TR202022603A1 - A SILICUM-BASED CLOSED AND INTEGRATED PLATFORM FOR INVESTIGATION OF RADIATION TRANSFER ON THE MICRO-NANO SCALE - Google Patents

A SILICUM-BASED CLOSED AND INTEGRATED PLATFORM FOR INVESTIGATION OF RADIATION TRANSFER ON THE MICRO-NANO SCALE

Info

Publication number
TR202022603A1
TR202022603A1 TR2020/22603A TR202022603A TR202022603A1 TR 202022603 A1 TR202022603 A1 TR 202022603A1 TR 2020/22603 A TR2020/22603 A TR 2020/22603A TR 202022603 A TR202022603 A TR 202022603A TR 202022603 A1 TR202022603 A1 TR 202022603A1
Authority
TR
Turkey
Prior art keywords
collector
emitter
thin film
silicon
coated
Prior art date
Application number
TR2020/22603A
Other languages
Turkish (tr)
Inventor
Begüm Elçi̇oğlu Eli̇f
Tuba Okutucu Özyurt Hani̇fe
Pinar Mengüç Mustafa
Original Assignee
Eskisehir Osmangazi Ueniversitesi
Eskisehir Teknik Ueniversitesi
Oezyegin Ueniversitesi
Orta Dogu Teknik Ueniversitesi
Univ Istanbul Teknik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eskisehir Osmangazi Ueniversitesi, Eskisehir Teknik Ueniversitesi, Oezyegin Ueniversitesi, Orta Dogu Teknik Ueniversitesi, Univ Istanbul Teknik filed Critical Eskisehir Osmangazi Ueniversitesi
Priority to TR2020/22603A priority Critical patent/TR202022603A1/en
Priority to PCT/TR2021/051588 priority patent/WO2022146393A2/en
Publication of TR202022603A1 publication Critical patent/TR202022603A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Buluş, mikro-nano ölçekte ışınım transferinin incelenmesi için kapalı ve entegre bir YAI platformu (12) olup, silisyum alttaş (1) üzerine kaplanmış silisyum karbür ince film (2) içeren bir yayıcı (5), silisyum alttaş (1) üzerine kaplanmış silisyum karbür ince film (2) içeren bir toplayıcı(6), yayıcı (5) ve toplayıcının (6) silisyum karbür ince filmleri (2) üzerine kaplanmış ve yayıcı (5) ve toplayıcının (6) aralarındaki mesafenin ısıl ışınım dalga boyundan (?) küçük ve birbirine paralel olmasını sağlayacak şekilde vakum ortamında silisyum dioksit ara sütunlar olan desenli temas yüzeylerinden birleştirilmiş ve pul boyutunda elde edilmiş entegre yapı (7) kesilerek 3 cm x 3 cm boyutunda çipler (YAI platformları(12)) elde edilmiştir. Söz konusu YAI platformunun (12) üretim yöntemi de buluşun kapsamındadır.The invention is a closed and integrated YAI platform (12) for the study of radiation transfer at the micro-nano scale, a diffuser (5) containing a silicon carbide thin film (2) coated on a silicon substrate (1), a silicon coated on a silicon substrate (1) A collector (6) containing a carbide thin film (2) is coated on silicon carbide thin films (2) of the emitter (5) and the collector (6), and the distance between the emitter (5) and the collector (6) is determined by the thermal radiation wavelength (?). 3 cm x 3 cm sized chips (YAI platforms (12)) were obtained by cutting the integrated structure (7), which was assembled from patterned contact surfaces, which are silicon dioxide intermediate columns, and obtained in the size of flakes, in a vacuum environment to ensure that they are small and parallel to each other. The production method of the said YAI platform (12) is also within the scope of the invention.

Description

TARIFNAME MiKRO-NANO ÖLÇEKTE ISINIM TRANSFERININ INCELENMESI IÇIN SILISYUM TEMELLI KAPALI VE ENTEGRE BIR PLATFORM Bulusun Konusu Bulus, mikro-nano ölçekte isinim transferinin incelenmesi amaciyla gelistirilen, silisyum temelli, kapali ve entegre bir yakin alan isinimi (YAI) platformuna ve bu platformun üretim yöntemine iliskindir. Bahsi geçen platformun üretim yöntemi mikro-nano fabrikasyon tekniklerine dayanmaktadir. Teknigin Bilinen Durumu Birbirinden farkli sicaklikta tutulan iki cisim arasindaki mesafenin (d), isil isinim dalga boyundan (Ã) küçük olmasi durumunda cisimler arasinda isinim yoluyla gerçeklesen isi transferi, yakin alan isinimi (YAI) olarak adlandirilmaktadir. Yakin alan isinim transferi, eger yüzey dalgalarini destekleyen malzemeler arasindaki mesafe (d), Planck kanununa bagli ölçek olarak kullanilan baskin dalga boyundan (Â) küçük olursa hissedilir; Bu dalga boyu oda sicakliginda 10 pmIden küçük olmalidir. Bu nedenle, yakin alan isinim transferi, mikro-nano ölçekte isinim transferi olarak da tanimlanabilmektedir. Yakin alan isiniminin gerçeklesebilmesi için isinim isi transferinin gerçeklesecegi cisimler arasindaki mesafenin mikro-nano ölçekte olmasi zaruri iken, bu cisimlerin mikro- nano boyutta olmasi zorunlu olmamaktadir. Yakin alan isinimi ile gerçeklesen isi transferi, cisimlerin yapisina bagli olarak, belirli dalga boylarinda, siyah cisim limitinin birkaç mertebe (lOOO kattan daha fazla) üzerine çikabilmektedir. Örnegin, birbiri ile karsilikli olarak yerlestirilmis iki ortam arasindaki YAI transferi, 1000 K sicaklikta, d=lOO nm yayici-toplayici arasi mesafede belirli dalga boylarinda siyah cisim limitinin galyum nitrat (GaN) yayici-toplayici ikilisi için, 7525, silisyumr karbür (SiC) yayici-toplayici ikilisi için 4168, kübik bor nitrür (cBN) yayici-toplayici ikilisi için ise 3307 kat üzerindedir. Söz konusu artislar, enerjinin çevreye duyarli kullanimi ihtiyacina yönelik uygulama potansiyeline sahiptir. Iki cisim, arasinda yakin alan isiniminin hassas olarak belirlenmesi iletim ve tasinim isi transferi mekanizmalarinin bertaraf edilmesi yoluyla, isinim isi transferi miktarinin ayristirilmasi ile mümkün olmaktadir. Bu amaçla yakin alan isinimi, yüksek sicaklikta tutulan cismin (yayici) ve düsük sicaklikta tutulan cismin (toplayici) bir mikro-nano pozisyonlayici yardimiyla, d<Ä olacak sekilde çok hassas (nanometrik hassasiyette) mesafelerinin, düzlemsel ve açisal konumlarinin ayarlanmasi ile vakum odalari içerisinde ölçülmektedir. Söz