物爲包含 充當單體之例如降冰片烯、二甲基八氫萘等等的環狀烯烴 。市面上可購得的環烯烴聚合物的例子爲ARTON (註冊 商標)(可自 JSR有限公司購得)、ZEONOR®及 ΖΕΟΝΈΧ® (二者可自ΖΕΟΝ有限公司購得)等。 - 當中,在適當溫度下將例如聚甲基丙烯酸甲酯、聚碳 . 酸酯、聚颯、醚醚颯及環烯烴聚合物等的具有熱塑性的透 φ 明樹脂膜壓著或加壓黏合至具有表面不規則的模,接著從 該模剝離藉以將該模的表面不規則轉移至該膜表面。再者 ,使用偏光板當作透明膜且該模的表面不規則可直接轉移 至該偏光板的表面。 當使用該可離子輻射固化的樹脂來轉移該模的表面不 規則時,較佳爲使用分子中具有至少一丙烯醯氧基的化合 物之聚合物。爲了提高該防眩層的機械強度,更佳爲使用 具有至少三個官能基的丙烯酸酯,也就是說,具有至少三 φ 個丙烯醯氧基的化合物。此化合物的指定例包括三羥甲基 丙烷三丙烯酸酯、三羥甲基乙烷三丙烯酸酯、丙三醇三丙 烯酸酯、季戊四醇三丙烯酸酯、季戊四醇四丙烯酸酯、二 季戊四醇六丙烯酸酯等等。爲了賦予該防眩層可撓性以便 防止該防眩層斷裂,較佳爲使用分子中具有胺基甲酸酯鍵 的丙烯酸化合物。此丙烯酸化合物的指定例爲將分子中除 了丙烯醯氧基之外具有至少一個羥基的兩個化合物分子( 例如三羥甲基丙烷三丙烯酸酯、季戊四醇三丙烯酸酯等等 )加至二異氰酸酯化合物(例如二異氰酸己二酯、二異氰 -24 - 200809274 (21) 酸甲苯二酯等等)。此外,可使用經由離子化輻射的自由 基聚合及固化的其他丙烯酸系樹脂,例如醚丙烯酸酯聚合 物、酯丙烯酸酯聚合物等等。 再者,可使用例如環氧樹脂、氧雜環丁烷樹脂等等的 可陽離子聚合之可離子輻射固化的樹脂當作固化之後賦予 - 不規則的樹脂。在此情形中,此可陽離子聚合之可離子輻 . 射固化的樹脂之一個例子可從例如1,4-雙[(3-乙基-3-氧 φ 雜環丁烷基甲氧基)甲基]苯、雙[(3·乙基-3-氧雜環丁烷 基甲氧基)甲基]醚等等的可陽離子聚合之多官能基氧雜 環丁烷化合物及例如六氟磷酸(4-甲基苯基)[4- ( 2-甲基 丙基)苯基]鎭等等的陽離子光聚合起始劑製得。 當利用UV射線的照射來固化該可離子輻射固化的丙 烯酸樹脂時,使用UV自由基聚合起始劑,其藉由UV射 線的照射產生自由基以引發聚合及固化反應。該UV射線 通常從玻璃模或透明樹脂膜那側照射。由此,從該透明樹 # 脂膜那側照射時UV射線時,使用在可見光至UV射線範 圍內引發自由基產生反應的聚合起始劑,以便在光可透過 該膜的UV射線波長範圍中引發自由基產生反應。 利用U V射線照射來引發該自由基產生反應的u V射 線自由基聚合起始劑例子包括1 -羥基環丙基苯基酮、2 -甲 基-卜[4-(甲硫基)苯基]-2·嗎啉基丙-1-酮、2-羥基-2-甲 基-1-苯基丙-1-酮等等。當該UV射線透過含有UV射線吸 收劑的透明樹脂膜來照射時,使用在可見光波長範圍中具 有吸收範圍的自由基光聚合起始劑。此起始劑的例子包括 -25· 200809274 (22) 氧化雙(2,4,6-三甲基苯甲醯基)苯基膦、氧化雙(2,6-二 甲氧基苯甲醯基)-2,4,4-三甲基苯基膦、氧化2,4,6-三甲 基苯甲醯基二苯基膦等等。 當模係呈具有表面上含細小不規則的鍍敷面之平板的 形式時,該模的不規則表面能與帶有塗佈至彼的未固化可 * 離子輻射固化的樹脂之該透明樹脂膜的層接觸使得該可離 _ 子輻射固化的樹脂的塗層緊緊黏至該模的不規則表面,接 φ 著從透明樹脂膜那側照射離子化輻射以固化該可離子輻射 固化的樹脂。之後,從該模移除該可離子輻射固化的樹脂 的固化層及該透明樹脂基材膜。藉以,該模的不規則形狀 將被轉移至該透明樹脂膜上帶有的可離子輻射固化的樹脂 固化層。 當模係呈具有其周圍表面上含細小不規則的鍍敷面之 輥的形式時,該模的不規則形狀係轉移至可離子輻射固化 ' 的樹脂,利用離子化輻射來照射該可離子輻射固化的樹脂 • 層及該透明樹脂膜的積層體,同時使該可離子輻射固化的 樹脂層與該輥形式的模周圍表面接觸,然後從該模移除該 可離子輻射固化的樹脂的固化層及該透明樹脂膜1藉以’ 該模的不規則形狀將被轉移至該透明樹脂膜上帶有的可離 子輻射固化的樹脂固化層。 該離子化輻射可爲UV射線或電子束。從處理容易性 及安全性的觀點來看,較佳爲使用該uv射線。有關該 u V射線的光源,較佳爲使用高壓汞燈、金屬鹵化物燈等 等。當透過含有UV吸收劑的透明樹脂膜來進行照射時’ -26· 200809274 (23) 特佳爲使用包括大量可見光組成部分的金屬鹵化物燈。再 者,較佳地可使用「V-燈炮」及「D-燈炮」(二註冊商標 )(可自Fusion UV Systems JAPAN有限公司購得)。該 離子化輻射強度可充分固化該可UV固化樹脂固化至一程 度使得該固化膜可自該模移除。爲了改善表面硬度,可進 • 一步從該可離子輻射固化的樹脂層那側照射該可離子輻射 . 固化的樹脂的固化層及該透明樹脂層的積層體。 φ 根據上述的方法,可製得具有5%或更小的濁度之防 眩層(防眩膜)。濁度藉由JIS K 7136來定義且經由(擴 散透射率/總光透射率)xl 〇〇 ( % )來表示。 如上所述,當使用具有其上面實質上沒有平坦平面的 細小不規則之模且將此等不規則的形狀轉移至透明樹脂膜 或該透明樹脂膜上所積層的可離子輻射固化的樹脂固化層 時,該透明樹脂膜的防眩表面將具有面實質上沒有平坦平 ' 面的細小不規則。 Φ 在本發明中,如以上對照第1圖說明的,將如上述製 造的防眩層1 1置於該線性偏光膜30的表面上,且將該光 學各向異性層40置於該線性偏光膜30另一個表面上而形 成該防眩偏光膜積層體1 〇。該線性偏光膜3 0可爲常用的 偏光膜或板,其允許依在該膜平面中相互垂直之二方向中 之一者振盪的線性偏振光通過彼,同時彼將吸收依該二方 向之另一者振盪的線性偏振光。此線性偏振膜的指定例爲 單軸拉伸的聚乙烯醇膜,其利用高二色性染料染色且利用 硼酸交聯。可使用包含充當高發色性染料的碘之碘爲底的 -27- 200809274 (24) 偏光膜或包含充當高二色性染料的有機二色染料之染料爲 底的偏光膜。該線性偏光膜可爲此等的聚乙烯醇型偏光膜 ,或具有至少其表面上具有例如三乙醯基纖維素等的透明 聚合物保護膜之聚乙烯醇型偏光膜。 置於該線性偏光膜3 0另一個表面上的光學各向異性 ~ 層40具有光負或光正單軸性及自該膜的法線方向傾斜5 - 至5 0度角的光學軸。 0 首先,說明具有光負單軸性及自該膜的法線方向傾斜 5至50度角的光學軸之光學各向異性層。「光負單軸性」 意指具有負各向異性折射率的層,也就是說,該光學軸的 的折射率小於垂直於該光學軸的平面中平均折射率。有關 該光學各向異性層40,可使用具有此負折射率各向異性及 自該膜的法線方向傾斜5至5 0度角的光學軸之層。此光 學各向異性層的較佳例子爲由,舉例來說,三乙醯基纖維 素製成的透明膜,該三乙醯基纖維素係以有機化合物,特 • 別是’ JP_A-06-214116所述之具有液晶性及盤狀分子形狀 的化合物,或沒有液晶性但是經由電場或磁場的應用而顯 示負折射率各向異性且其中光學軸的取向使其自該膜的法 線方向傾斜5至50度的化合物塗佈。該光學軸的取向可 爲單一方向的取向,或該光學軸的傾斜角從該膜表面至另 一個逐漸增加的混合取向。 具有液晶性及盤狀分子形狀的有機化合物例子包括低 或高分子量盤狀液晶’例如包含具有至少一個線性取代基 (例如院基、烷氧基、經烷基取代的苯甲醯氧基、經烷氧 -28- 200809274 (25) 基取代的苯甲醯氧基等等)輻射鍵結至彼的平面結構(例 如,三連苯、參茚并苯、苯等等)之核的液晶化合物。當 中,較佳爲在可見光範圍沒有吸收者。 具有盤狀分子結構的這些有機化合物可單獨使用,或 彼等可以彼等當中二或更多者的混合物使用或與例如聚合 • 物基質等的有機化合物混合而達到本發明所需的取向。其 _ 他的有機化合物可爲與具有盤狀分子結構的有機化合物相 φ 容,或可以光不會散射的粒子尺寸將具有盤狀分子結構的 有機化合物分散在彼內的任何化合物。具有此液晶化合物 的層及從該膜的法線方向傾斜的光學軸之纖維素樹脂爲底 的透明膜爲「WV膜」(註冊商標,可自FUJIFILM有限 公司購得),其可用於本發明中。 接下來,說明具有光正單軸性及自該膜的法線方向傾 斜5至50度角的光學軸之光學各向異性層。「光正單軸 ^ 性」意指具有正各向異性折射率的層,也就是說,該光學 φ 軸的的折射率大於垂直於該光學軸的平面中平均折射率。 有關該光學各向異性層40,可使用具有此正折射率各向異 性及自該膜的法線方向傾斜5至50度角的光學軸之層。 此光學各向異性層的較佳例子爲由,舉例來說,三乙醯基 纖維素製成的透明膜,該三乙醯基纖維素係以JP-A-1 Ο-ΐ 8 63 56 所揭 示之具 有棒狀 結構的 有機化合物, 特別是 ,具 有向列型結晶性且賦予該化合物正光學各向異性的分子結 構之化合物’或沒有液晶性但是經由電場或磁場的應用而 顯示正折射率各向異性且其中光學軸的取向使其自該膜的 -29- 200809274 (26) 法線方向傾斜5至50度的化合物塗佈。該光學軸的取向 可爲單一方向的取向,或該光學軸的傾斜角從該膜之一表 面至另一個表面逐漸增加的混合取向。具有此向列型液晶 性化合物層及自該膜的法線傾斜的光學軸之透明膜的例子 爲「NH膜」(可自NIPPON OIL有限公司購得),其可 - 用於本發明中。 . 再者,具有光正單軸性及自該膜的法線方向傾斜5至 φ 50度角的光學軸之光學各向異性層可經由沈積,在透明基 底膜上,介電質而製得,該介電質可經由真空沈積而形成 薄膜,且沈積在該透明基底膜上時顯示依相對於該基底膜 的法線歪斜的方向之正折射率各向異性。用於此目的之介 電化合物可爲無機或有機介電化合物。當中,就在真空沈 積步驟中對抗熱的安定性之觀點來看,較佳爲無機介電化 合物。該無機介電化合物的較佳例子包括例如氧化鉬( ‘ Ta203 )、氧化鎢(W03)、二氧化矽(Si02)、一氧化矽 φ ( SiO )、氧化鉍(Bi203 )、氧化鈸(Nd203 )等等,因 爲該等金屬氧化物具有良好的透明性。在該等金屬氧化物 當中,更佳爲氧化鉅、氧化鎢、氧化鉍等等,因爲彼等易 於顯示折射率各向異性且形成硬質膜。 如上所述,該防眩層1 1係積層在該線性偏光膜30之 一表面上,而該光學各向異性層40係積層在該線性偏光 膜30之另一個表面上以形成該防眩偏光膜積層體10 ( 第1圖)。在此積層步驟中,積層該防眩層1 1使經處理 而賦予該防眩性質的表面(即該不規則表面)面向外,也 -30- 200809274 (27) 就是說,此表面並非面向該線性偏光膜3 0。當該光學各向 異性層40具有在該透明基底膜上顯示折射率各向異性的 材料之層時,積層該光學各向異性層40使該透明基底膜 面向該線性偏光膜3 0。爲了積層彼等,有利的是使用例如 丙烯酸系黏著劑等具有良好透明性的黏著劑。 ' 有關可自商業上購得的積層體,有人販售由具有光負 , 單軸性及從該膜的法線傾斜5至5 0度的光學軸之光學各 φ 向異性層黏至線性偏光膜之一表面所組成的偏光板,也就 是說,由該線性偏光膜30及該光學各向異性層40組成的 積層體。此可自商業上購得的積層體之例子爲「 SUMIKARAN SRH 862A」(可自 Sumitomo Chemical 有限 公司購得)。爲了形成該防眩偏光膜積層體1 0,將該防眩 層11積層在一個表面上帶有光學各向異性層之積層偏光 板的另一個表面上,該光學各向異性層具有光負單軸性及 從該膜的法線傾斜5至5 0度的光學軸。 # 第1圖中的防眩偏光膜積層體10與一個液晶單元合 倂,該液晶單元包含夾在一對基板之間的TN液晶,以裝 配液晶顯示器。第8及9圖中顯示此液晶顯示器的例子。 在這些例子中,該液晶單元50包含夾在一對單元基板51 及52之間的TN液晶57,面向彼此的基板表面上具有個 別電極5 4及5 5。 一般而言,該液晶單元50的兩個表面上具有偏光板 。根據本發明,該等偏光板之一者,特別是,在其顯示表 面上的偏光板,換言之,由具有第1圖所示的防眩層11 / -31 - 200809274 (28) 線性偏光膜30/光學各向異性層40結構之防眩偏光膜積層 體1 〇所組成的液晶單元表面,觀看者見到的。在此情形 中,放置該偏光板使該光學各向異性層40面向該液晶單 元50。該防眩偏光膜積層體1 0的光學各向異性層40係利 用該黏著劑60黏至該液晶單元50。在該液晶單元50背面 • 側上,提供背光70且當作該液晶單元50的光源。 _ 該防眩偏光膜積層體1 〇、液晶單元5 0及背光70的裝 φ 配結構爲第8圖與第9圖中共同的,但是該液晶單元5 0 與背光70之間的結構相互不同。在第8圖的具體例中, 利用黏著劑60在該液晶單元5 0背面上提供偏光板3 5,而 第9圖中,依下列順序利用黏著劑60在該液晶單元5 0背 面上提供光學各向異性層45及偏光板35。 在該背面側上的偏光板35可爲傳統的偏光板,其允 許依在該膜平面中相互垂直之二方向中之一者振盪的線性 ^ 偏振光通過彼,但是吸收依該二方向之另一者振盪的線性 φ 偏振光。具體而言,傳統偏光板可包含單軸拉伸的聚乙烯 醇膜,其利用高二色性染料染色且利用硼酸交聯,且此膜 通常具有在其至少一個表面上的透明聚合物。第9圖所示 的背表面側上所提供的光學各向異性層45可爲具有光負 或光正單軸性及自該膜的法線方向傾斜5至50度角的光 學軸者,類似用於該防眩偏光膜積層體10的光學各向異 性層4 0。 爲了改良該視角特性及顯示特性,較佳爲也在第9圖 所示的背表面側上提供光學各向異性層45。在此情形中, -32- 200809274 (29) 包含線性偏光膜及具有光負單軸性及自該膜的法線方向傾 斜5至5 0度角的光學軸之光學各向異性層,其係黏至該 線性偏光膜之一個表面,之偏光板可以第9圖的光學各向 異性層45及偏光板35的積層板的方式使用。 _ 實施例 . 後文中,本發明將藉由下列實施例來例示,彼等不會 φ 限制以任何方式限制本發明的範圍。 實施例1 (a )模的製造 鏡面硏磨具有3 00毫米直徑的鋁輥周圍表面(根據 JIS A5056 )。接著,使用噴吹裝置(由 FUJI MANUFACTURING有限公司購得),在0.1百萬帕(表壓 ,下文中都相同)的噴吹壓力下以锆珠「TZ-SX-17」(註 # 冊商標,可自TOSO有限公司購得;平均粒子直徑:20微 米)噴吹該鋁輥經鏡面硏磨的周圍表面而在該表面上形成 不規則。將具有表面不規則的鋁輥無電光澤鍍敷鎳而獲得 金屬模。調整該等鍍敷條件而形成具有12微米厚度的鎳 層。鍍敷之後,利用β -射線膜厚計(可自 Fischer Instruments有限公司購得的「Fisher Scope MMS」)來測 量該鎳層的厚度且爲12.3微米。 (b )防眩膜的製造及評估 -33- (30) 200809274 將光固化樹脂組合物「GRANDIC 806T」(註冊商標 ,可自 DAINIPPON INK AND C Η Ε ΜIC A L S 股份有限公司 購得)溶入醋酸乙酯以獲得具有50%濃度的溶液,接著, 以5重量份的量對1 00重量份可固化樹脂的量將光聚合起 始劑「LUCILIN TPO」(可自BASF有限公司購得;化學 • 名稱:氧化2,4,6-三甲基苯甲醯基二苯基膦)加入該溶液 . 而獲得塗佈組成物。將此塗佈組成物塗佈在具有80微米 φ 厚度的三乙醯基纖維素(TAC )膜上使乾燥之後的塗層厚 度爲5微米,接著在保持於60t的乾燥器中進行乾燥3分 鐘。壓著乾燥之後的TAC膜並利用橡皮輥緊緊接觸(a ) 中製得的金屬模的不規則表面使該光固化樹脂組成物層面 向該模的鍍鎳表面。在此狀態下,以h-射線換算光量計在 20毫瓦/平方公分的強度下自該TAC膜側照射來自強度 2 00毫焦耳/平方公分的高壓汞燈的光以固化該光固化樹脂 ^ 組成物。之後,自該模移除帶經固化的樹脂層之TAC膜 • 而獲得由具有表面不規則之經固化的樹脂層及該TAC膜 的積層體組成的透明防眩膜。 使用依照 Jis K 7136的濁度計「ΗΜ·150」(可自 M u r a k a m i C ο 1 〇 r R e s e a r c h L a b 〇 r a t 〇 r y 購得)來測量該防眩 膜的濁度,且其爲0.9%。爲了測量,使用光學透明黏著 劑將該防眩膜樣品黏貼至玻璃板而不規則表面向外以防止 翹曲。 依照JIS K 7105使用影像清晰度測量儀「ICM-1DP」 (可自Suga Test Instruments有限公司購得)來測量透射 -34- 200809274 (31) 清晰度。爲了測量,使用光學透明黏著劑將該防眩膜樣品 黏貼至玻璃板而不規則表面向外以防止翹曲。接著,利用 光從背側照射該樣品(表面與玻璃板接觸),且測量透射 清晰度。結果如下: 具下列寬度的光頻梳: 透射清晰度 0.125毫米 3 1.2% 0.5毫米 2 7.9% 1.0毫米 3 2.1% 2.0毫米 5 7.0 % 加總 14 8.2%200809274 (1) Description of the Invention [Technical Field] The present invention relates to an anti-glare layer body suitable for a liquid crystal display or the like and a liquid crystal display including the same. ". [Prior Art].  Liquid crystal displays are increasingly used in portable TVs and note sizes Φ brains, etc. because of their good features, such as light weight, thick consumption, and the like. Recently, such liquid crystal displays have also been gradually used for devices such as TVs having large screens and the like. In the case of a liquid crystal display such as a television display screen, the focus is on the contrast when viewing the screen from the front and the viewing angle when viewing the screen obliquely. The refractive index enthalpy caused by the pretilt of the liquid crystal material in the conventional twisted nematic type (hereinafter referred to as "TN") liquid ^ unit has sufficient viewing angle properties. Then, between the liquid crystal cell of the JP-A-〇6_2l4l 16 liquid crystal display and the polarizing plate, a light optical anisotropic layer which is axial and aligned in a skew direction associated with the surface of the sheet is provided. JP-A-100- 863 5 6 discloses an optical compensation film having a fixed nematic type formed of a liquid crystal polymer having a liquid crystal state, and describes an enlarged viewing angle by compensating a film on a TN type liquid crystal display. That is, the TN type liquid crystal viewing angle is improved by using an optically anisotropic layer having an optical axis aligned with the skew direction of the film as the optical compensation film. The personal electric power of the polarizing film, the low-energy image monitor, etc. are used for the degree, the special contrast, the crystal is not smashed due to an anisotropy, and the surface of the light display is applied on the positive uniaxial mixed orientation of the light having a negative optical axis. Related -5 - 200809274 (2) Image display devices such as liquid crystal displays will obviously lose their visibility when their image display screens reflect external light. Thus, in applications such as TVs, monitor screens for personal computers, etc. that impart image quality and visibility importance, the screen surface of the display device is typically processed to prevent reflection of extraneous light. Regarding means for preventing reflection, it is preferable to use an anti-glare treatment in applications such as large personal electric brains, monitors, TVs, and the like.  Fine irregularities will be formed on the surface to scatter incident light and thereby blur the inverse Φ image because this process is performed at a moderate cost. Regarding the film which provides this anti-glare property, JP-A-2002-3654 10 discloses an optical film having fine irregularities formed thereon, wherein the reflected light profile satisfies the direction when the light follows the normal angle of 1 degree. It enters the surface of the film and only observes the specific relationship of the reflected light from the surface. JP-A-2002-1 891 06 discloses an anti-glare film comprising a transparent resin film and a fine irregular ion-radiation curable resin layer by curing the ion-radiation curable resin layer while curing the ionizing radiation The resin layer is interposed between the embossing die and the transparent resin # film to form such small irregularities, so that the average roughness of the three-dimensional 10 o'clock point and the average distance between adjacent convex portions of the three-dimensional surface roughness datum are respectively specified It is formed on the surface of the transparent resin film in the range. JP-A-2004-901 87 discloses a method of manufacturing a roll for the manufacture of a film having a fine irregularity on its surface, the method comprising forming a plated metal layer on the surface of the embossing roll, mirror honing the The surface of the metal layer is plated, and the mirrored surface of the plated metal layer is sprayed with ceramic beads, and the step of plating the metal layer is optionally performed. In general, it may be necessary to use an anti-glare 200809274 (3) film having a high turbidity of at least 10% to protect the reflection of extraneous light and ensure sufficient visibility, and an anti-glare film having such high turbidity is widely used. Notebook-sized PCs, TVs, and more. However, an anti-glare film having at least 10% high haze has the disadvantage that the contrast measured in a bright room is lowered due to its broad reflection-scattering property. Furthermore, the high turbidity anti-glare film also reduces the contrast measured in the darkroom, which is a disadvantage of the liquid crystal display. .  In order to solve those problems, JP-A-2006-533 7 1 discloses an anti-glare film having a low haze φ degree and a specific reflection profile, which utilizes the impact of fine particles to form irregularities on the honed metal plate, in which Electroless nickel plating on the irregular surface of the metal plate is performed by reducing the irregular depth to form a mold, and irregularly transferring the surface of the mold to the surface of the transparent resin film. JP-A-2006-535 1 1 discloses an anti-glare polarizing film comprising an anti-glare layer, a linear polarizing film and an optically anisotropic layer, which are laminated in this order, wherein the anti-glare layer is divided into fields each having a specified area And it is explained that when the anti-glare polarizing film is applied to a TN type to a liquid crystal display, the visibility of the liquid crystal display will be improved. SUMMARY OF THE INVENTION An object of the present invention is to provide an anti-glare polarizing film which has high anti-glare properties and improved visibility without increasing turbidity. Another object of the present invention is to provide a liquid crystal display comprising the antiglare polarizing film according to the present invention and having sufficient antiglare properties as well as good display characteristics. The present invention is based on the anti-glare polarizing film laminate of JP_A-2006_53511, which comprises an anti-glare layer, a linear polarizing film and an optically polarized layer of 200809274 (4) laminated in the following order, which will have JP-A-2006 An anti-glare film having an improved reflection profile disclosed in -5 3 3 7 1 is applied to the anti-glare polarizing film laminate. Next, different studies were conducted to further improve the anti-glare property of the anti-glare polarizing film laminate. As a result, it has been found that when the antiglare polarizing film laminate has an antiglare layer having a specific surface shape and a specific optical property provided on one surface of the linear polarizing film and the other surface of the linear polarizing film is provided, The law of this layer.  When the anisotropic layer of the optical axis is inclined in the line direction, the anti-glare polarizing film laminate φ body will have low haze, and when the anti-glare polarizing film laminate is applied to the liquid crystal display, the contrast of the display can be further improved. . Then, the present invention has been completed after further research. Accordingly, the present invention provides an anti-glare polarizing film laminate comprising an anti-glare layer having a fine irregularity on a surface, a linear polarizing film, and an optically anisotropic layer, which are laminated in this order, wherein the anti-glare layer Has a turbidity of 5% or less for normal incident light, and has 0 when used. 5 mm, 1. 0 mm and 2. The three optical frequency combs consisting of a dark line of 0 mm width and a bright line of φ light have a total reflection resolution of 50% or less at a reflection angle of 45 degrees, and incident light entering a 30 degree angle of incidence. The reflectance R (3〇) at a reflection angle of 30% of 2% or less, and the incident light entering the incident angle of 40 degrees has 0. The reflectance R(40) at a reflection angle of 40 degrees or less of 003% or less, and 0. Ratio of R ( 2 60 ) to R ( 30 ) of 001 or less, where R ( > 60 ) is the reflectance of incident light entering the incident angle of 30 degrees at any angle of 60 degrees or more; The surface of the anti-glare layer is composed of a polygon having an average area of 50 μm 2 to 1,500 μπ 2 , preferably -8-200809274 (5) 3 00 μιη 2 to 1, 〇〇〇μπι 2 , wherein the polygons are An optically anisotropic layer having an optically negative or optical positive uniaxiality and having an angle of 5 to 50 degrees from the normal direction of the layer; axis. In the anti-glare polarizing film laminate of the present invention, the anti-glare layer is advantageously composed of .  The surface is composed of a fine irregular resin film, and the preparation of the resin film is irregularly formed on the honed metal plate by the impact of the fine particles, and the electroless nickel is applied on the irregular surface of the metal plate. To form a mold, the surface of the mold is irregularly transferred to the surface of the transparent resin film, and the resin film is removed from the mold. Here, the transparent resin film may be a film of a UV curable resin or a thermoplastic resin. Furthermore, the present invention provides a liquid crystal display comprising a liquid crystal cell comprising a pair of electrode substrates and a ΤΝ-type liquid crystal sandwiched between the electrode substrates, and disposed on both surfaces of the liquid crystal cell A polarizing plate, wherein the polarizing plate placed on the surface side of the display is composed of the anti-glare polarizing film laminate of the present invention, and the anti-glare polarizing film laminate is placed such that the optically anisotropic layer faces the liquid crystal cell. Although the surface of the antiglare polarizing film laminate has fine irregularities to achieve antiglare properties, the antiglare polarizing film laminate of the present invention has low haze. When the antiglare polarizing film laminate is applied to a liquid crystal display, in particular, when the liquid crystal display for displaying an image by controlling the alignment state of the liquid crystal is used, the antiglare polarizing film laminate of the present invention can achieve high contrast. Furthermore, the liquid crystal display according to the present invention has high anti-glare properties and can also achieve high contrast -9-200809274 (6) degrees, so it is superior to the brightness and visibility of the displayed image. [Embodiment] The present invention will be described with reference to the accompanying drawings. Referring to Fig. 1, the anti-glare polarizing film laminate 10 of the present invention comprises an anti-glare layer 1 1 , a linear polarizing film 30 and an optically anisotropic layer 40, which are dependent on each other.  This sequence is layered at the top. The anti-glare layer 11 has an anti-glare surface on which fine irregularities are formed, and turbidity is 5% or less for normal incident light, and each has 0. 5 mm, 1. 0 mm and 2. The three optical frequency combs consisting of dark and bright lines of 0 mm width have a total reflection resolution of 50% or less when measuring the reflection resolution at a 45-degree light incident angle, and have two incident light rays entering the incident angle of 30 degrees. The reflectance R ( 30 ) at a reflection angle of 30 degrees or less of 30 degrees or less has an incident light entering the incident angle of 40 degrees. The reflectance R(40) at a reflection angle of 40 degrees 003% or less, and 0. 001 or less " R ( 2 60 ) vs. R ( 30 ), where R ( 2 60 ) is the reflection of any direction of incident light entering the angle of 30 degrees • incident angle of 60 degrees or more And the surface of the anti-glare layer is composed of a polygon having an average area of 50 μm 2 to 1,500 μm 2 , preferably 300 μm 2 to 1,000 μm 2 , wherein the polygons are irregular by surface as a mother point The vortex segmentation of the apex of the convex portion is formed. The optically anisotropic layer 40 has an optical axis of negative or optical positive uniaxiality and an angle of 5 to 50 degrees from the normal direction of the layer. Now, the anti-glare layer 11 will be described. The anti-glare layer 11 is preferably manufactured by the method described below, and has an anti-glare surface on which fine irregularities are formed, and 5% or less of the normal incident light. Turbidity. Although the anti-glare layer 11 has fine irregularities on the surface thereof, when it is applied to a liquid crystal display, it will have low haze and thus it can suppress a decrease in contrast. The anti-glare layer 11 has a total-reflection resolution of 50% or less for 45-degree incident light. The reflection sharpness can be determined by the method described in JIS K 7105.  To measure. In the method of JIS K 7105, it is defined and used by each having H. 125 mm, 0·5 mm, 1·0 mm and 2. Four optical combs consisting of a dark line of 0 mm width and a bright line (the ratio of the width of the dark line to the width of the bright line is 1:1). In the present invention, in the reflection sharpness measured using four kinds of optical frequency combs, it is not used to have 0. The gain of the 125 mm wide optical frequency comb is added to the sum because the reflection resolution obtained by the optical comb is too small to use the anti-glare film according to the present invention, so that the measurement flaw has a large error. Thus, in the present invention, the total reflection resolution is used by each having Qin 0. 5 mm, 1. 0 mm and 2. A combination of dark and bright lines of 0 mm width • The sum of the reflection resolutions measured by the three optical frequency combs. Thus, the maximum possible 値 according to the above definition of total reflection resolution is 300%. When the total reflection sharpness exceeds 50%, an image such as a light source image or the like is reflected so that the anti-glare property of the anti-glare polarizing film laminate of the present invention is deteriorated. When the total reflection resolution is 50% or less, it may be difficult to evaluate the superiority of the anti-glare property only from the total reflection resolution, because if the total reflection resolution is 50% or less, the use has 0. 5 mm, 1. 0 mm and 2. The reflection resolution of the three optical frequency combs of 0 mm width is at most about 10 to 20%, so the reflection caused by the measurement error cannot be ignored. -11 - 200809274 (8) Fluctuation fluctuation. Next, the dependence of the reflectance on the reflection angle is described with reference to Figures 2 and 3, which is taken as another criterion for evaluating the anti-glare property. Fig. 2 is a perspective view showing a light incident direction and a reflection direction associated with an antiglare layer (anti-glare film). According to the present invention, when R ( 30 ) is defined as incident light 16 entering at a 30 degree angle from the normal line 15 of the anti-glare layer 1 1 , in the direction of the reflection angle of 30 degrees, That is to say, the reflection φ rate of the reflected light in the reflection direction 17 is R (3 〇) of 2% or less. The reflectance R ( 30 ) is preferably 1. 5% or less, more preferably 7% or less. When the reflectance R (30) exceeds 2%, the antiglare layer may not have sufficient antiglare properties such that the visibility of the display is lowered. In Fig. 2, the direction of the reflected light at any corner 以 is represented by the number 18, and the directions 17 and 18 of the reflected light are present in the direction 16 including the incident light and the The normal of the film is in the plane of 1 5 . " Fig. 3 is a graph showing the reflectance of the reflected light 18 associated with the incident light 16 entering from the normal line of the anti-glare layer 1 1 of Fig. 2, the angle of the reflection angle . The graph showing the relationship between the reflectance and the reflection angle, or the reflectance read from the pattern of the respective reflection angles is called the "reflection profile". As shown in Fig. 3, the reflectance R (30) is a reflectance peak associated with incident light 16 entering at an angle of 30 degrees, and the reflectance tends to decrease as the direction of reflection deviates from the direction of reflection. According to the present invention, when R ( 40 ) is defined as incident light entering at a 30 degree angle from the normal line 15 of the anti-glare layer 1 1 shown in Fig. 2, reflection in the direction of the 40-degree reflection angle When the light reflectance is R ( 40 ) is 0. 003% or -12- 200809274 (9) Smaller. When R ( 40 ) exceeds 0. When 0 03%, the display image is tilted, and R (40) is preferably not so large. When R ( 4 〇 ) is too small, the anti-glare layer may not have sufficient anti-glare properties. Thus, R ( 40 ) is at least 0. 00 005%. However, it is difficult to closely measure the R ( 40 ) position because reflection or whitening is subjectively determined by the eye and reflecting the user's bias. Further, according to the invention, R ( 2 60 ) is φ 0 for R ( 30 ). 001 or less, where R (2 60) is a reflectance in any direction opposite to 60 degrees or more. This ratio is preferably 〇 〇〇 5 or less. 000 1 or less. Here, the "anti-glare film manufactured by the method of the angle of reflection of 60 degrees or more" means the range of the angle between 60 degrees and 90 degrees has the typical profile shown in FIG. And in the case of this anti-glare film, the reflectance often has a directional peak and gradually decreases as the reflection angle increases. Therefore, the ratio of 富 6 0 ) / R ( 3 0 ) can be expressed by R ( 6 0 ) / R ( 3 0 ) φ R ( 60 ) is the reflectance at a reflection angle of 60 degrees. When the ratio of R ( 2 60 ) ) exceeds 0. At 001, the anti-glare layer will see white so that the visibility is deteriorated. That is, when a black image is displayed on the display screen, the anti-glare layer is provided on the front of the screen, and the entire screen will see a reflected white color. In the case of the reflection profile shown in Fig. 3, the reflectance R is about 0. 4%, R ( 40 ) is about 0. 0006%, and R (60 0. 00 0 03% ° In addition to the specific reflection profile described above, whitening in accordance with the present invention. Preferably, the specific ratio of the range is preferably an angle of incidence, more preferably any. The reflection of the external reflection square ^ R ( > , where /R ( 30 of the curtain added to the external light (30)) is about anti-glare layer -13 - 200809274 (10) The surface has from 50 μηη 2 to 1,500 μηη2 Preferably, it is a composition of a polygon of an average area of 300 ιη 2 to 1,000 μπι 2, wherein the polygons are formed by using the vertices of the irregularly convex portions as the mother points and voicing the surface. A deductive method for determining the top-point of a convex portion of an irregular surface of an anti-glare layer. When attention is focused on an arbitrary surface of the anti-glare layer.  At the point, if there is no higher height around the arbitrary point than the arbitrary point, and the height of any point on the irregular surface of the φ is higher than the middle point between the highest point height and the lowest point height on the irregular surface At this point, the arbitrary point is the vertex of the convex portion. Specifically, as shown in Fig. 4, any point 81 is selected on the surface of the anti-glare layer. A circle having a radius of 2 μm to 5 μm is drawn using the point 81 as a center of a circle in a plane parallel to the base plane 83 of the anti-glare layer. When there is no point higher than the height of the point 81 in the circle 84 drawn on the surface 83 of the anti-glare layer, and the height of the point 81 is higher than the highest point on the irregular surface The middle 値 height φ between the point heights is determined as the apex of the convex portion. In this case, the projected circle 84 has a radius that does not account for minute irregularities on the surface of the sample, and the circle 84 does not include a plurality of convex portions. Thus, the radius of the circle 84 is preferably about 3 μη. The number of convex portions per unit area of the irregular surface can also be counted by the above method. In order to achieve good visibility without causing reflection or whitening, the number of convex portions counted by the above method is preferably from 50 to 150 in the field of view of 200 μm X 2 0 μm. If the number of convex portions on the irregular surface of the anti-glare layer is small, pixel interference will cause glare to cause the displayed image to become difficult-14-200809274 (11) gaze, especially when the anti-glare polarizing film laminate has a high When the display device of sharpness is used together. Furthermore, the texture of the displayed image will deteriorate. When the number of convex portions is too large, the inclination angle of the irregular shape becomes so steep that the image tends to become white. The number of convex portions in the field of view of 200 μm χ 200 μm is preferably 120 or less and 70 or more. - Now, the Fino division will be explained. When a number of points (ie, - mother points) are scattered on a plane, a graph can be divided into planes by determining a point at which an arbitrary point on the plane is closest to φ, which is a Fu Nuo figure, and The planar segmentation of the graph is called the Fino partition. Fig. 5 is a view showing an example of a vortex segmentation of the surface of the undole-dividing layer using the apex of the convex portion on the surface as a mother point. In Fig. 5, a point 85 is a mother point, and a respective polygon 86 including a mother face is a region formed by the Fino division, and this polygon is referred to as a Fino zone Fino polygon, and is hereinafter referred to as Funno polygon. First.  The area 87 which is darkened around the figure will be described later. In the Fino graph, the number of mother points is equal to the number of Freno polygons. Simply put, in Figure 5, • Numbers 85 and 86 indicate a portion of the parent point and a portion of the polygon, respectively. To calculate the average area of the Funo polygon obtained by using the vertices of the convex portions as the mother point and the Fino division, observe an anti-glare using a suitable device such as a confocal microscope, an interference microscope, an atomic force microscope (AFM), or the like. The surface shape of the layer and the three-dimensional coordinates 测定 are measured. Next, the surface of the anti-glare layer is divided by the following deduction method, and the average area of the Fino polygon is calculated. That is, the irregular surface of the anti-glare layer is determined according to the above deductive method, and then the apex of the convex portion is projected on the base plane of the anti-glare layer. Thereafter, all three-dimensional seats -15-200809274 (12) obtained through the surface shape measurement are projected on the base plane, and all the projection points are assigned to the closest mother face to perform the Fino division. The area of all the Fino polygons is calculated and averaged to obtain the average area of the Fino polygon. In this measurement, the area of the Funo polygon adjacent to the boundary of the measurement field is not counted to minimize the error. That is to say, in the case of Fig. 5, the calculation of the average area 1 does not include the measurement of the faint polygon 87 which is darkened near the boundary of the field of view. In addition, in order to minimize the measurement error, preferably, the average 値 of the Fino polygon is calculated in at least three fields of view each having a field of view of 200 φ μπι X 200 μπι, and then all the average 値 are uniformly and As a measurement 値. As described above, in the present invention, the average area of the Fino polygon having the apex of the convex portion on the irregular surface of the antiglare layer serving as the mother point is from 50 μm 2 to 1, 5 μm 2 , preferably 300 μm 2 to 1. , 〇〇〇μπι2. When the average area of the Froove polygon is less than 50 μm, the irregular shape of the surface of the anti-glare layer will become steep so that the image becomes white. When the average area of the Fu Nuo polygon exceeds 1,500 μm 2 , the irregularity of the anti-glare layer • the surface will become rough, resulting in glare and deterioration of the image texture, especially when the anti-glare polarizing film laminate When used in conjunction with a high-definition display device. Using the three-dimensional coordinates measured here, the arithmetic mean height Pa and the maximum section height Pt of the section curve can be calculated, which are defined by JIS Β 0601 (=1 SO 42 87). Furthermore, the respective point heights on the irregular surface of the anti-glare layer can be described in a rectangular pattern. In order to achieve good visibility without causing reflection or whitening, the arithmetic mean height Pa of the cross-sectional curve is preferably 0. 0 8 μ m to 0. 1 5 μ m, and the maximum section height P t is preferably -16- 200809274 (13) 0. 4 μηι to 0. 9 μπι. When the arithmetic mean height Pa is less than 〇·〇 8 μm, the surface of the anti-glare layer is substantially flat so that it has no anti-glare property. When the arithmetic mean height Pa exceeds 0.15 μm, the surface shape of the anti-glare layer becomes rough, causing problems such as whitening and glare. When the maximum section height Pt is less than 0. At 4 μm, the surface of the anti-glare layer is again - substantially flattened so that it has no anti-glare properties. When the maximum section height Pt.  More than 〇.  At 9 μm, the surface shape of the anti-glare layer becomes rough again, causing problems such as whitening and glare with φ. When the height of a dot on the irregular surface of the anti-glare layer is described in a rectangular diagram, the peak of the histogram preferably has a highest point height (100% height) and a lowest point height (0%) on the irregular surface. The middle 値 (50% height) between the heights is within ±20%. This means that the peak of the histogram is preferably in the range of between 30% and 70% of the height difference between the highest point height and the lowest point height. If the peak does not exist within ±20% of the intermediate enthalpy, in other words, the peak has a range of more than 70% or less than 30% of the height of the highest point, and the surface shape of the anti-glare layer will change. It is so rough that glare tends to occur undesirably. In addition, the texture tends to deteriorate. In order to describe the rectangular map of the heights, the highest and lowest points on the surface of the anti-glare layer (anti-glare film) are measured, and then the difference between the height of the respective measurement point and the height of the lowest point (ie, the height of the measurement point) is divided by the highest point. The difference between the height and the lowest point height (ie, the maximum height difference) is obtained to obtain the relative height of each point. Then, the resulting relative height is described by a rectangular diagram having a maximum height of 100% and a minimum height of 〇% to obtain peak positions of respective points in the histogram. The histogram should be divided into segments to avoid the effects of data errors, and is generally divided into approximately 10 to about 30 segments in the case of -17-200809274 (14). For example, the interval from the lowest point (0% height) to the highest point (100% height) is divided at 5% pitch, and the position of the peak is determined. The anti-glare surface constituting the anti-glare layer having the above characteristics has a shape covered by irregularities having substantially no flat plane. The anti-glare surface having this surface shape can advantageously be used to honing the metal sheet by utilizing the impact of the fine particles.  