TW200708887A - A mask for sequential lateral solidification (SLS) process and a method thereof - Google Patents

A mask for sequential lateral solidification (SLS) process and a method thereof

Info

Publication number
TW200708887A
TW200708887A TW094128805A TW94128805A TW200708887A TW 200708887 A TW200708887 A TW 200708887A TW 094128805 A TW094128805 A TW 094128805A TW 94128805 A TW94128805 A TW 94128805A TW 200708887 A TW200708887 A TW 200708887A
Authority
TW
Taiwan
Prior art keywords
sls
mask
transparency
slit
sequential lateral
Prior art date
Application number
TW094128805A
Other languages
Chinese (zh)
Other versions
TWI299431B (en
Inventor
Ming-Wei Sun
Original Assignee
Au Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Au Optronics Corp filed Critical Au Optronics Corp
Priority to TW094128805A priority Critical patent/TWI299431B/en
Priority to US11/495,517 priority patent/US7666767B2/en
Publication of TW200708887A publication Critical patent/TW200708887A/en
Application granted granted Critical
Publication of TWI299431B publication Critical patent/TWI299431B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/066Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • H01L21/0268Shape of mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1296Multistep manufacturing methods adapted to increase the uniformity of device parameters

Abstract

A mask for sequential lateral solidification (SLS) process with at least one transparency slit is provided. The transparency slit has two long edges facing with each other, a front edge, and a rear edge. The front edge has a shape protruding outward the transparency slit. The rear edge has a shape protruding inward the transparency slit.
TW094128805A 2005-08-23 2005-08-23 A mask for sequential lateral solidification (sls) process and a method thereof TWI299431B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW094128805A TWI299431B (en) 2005-08-23 2005-08-23 A mask for sequential lateral solidification (sls) process and a method thereof
US11/495,517 US7666767B2 (en) 2005-08-23 2006-07-31 Mask for sequential lateral solidification (SLS) process and a method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW094128805A TWI299431B (en) 2005-08-23 2005-08-23 A mask for sequential lateral solidification (sls) process and a method thereof

Publications (2)

Publication Number Publication Date
TW200708887A true TW200708887A (en) 2007-03-01
TWI299431B TWI299431B (en) 2008-08-01

Family

ID=37804804

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094128805A TWI299431B (en) 2005-08-23 2005-08-23 A mask for sequential lateral solidification (sls) process and a method thereof

Country Status (2)

Country Link
US (1) US7666767B2 (en)
TW (1) TWI299431B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI299431B (en) * 2005-08-23 2008-08-01 Au Optronics Corp A mask for sequential lateral solidification (sls) process and a method thereof
US8183496B2 (en) * 2008-12-30 2012-05-22 Intel Corporation Method of forming a pattern on a work piece, method of shaping a beam of electromagnetic radiation for use in said method, and aperture for shaping a beam of electromagnetic radiation
KR101666661B1 (en) * 2010-08-26 2016-10-17 삼성디스플레이 주식회사 Thin film transistor substrate and flat panel display apparatus
KR102307499B1 (en) 2014-10-06 2021-10-01 삼성디스플레이 주식회사 Phase shift mask and method for manufacturing display apparatus using the same