konusu sistemler mikro-nano pozisyonlayiciya ek olarak, yayicinin yüksek sicaklikta tutulmasi için isitici, toplayicinin düsük sicaklikta tutulmasi için sogutucu, yayici ve toplayicinin sicakliklarinin izlenmesi ve yayici-toplayici arasindaki isi geçisinin ölçümünün yani sira ortam vakum seviyesi gibi çok sayida ölçüm parametresinin es zamanli kontrol, izlenive kaydi ile sistemi çevreleyecek maliyetli, karmasik, özel uzmanlik ve is gücü gerektiren vakum sistemlerini zorunlu kilmaktadir. Yakin alan isiniminin teorik ve deneysel olarak incelenmesi için paralel plakalar içeren temel konfigürasyon genel hatlariyla Sekil-1'de gösterilmektedir. Sekil-1'de daha detayli olarak yayici (yüksek sicakliktaki cisim), toplayici (düsük sicakliktaki cisim) ve yayici-toplayici arasinda bulunan vakum ortami gösterilmektedir. Yayici ve toplayici arasindaki uzaklik d islemleri ise oklar ile belirtilmektedir. Yakin alan isiniminin arastirildigi uluslararasi ölçekteki düzenekler yakin alan isiniminin ölçümleri için kullanisli olup, yapay olarak olusturulmus kontrollü vakum ortamlarinda birbirine mekanik düzeneklerle yaklastirilmis, henüz arastirma ve laboratuvar asamasinda olan sistemler olarak degerlendirilmektedir. Teknikteki uygulamalarda. kullanilan düzenek ve yayici-toplayici arasindaki mesafenin (d) hassas bir sekilde belirlenmesinin gerekliligi ve zorlugu birçok arastirmaci tarafindan belirtilmektedir. Teknikte yakin alan isiniminin incelenmesi için bulunan sistemlerdeki temel zorluklar, yayici-toplayici arasinda üniform mesafenin saglanmasi, söz konusu mesafenin korunmasi ve tekrar edilebilirliginin saglanmasi ve yayioi-toplayioi arasindaki paralelligin saglanmasidir. deneylerinde yayioi ve toplayicinin birbirine paralel olarak hizalanmasi ve aralarinda üniform bir mesafe saglanmasi zorluguyla karsilasildigi belirtilmistir. "Applied Physics Letters 106" (K. Ito, A. Miura, H. Iizuka, H. Toshiyoshi, sütunlar kullanilarak yayiCi-toplayioi arasindaki d mesafesi ayarlanmis ve ölçümler sirasinda yayiçi ve toplayiciyi konumlandirmak için uygulanan basinç sebebiyle gelisen deformasyondan dolayi yayici-toplayici arasindaki mesafenin sütun yüksekliginden daha küçük olabilecegi gözlemlenmistir. cisimler arasinda d=lum'lik mesafe için ölçümler yapilmis, ancak Ölçüm sonuçlarinin d=l.6 um'lik mesafe için elde ettikleri teorik sonuçlarla uyumlu oldugu belirtilmistir. Aradaki %60'likr farki dikkate deger olup, yayici-toplayici arasindaki mesafeyi saglamak için yayici-toplayici arasina yerlestirilen polistiren parçaciklarin boyut farkliliklardan kaynaklanabilecegi öngörülmüstür. "Physical Review Letters toplayiciyi tasiyan alt kademesinin ±0.002°'lik bir açiyla dahi egilmesinin, yayici-toplayici paralelligini bozarak, YAI oranini ±%5 degistirdigi belirtilmistir. "Nature Photonics" (E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, 2009, 3, 514-517) adli dokümana konu çalismada ise yayici-toplayici paralelliginin önemi ve bunun saglanmasinin zorlugu göz önüne alinarakr düz plaka-plaka konfigürasyonur yerine küre-plaka konfigürasyonu incelenmistir. Teorik çalismalarda, aralarinda üniform mikro-nano mesafeler bulunan, birbiri ile mükemmel paralellikte ve pürüzsüz yüzeyli yayici-toplayici ikilileri ideal YAI sistemi olarak dikkate alinmaktadir. Yukarida bahsi geçen bu ideal sisteme en yakin uygulamalar oldukça hassas ve ileri teknoloji gerektiren yöntemlerle gelistirilmesine ve kontrollü vakum ortaminda gerçeklestirilmesine ragmen bahsi geçen mesafe (d), paralellik ve tekrar edilebilirlik problemlerini barindirmaktadir. Teknikteki genel egilim olan vakum odasi temelli YAI platformlarindan farkli olarak, standart çevre kosullarinda çalismasi hedeflenmis bir platform "FÄBRICATION OF NÄNOSTRUCTURED SAMPLES EUR THE INVESTIGATION OF NEAR FIELD RADIATION TRANSFER" (2. Artvin, 2012, Yüksek Lisans Tezi, Orta Dogu Teknik Üniversitesi) adli dokümanda açiklanmistir. Bahsi geçen doküman yakin alan isinim etkilerinin ölçülmesi için SiOz kapli Si pul içeren ve MEMS üretim teknikleri ile üretilen örnekleri konu almaktadir. Bahsedilen dokümanda kalici sekilde birlestirilmis yapi içerisinde 1 mm X 1 mm, 2 mm x 2 mm, 5 mm x 5 mm ve 20 mm x 20 mm yüzey alanina sahip olacak sekilde farkli sayilarda çipler (numuneler) olusturulmustur. Söz konusu dokümanda dört adet yapi, birbirinden üzerinde 8102 büyütülmüs paralel konumlanan Si numuneler arasindaki d mesafesine bagli olarak (25 nm, 50 nm, 100 nm, 200 nm) ayrilmaktadir. Dokümanda olusturulmus 1 mm x 1 mm, 2 mm x 2 mm ve 5 mm x 5 mm'lik yapilarin, numunenin yayici tarafi üzerine monte edilecek isitici plaka, numunenin toplayici tarafina monte edilecek isi kuyusu, sicaklik ölçer, isi akisi ölçer gibi ekipmanlarin kullanimi için uygulanabilirligi zorluklar barindirmaktadir. Içerisinde vakum, hapsedilmis ve atmosferik kosullarda, çalisacak yapilarda birbirinden d mesafesi ile ayrilmis paralel kisimlarin çökmesi ve birbirine temasi olasidir. Dokümanda bahsedilen ve 20 mm x 20 mm'lik iki yapidan bir tanesi bütün olarak birlestirilmis pul çifti içerisinde yer almakta olup, bu yapinin sadece dis duvarlara sahip oldugu görülmektedir. Ancak söz konusu doküman yüzey fonon polaritonlarini desteklemesini saglayan SiC içeren platform ve türevini açiklamamaktadir. Teknigin bilinen durumuna bir diger örnek olarak "IMPACTS OF MATERIAL TYPES AND FÄBRICATION.METHODS TO ENHÂNCE NEAR FIELD RADIÂTIVE TRANSFER FOR ENERGY HARVESTING" (Elif Begüm Elçioglu, Tuba Okutucu Özyurt, M. Pinar Mengüç) adli doküman verilebilir. Bahsi geçen doküman yakin alan isiniminin analiz edilmesinde ve enerji harmanlama cihazlarinin üretiminde malzeme seçiminin etkisini konu almaktadir. Dokümanda yakin alan isinimi