Irregularly formed, electroless nickel is formed on the irregular surface of the metal plate to form a mold by φ, the surface of the mold is irregularly transferred to the surface of the transparent resin film, and the irregularity of the transfer is removed from the mold. It is made of a transparent resin film. A preferred method for producing an antiglare layer (anti-glare film) by the above method is described with reference to FIG. 6, which schematically shows that the irregularity of the mold is transferred to the resin film using a metal plate as a mold body. A cross-sectional view of the step of having an irregular mold on its surface. Figure 6A shows a cross-section of the metal plate 21 after mirror honing with a honed surface 22. Irregularities are formed on the surface #22 by impacting (or blowing) the honed surface 22 of the metal plate 21 by fine particles. Fig. 6B schematically shows a section of the metal plate 21 after impact, which has a hemispherical fine concave portion 23. Next, a nickel-free electroless plating is used to have an irregular surface formed by impact to eliminate such irregular depths. Fig. 6C is a view schematically showing the cross section of the metal plate 21 after electroless plating of nickel. In Fig. 6C, a nickel plating layer 24 is formed on the surface of the metal plate 21 having a fine concave portion, and the nickel plating layer 24 has a depth reduced by electroless plating of nickel compared to the surface 26 of Fig. 6B. The irregularity 'that is, the irregular shape of the surface of the metal plate is dulled. Thus, when the semi-spherical fine concave portion 23 -18- 200809274 (15) of the metal plate 21 is electrolessly plated with nickel, substantially no flat plane can be obtained and it is suitable for fabricating a preferred optical property. An irregular pattern of anti-glare film. Fig. 6D schematically shows the step of irregularly transferring the mode of Fig. 6C formed in the previous step to the resin film. That is, a resin film is formed on the irregular surface of the nickel plating layer 24. Thereby, a film 11 having a transferred irregular shape is obtained. The film 11 can be composed of a single thermoplastic transparent resin film. In this case, the thermoplastic resin film in a heated state is pressed to the irregular surface 26 of the φ mold and formed by hot press. Alternatively, as shown in Fig. 6D, the film 11 may be composed of a transparent substrate film 12 and an ion-radiation-curable resin layer 13 laminated on the surface of the substrate film 12. In this case, the ionizable radiation-curable resin layer 13 is brought into contact with the irregular surface 26 of the mold and irradiated by ionizing radiation to cure the resin layer 13. Thereby, the irregular shape of the mold is transferred to the ionizable radiation-curable resin layer 13'. These films will be described later. Fig. 6E is a schematic cross-sectional view showing the film 11 after being removed from the mold. • In the method shown in Fig. 6, preferred examples of the metal used for the manufacture of the mold include aluminum, iron, copper, stainless steel, and the like. Among them, it is preferable that the metal is easily deformed by the impact of fine particles, that is, it is not too high in hardness. In particular, it is preferred to use aluminum, iron, copper or the like. In terms of cost, it is better to be aluminum and soft iron. The mold may be in the form of a flat metal plate or a cylindrical metal roll. When an roll-shaped mold is used, the anti-glare film can be continuously produced. 微 The fine particles are used to strike or blow the metal having the honed surface. In particular, the metal is preferably honed to a near-mirror state because the gold -19-200809274 (16) plate or roller is often machined by, for example, cutting or honing to achieve the desired accuracy, and The processing marks are often left on the surface of the metal body. If a deep mark is left, the surface of the metal body may have trace marks after impact with fine particles, because the depth of some marks is larger than the irregular depth formed by the fine particles, so that a trace of deep marks may be The optical properties of the anti-glare layer have an unexpected effect. - The method for honing the metal surface is not limited, and any of mechanical honing φ, electrolytic honing and chemical honing can be used. Examples of the mechanical honing include an ultra-finishing method, a fine boring method, a fluid honing method, a buffing wheel honing method, and the like. The surface roughness after honing is 1 micrometer or less, preferably 0. 5 microns or less, more preferably 〇.  1 micron or less. When Ra is too large, the influence of the surface roughness before the deformation may be after the deformation of the metal surface by the impact of the fine particles. The lower limit of Ra may be unlimited, but may be limited from the viewpoints of processing time, processing cost, and the like. # The method of striking the metal surface with fine particles is preferably a blow processing method. Examples of the blowing method include a sandblasting method, a spray method, a liquid honing method, and the like. Regarding the particles used in these treatments, those having a shape close to a sphere are better than those having a sharp edge. Furthermore, the particles of the hard material are preferred because they do not break when processed to form sharp edges. Preferred examples of the ceramic ceramic particles satisfying those properties are spherical cerium oxide particles, alumina particles and the like. Examples of preferred metal particles are steel, stainless steel, and the like. Further, it is possible to use a composition comprising particles having ceramic or metal particles on a resin binder. -20- 200809274 (17) When particles having an average particle size of 10 to 75 μm, preferably 10 to 35 μm, in particular, spherical fine particles are used as fine particles impinging on the surface of the metal, a kind of fine particles can be produced An anti-glare film that satisfies a shape factor comprising an average area of a Funo polygon defined in accordance with the present invention in the range of 50 μηι2 to 1,500 μπι2, preferably 300 μηι2 to 1,000 μηι2. Regarding 'the fine particles, which have a uniform particle size, that is, especially good.  A single distribution of particles. When the average particle size of the fine particles is too small φ, it will be difficult to satisfy irregularities on the surface of the metal. In addition, the tendency angle of the irregular shape becomes so steep that the image tends to become white. When the fine particles are too large, the surface irregularities become rough so that glare may occur, and the texture of the image may be deteriorated. The irregular metal surface formed by the above method is then electrolessly plated with nickel to reduce the irregular depth. The degree of depth reduction depends on the type of metal, the irregular size and depth of the blown film, the type and thickness of the nickel plated, and the like. The most important factor controlling the degree of depth reduction # can be the thickness of the plated nickel. If the thickness of the electroless nickel plating is too small, the irregular depth formed by the blowing or the like may not be effectively reduced, so that the optical properties of the irregular anti-glare film transferred from the mold may not be sufficiently improved. When the thickness of the electroless nickel is too large, the productivity will be lowered. Thus, the thickness of the electroless nickel plating is preferably from about 3 to 70 μm, more preferably at least 5 μm and 50 μm or less. In order to form a plating layer on a metal surface, it is preferred to use an electroless plating which can form a plating layer having a giant uniform thickness on the metal plate or roll, and in particular, to provide a plating layer having a high hardness without electricity. Nickel plating. The electroless-21 - (18) 200809274 preferred examples of nickel plating include the use of a plating bath containing a gloss agent such as sulfur, nickel-phosphorus alloy plating (low phosphorus type, medium phosphorus type or high phosphorus type). Glossy nickel plating, nickel-boron alloy plating, etc. If the hard chrome plating described in JP-A-2002- 1 89 1 06 is used, in particular, electrolytic chrome plating, the electric field tends to concentrate on the edge of the metal plate or roll so that the thickness of the plating metal at the center and the edge may be different. Therefore, if it is blown.  And forming a random φ having a uniform depth on the entire surface of the metal plate or the roller, the degree of depth reduction of the plating may vary with the position on the entire surface of the metal plate or the roller, and as a result, the The depth of the rules changes. Therefore, electrolytic plating is not suitable for use in the present invention. Furthermore, the hard chrome plating can form a rough surface and thus is not suitable for the manufacture of a mold for manufacturing the anti-glare layer. To remove the rough surface, the hard chrome plated surface is typically honed. However, honing of the plating surface as explained below is not suitable for use in the present invention. However, the present invention does not include the formation of a thin chrome plating on the outermost φ face after the electroless nickel plating, that is, a so-called flash chrome plating to provide surface hardness. If flash chrome plating is performed, the thickness of the flash chrome layer is as small as possible to avoid deterioration of the shape of the electroless nickel-plated layer serving as the underlayer, and preferably should be 3 μηι or less, more preferably 1 μπι or less. Further, in the present invention, it is not preferable to honing the metal plate or the roll after plating in a manner as disclosed in JP-A-2004-901 87. If the plated surface is honed, the outermost surface may have a flat portion such that the optical properties of the anti-glare layer may be deteriorated, and the irregular shape is hardly controlled with good productivity' because the number of control factors formed will be improve. Figure 7 is a schematic representation of -22-200809274 (19) A flattened metal plate is formed thereon by honing an irregular surface formed by the impact of fine particles, which have been electrolessly plated with nickel. Reduce the amount of application. That is, Fig. 7 corresponds to the electroless plated metal plate of Fig. 6C which is honed on the surface of the nickel plating layer 24. As a result of the honing, a portion of the convex portion of the surface irregularity 26 formed on the nickel plating layer 24 on the metal plate 21 is honed and thereby forms the flat plane 29. .  According to the present invention, an irregular mold having a surface φ formed on the surface φ shown in Fig. 6C is used, and the irregular shapes are transferred to the surface of the film 1 1 to form an anti-glare surface. In this case, the surface shape of the mold can be transferred to the surface of the film by any conventional method. For example, a thermoplastic resin film is hot pressed to the irregular surface 26 of the mold to irregularly transfer the surface of the mold to the surface of the resin film; an ion-radiation-curable resin is coated on the surface of the transparent resin film, and then The ionizable radiation-curable resin coating in an uncured state is tightly adhered to the irregular surface 26 of the mold and is irradiated with ionizing radiation through the 'transparent resin film to cure the ionizable radiation-solidified resin The surface of the mold is irregularly transferred to the surface of the cured ion-radiation curable resin. After the transfer, the film is removed from the mold as shown in Fig. 6E to obtain the anti-glare film 11. The latter method using an ion-radiation-curable resin is preferred from the viewpoint of mechanical strength such as prevention of surface cracks and the like. The transmission resin used in the latter method described above may be any film having substantial light transparency. Specific examples of the transparent resin include cellulose resins (e.g., triethylenesulfonyl cellulose, diethyl cellulose, cellulose acetate propionate, etc.), cycloolefin polymers, polycarbonate, polymethacrylic acid. Methyl ester-23- 200809274 (20), poly maple, ether ether, polyvinyl chloride and so on. The cycloolefin polymer is a cyclic olefin comprising, for example, norbornene, dimethyl octahydronaphthalene or the like as a monomer. Examples of commercially available cyclic olefin polymers are ARTON (registered trademark) (available from JSR Ltd.), ZEONOR® and ΖΕΟΝΈΧ® (both available from ΖΕΟΝ). - Among them, for example, polymethyl methacrylate, polycarbon at appropriate temperature.  A thermoplastic translucent resin film of an acid ester, a polyfluorene, an ether ether, a cycloolefin polymer or the like is pressed or pressure-bonded to a mold having a surface irregularity, and then peeled off from the mold to thereby leave the surface of the mold The rules are transferred to the surface of the membrane. Further, a polarizing plate is used as a transparent film and the surface irregularity of the mold can be directly transferred to the surface of the polarizing plate. When the ion-radiation-curable resin is used to transfer the surface irregularity of the mold, it is preferred to use a polymer having a compound having at least one acryloxy group in the molecule. In order to increase the mechanical strength of the antiglare layer, it is more preferred to use an acrylate having at least three functional groups, that is, a compound having at least three φ acryloxy groups. Specific examples of the compound include trimethylolpropane triacrylate, trimethylolethane triacrylate, glycerol triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, and the like. In order to impart flexibility to the antiglare layer to prevent the antiglare layer from being broken, it is preferred to use an acrylic compound having a urethane bond in the molecule. A specified example of the acrylic compound is to add two compound molecules (for example, trimethylolpropane triacrylate, pentaerythritol triacrylate, etc.) having at least one hydroxyl group in addition to the acryloxy group in the molecule to the diisocyanate compound ( For example, hexamethylene diisocyanate, diisocyanate-24 - 200809274 (21) acid toluene diester, etc.). Further, other acrylic resins which are free radically polymerized and cured via ionizing radiation, such as ether acrylate polymers, ester acrylate polymers and the like, may be used. Further, a cationically polymerizable ion-radiation-curable resin such as an epoxy resin, an oxetane resin or the like can be used as the resin imparted after the curing. In this case, the cationically polymerizable ionizable radiation.  An example of the cured resin can be, for example, 1,4-bis[(3-ethyl-3-oxoφ heterocyclobutyrylmethoxy)methyl]benzene, bis[(3·ethyl-3-) Cationic polymerizable polyfunctional oxetane compounds such as oxetanyl methoxy)methyl]ether and the like, and, for example, hexafluorophosphate (4-methylphenyl) [4-(2-A) A cationic photopolymerization initiator of propyl)phenyl]anthracene or the like is prepared. When the ionizable radiation-curable acrylic resin is cured by irradiation with UV rays, a UV radical polymerization initiator which generates radicals by irradiation of UV rays to initiate polymerization and curing reaction is used. The UV rays are usually irradiated from the side of the glass mold or the transparent resin film. Thus, when UV rays are irradiated from the side of the transparent tree # lipid film, a polymerization initiator which initiates a radical generating reaction in the visible light to UV ray range is used in the range of the UV ray wavelength in which the light is permeable to the film. Initiating a free radical reaction. Examples of the u V-ray radical polymerization initiator which initiates the radical generating reaction by irradiation with UV rays include 1-hydroxycyclopropyl phenyl ketone, 2-methyl-bu [4-(methylthio)phenyl] -2·morpholinylpropan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, and the like. When the UV ray is irradiated through a transparent resin film containing a UV ray absorbing agent, a radical photopolymerization initiator having an absorption range in the visible light wavelength range is used. Examples of the initiator include -25.200809274 (22) bis(2,4,6-trimethylbenzylidene)phenylphosphine oxide, bis(2,6-dimethoxybenzylidene oxide) 2,4,4-trimethylphenylphosphine, 2,4,6-trimethylbenzimidyl diphenylphosphine, and the like. When the mold system is in the form of a flat plate having a fine irregular plating surface on the surface, the irregular surface of the mold can be bonded to the transparent resin film with the uncured ion radiation curable resin coated to the other side. The layer contact causes the coating of the cation-curable resin to adhere tightly to the irregular surface of the mold, and the ionizing radiation is irradiated from the side of the transparent resin film to cure the ion-radiation-curable resin. Thereafter, the cured layer of the ion-radiation-curable resin and the transparent resin substrate film are removed from the mold. Thereby, the irregular shape of the mold is transferred to the ion-radiation-curable resin cured layer carried on the transparent resin film. When the mold system is in the form of a roll having a fine irregular plating surface on its peripheral surface, the irregular shape of the mold is transferred to the ion-radiation-curable resin, and the ionizable radiation is used to illuminate the ionizable radiation. a cured resin layer and a laminate of the transparent resin film while contacting the ion-radiation-curable resin layer with a peripheral surface of the mold in the form of the roll, and then removing the cured layer of the ion-radiation-curable resin from the mold And the transparent resin film 1 by which the irregular shape of the mold is transferred to the ionizable radiation-curable resin cured layer carried on the transparent resin film. The ionizing radiation can be a UV ray or an electron beam. From the viewpoint of ease of handling and safety, it is preferred to use the uv ray. As the light source of the u V ray, a high pressure mercury lamp, a metal halide lamp or the like is preferably used. When irradiated through a transparent resin film containing a UV absorber, -26-200809274 (23) It is particularly preferable to use a metal halide lamp including a large amount of visible light components. Further, "V-light bulb" and "D-light bulb" (two registered trademarks) (available from Fusion UV Systems JAPAN Co., Ltd.) are preferably used. The ionizing radiation intensity sufficiently cures the UV curable resin to a degree such that the cured film can be removed from the mold. In order to improve the surface hardness, the ionizable radiation may be irradiated from the side of the ionizable radiation-curable resin layer.  A cured layer of the cured resin and a laminate of the transparent resin layer. φ According to the above method, an anti-glare layer (anti-glare film) having a haze of 5% or less can be obtained. Turbidity is defined by JIS K 7136 and is expressed by (diffraction transmittance / total light transmittance) xl 〇〇 (%). As described above, an ion-radiation-curable resin cured layer having a fine irregular pattern having substantially no flat surface thereon and transferring the irregular shape to a transparent resin film or a layer laminated on the transparent resin film is used. At this time, the anti-glare surface of the transparent resin film will have a fine irregularity in which the face has substantially no flat flat surface. Φ In the present invention, as described above with reference to Fig. 1, the antiglare layer 11 manufactured as described above is placed on the surface of the linear polarizing film 30, and the optically anisotropic layer 40 is placed in the linear polarized light. The anti-glare polarizing film laminate 1 〇 is formed on the other surface of the film 30. The linear polarizing film 30 may be a commonly used polarizing film or plate that allows linearly polarized light that oscillates in one of two directions perpendicular to each other in the plane of the film to pass through, while the other will absorb the other in the two directions. One is oscillating linearly polarized light. A specific example of such a linear polarizing film is a uniaxially stretched polyvinyl alcohol film which is dyed with a high dichroic dye and crosslinked with boric acid. A polarizing film comprising a 127-200809274 (24) polarizing film containing iodine as a high coloring dye as a base or a dye comprising an organic dichroic dye serving as a high dichroic dye may be used. The linear polarizing film may be a polyvinyl alcohol type polarizing film for this or the like, or a polyvinyl alcohol type polarizing film having a transparent polymer protective film having, for example, triacetyl cellulose or the like on its surface. The optical anisotropy layer 40 placed on the other surface of the linear polarizing film 30 has an optical axis of optical negative or optical positive uniaxiality and an angle of 5 - to 50 degrees from the normal direction of the film. 0 First, an optically anisotropic layer having an optical negative uniaxiality and an optical axis inclined at an angle of 5 to 50 degrees from the normal direction of the film will be described. "Light negative uniaxiality" means a layer having a negative anisotropic refractive index, that is, the refractive index of the optical axis is smaller than the average refractive index in a plane perpendicular to the optical axis. As the optically anisotropic layer 40, a layer having an optical axis having such negative refractive index anisotropy and inclined at an angle of 5 to 50 degrees from the normal direction of the film can be used. A preferred example of the optically anisotropic layer is a transparent film made of, for example, triethyl fluorenyl cellulose, which is an organic compound, and is a ' JP_A-06- a compound having a liquid crystallinity and a discotic molecular shape as described in 214116, or having no liquid crystallinity but exhibiting negative refractive index anisotropy via application of an electric field or a magnetic field and wherein the orientation of the optical axis is inclined from the normal direction of the film 5 to 50 degrees of compound coating. The orientation of the optical axis can be a single direction orientation, or the angle of inclination of the optical axis from the surface of the film to another gradually increasing mixing orientation. Examples of the organic compound having a liquid crystallinity and a discotic molecular shape include a low or high molecular weight discotic liquid crystal 'for example comprising at least one linear substituent (e.g., an anthracene group, an alkoxy group, an alkyl-substituted benzamidineoxy group, a Alkoxy-28-200809274 (25) A substituted benzyl methoxy group, etc.) a liquid crystal compound which is nucleated to the core of the planar structure (for example, triphenylene, fluorene benzene, benzene, etc.). Among them, it is preferred that there is no absorber in the visible light range. These organic compounds having a discotic molecular structure may be used singly, or they may be used in a mixture of two or more of them or mixed with an organic compound such as a polymer matrix to achieve the desired orientation of the present invention. The organic compound may be any compound which has a φ content with an organic compound having a discotic molecular structure or an organic compound having a discotic molecular structure dispersed in a particle size which does not scatter light. A transparent film having a cellulose resin-based layer having the liquid crystal compound and an optical axis inclined from the normal direction of the film is a "WV film" (registered trademark, available from FUJIFILM Co., Ltd.), which can be used in the present invention. in. Next, an optically anisotropic layer having an optical positive uniaxiality and an optical axis inclined at an angle of 5 to 50 degrees from the normal direction of the film will be described. "Photopositive uniaxiality" means a layer having a positive anisotropic refractive index, that is, the refractive index of the optical φ axis is larger than the average refractive index in a plane perpendicular to the optical axis. As the optically anisotropic layer 40, a layer having such an anisotropic refractive index and an optical axis inclined at an angle of 5 to 50 degrees from the normal direction of the film can be used. A preferred example of the optically anisotropic layer is a transparent film made of, for example, triethyl fluorenyl cellulose, which is based on JP-A-1 Ο-ΐ 8 63 56 An organic compound having a rod-like structure, particularly a compound having a nematic crystallinity and imparting a positive optical anisotropy to the compound, or having no liquid crystallinity but exhibiting a positive refractive index via application of an electric field or a magnetic field Anisotropic and in which the orientation of the optical axis is such that it is coated with a compound that is inclined 5 to 50 degrees from the normal direction of the film -29-200809274 (26). The orientation of the optical axis can be a single direction orientation, or a mixing orientation in which the tilt angle of the optical axis gradually increases from one surface of the film to the other. An example of a transparent film having such a nematic liquid crystal compound layer and an optical axis inclined from the normal line of the film is "NH film" (available from NIPPON OIL Co., Ltd.), which can be used in the present invention. .  Furthermore, an optically anisotropic layer having an optical positive uniaxiality and an optical axis inclined at an angle of 5 to φ 50 degrees from the normal direction of the film can be produced by depositing a dielectric on a transparent base film. The dielectric can be formed into a thin film by vacuum deposition, and when deposited on the transparent base film, exhibits positive refractive index anisotropy in a direction oblique to a normal to the base film. The dielectric compound used for this purpose may be an inorganic or organic dielectric compound. Among them, an inorganic dielectric compound is preferred from the viewpoint of resisting heat stability in the vacuum deposition step. Preferable examples of the inorganic dielectric compound include, for example, molybdenum oxide ('Ta203), tungsten oxide (W03), cerium oxide (SiO2), cerium oxide φ (SiO), cerium oxide (Bi203), cerium oxide (Nd203). Etc. because these metal oxides have good transparency. Among the metal oxides, oxidized giant, tungsten oxide, cerium oxide or the like is more preferable because they are easy to exhibit refractive index anisotropy and form a hard film. As described above, the anti-glare layer 11 is laminated on one surface of the linear polarizing film 30, and the optically anisotropic layer 40 is laminated on the other surface of the linear polarizing film 30 to form the anti-glare polarizing film. Membrane layer 10 (Fig. 1). In the step of laminating, the anti-glare layer 11 is laminated to face the surface (ie, the irregular surface) treated to impart the anti-glare property, and -30-200809274 (27), that is, the surface is not facing the surface. Linear polarizing film 30. When the optically anisotropic layer 40 has a layer of a material exhibiting refractive index anisotropy on the transparent base film, the optically anisotropic layer 40 is laminated such that the transparent base film faces the linear polarizing film 30. In order to laminate them, it is advantageous to use an adhesive having good transparency such as an acrylic adhesive. 'About the commercially available laminates, optical φ anisotropic layers bonded to optical axes with optical negative, uniaxial and oblique from 5 to 50 degrees from the normal to the film are sold to linear polarized light. A polarizing plate composed of one surface of the film, that is, a laminated body composed of the linear polarizing film 30 and the optical anisotropic layer 40. An example of such a commercially available laminate is "SUMIKARAN SRH 862A" (available from Sumitomo Chemical Co., Ltd.). In order to form the anti-glare polarizing film laminate 10, the anti-glare layer 11 is laminated on the other surface of the laminated polarizing plate having an optically anisotropic layer on one surface, the optically anisotropic layer having a light-reducing sheet Axiality and an optical axis inclined from the normal to the film by 5 to 50 degrees. # The anti-glare polarizing film laminate 10 in Fig. 1 is combined with a liquid crystal cell including TN liquid crystal sandwiched between a pair of substrates to mount a liquid crystal display. Examples of this liquid crystal display are shown in Figures 8 and 9. In these examples, the liquid crystal cell 50 includes a TN liquid crystal 57 sandwiched between a pair of unit substrates 51 and 52, and the surfaces of the substrates facing each other have individual electrodes 5 4 and 55. In general, the liquid crystal cell 50 has polarizing plates on both surfaces thereof. According to the present invention, one of the polarizing plates, in particular, a polarizing plate on its display surface, in other words, the linear polarizing film 30 having the anti-glare layer 11 / -31 - 200809274 (28) shown in Fig. 1 The surface of the liquid crystal cell composed of the anti-glare polarizing film laminate 1 of the structure of the optically anisotropic layer 40 is visible to the viewer. In this case, the polarizing plate is placed such that the optical anisotropic layer 40 faces the liquid crystal cell 50. The optically anisotropic layer 40 of the antiglare polarizing film laminate 10 is adhered to the liquid crystal cell 50 by the adhesive 60. On the back side of the liquid crystal cell 50, a backlight 70 is provided and serves as a light source for the liquid crystal cell 50. The structure of the anti-glare polarizing film laminate 1 〇, the liquid crystal cell 50, and the backlight 70 is the same as that of the eighth and ninth figures, but the structure between the liquid crystal cell 50 and the backlight 70 is different from each other. . In the specific example of Fig. 8, the polarizing plate 35 is provided on the back surface of the liquid crystal cell 50 by the adhesive 60, and in Fig. 9, the optical agent 60 is used to provide optical on the back surface of the liquid crystal cell 50 in the following order. The anisotropic layer 45 and the polarizing plate 35. The polarizing plate 35 on the back side may be a conventional polarizing plate that allows linearly polarized light oscillating in one of two directions perpendicular to each other in the plane of the film to pass through, but absorbs the other according to the two directions One is oscillating linear φ polarized light. Specifically, the conventional polarizing plate may comprise a uniaxially stretched polyvinyl alcohol film which is dyed with a high dichroic dye and crosslinked with boric acid, and which film usually has a transparent polymer on at least one surface thereof. The optically anisotropic layer 45 provided on the back surface side shown in FIG. 9 may be an optical axis having optical negative or optical positive uniaxiality and inclined at an angle of 5 to 50 degrees from the normal direction of the film, similarly used. The optically anisotropic layer 40 of the antiglare polarizing film laminate 10 is used. In order to improve the viewing angle characteristics and display characteristics, it is preferable to provide the optical anisotropic layer 45 also on the back surface side shown in Fig. 9. In this case, -32- 200809274 (29) comprises a linear polarizing film and an optically anisotropic layer having an optical negative uniaxiality and an optical axis inclined at an angle of 5 to 50 degrees from the normal direction of the film, The polarizing plate is bonded to one surface of the linear polarizing film, and the polarizing plate can be used as the laminated sheet of the optical anisotropic layer 45 and the polarizing plate 35 of FIG. _ Example .  In the following, the invention will be exemplified by the following examples, which are not intended to limit the scope of the invention in any way. Example 1 (a) Manufacture of a mold A mirror honing surface having an aluminum roller having a diameter of 300 mm (according to JIS A5056). Next, using a blowing device (purchased by FUJI MANUFACTURING Co., Ltd.), at 0. Zirconium beads "TZ-SX-17" (Note #, available from TOSO Co., Ltd.; average particle diameter: 20 μm) sprayed under a pressure of 1 MPa (gauge pressure, the same below) The aluminum roller is blown to the peripheral surface of the mirror honing to form irregularities on the surface. A metal mold was obtained by electrolessly plating nickel with an aluminum roller having an irregular surface. These plating conditions were adjusted to form a nickel layer having a thickness of 12 microns. After the plating, the thickness of the nickel layer was measured by a β-ray film thickness meter ("Fisher Scope MMS" available from Fischer Instruments Co., Ltd.). 3 microns. (b) Manufacture and evaluation of anti-glare film -33- (30) 200809274 The photocurable resin composition "GRANDIC 806T" (registered trademark, available from DAINIPPON INK AND C Ε Μ Μ IC ALS Co., Ltd.) is dissolved in acetic acid. Ethyl ester to obtain a solution having a concentration of 50%, and then, in an amount of 5 parts by weight, based on the amount of 100 parts by weight of the curable resin, a photopolymerization initiator "LUCILIN TPO" (available from BASF Co., Ltd.; Name: Oxidized 2,4,6-trimethylbenzimidyldiphenylphosphine) is added to the solution.  The coating composition was obtained. This coating composition was coated on a triethylenesulfonated cellulose (TAC) film having a thickness of 80 μm to make the coating thickness after drying to 5 μm, followed by drying in a desiccator maintained at 60 t for 3 minutes. . The dried TAC film was pressed and the irregular surface of the metal mold obtained in (a) was tightly contacted with a rubber roller to face the nickel-plated surface of the mold. In this state, light from a high-pressure mercury lamp having a strength of 200 mJ/cm 2 was irradiated from the TAC film side at an intensity of 20 mW/cm 2 by an h-ray conversion ray meter to cure the photocurable resin. Composition. Thereafter, the TAC film with the cured resin layer was removed from the mold to obtain a transparent anti-glare film composed of a laminate having a surface irregularly cured resin layer and the TAC film. The turbidity of the anti-glare film was measured using a turbidity meter "ΗΜ·150" according to Jis K 7136 (available from MU r a k a m i C ο 1 〇 r R e s e a r c h L a b 〇 r a t 〇 r y), and it was 0. 9%. For measurement, the anti-glare film sample was adhered to the glass plate with an optically clear adhesive to prevent the warpage from being irregular. The image clarity measuring instrument "ICM-1DP" (available from Suga Test Instruments Co., Ltd.) was used in accordance with JIS K 7105 to measure transmission -34-200809274 (31). For measurement, the anti-glare film sample was adhered to the glass plate using an optically clear adhesive to prevent the warpage. Next, the sample was irradiated with light from the back side (the surface was in contact with the glass plate), and the transmission sharpness was measured. The results are as follows: Optical frequency comb with the following width: Transmission clarity 0. 125 mm 3 1. 2% 0. 5 mm 2 7. 9% 1. 0 mm 3 2. 1% 2. 0 mm 5 7. 0 % total 14 8. 2%