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6555449B1 (en) * 1996-05-28 2003-04-29 Trustees Of Columbia University In The City Of New York Methods for producing uniform large-grained and grain boundary location manipulated polycrystalline thin film semiconductors using sequential lateral solidfication
KR100296110B1 (en) * 1998-06-09 2001-08-07 구본준, 론 위라하디락사 Method of manufacturing thin film transistor
US6326286B1 (en) * 1998-06-09 2001-12-04 Lg. Philips Lcd Co., Ltd. Method for crystallizing amorphous silicon layer
US6368945B1 (en) * 2000-03-16 2002-04-09 The Trustees Of Columbia University In The City Of New York Method and system for providing a continuous motion sequential lateral solidification
US6495405B2 (en) * 2001-01-29 2002-12-17 Sharp Laboratories Of America, Inc. Method of optimizing channel characteristics using laterally-crystallized ELA poly-Si films
KR100558678B1 (en) * 2001-06-01 2006-03-10 엘지.필립스 엘시디 주식회사 A method of crystallizing for poly-Si
KR100424593B1 (en) * 2001-06-07 2004-03-27 엘지.필립스 엘시디 주식회사 A method of crystallizing Si
US6962860B2 (en) * 2001-11-09 2005-11-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
CN100508140C (en) * 2001-11-30 2009-07-01 株式会社半导体能源研究所 Manufacturing method for a semiconductor device
EP1329946A3 (en) * 2001-12-11 2005-04-06 Sel Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device including a laser crystallization step
US6792029B2 (en) * 2002-03-27 2004-09-14 Sharp Laboratories Of America, Inc. Method of suppressing energy spikes of a partially-coherent beam
US6984573B2 (en) * 2002-06-14 2006-01-10 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and apparatus
KR100916656B1 (en) * 2002-10-22 2009-09-08 삼성전자주식회사 laser irradiation apparatus and manufacturing method for polysilicon thin film transistor using the apparatus
KR100915236B1 (en) 2002-12-13 2009-09-02 삼성전자주식회사 Mask and Crystallization method of silicon
KR100646160B1 (en) * 2002-12-31 2006-11-14 엘지.필립스 엘시디 주식회사 A mask for sequential lateral solidification and a silicon crystallizing method using the same
US6906349B2 (en) * 2003-01-08 2005-06-14 Samsung Electronics Co., Ltd. Polysilicon thin film transistor array panel and manufacturing method thereof
KR100956339B1 (en) * 2003-02-25 2010-05-06 삼성전자주식회사 Crystallization system of silicon and crystallization method of silicon
JP4470395B2 (en) * 2003-05-30 2010-06-02 日本電気株式会社 Method and apparatus for manufacturing semiconductor thin film, and thin film transistor
KR100492352B1 (en) * 2003-06-12 2005-05-30 엘지.필립스 엘시디 주식회사 A method of crystallizing silicon
WO2005029546A2 (en) * 2003-09-16 2005-03-31 The Trustees Of Columbia University In The City Of New York Method and system for providing a continuous motion sequential lateral solidification for reducing or eliminating artifacts, and a mask for facilitating such artifact reduction/elimination
TWI366859B (en) * 2003-09-16 2012-06-21 Univ Columbia System and method of enhancing the width of polycrystalline grains produced via sequential lateral solidification using a modified mask pattern
KR100595455B1 (en) * 2003-12-24 2006-06-30 엘지.필립스 엘시디 주식회사 Laser mask and method of crystallization using thereof
KR100698056B1 (en) * 2003-12-26 2007-03-23 엘지.필립스 엘시디 주식회사 Laser Beam Pattern Mask and the Method for Crystallization with the Same
KR100572519B1 (en) * 2003-12-26 2006-04-19 엘지.필립스 엘시디 주식회사 Mask for laser crystallization process and laser crystallization process using the mask
KR100606450B1 (en) * 2003-12-29 2006-08-11 엘지.필립스 엘시디 주식회사 Laser mask formed periodic pattern and method of crystallization using thereof
KR20050068207A (en) * 2003-12-29 2005-07-05 엘지.필립스 엘시디 주식회사 Laser mask having 2-block and method of crystallization using thereof
KR100631013B1 (en) * 2003-12-29 2006-10-04 엘지.필립스 엘시디 주식회사 Laser mask formed periodic pattern and method of crystallization using thereof
KR101045204B1 (en) * 2004-02-07 2011-06-30 삼성전자주식회사 A method for forming single-crystal silicon thin film using sequential lateral solidificationSLS
US7611577B2 (en) * 2004-03-31 2009-11-03 Nec Corporation Semiconductor thin film manufacturing method and device, beam-shaping mask, and thin film transistor
KR101066478B1 (en) * 2004-06-04 2011-09-21 엘지디스플레이 주식회사 Laser Beam Pattern Mask and the Method for Crystallization with the Same
KR20060016421A (en) * 2004-08-17 2006-02-22 삼성전자주식회사 Mask for sls and method of making thin film transistor using the same
TWI298111B (en) * 2005-06-03 2008-06-21 Au Optronics Corp A mask used in a sequential lateral solidification process
KR101167662B1 (en) * 2005-08-04 2012-07-23 삼성전자주식회사 Mask for sequential lateral solidification and method of manufacturing the same
TWI299431B (en) * 2005-08-23 2008-08-01 Au Optronics Corp A mask for sequential lateral solidification (sls) process and a method thereof
TWI271451B (en) * 2005-12-19 2007-01-21 Ind Tech Res Inst Method for forming poly-silicon film
KR100742380B1 (en) * 2005-12-28 2007-07-24 삼성에스디아이 주식회사 Mask pattern, method of fabricating thin film transistor and method for fabricating organic light emitting display device
KR101191404B1 (en) * 2006-01-12 2012-10-16 삼성디스플레이 주식회사 Mask for silicone crystallization, method for crystallizing silicone using the same and display device
CN1811592A (en) * 2006-02-15 2006-08-02 友达光电股份有限公司 Optical mask pattern structure and array for laser crystal
TWI307732B (en) * 2006-02-17 2009-03-21 Ind Tech Res Inst Method for crystallizing silicon and mask using therefor
KR20070109127A (en) * 2006-05-09 2007-11-15 삼성전자주식회사 Mask for sequential lateral solidification and method for performing sequential lateral solidification using the same
TW200805496A (en) * 2006-07-13 2008-01-16 Ind Tech Res Inst Method and device for forming poly-silicon film
TWI299442B (en) * 2006-08-18 2008-08-01 Ind Tech Res Inst Method for crystalizing amorphous silicon layer and mask therefor

Also Published As

Publication number Publication date
US7666767B2 (en) 2010-02-23
TWI299431B (en) 2008-08-01
US20070048978A1 (en) 2007-03-01

Similar Documents

Publication Publication Date Title
USD817139S1 (en) Saw blade
USD798027S1 (en) Tights
USD799644S1 (en) Sink faucet
USD796998S1 (en) Vehicle and/or replica
USD902124S1 (en) Roof of a bus
USD710594S1 (en) Key chain
USD912135S1 (en) Printer
TWI371461B (en) Polyvinyl alcohol film, and process for producing the same
USD852780S1 (en) Speaker
USD774426S1 (en) Automobile
MX2009004170A (en) A method for increasing antibody-dependent cytotoxicity with castanospermine.
USD520595S1 (en) Filtration machine
USD527027S1 (en) Excavator tool carrier
TW200700644A (en) Composite fan and frame thereof
USD896125S1 (en) Utility vehicle
USD910207S1 (en) Manufactured siding panel with frame
TW200731133A (en) Firmware filters and patches
MX339521B (en) Molded product incorporating a label, and razor handle comprising such a molded product.
AU2003207288A1 (en) Anterior ocular-associated cell sheet, three-dimensional construct and process for producing the same
TW200708887A (en) A mask for sequential lateral solidification (SLS) process and a method thereof
USD875543S1 (en) Packaging can
USD581462S1 (en) Knock type eraser
USD836761S1 (en) Housing for air freshener
USD586083S1 (en) Pants
USD806345S1 (en) Crawler crane