enerji harmanlama cihazlarinin ve daha detayli olarak SiC kapli numune içeren enerji harmanlama cihazlarina ait genel bir üretim yönteminden bahsedilmektedir. Söz konusu üretim yöntemi en genel haliyle; ince film kaplama, litografi, daglama, pul birlestirme ve pul kesme islem basamaklarini içermektedir. Dokümanda üretim tekniklerinin her birinin parametrelerine ve temas yüzeyine ait detayli bilgi verilmemektedir. Bunun yani sira söz konusu dokümanda yayici ve toplayici arasindaki d mesafesini ve paralelligi saglayan bir platform açiklanmamaktadir. Yukarida bahsedilen dezavantajlarin giderilmesi adina, atmosferik kosullarda, platform, disinda vakum, ortami gerektirmeksizin yakin alan isiniminin incelenmesi amaciyla, yayici-toplayici arasinda üniform mesafenin saglanmasi, söz konusu mesafenin korunmasi ve tekrar edilebilirliginin saglanmasi problemlerine çözüm sunan kapali ve entegre bir YAI platformu gelistirilmistir. Bulusun Detayli Açiklamasi Bulus, yakin alan isiniminin incelenmesi için gelistirilen silisyum (Si) temelli, kapali ve entegre tekil bir YAI platformuna (12) ve bu YAI platformunun (12) üretim yöntemine iliskindir. Bulus, daha detayli olarak, Si temelli mikro-nano fabrikasyon süreçleri ile silisyum karbür (SiC) ve silisyum dioksit (SiOz) malzemelerini içermektedir. Bulusa konu YAI platformunun (12) üretim yöntemi ise çesitli mikro elektronik mekanik sistemler (MEMS) yaklasim ve üretim adimlarina dayanmaktadir. Bulus, makine mühendisligi, elektrik-elektronik mühendisligi, malzeme bilimi ve mühendisligi, enerji sistemleri mühendisligi ve fizik alanlarinin kesisim alaninda yer almaktadir. Bulusun bir amaci, mikro-nano ölçekte ulasilabilir olan ve makro boyuta göre Hertebelerce fazla nüktarda gerçeklesen isinim isi transferinin kullanimiyla, yüksek verim ve düsük karbon ayak izi talep eden günümüz uygulamalarinda kullanilabilir enerji çiktisinin elde edilmesidir. Dolayisiyla, uygun nitelik ve sicaklikta atik isi girdisi ile, uygun malzeme ve konfigürasyon seçimiyle, kontrollü laboratuvar ortaminin disina çikarak, Si temelli, kapali ve entegre bir YAI jplatformu (12) formunda bir cihaz ve bu cihazin üretim yöntemi gelistirilmistir. Silisyum karbür (SiC), yüksek etkinligi ve Si temelli mikro-nano fabrikasyon tekniklerinde kullaniminin uygunlugu açisindan gelistirilen cihazin/YAI platformunun (12) bir diger temel malzemesidir. Bulus, mikro-nano ölçekte isinim› transferinin incelenmesi için kapali ve entegre bir YAI platformu (12) olup, - silisyum alttas (l) üzerine kaplanmis silisyum karbür ince film (2) içeren bir yayici (5), - silisyum alttas (l) üzerine kaplanmis silisyum karbür ince film içeren (2) bir toplayici(6) , - yayici (5) ve toplayicinin (6) silisyumr karbür ince filmleri (2) üzerine kaplanmis ve yayici (5) ve toplayicinin (6) aralarindaki mesafenin isil isinim dalga boyundan (Ã) küçük ve birbirine paralel olmasini saglayacak sekilde vakum ortaminda birlestirildiginde yayici (5) ve toplayici (6) arasinda temas yüzeyi görevi görecek silisyum dioksit ara sütunlar içermekte ve - bahsedilen silisyum dioksit ara sütunlarin temas yüzeyleri desenli olmaktadir. Bulusun bir yapilandirmasinda, desen kalin kare duvar (8), ince kare duvar (9), sütun (10) ve altigen bal petegi (ll) deseni olmaktadir. Bulusun bir yapilandirmasinda, silisyum dioksit ince filmler (3) birbirinin ayna görüntüsü olacak sekilde birlesmis olmaktadir. Bulusun bir yapilandirmasinda, yayici (5) ve toplayicinin (6) silisyum alttaslari (l), temas yüzeyi desenini tanimlayici kodlar içermektedir. Bulusun bir yapilandirmasinda, YAI platformunun (12) boyutu 3 cm x 3 cm olmaktadir. Bulusa konu mikro-nano ölçekte isinim transferinin incelenmesi için gelistirilen kapali ve entegre YAI platformunün (12) üretim yöntemi de bulusun korumasi kapsamindadir. Bulusa konu mikro-nano ölçekte isinim transferinin incelenmesi için gelistirilen kapali ve entegre bir YAI platformunün (12) üretim yöntemi en genel haliyle; a.silisyum alttas (1) üzerine silisyum karbür ince film (2) kaplanarak yayicinin (5) elde edilmesi ve silisyum alttas (1) üzerine silisyum karbür ince film (2) kaplanarak toplayicinin (6) elde edilmesi, b. yayici (5) ve toplayicinin (6) silisyumr karbür ince filmlerinin (2) üzerinin ara sütunlari olusturmak üzere silisyum dioksit ince film (3) ile kaplanmasi, cu bahsedilen silisyüni dioksit ince filni (3) yüzeylerinin desenlenmesi, d.temas yüzeyi desenli yüzeyi olacak sekilde, yayici (5) ve toplayicinin (6) aralarindaki mesafenin isil isinim dalga boyundan (A) küçük ve birbirine paralel olacak sekilde vakum altinda birlestirilerek kapatilmasi, e.e1de edilen entegre yapinin (7) kesilerek tekil çiplerin yani YAI platformlarinin (12) elde edilmesi islem basamaklarini içermektedir. Bulusun bir yapilandirmasinda, c basamaginda kalin kare duvar (8), ince kare duvar (9), sütun (10) ve/Veya altigen bal petegi (ll) deseni ile desenlenmektedir. Bulusun bir yapilandirmasinda, a basamaginda silisyum karbür ince film (2) RF magnetron saçtirma teknigiyle kaplanmaktadir. Bulusun bir yapilandirmasinda, silisyum karbür ince film (2) entegre SiC hedef ile RF magnetron saçtirma teknigiyle kaplanmaktadir. Bulusun bir yapilandirmasinda, silisyum karbür ince film (2) yekpare SiC hedef ile RF magnetron saçtirma teknigiyle kaplanmaktadir. Bulusun bir yapilandirmasinda, b basamaginda silisyum dioksit ince film (3), plazmar destekli kimyasalr buhar biriktirme teknigiyle kaplanmaktadir. Bulusun bir yapilandirmasinda, c basamaginda silisyum dioksit ince filmin (3) yüzeyleri fotolitografi teknigiyle desenlenmektedir. Bulusun bir yapilandirmasinda, d basamaginda yayici (5) ve toplayici (6) kimyasal aktivasyonla plazma destekli kimyasal