使用上述透射清晰度測量所用的相同影像清晰度測量 儀「ICM-1DP」來測量反射清晰度。爲了測量,使用光學 透明黏著劑將該防眩膜樣品黏貼至玻璃板而不規則表面向 " 外以防止翹曲。爲了抑制背側玻璃背面的反射,利用水將 φ 具有2毫米厚度的黑色丙烯酸系樹脂板黏貼至經黏貼防眩 膜之玻璃板的曝光表面。在此狀態下,經由自該防眩膜的 樣品側照射光而進行測量。結果如下: 具下列寬度的光頻梳: 反射清晰度 0.125毫米 3.2%* 0.5毫米 1.5% 1.0毫米 5.4% 2.0毫米 14.8 % 加總 2 1.7% :自反射清晰度的値之加總排除。 -35 - 200809274 (32) 利用從該膜法線傾斜3 0度方向的氨-氖雷射之平行光 束照射該防眩膜的不規則表面且測量在包括該膜法線及照 射方向之平面內的反射率變化以測量反射率。該反射率「 3 292 03光學功率感應器」及「3292光學功率計」(二者 可自 Yokogawa Electric有限公司購得)來測量該反射率 。結果,R ( 30 )爲 0.374%,R ( 40 )爲 0.00064%且 R ( 60 ) /R ( 30)爲 0.0001 0。 使用共焦顯微鏡「Ρίμ2300」(可自Sensofar有限公 司購得),觀察該防眩膜的表面形狀。爲了觀察,利用光 學透明黏著劑將該防眩膜樣品黏貼至玻璃基板而該不規則 表面向外以防止翹曲。接物鏡的放大倍率爲5 0。所得之數 據根據上述演繹法來處理且算出該芙諾多邊形的平均面稹 爲5 82平方微米。從三維座標資訊來看,確認該防眩膜整 個表面具有細小不規則但是沒有平坦部分。 用於製造模的條件及該防眩膜的光學性質和表面狀況 (該等芙諾多邊形的平均面積)總結於表1中。 根據上述表面形狀的觀察所得之三維座標,計算 200μηιχ2 00μιη視野內的凸面部分的頂點數目、該斷面曲線 的算術平均高度Pa及最大斷面高度Pt,及該等高度矩形 圖的峰位置。將結果顯示於表2中。 (c )防眩偏光膜積層體的製造 提供線性偏光膜/光學各向異性層積層體(「 -36- 200809274 (33) SUMIKARAN SRH 862A」,可自 Sumitomo Chemical 有限 公司購得)。該積層體由聚乙烯醇·碘爲底的線性偏光膜 、黏至該該線性偏光膜之一表面的光學各向異性層及黏至 該線性偏光膜另一個表面的三乙醯基纖維素膜所組成。此 光學各向異性層由基材及具有光負單軸性且固定於該基材 ' 的盤狀液晶分子所組成,且具有混合取向使其光學軸在自 » 該膜的法線逐漸傾斜5至5 0度的範圍且整體而言表面光 φ 學軸從該法線傾斜18度(「WV膜」,可自FUJIFILM有 限公司購得)。將(b)中獲得的防眩膜平坦表面黏至該 線性偏光膜/光學各向異性層積層體的三乙醯基纖維素膜 側以裝配防眩偏光膜積層體。 (d )液晶顯示器的製造及評估 從用於個人電腦之帶有TN型TFT液晶顯示裝置之商 ^ 業上可購得之監視器顯示器表面及背面卸下偏光板。接著 • ,替代原先使用的偏光板,利用黏著劑將線性偏光膜/光 學各向異性層積層體「SUMIKARAN SRH 862A」黏至該背 面使該積層體的吸收軸對應原先的偏光板的吸收軸且該光 學各向異性層面向該液晶單元,同時利用黏著劑將(e ) 所製造之防眩偏光膜積層體黏至該顯示器表面使該膜積層 體的吸收軸對應原先的偏光板的吸收軸且該光學各向異性 層面向該液晶單元。藉以,裝配具有防眩層的液晶顯示器 〇 在暗室中啓動該個人電腦,且使用亮度計「BM5A」 -37- 200809274 (34) (可自TOPCON有限公司購得)來測量黑色顯示狀態或白 色顯示狀態的液晶顯示器亮度,接著計算對比度。在此, 以白色顯示狀態的亮度對黑色顯示狀態的亮度之比例來表 示對比度。結果,在該暗室中測得的液晶顯示器對比度爲 5 69 〇 ~ 之後,將此評估系統移至亮室,且以視覺觀察在黑色 、 顯示狀態的顯示器上的反射。結果,實質上沒有觀察到反 φ 射。這確認該液晶顯示器具有良好的防眩性質。將結果總 結於表3中。 實施例2及3 除了如表1所示改變鎳鍍層的厚度以外,以實施例1 的相同方式製造具有不規則表面之金屬模。使用由此製得 的金屬模,以實施例1的相同方式製造其表面上具有不規; 則之固化樹脂層及TAC膜所組成的透明防眩膜。將由此 • 得到的防眩膜之光學特性及表面狀態(該等芙諾多邊形的 平均面積)總結於表1中。利用各膜,以實施例1中的相 同方法計算在200 μιηχ200 μπι的視野中的凸面部分的頂點 數目、該斷面曲線的算術平均高度Pa及最大斷面高度Pt ,及該等高度矩形圖的峰位置。將結果顯示於表2中。此 外,以實施例1中的相同方法使用這些膜來裝配具有防眩 層的液晶顯示器,且評估對比度及防眩性質。將結果顯示 於表3中。 表1中記載的透射清晰度爲使用各自分別具有〇. 1 25 -38- 200809274 (35) mm、0.5 mm、1·0 mm 及 2·0 mm 寬度的黑 分之四種光頻梳所測得的透射清晰度總和 度爲使用各自分別具有0.5 mm、1.0 mm卩 黑暗部分和明亮部分之三種光頻梳所測得 和0 、 比較例1至5 φ 爲作比較,使用各自當作該偏光板| (可自 Sumitomo Chemical有限公司購得 有分散於可UV固化的樹脂中的塡料之防 「AG3」、「AG5」、「AG6」及「AG8」 1至5 ),且將那些防眩膜的芙諾多邊形 均面積與實施例1、2及3的結果一起記: 用那些膜,使用計算該等芙諾多邊形的平 三維座標,以實施例1的相同方法來計舅 Φ μπι的視野中的凸面部分的頂點數目、該 平均高度Pa及最大斷面高度Pt,及該等 位置。將結果與實施例1、2及3的結果 中。此外,以實施例1的相同方法使用這 防眩層的液晶顯示器,且評估對比度及防 與實施例〗、2及3的結果一起記載在表3 暗部分和明亮部 ,而該反射清晰 匕2.0 mm寬度的 的反射清晰度總 _ SUMIKARAN」 )的防眩膜且含 1玄膜「AG1」、 (分別爲比較例 的光學性質及平 載在表1中。利 均面積時測得的 -在 200 μπιχ200 斷面曲線的算術 局度矩形圖的峰 一起記載在表2 些膜來裝配具有 眩性質。將結果 中。 -39- 200809274 (36)The reflection sharpness was measured using the same image sharpness measuring instrument "ICM-1DP" used for the above transmission resolution measurement. For measurement, the anti-glare film sample was adhered to the glass plate using an optically clear adhesive to prevent warpage. In order to suppress reflection on the back side of the back glass, a black acrylic resin sheet having a thickness of 2 mm was adhered to the exposed surface of the glass plate to which the antiglare film was adhered by water. In this state, measurement was performed by irradiating light from the sample side of the anti-glare film. The results are as follows: Optical frequency comb with the following widths: Reflective sharpness 0.125 mm 3.2%* 0.5 mm 1.5% 1.0 mm 5.4% 2.0 mm 14.8 % Total 2 1.7%: Exclusion of the self-reflection resolution. -35 - 200809274 (32) Irradiating the irregular surface of the anti-glare film with a parallel beam of ammonia-helium laser tilted from the film normal at a direction of 30 degrees and measuring in a plane including the film normal and the direction of illumination The reflectance changes to measure the reflectivity. The reflectance "3 292 03 optical power sensor" and "3292 optical power meter" (both available from Yokogawa Electric Co., Ltd.) were used to measure the reflectance. As a result, R (30) was 0.374%, R (40) was 0.00064%, and R (60) / R (30) was 0.0001 0. The surface shape of the anti-glare film was observed using a confocal microscope "Ρίμ2300" (available from Sensofar Co., Ltd.). For observation, the anti-glare film sample was adhered to the glass substrate with an optically transparent adhesive and the irregular surface was outward to prevent warpage. The magnification of the objective lens is 50. The obtained data was processed according to the above deductive method and the average surface area of the Funno polygon was calculated to be 5 82 square micrometers. From the three-dimensional coordinate information, it is confirmed that the entire surface of the anti-glare film has fine irregularities but no flat portion. The conditions for producing the mold and the optical properties and surface condition of the anti-glare film (the average area of the Funno polygons) are summarized in Table 1. Based on the three-dimensional coordinates obtained from the observation of the surface shape, the number of vertices of the convex portion in the field of view of 200 μηι χ 2 00 μm, the arithmetic mean height Pa of the section curve and the maximum section height Pt, and the peak positions of the height rectangles are calculated. The results are shown in Table 2. (c) Manufacture of an anti-glare polarizing film laminate A linear polarizing film/optical anisotropic layered body ("-36-200809274 (33) SUMIKARAN SRH 862A" available from Sumitomo Chemical Co., Ltd.) was provided. The laminate is composed of a linear polarizing film based on polyvinyl alcohol and iodine, an optically anisotropic layer adhered to one surface of the linear polarizing film, and a triacetyl cellulose film adhered to the other surface of the linear polarizing film. Composed of. The optically anisotropic layer is composed of a substrate and discotic liquid crystal molecules having an optically negative uniaxiality and fixed to the substrate, and has a mixed orientation such that the optical axis thereof is gradually inclined from the normal line of the film. In the range of up to 50 degrees and overall, the surface φ axis is inclined by 18 degrees from the normal ("WV film", available from FUJIFILM Co., Ltd.). The flat surface of the anti-glare film obtained in (b) was adhered to the triacetyl cellulose film side of the linear polarizing film/optical anisotropic layered body to assemble an anti-glare polarizing film laminate. (d) Manufacturing and evaluation of liquid crystal display A polarizing plate was removed from the surface and the back surface of a monitor display commercially available for use in a personal computer with a TN type TFT liquid crystal display device. Then, instead of the original polarizing plate, the linear polarizing film/optical anisotropic layered layer "SUMIKARAN SRH 862A" is adhered to the back surface with an adhesive so that the absorption axis of the laminated body corresponds to the absorption axis of the original polarizing plate and The optically anisotropic layer faces the liquid crystal cell, and the anti-glare polarizing film laminate produced by (e) is adhered to the surface of the display by an adhesive so that the absorption axis of the film laminate corresponds to the absorption axis of the original polarizing plate. The optically anisotropic layer faces the liquid crystal cell. Therefore, a liquid crystal display having an anti-glare layer is mounted to activate the personal computer in a dark room, and a black display state or a white display is measured using a luminance meter "BM5A" -37-200809274 (34) (available from TOPCON Co., Ltd.). The brightness of the LCD in the state, then calculate the contrast. Here, the contrast is expressed by the ratio of the brightness of the white display state to the brightness of the black display state. As a result, after the liquid crystal display contrast measured in the dark room was 5 69 〇 ~, the evaluation system was moved to the bright room, and the reflection on the display in the black, display state was visually observed. As a result, substantially no inverse φ shot was observed. This confirms that the liquid crystal display has good anti-glare properties. The results are summarized in Table 3. Examples 2 and 3 A metal mold having an irregular surface was produced in the same manner as in Example 1 except that the thickness of the nickel plating layer was changed as shown in Table 1. Using the metal mold thus obtained, a transparent antiglare film composed of a random cured resin layer and a TAC film on the surface thereof was produced in the same manner as in Example 1. The optical characteristics and surface state of the anti-glare film thus obtained (the average area of the Fino polygons) are summarized in Table 1. Using the respective films, the number of vertices of the convex portion in the field of view of 200 μm χ 200 μm, the arithmetic mean height Pa of the section curve, and the maximum section height Pt, and the height profile of the height are calculated by the same method as in the first embodiment. Peak position. The results are shown in Table 2. Further, these films were used in the same manner as in Example 1 to assemble a liquid crystal display having an anti-glare layer, and the contrast and anti-glare properties were evaluated. The results are shown in Table 3. The transmission resolutions shown in Table 1 were measured using four optical frequency combs each having a black fraction of 〇. 1 25 -38 - 200809274 (35) mm, 0.5 mm, 1·0 mm, and 2·0 mm width, respectively. The obtained transmission resolution sum is measured by using three kinds of optical frequency combs each having a dark portion and a bright portion of 0.5 mm, 1.0 mm, and 0, and comparative examples 1 to 5 φ for comparison, using each as the polarized light. Board | (Available from Sumitomo Chemical Co., Ltd. for the protection of "AG3", "AG5", "AG6" and "AG8" 1 to 5) which are dispersed in UV curable resin, and those anti-glare The uniform area of the Fino polygon of the film is recorded together with the results of Examples 1, 2 and 3: using those films, the flat three-dimensional coordinates of the Fino polygons are calculated, and the field of view of Φ μπι is calculated in the same manner as in Embodiment 1. The number of vertices of the convex portion, the average height Pa, and the maximum section height Pt, and the positions. The results were compared with the results of Examples 1, 2 and 3. Further, the liquid crystal display of this anti-glare layer was used in the same manner as in Example 1, and the contrast was evaluated and the results of Examples, 2 and 3 were recorded together in the dark portion and the bright portion of Table 3, and the reflection was clear 匕 2.0. The reflection resolution of the mm width is total _ SUMIKARAN") anti-glare film and contains 1 smear film "AG1", (the optical properties of the comparative example and the flat load are shown in Table 1. The average area is measured - in The peaks of the arithmetical rectangle of the 200 μπιχ200 section curve are recorded together in Table 2. Some of the membranes are assembled to have glare properties. The result will be. -39- 200809274 (36)