buhar biriktirme teknigiyle kaplanmis silisyum dioksit temas yüzeylerinden birlestirilmektedir. Bulusun bir yapilandirmasinda, d basamaginda yayici (5) ve toplayici (6) plazma aktivasyonuyla plazma destekli kimyasal buhar biriktirme teknigiyle kaplanmis silisyum dioksit temas yüzeylerinden birlestirilmektedir. Bulusun bir yapilandirmasinda, d basamaginda yayici (5) ve toplayici (6) plazma aktivasyonuyla termal oksit (SiOz) temas yüzeylerinden birlestirilmektedir. Bulusun bir yapilandirmasinda e basamaginda 3 cm X 3 cm'lik yüzey alanina sahip 4 adet YAI platformu (12) birlestirilmis entegre yapidan (7) kesilerek elde edilmektedir. Enregre yapi (7) YAI platformunun (12) 3 cm x 3 cm'e küçültülmeden önceki halidir. Bulusun bir yapilandirmasina konu YAI platformu (l2) Sekil- 2b'de ve literatürde yer alan YAI'nin incelendigi sistemlere iliskin bir görünüm Sekil-Za'da verilmektedir. Literatürde genel olarak. YAI'nin incelenmesi için gerekli platformun kurulumu Sekil-Za'da gösterildigi üzere yayici (5) ve toplayicinin (6) malzeme tutucu (13) ile sistemin gerektirdigi sekilde tutulmasi ve birbirine konumlandirilmasini gerektirmekte iken, Sekil-Zb'de gösterilen bulusa konu YAI platformu (12) entegre ve kapali bir sistem. olmasi sebebiyle her bir YAI platformu (12) belirlenmis bir` d. mesafesi degerine sahip olacak. sekilde üretilmektedir. Bulusun bir yapilandirmasina konu YAI platformunun (l2) üretim adimlari Sekil-Ba'da sematik olarak özetlenmektedir. Bulusa konu YAI cihazi/YAI platformu (l2) için silisyum karbür ince film. (2) kaplama RF magnetron saçtirma yöntemi ile gerçeklestirilmistir. silisyum karbür ince film (2) üzerine silisyum dioksit ince film (3) kaplama plazma destekli kimyasal buhar biriktirme (PECVD) yöntemi ile gerçeklestirilmistir. Sekil-3a'da son asamada görülecegi üzere Silisyum karbür ince film (2) kapli Si Kaizemelerin temas yüzeyleri silisyum dioksit ince filmdir (3). Birlestirilen SiC kapli Si pullardan birinin bir tarafi isitilarak yayici (5), digerinin bir tarafi sogutularak toplayici (6) olacagindan temas yüzeyinin SiOggibi düsük isil iletkenlikte seçilmesi yakin alan isiniminin kapali bir sistemde incelenebilmesi için gereklidir. Temas yüzeylerinin iletimle isi transferine etkisinin incelenmesi için farkli boyutta temas alan ve sekilleri olusturulmustur. Bahsi geçen farkli boyutta temas alan ve sekilleri kalin kare duvarlar (8),ince kare duvarlar (9), sütunlar (10) ve altigen bal petegi sütun (ll) olup, Sekil-Bb'de gösterilmektedir. Üzerindeki desenler birbirinin ayna görüntüsü olacak sekilde fotolitografi ile olusturulan malzemelerin vakum ortaminda birlestirilmesi öncesi iç yüzeyleri Sekil-3b'de ve dis yüzeyleri Sekil-3c'de verilmektedir. Üretilen YAI platformunun (12) dis yüzeyinde, iç deseni tanimlayici kodlar mevcuttur ve bu kodlara iliskin desen fotolitografi ile olusturulmustur. Bu YAI platformu (12) atmosferik kosullarda kullanilip sadece YAI'nin gerçeklesecegi bosluk vakum niteliginde olacagindan sistemin birlestirilmesi vakum ortaminda yapilmistir. Birlestirme sonrasinda Sekil-3c'de dis yüzeyi gösterilen yapi, 4 adet 3 cm X3 cm boyutta YAI cihazi elde etmek. için kesikli çizgilerle gösterilen dogrultuda kesilmistir. Bulusa konu YAI platformunun (12) üretim yöntemi asagida daha detayli olarak açiklanmaktadir. l)Silisyum karbür ince film (2) kaplama Si pullarin SiC ile RF magnetron saçtirma yöntemiyle kaplanmasi için entegre SiC hedef malzeme (2" çap) ve yekpare SiC hedef malzeme (4" çap) kullanimi için olmak üzere iki farkli RF magnetron saçtirma reçetesi gelistirilmistir. a) Entegre SiC hedef ile RF Magnetron Saçtirma Reçetesi Gelistirilmesi Entegre SiC hedef malzemede, SiC hedef, bir bakir (Cu) plaka ile birlesik olup, üretici, proses sirasinda hedefin isi yönetiminin yüksek iletkenlikli Cu plaka yardimiyla etkin yapilmasi ve SiC hedefin isil soklardan korunmasini hedeflemektedir. Entegre SiC hedef kullanilarak gelistirilen RF magnetron saçtirma reçetesi parametreleri: 150 sccm Ar akisi, %75 giris valfi (gate valve) pozisyonu (1.3XlO*2 Torr pirani vakum ölçer degeri, 1.6xlO'3 Torr ion gauge basinç degeri) ve l5 rpm silisyum alttas (l) dönme hizi ile baslamistir. Entegre hedef malzemenin kullanimi için kaplama sürecinde güç artis-azalis hizlari üretici tarafindan Ji) W/dk olarak belirlenmistir. Plazma olustuktan sonra parametreler lOO sccm Ar akisi, %60 giris valfi pozisyonu, 4.3 mTorr pirani vakum ölçer degeri, l.3 mTorr ion gauge basinç degerine ayarlanmistir. 62 W RF gücüne ulasildiginda parametreler 100 sccm Ar akisi, %61 giris valfi pozisyonu ve 15 rpm kaplanacak alttas dönme hizi olarak tanimlanmis ve kaplama baslatilmistir. Bu reçete ile yaklasik olarak 1 nm/dk'lik bir kaplama hizi elde edilmistir. Izleyen proseslerde ayni reçete farkli süreler boyunca kullanilmis ve tekrarlanabilirligi kanitlanmistir. Sekil-4a ve Sekil-4b'de entegre hedef malzeme ile yapilan RF magnetron saçtirma prosesi için gelistirilen reçete ve yüksek tekrarlanabilirlikte yapilmis proseslere ait proses gerilimi- RF gücü (Sekil-4a) ve kalinlik monitöründen (thickness monitör,TM) okunan silisyum karbür ince film (2) degerine karsilik gelen proses süreleri (Sekil-4b) gösterilmektedir. Gelistirilen reçete Sekil-4a ve Sekil-4b'de gösterildigi üzere yüksek tekrarlanabilirlige sahiptir. b) Yekpare SiC hedef ile RF Magnetron Saçtirma Reçetesi Gelistirilmesi Yekpare hedefte entegre hedefteki gibi bir iletken (ör. Cu) arka plakanin bulunmamasi nedeniyle termal soklardan dolayi hedef malzemenin kirilmasi durumunda SiC malzeme bir arada tutulamayacagindan isinmaya karsi daha hassas olmaktadir. Yekpare hedefin fazla isinmasini önlemek için kaplama reçetesi 150 W RF gücü, 3 mTorr proses basinci ve 50 sccm Ar akisi kosullarinda 30 dk proses, 30 dk durus (ara), 30 dk proses seklinde kesikli olarak gelistirilmistir. Proses çiktilari 148 W ve 75 volttur. Islem sonucunda yaklasik 50 mm'lik SiC film kaplanmis ve bu reçete ile kaplama hizi 0.833 nm/dk olarak elde edilmistir. 