表面形狀 芙諾多邊形平均面積 (μιη2) (N CN m 〇〇 卜 m in m m 2,084 1,762 546 384 345 光學性質 § 0.00010 0.00018 0.00004 0.00018 0.00008 0.00145 0.00639 0.00148 反射外廟 g | 0,00064 0.00221 0.00013 0.00259 0.00113 0.00409 0.00582 0.00452 g 0.374 0.125 0.726 0.368 0.568 0.100 0.042 0.099 反射清晰度 (%) 21.7 17.9 38.2 15.7 20.1 23.2 21.7 30.3 透射清晰 ! (%) 148.2 126.3 191.6 52.1 97.1 65.9 40.9 199.8 濁度 (%) 〇s m 寸 Ο (N O 3.6 3.4 10.7 20.1 10.9 模製造條件 鎳鍍層厚 度 μηι) 12.3 11.6 19.3 AG1 AG3 AGS AG6 AG8 噴吹壓力 (MPa) t-H v-H o o o ^=r? ·ρΤ7 t=7 i§N i§\ 變握辑 1¾ 1¾ {$i( 比較例1 比較例2 比較例3 比較例4 比較例5 -40- 200809274 (37)Average shape of surface shape Funo polygon (μιη2) (N CN m m m in mm 2,084 1,762 546 384 345 Optical properties § 0.00010 0.00018 0.00004 0.00018 0.00008 0.00145 0.00639 0.00148 Reflex Temple g | 0,00064 0.00221 0.00013 0.00259 0.00113 0.00409 0.00582 0.00452 g 0.374 0.125 0.726 0.368 0.568 0.100 0.042 0.099 Reflection resolution (%) 21.7 17.9 38.2 15.7 20.1 23.2 21.7 30.3 Clear transmission! (%) 148.2 126.3 191.6 52.1 97.1 65.9 40.9 199.8 Turbidity (%) 〇sm inch Ο (NO 3.6 3.4 10.7 20.1 10.9 Molding conditions Nickel plating thickness μηι) 12.3 11.6 19.3 AG1 AG3 AGS AG6 AG8 Injection pressure (MPa) tH vH ooo ^=r? ·ρΤ7 t=7 i§N i§\ Change grip 13⁄4 13⁄4 { $i (Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 - 40 - 200809274 (37)