2) Silisyum dioksit ince film (3) kaplama Silisyum karbür ince filmler (2) üzerine silisyum dioksit ince film (3) kaplama PECVD yöntemi ile 12 sccm SiH4, 1420 gücü ve 300 °C'de gerçeklestirilmistir. 3)Silisyum dioksit ince filmin (3) fotolitografi ile desenlenmesi Silisyum. dioksit ince filmin (3) desenlenerek SiC kapli numuneler üzerine uygulanmasi sonucunda yapinin birlesim (temas) bölgeleri olusturulmustur. SiOgtemas bölgelerinin tasariminda (i) isinim isi transferi alaninin (Ar) iletim isi transferi alanina (AC) orani (AI/Ad ve (ii) cihaz içindeki vakum ile dis ortamdaki atmosferik basinç arasindaki fark sebebiyle yüzeylerin bükülmesi kritik parametrelerdir. Iletimle isi transferi SiOz yüzeyler arasindaki temastan dolayi mevcuttur. Ancak temas yüzeylerinin yüksek iletkenlikli olmayan Si02 olarak seçilmesi bu mekanizmayi daha az etkin halde tutmaktadir. Tasinimla isi transferi SiC yüzeyler arasinda vakum boslugu (4) olmasindan dolayi (aralarinda isi tasiyici bir ortam (ör. gaz) olmamasindan dolayi) ihmal edilebilir. Bulusa konu YAI platformu (12) ile SiC kapli Si ortamlar arasindaki yakin alan isiniminin incelenmesi amaçlanmakta oldugundan, yakin alan isiniminin kapali ve entegre bir ortam içerisinde gerçeklesmesine olanak veren yardimci Si02 yüzeylerden gerçeklesen iletim isi transferini minimize etmek için Pir/AC oraninin maksimum olmasi gerekmektedir. Kavite ve dis ortam arasindaki basinç farkindan dolayi beklenen bükülmenin minimize edilmesi, ekstrem bükülme durumlarinda yayici (5)- toplayici (6) temasinin engellenmesi ve olabildigince üniformr bir d mesafesi elde edilmesi için sarttir. Bu kapsamda ll adet konfigürasyon modellenmistir. Bahsi geçen her iki kriteri en iyi karsilayan modeller ince kare duvarlar (9), düz sütunlar (10) ve altigen bal petegi sütunlar (ll) ve bir adet karsilastirma modeli olan kalin kare duvarlar (8) Sekil-Sa ila 5d'de gösterilmektedir. Sekil- 5a-5d'de sematize edilen yapilarin üretiminde kullanilan fotolitografi maskesinin tasarimi Sekil-6'da gösterilmektedir. Bahsi geçen tasarimin tam simetrigini içeren fotolitografi maskesi de üretilmis ve birlestirilecek diger pul üzerine uygulanmistir. Fotolitografi için bir pozitif fotorezist (PR) olan 81813 kullanilmis ve asagidaki asamalar gerçeklestirilmistir. i)Dehydration bake: Firinda llO °C'de 10 dakika süreyle uygulanmistir. Malzeme oda sicakligina geldiginde firindan çikarilmistir. ii)Döndürmeli PR kaplama (spin coating): PR'in numuneye daha iyi yapismasi için HDMS 3000 rpm'de 30 saniyelik döndürmeli kaplama ile yüzeye uygulanmistir. Sonrasinda ayni parametrelerle PR kaplanmistir. iii)Soft bake: Isitma ocagi (hot plate) ile 115 °C'de 1 dakika süreyle uygulanmistir. iv)UV` isiga maruz birakma: EVG620 ile 5 saniye süreyle uygulanmistir. V)Gelistirme (Developing): 60 saniye süreyle MF319'la uygulanmistir. Vi)Hard bake: Firinda, llO°C'de 5 dakika süreyle uygulanmistir. Numune sicakligi 70°C ya da altina düsene kadar vi nolu adim sonrasi yapi (l:7) tamponlanmis hidroflorik asit (buffered HF) içerisine daldirilarak Si02 asindirilmis, numune PRS-2000'e daldirilarak PR kaldirildiktan sonra deiyonize su ile yikanmistir. 4) Desenlenmis SiOz'li SiC kapli Si pul ikilisinin vakum altinda birlestirilmesi Pul birlestirme (wafer bonding), hizalanmis iki pulun kalici sekilde birlestirilmesidir. Bulusa konu YAI platformunun (12) üretiminde SiC kapli Si pullarin (yayici(5) ve toplayici(6)) SiOz temas yüzeyinden birlestirilmesinde füzyon birlestirme (fusion bonding) teknigi kullanilmistir. Iç yüzeyinde Sekil- 5a ila 5d'de gösterilen desenler fotolitografi ile uygulanan numunelerin dis yüzeyi de desenlenmistir. Yapinin iç ve dis yüzeyine aktarilan desenler sematik olarak Sekil-3b ve Sekil- 3c'de gösterilmektedir. Desenleme amaçli yapilan fotolitografi süreci, malzemenin isitma ocagi (hot plate) üzerine konulmasi, çesitli numune tutucularla firinlar içerisine yerlestirilerek isitma islemine tabi tutulmasi vb. islemler içermesi nedeniyle malzeme ile temas gerektirdiginden islem gören yüzeylerde kontaminasyon riski mevcuttur. Ancak, füzyon birlestirme, birlesecek yüzeylerdeki pürüzlülüge ve parçacik kontaminasyonuna fazlasiyla duyarlidir. Numunelerin fotolitografi asamasinda, numunenin her iki tarafinin da çesitli yüzeylere temas edecegi düsünüldügünde, yüzeyleri korumak ve parçacik kontaminasyonunu en aza indirmek önemlidir. a.Pul birlestirme Fusion bonding, birlestirilecek yüzeyin yapi ve pürüzlülügüne baglir oldugundan, Imi proses al. PECVD ile kaplanmis Si02 yüzeylerden kimyasal aktivasyonla, a2. PECVD ile Si02 yüzeylerden plazma aktivasyonuyla, a3. termal oksidasyon ile Si üzerine büyütülmüs Si02 yüzeylerden plazma aktivasyonuyla gerçeklestirilmistir. al. PECVD SiOz temas yüzeylerinden birlestirme (kimyasal aktivasyonla): Bu incelemede, iç yüzeyi Sekil-Sa ila 5d'deki gibi olan 200 nm kalinlikta silisyum dioksit ince film (3) PECVD ile dogrudan Si pul üzerine kaplanmis ve desenlenmistir. Bu numune, desenlenmemis 200 nm PECVD silisyum dioksit ince film. (3) kaplanmis Si pul ile birlestirilmistir. Bonding asamasinda silisyum karbür ince filmin (2) dogrudan etkisinin bulunmamasi nedeniyle bu incelemede silisyum. karbür ince filme (2) yer verilmemistir. Birlestirme asamalari asagida özetlendigi gibidir. l-PECVD silisyum dioksit ince film (3) kaplama (Kaplamanin daha önceden yapilmasi sebebiyle tasiyici kutudan kirlilik bulasimini engellemek için pul ikilisi piranha çözeltisinde temizlenmistir.) 2-Oksit yogunlastirma (oxide densification): EVGSZO'de 300°C'de 1,5 saat süreyle vakum altinda yapilmistir. 3- Kimyasal-mekanik parlatma: Yapilmamistir. 4- Megasonik temizleme: Yapilmamistir. - Plazma ile aktiflestirme: Yapilmamistir. Bunun yerine kimyasal aktivasyon NH4OHzHgb:H20 (6:1:3) solüsyonu ile yapilmistir. Birlestirilecek numuneler aktivasyon solüsyonu içerisinde 80 °C'de 30 dakika bekletilmistir. Sonrasinda numuneler 5 dakika boyunca deiyonize su ile durulanip vakum altinda kurutulmustur. 6-Fusion bonding: Birlestirilecek numunelere, 300°C'de 1,5 saat boyunca 10 kN kuvvet uygulanarak vakum altinda EVGSZOIS ile gerçeklestirilmistir. 7-IR inceleme: Yapilmamistir. 8-Bonding sonrasi tavlama: Yapilmamistir. 9- Karakterizasyon: Bu asamada c-SAM (taramali akustik mikroskop) ile 200 MHz'de inceleme yapilmistir. Birlestirme için uygulananr lO kN kuvvetin, üst numunenin alt numune üzerine çökmesine yol açmadigi Sekil-7'de gösterilmektedir. Koyu renkli alanlar temas bölgelerini, açik renkli alanlar ise birbiri ile temas etmeyen, aralarinda vakum.ortami bulunan bölgeleri göstermektedir. Özellikle yapinin tam ortasinda ve pulun dis çeperine dogru birlesme gerçeklesmistir. Yüksek çözünürlüklü (10 um) c-SAM görüntüsü elde etmek için yapilan inceleme sonrasinda iki pul arasindaki birlesmenin korunmadigi görülmüstür. Bu yüksek çözünürlüklü inceleme 6 saat sürmüstür. Bu sebeple, birlestirme sonrasinda entegre yapinin (7) 6 saatten daha kisa süre birlesmis kaldigi söylenebilmektedir. a2. PECVD Si02 temas yüzeylerinden birlestirme (plazma aktivasyonuyla): Bu proses için 50 nm silisyum karbür ince film (2) üzerine kapli Si pullar Sekil-5a ila 5d'de gösterildigi gibi desenlendikten sonra 60 saniye boyunca 02 plazma ile aktiflenerek birlestirilmistir. Sekil-8a ve 8b füzyon birlestirme sonucunda yapilan c-SAM karakterizasyonu pullarin kismen birlestigini göstermektedir. Özellikle sütunlarin bulundugu kisimda birlesmenin diger bölgelere göre daha düzgün oldugu gözlemlenmistir. al prosesinde oldugu gibi bu ikili arasindaki birlesme de kalici olmamistir. a3.Termal oksit (Si02)temas yüzeylerinden birlestirme (plazma aktivasyonuyla): Bu proseste, her ikisinin de üzerinde 1.2 um kalinlikta termal oksidasyon ile silisyum dioksit ince film (3) büyütülmüs Si pullar birlestirilmistir. Önceki füzyon birlestirme denemelerinde, numuneler içinde hapsolan gazlar var ise bonding öncesi açiga çikmasi için, pul çiftleri önce 300 °C'ye isitilmis, sonra 10 kN kuvvet uygulanarak temas ettirilmistir. Bu denemede (a3), pul ikilisi önce temasa getirilmis, sonra 300 °C'ye isitilmistir. Diger proses adimlari ayni tutulmustur. Füzyon birlestirme sonrasinda yapilan c-SAM karakterizasyon sonucu Sekil-9'da gösterilmektedir. Sekil-9 incelendiginde iki pulun basarili sekilde ve kalici olarak birlestirildigi görülmektedir. Pulun desensiz kismindaki koyu renkten görüldügü üzere Si02 yüzeyler arasinda yeterli temas olusmustur. Özellikle sol üst (kalin kare duvar (8)) sag alt (sütunlu (10)) yapida iyi bir birlesme kalitesi mevcuttur. )Entegre yapinin (7) kesilerek YAI platformunun (12) elde edilmesi En son asama olan entegre yapinin (7) kesilmesi ile 3 cm x 3 cm'lik yüzeye sahip 4 adet çip (YAI deney numunesi, YAI platformu (12)) elde edilmesi istendiginden, kesme isleminin çiplere ve Si02 duvarlara zarar vermemesi için entegre yapinin (7) dis tarafina da Sekil-3c'de gösterilen dis yüzey deseni ve Sekil-5a ila 5d'deki geometrilere ait tanimlayicilar uygulanmistir. Entegre yapi (7) Sekil-lû'da gösterilen kesikli çizgiler dogrultusunda kesilmistir. Proseste flat cut (FC) kesim hizi 1 mm/dk olarak uygulanmistir. Bulus konu silisyum temelli kapali ve entegre platform sayesinde mikro-nano ölçekte isinim transferi atmosferik kosullarda, standart çalisma sartlarinda, YAI platformu (12) disinda vakum ortami gerektirmeksizin incelenebilmektedir. YAI platformunda (12) yer alan desenlenmis silisyum dioksit ince film (3) yüzeyler yardimiyla teknikte yer alan mesafe ve paralellik problemlerine Çözüm sunulmaktadir. Bunu yani sira üretilen 30 mm x 30 mmflik YAI platformlari (12) yapilmasi hedeflenmis deneyler dikkate alindiginda, numunenin yayici (5) tarafi üzerine monte edilecek isitici plaka, numunenin toplayici (6) tarafina monte edilecek isi kuyusu, sicaklik ölçer, isi akisi ölçer gibi ekipmanlarin kullanimi için fiziksel kolaylik ve uygulanabilirlik saglamaktadir. SiC, yüzey fonon polaritonlarini desteklemesi sebebi ile teorik YAI çalismalarda siklikla incelenmis ve sistem verimine olumlu etkisi sunulmustur. Bulusa konu platformda ve türevlerinde SiC'ün kullanimi, yüzey fonon polaritonlarini desteklemesine ek olarak SiC'ün yüksek ergime sicakligi, yüksek sicakliklarda çalisabilirligi, termal stabilitesi, mekanik dayanimi gibi elverisli özellikleri sebebiyle avantajlidir. TR TR TR DESCRIPTION A SILIGIUM-BASED CLOSED AND INTEGRATED PLATFORM FOR THE STUDY OF HEAT TRANSFER AT THE MICRO-NANO SCALE Subject of the Invention The invention relates to a silicon-based, closed and integrated near-field heating (NAI) platform developed for the purpose of examining the heat transfer at the micro-nano scale, and the production method of this platform. . The production method of the said platform is based on micro-nano fabrication techniques. State of the Art: If the distance (d) between two objects held at different temperatures is smaller than the wavelength of thermal radiation (Ã), the heat transfer that occurs between objects through radiation is called near-field radiation (NAI). Near-field radiative transfer is felt if the distance (d) between materials supporting surface waves is