防眩膜的表面形狀(續) 在 200μπιχ200μπι 視野中 的凸面部分的頂點數目 算術平均高度 Pa(pm) 最大斷面高度 Ρί(μηι) 高度矩形圖中的 點之峰位置(%) 實施例1 76 0.089 0.493 45-50 實施例2 119 0.127 0.688 45-50 實施例3 79 0.117 0.615 50-55 比較例1 18 0.184 0.933 25-30 比較例2 22 0.220 1.088 20-25 比較例3 78 0.190 1.107 20-25 比較例4 114 0.284 1.615 20-25 比較例5 139 0.157 0.865 20-25 表3 液晶顯示器的評估Surface shape of anti-glare film (continued) Number of vertices of convex portion in 200 μπιχ200 μπι field of view Mathematical average height Pa (pm) Maximum cross-sectional height Ρί(μηι) Peak position of the point in the height histogram (%) Example 1 76 0.089 0.493 45-50 Example 2 119 0.127 0.688 45-50 Example 3 79 0.117 0.615 50-55 Comparative Example 1 18 0.184 0.933 25-30 Comparative Example 2 22 0.220 1.088 20-25 Comparative Example 3 78 0.190 1.107 20-25 Comparative Example 4 114 0.284 1.615 20-25 Comparative Example 5 139 0.157 0.865 20-25 Table 3 Evaluation of Liquid Crystal Display