smaller than the dominant wavelength (Â), which is used as the scale based on Planck's law; This wavelength must be less than 10 pmI at room temperature. For this reason, near-field radiation transfer can also be defined as radiation transfer at the micro-nano scale. In order for near-field radiation to occur, the distance between the objects where the radiative heat transfer will take place must be at the micro-nano scale, while it is not necessary for these objects to be at the micro-nano size. Heat transfer via near-field radiation can exceed the black body limit by several orders of magnitude (more than 1000 times) at certain wavelengths, depending on the structure of the objects. For example, YAI transfer between two media placed opposite each other, at a temperature of 1000 K, at d = 100 nm emitter-collector distance, at certain wavelengths, the black body limit is for gallium nitrate (GaN) emitter-collector pair, 7525, silicon carbide (SiC). It is 4168 times higher for the emitter-collector duo and 3307 times higher for the cubic boron nitride (cBN) emitter-collector duo. These increases have application potential for the need for environmentally friendly use of energy. Precise determination of near-field radiation between two objects is possible by separating the amount of radiative heat transfer by eliminating conduction and convection heat transfer mechanisms. For this purpose, near-field radiation is applied in vacuum chambers by adjusting the very precise (nanometric precision) distances, planar and angular positions of the object kept at high temperature (emitter) and the object kept at low temperature (collector) with the help of a micro-nano positioner. is measured. In addition to the micro-nano positioner, these systems include a heater to keep the emitter at high temperature, a cooler to keep the collector at a low temperature, monitoring the temperatures of the emitter and collector and measuring the heat transfer between the emitter and collector, as well as simultaneous control of many measurement parameters such as the ambient vacuum level. It requires vacuum systems that are costly, complex and require special expertise and labor to surround the system with monitoring and recording. The basic configuration containing parallel plates for the theoretical and experimental investigation of near field radiation is shown in general terms in Figure 1. Figure-1 shows the vacuum environment between the emitter (high temperature object), collector (low temperature object) and the emitter-collector in more detail. The distance between the emitter and collector is indicated by arrows. International-scale mechanisms where near-field radiation is investigated are useful for measurements of near-field radiation, and are considered as systems that are brought close to each other with mechanical mechanisms in artificially created controlled vacuum environments, and are still in the research and laboratory stages. In technical applications. The necessity and difficulty of precisely determining the distance (d) between the mechanism used and the emitter-collector is stated by many researchers. The main difficulties in the systems found in the technique for examining near-field radiation are ensuring a uniform distance between the emitter and collector, maintaining and repeatability of this distance, and ensuring the parallelism between the emitter and collector. It was stated that in the experiments, the difficulty was encountered in aligning the emitter and collector parallel to each other and maintaining a uniform distance between them. "Applied Physics Letters 106" (K. Ito, A. Miura, H. Iizuka, H. Toshiyoshi, the distance d between the emitter and collector was adjusted using columns, and the distance between the emitter and collector was adjusted due to the deformation due to the pressure applied to position the emitter and collector during the measurements. It has been observed that the distance may be smaller than the column height. Measurements were made for a distance of d = lum between objects, but it was stated that the measurement results were compatible with the theoretical results obtained for a distance of d = 1.6 um. The 60% difference between them is noteworthy. It has been predicted that this may be due to the size differences of the polystyrene particles placed between the emitter-collector to ensure the distance between the emitter-collector. "Physical Review Letters shows that the bending of the lower stage carrying the collector even at an angle of ±0.002° disrupts the parallelism of the emitter-collector and changes the YAI rate by ±5%. In the study subject to the document called "Nature Photonics" (E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, 2009, 3, 514-517), the importance of emitter-collector parallelism and the difficulty of ensuring it are taken into consideration. Considering this, the sphere-plate configuration was examined instead of the flat plate-plate configuration. In theoretical studies, emitter-collector pairs with uniform micro-nano distances between them, perfectly parallel to each other and with smooth surfaces are considered as the ideal YAI system. Although the applications closest to this ideal system mentioned above are developed with very sensitive and high-tech methods and are carried out in a controlled vacuum environment, they have the mentioned distance (d), parallelism and repeatability problems. Unlike the vacuum chamber-based YAI platforms, which are the general trend in the technique, a platform aimed to operate under standard environmental conditions is called "FÄBRICATION OF NÄNOSTRUCTURED SAMPLES EUR THE