對比度 防眩性質1) 實 施 例 1 5 69 A 實 施 例 2 495 A 實 施 例 3 61 1 A 比 較 例 1 492 B 比 較 例 2 420 B 比 較 例 3 3 82 A 比 較 例 4 33 7 A 比 較 例 5 409 A 註釋:1)防眩性質 A:具有充分的防眩性質 B :沒有充分的防眩性質(具有高度反射) 如表1及3所示的結果可見到,實施例1、2及3的 樣品,其符合根據本發明的濁度、反射外廓及表面形狀的 限定,顯示優異的防眩性質(沒有反射),且達到高對比 -41- 200809274 (38) 度及良好的可見度。此外,彼等引起較小的眩光及較少變 白。 比較例1及2的樣品並未遭遇變白,因爲R ( 3 0 )小 於 2%,R ( 40 )小於 0.003% 且 R ( 60 ) /R ( 30 )小於 0.00 1。然而,這些樣品的芙諾多邊形的平均面積超過 ^ 1,500 μιη2,彼等將引起眩光。如表3所示,當使用由比較 較 例的防眩偏光膜製得的防眩偏光膜積層體來裝配該液晶顯 φ 示器時,比較例1及2中的對比度非常高,分別爲492及 420,但是該防眩性質並不適宜且可見度低。有關實施例3 、4 及 5 的樣品,R ( 40 )超過 0.003%且 R ( 60 ) /R ( 30 )超過0.001。由此,彼等將變得比根據本發明的樣品白 。在比較例3、4及5中,濁度高且由此對比度傾向於降 低。 【圖式簡單說明】 • 第1圖爲本發明的防眩偏光膜積層體之一例子的槪要 斷面圖。 第2圖爲顯示與防眩層相關的光入射方向與反射方向 的槪要透視圖。 第3圖爲描繪與從第2圖的防眩層法線30度角下@ 入的入射光相關的反射光之反射率,對該等反射角度(其 中座標軸藉由對數刻度來表示)的圖形的例子。 第4圖爲例示用於測定防眩膜的凸面部分頂點的演_ 法槪要透視圖。 ^ -42· 200809274 (39) 第5圖爲顯示使用該防眩膜凸面部分的頂點當作母讓占 的芙諾分割之一個例子的芙諾圖° 第6A至6E圖槪要地顯不用於製造防眩層的較佳方法 的步驟。 第7圖爲硏磨之後經無電鍍敷的防眩層之槪要斷面圖 〇 ~ 第8圖爲根據本發明的液晶顯示器之一例子的槪要斷 鲁面圖。 第9圖爲根據本發明的液晶顯示器之另一個例子的槪 要斷面圖。 [主要元件符號說明】 ㊀:任意角 R ( 3 0 ):反射率 、 R ( 4 0 ):反射率Contrast anti-glare property 1) Example 1 5 69 A Example 2 495 A Example 3 61 1 A Comparative Example 1 492 B Comparative Example 2 420 B Comparative Example 3 3 82 A Comparative Example 4 33 7 A Comparative Example 5 409 A Notes: 1) Anti-glare property A: Has sufficient anti-glare properties B: Does not have sufficient anti-glare properties (with high reflection) As shown in Tables 1 and 3, the samples of Examples 1, 2 and 3, It conforms to the definition of turbidity, reflective profile and surface shape according to the invention, exhibits excellent anti-glare properties (no reflection), and achieves high contrast -41 - 200809274 (38) degrees and good visibility. In addition, they cause less glare and less whitening. The samples of Comparative Examples 1 and 2 did not suffer from whitening because R (30) was less than 2%, R(40) was less than 0.003%, and R(60) /R(30) was less than 0.001. However, the average area of the Funo polygons of these samples exceeds ^ 1,500 μηη2, which will cause glare. As shown in Table 3, when the liquid crystal display device was assembled using the anti-glare polarizing film laminate produced by the comparative anti-glare polarizing film, the contrast ratios in Comparative Examples 1 and 2 were very high, respectively, 492. And 420, but the anti-glare property is not suitable and the visibility is low. For the samples of Examples 3, 4 and 5, R (40) exceeded 0.003% and R (60) / R (30) exceeded 0.001. Thus, they will become whiter than the sample according to the invention. In Comparative Examples 3, 4 and 5, the turbidity was high and thus the contrast tends to decrease. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view showing an example of an antiglare polarizing film laminate of the present invention. Figure 2 is a schematic perspective view showing the direction of incidence of light and the direction of reflection associated with the anti-glare layer. Figure 3 is a graph depicting the reflectance of reflected light associated with incident light at an angle of 30 degrees from the normal to the anti-glare layer of Figure 2, the angle of reflection (where the coordinate axis is represented by a logarithmic scale) example of. Fig. 4 is a perspective view showing the apex of the convex portion of the anti-glare film. ^ -42· 200809274 (39) Fig. 5 is a vortex diagram showing an example of the use of the apex of the convex portion of the anti-glare film as the mother's segmentation. The 6A to 6E diagrams are not used for the purpose. The step of a preferred method of making an antiglare layer. Fig. 7 is a cross-sectional view showing an anti-glare layer which is electrolessly plated after honing. Fig. 8 is a schematic cross-sectional view showing an example of a liquid crystal display according to the present invention. Fig. 9 is a cross-sectional view showing another example of the liquid crystal display according to the present invention. [Description of main component symbols] 1: Arbitrary angle R ( 3 0 ): reflectivity, R ( 4 0 ): reflectivity

R ( 6 0 ):反射率 • 1 〇 :防眩偏光膜積層H 11 :防眩層 1 2 :透明基材膜 13:可離子輻射固化的樹脂層 1 5 :法線 1 6 :入射光 1 7 :反射方向 1 8 :反射光方向 19 :平面 -43- (40) 200809274 21 :金屬板 22 :經硏磨的表面 23 :半球形細小凹面部分 24 :鍍鎳層 26 :不規則表面 2 9 :平坦平面R ( 6 0 ): reflectance • 1 〇: anti-glare polarizing film laminate H 11 : anti-glare layer 1 2 : transparent substrate film 13: ion-radiation-curable resin layer 1 5 : normal 1 6 : incident light 1 7: reflection direction 1 8 : reflected light direction 19 : plane -43- (40) 200809274 21 : metal plate 22 : honed surface 23 : hemispherical small concave portion 24 : nickel plated layer 26 : irregular surface 2 9 : flat plane

3 0 :線性偏光膜 3 5 :偏光板 40 :光學各向異性層 45 :光學各向異性層 5 0 :液晶單元 5 1 :單元基板 5 2 :單元基板 5 4 :電極 5 5 :電極 57 : TN液晶 60 :黏著劑 70 :背光 81 :任意點 83 :基底平面 84 :圓 8 5 :母點 86 :多邊形 87 :變暗的芙諾多邊形 -44-3 0 : linear polarizing film 3 5 : polarizing plate 40 : optical anisotropic layer 45 : optical anisotropic layer 5 0 : liquid crystal cell 5 1 : unit substrate 5 2 : unit substrate 5 4 : electrode 5 5 : electrode 57 : TN liquid crystal 60: Adhesive 70: Backlight 81: Any point 83: Base plane 84: Circle 8 5: Mother point 86: Polygon 87: Darkened Fino polygon - 44-

Claims (1)

200809274 (1) 十、申請專利範圍 1 . 一種防眩偏光膜積層體,其包含在表面上具有細 小不規則之防眩層、線性偏光膜及光學各向異性層’彼等 係依此順序積層,其中 該防眩層具有對垂直入射光爲5%或更小的濁度、當 ' 使用由各自具有0·5 mm、1.0 mm及2.0 mm寬度的暗線和 ^ 亮線所組成的三種光頻梳在45度光入射角下測量反射清 0 晰度時爲5 0%或更小的總反射清晰度、對3 0度入射角進 入的入射光具有2%或更小之30度反射角下的反射率R ( 30)、對40度入射角進入的入射光具有0.003%或更小之 40度反射角下的反射率R ( 40 )、及0.001或更小之R ( 2 60 )對R ( 30 )的比例,其中R ( 2 60 )爲對30度入射 角進入的入射光在60度或更大反射角下任意方向的反射 率; 該防眩層表面係由具有50 μιη2至1,500 μπι2的平均面 • 積之多邊形所組成,其中該等多邊形係藉由作爲母點的表 面不規則之凸面部分的頂點之芙諾分割所形成;以及 該光學各向異性層具有光負或光正單軸性及自該層的 法線方向傾斜5至5 0度角的光學軸。 2.如申請專利範圍第1項之防眩偏光膜積層體,該 多邊形具有3 00 μm2至υοο μιη2的平均面積,其中該等 # S $ {系藉由作爲母點的表面不規則之凸面部分的頂點經 表面的芙諾分割所形成。 3 ·如申請專利範圍第1項之防眩偏光膜積層體,其 -45- 200809274 (2) 中該防眩層係由表面上具有細小不規則的樹脂膜所組成, 該樹脂膜之製備係經由微細粒子的撞擊在經硏磨的金屬板 上形成不規則,在該金屬板的不規則表面上經無電鍍敷鎳 以形成模,將該模的表面不規則轉移至透明樹脂膜的表面 ,並自該模移除該樹脂膜。 - 4.如申請專利範圍第3項之防眩偏光膜積層體,其 , 中該透明樹脂膜包含UV可固化樹脂或熱塑性樹脂。 φ 5.如申請專利範圍第1項之防眩偏光膜積層體,其 中該光學各向異性層具有光正或光負單軸性。 6. —種液晶顯示器,其包含液晶單元,該液晶單元 包含一對電極基板及夾在該等電極基板之間的扭轉向列型 液晶,以及置於該液晶單元之兩個表面上的偏光板,其中 置於顯示器表面側上的偏光板係由申請專利範圍第1至4 項中任一項之防眩偏光膜積層體所組成,放置該防眩偏光 ^ 膜積層體使其光學各向異性層側面向該液晶單元。 -46-200809274 (1) X. Patent application scope 1. An anti-glare polarizing film laminate comprising an anti-glare layer having a small irregularity on the surface, a linear polarizing film, and an optically anisotropic layer, which are laminated in this order Where the anti-glare layer has a turbidity of 5% or less for normal incident light, when using three optical frequencies consisting of dark lines and bright lines each having a width of 0·5 mm, 1.0 mm, and 2.0 mm The comb has a total reflection resolution of 50% or less at a reflection angle of 45 degrees at a light incident angle of 45 degrees, and an incident angle of 30% or less at an incident angle of 30 degrees. The reflectance R (30), the incident light entering the incident angle of 40 degrees has a reflectance R (40) at a reflection angle of 40% or less of 40 degrees, and R (2 60) versus R of 0.001 or less. a ratio of (30), where R ( 2 60 ) is the reflectance of incident light entering the incident angle of 30 degrees in any direction at a reflection angle of 60 degrees or more; the surface of the anti-glare layer is from 50 μm 2 to 1, 500 μπι2 averaging surface • a combination of polygons, where the polygons are surface irregularities as a parent point Then, the optically anisotropic layer has an optical axis which is optically negative or positively uniaxial and has an angle of 5 to 50 degrees from the normal direction of the layer. 2. The antiglare polarizing film laminate according to claim 1, wherein the polygon has an average area of 300 μm 2 to υ οο μιη 2, wherein the # S $ { is a convex portion of the surface irregularity as a mother point The apex is formed by the surface of the Fino division. 3. The anti-glare polarizing film laminate according to claim 1 of the patent scope, wherein the anti-glare layer is composed of a fine irregular resin film on the surface, the preparation of the resin film is -45-200809274 (2) Irregularities are formed on the honed metal plate by the impact of the fine particles, and nickel is electrolessly plated on the irregular surface of the metal plate to form a mold, and the surface of the mold is irregularly transferred to the surface of the transparent resin film. And removing the resin film from the mold. 4. The antiglare polarizing film laminate according to claim 3, wherein the transparent resin film comprises a UV curable resin or a thermoplastic resin. φ 5. The anti-glare polarizing film laminate according to the first aspect of the invention, wherein the optically anisotropic layer has an optical positive or negative optical uniaxiality. 6. A liquid crystal display comprising a liquid crystal cell comprising a pair of electrode substrates and twisted nematic liquid crystal sandwiched between the electrode substrates, and a polarizing plate disposed on both surfaces of the liquid crystal cell The polarizing plate disposed on the surface side of the display is composed of the anti-glare polarizing film laminate of any one of claims 1 to 4, and the anti-glare polarizing film laminate is placed to make the optical anisotropy The layer faces the liquid crystal cell. -46-
TW096109198A 2006-03-24 2007-03-16 Glare-proof polarizing film laminate and liquid crystal display comprising the same TWI514016B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006082761A JP4946122B2 (en) 2006-03-24 2006-03-24 Antiglare polarizing film laminate and liquid crystal display device using the same

Publications (2)

Publication Number Publication Date
TW200809274A true TW200809274A (en) 2008-02-16
TWI514016B TWI514016B (en) 2015-12-21

Family

ID=38631049

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096109198A TWI514016B (en) 2006-03-24 2007-03-16 Glare-proof polarizing film laminate and liquid crystal display comprising the same

Country Status (6)

Country Link
JP (1) JP4946122B2 (en)
KR (1) KR101382668B1 (en)
CN (1) CN101042448B (en)
MX (1) MX2007003303A (en)
PL (1) PL382043A1 (en)
TW (1) TWI514016B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI498609B (en) * 2009-06-09 2015-09-01 Sumitomo Chemical Co A liquid crystal display device and a polarizing plate for the same

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI448748B (en) * 2007-12-11 2014-08-11 Sumitomo Chemical Co A set of polarizer, and a liquid crystal panel and a liquid crystal display apparatus using the set of polarizer
JP5163943B2 (en) * 2008-02-26 2013-03-13 住友化学株式会社 Anti-glare film, anti-glare polarizing plate and image display device
JP5467422B2 (en) * 2008-03-05 2014-04-09 東洋合成工業株式会社 Method for producing composite
EP3101470A1 (en) * 2008-07-07 2016-12-07 Samsung Electronics Co., Ltd. A display structure with a roughened sub-electrode layer
JP5120715B2 (en) * 2008-09-10 2013-01-16 住友化学株式会社 Polarizing plate, method for manufacturing the same, optical member, and liquid crystal display device
JP4966395B2 (en) * 2010-04-14 2012-07-04 大日本印刷株式会社 Method for improving blackness and cutout of liquid crystal display device suitable for mixed use of moving image and still image
JP2012068473A (en) * 2010-09-24 2012-04-05 Sumitomo Chemical Co Ltd Liquid crystal display device
CN102069619B (en) * 2010-12-30 2013-07-03 叶逸仁 Method for preparing hot bonding membrane with inner grains
CN102692670B (en) * 2012-06-12 2016-07-06 深圳市华星光电技术有限公司 Light guide plate and preparation method thereof and the side entrance back module applying this light guide plate
KR101915286B1 (en) * 2012-12-11 2018-11-05 동우 화인켐 주식회사 Anti-glare film and polarizing plate using the same
JP6196450B2 (en) * 2013-01-29 2017-09-13 富士フイルム株式会社 Sheet for illumination, printed matter for illumination, method for producing the same, and illumination signboard
JP2013219366A (en) * 2013-05-16 2013-10-24 Toyo Gosei Kogyo Kk Composition, method of manufacturing composite body, and method of manufacturing optical member
CN104275773B (en) * 2013-07-02 2016-10-19 联钢精密科技(苏州)有限公司 The mould of a kind of optical articles and the method using this Mold Making optical articles
JP2015144278A (en) * 2015-01-26 2015-08-06 東洋合成工業株式会社 Composition and method for producing composite material
JP6780930B2 (en) * 2015-12-02 2020-11-04 日東電工株式会社 Optical laminate and image display device
JP6935054B2 (en) * 2016-12-14 2021-09-15 天馬微電子有限公司 Liquid crystal display and control circuit
JPWO2018180541A1 (en) * 2017-03-31 2020-02-06 株式会社巴川製紙所 Anti-glare film and display device
CN113759592B (en) * 2021-10-28 2024-03-26 深圳市茂晶源光电有限公司 Polarizer applicable to strong light environment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200604602A (en) * 2004-07-16 2006-02-01 Sumitomo Chemical Co Anti-glare polarized light film lamination and liquid crystal display device using thereof
JP2006053511A (en) * 2004-07-16 2006-02-23 Sumitomo Chemical Co Ltd Antidazzle polarizing film layered body and liquid crystal display using the same
CN100462800C (en) * 2004-07-16 2009-02-18 住友化学株式会社 Anti-glare polarizing film laminate and liquid display device using the same
JP2006053371A (en) * 2004-08-12 2006-02-23 Sumitomo Chemical Co Ltd Antiglare film, method of manufacturing the same, method of manufacturing die therefor and display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI498609B (en) * 2009-06-09 2015-09-01 Sumitomo Chemical Co A liquid crystal display device and a polarizing plate for the same

Also Published As

Publication number Publication date
KR101382668B1 (en) 2014-04-07
JP4946122B2 (en) 2012-06-06
TWI514016B (en) 2015-12-21
MX2007003303A (en) 2008-11-19
KR20070096880A (en) 2007-10-02
CN101042448A (en) 2007-09-26
PL382043A1 (en) 2007-10-01
JP2007256765A (en) 2007-10-04
CN101042448B (en) 2012-03-21

Similar Documents

Publication Publication Date Title
TW200809274A (en) Glare-proof polarizing film laminate and liquid crystal display comprising the same
JP5880762B2 (en) Optical film and touch panel
KR101344671B1 (en) Anti-glare optical multilayer body
TWI461791B (en) Liquid crystal display device
JP6212844B2 (en) Optical film, polarizing plate, liquid crystal panel, and image display device
KR101782653B1 (en) Anti-glare film and liquid crystal display apparatus
JP5405763B2 (en) Directional diffusion film, polarizing plate, liquid crystal display device, and method of manufacturing directional diffusion film
JP6167480B2 (en) Optical film, polarizing plate, liquid crystal panel, and image display device
TW200916836A (en) Optical film and its production method, and glare-proof polarizer using same and display apparatus
TWI439761B (en) Liquid crystal display and glare-proof polarizing film laminate used therein
JP2008262190A (en) Antidazzle optical laminate
KR20190060685A (en) Optical film and manufacturing method thereof, polarizing plate, and liquid crystal display device
JP2010243903A (en) Polarizing plate and liquid crystal display device using the same
KR20090047375A (en) Liquid crystal display device
KR102543034B1 (en) Liquid crystal display element, liquid crystal display device, and method for designing liquid crystal display element
KR20120038701A (en) Anti-glare film, polarizing plate and display device using the same
KR20060050119A (en) Anti-glare polarizing film laminate and liquid crystal display device using the same
KR20130127938A (en) Laminated base material, laminated body, polarizing plate, liquid crystal display panel, and image display device
TWI654085B (en) Laminated body, polarizing plate, liquid crystal panel, touch panel sensor, touch panel device and image display device
TW200302923A (en) Antiglare optical film, polarizing plate and display unit using the same