INVESTIGATION OF NEAR FIELD RADIATION TRANSFER" (2. Artvin, 2012, Master's Thesis, Middle East Technical University). It is explained in the document. The mentioned document is about samples containing SiOz-coated Si wafers and produced with MEMS production techniques for measuring near-field radiation effects. In the mentioned document, different numbers of chips (samples) were created in a permanently combined structure with a surface area of 1 mm x 1 mm, 2 mm x 2 mm, 5 mm x 5 mm and 20 mm x 20 mm. In the document in question, four structures are separated depending on the distance d between the parallel Si samples (25 nm, 50 nm, 100 nm, 200 nm). The 1 mm x 1 mm, 2 mm x 2 mm and 5 mm x 5 mm structures created in the document are for the use of equipment such as the heater plate to be mounted on the emitter side of the sample, the heat well to be mounted on the collector side of the sample, temperature meter, heat flow meter. Its applicability presents difficulties. In vacuum, confined and atmospheric conditions, it is possible for parallel parts of the structures to work, separated by a distance d, to collapse and come into contact with each other. One of the two 20 mm x 20 mm structures mentioned in the document is located within a completely assembled stamp pair, and it is seen that this structure has only outer walls. However, the document in question does not explain the SiC-containing platform and its derivative that enable it to support surface phonon polaritons. Another example of the known state of the technique is the document called "IMPACTS OF MATERIAL TYPES AND FÄBRICATION.METHODS TO ENHÂNCE NEAR FIELD RADIÂTIVE TRANSFER FOR ENERGY HARVESTING" (Elif Begüm Elçioğlu, Tuba Okutucu Özyurt, M. Pinar Mengüç). The mentioned document deals with the effect of material selection in analyzing near-field radiation and in the production of energy harvesting devices. In the document, a general production method of near field radiation energy harvesting devices and, in more detail, energy harvesting devices containing SiC coated samples is mentioned. The production method in question in its most general form; It includes thin film coating, lithography, etching, flake bonding and flake cutting process steps. The document does not provide detailed information about the parameters and contact surface of each production technique. In addition, the document in question does not describe a platform that ensures the distance d and parallelism between the emitter and collector. In order to eliminate the above-mentioned disadvantages, a closed and integrated YAI platform has been developed to examine near-field radiation under atmospheric conditions without requiring a vacuum environment outside the platform, providing a solution to the problems of ensuring a uniform distance between the emitter and collector, maintaining the distance and ensuring its repeatability. Detailed Description of the Invention The invention relates to a silicon (Si) based, closed and integrated single YAI platform (12) developed for the examination of near field radiation and the production method of this YAI platform (12). In more detail, the invention involves silicon carbide (SiC) and silicon dioxide (SiOz) materials with Si-based micro-nano fabrication processes. The production method of the YAI platform (12) subject to the invention is based on various microelectronic mechanical systems (MEMS) approaches and production steps. The invention lies at the intersection of mechanical engineering, electrical and electronics engineering, materials science and engineering, energy systems engineering and physics. An aim of the invention is to obtain usable energy output in today's applications that demand high efficiency and low carbon footprint, through the use of radiative heat transfer, which is accessible at the micro-nano scale and occurs in quantities many times greater than the macro dimension. Therefore, by using waste heat input of appropriate quality and temperature, choosing appropriate materials and configuration, and going beyond the controlled laboratory environment, a Si-based device in the form of a closed and integrated YAI jplatform (12) and the production method of this device have been developed. Silicon carbide (SiC) is another basic material of the device/YAI platform (12) developed for its high efficiency and suitability for use in Si-based micro-nano fabrication techniques. The invention is a closed and integrated YAI platform (12) for examining the heat transfer at the micro-nano scale, - an emitter (5) containing a silicon carbide thin film (2) coated on the silicon substrate (l), - silicon substrate (l). A collector (6) containing silicon carbide thin film (2) coated on it, - emitter (5) and silicon carbide thin films (2) coated on the collector (6) and the distance between the emitter (5) and collector (6) is It contains silicon dioxide intermediate columns that will serve as the contact surface between the emitter (5) and collector (6) when combined in a vacuum environment to ensure that they are smaller than the length (Ã) and parallel to each other, and - the contact surfaces of the said silicon dioxide intermediate columns are patterned. In an embodiment of the invention, the pattern is a thick square wall (8), a thin square wall (9), a column (10) and a hexagonal honeycomb (ll) pattern. In one embodiment of the invention, silicon dioxide thin films (3) are combined to be mirror images of each other. In an embodiment of the invention, the silicon substrates (l) of the emitter (5) and collector (6) contain codes that define the contact surface pattern. In an embodiment of the invention, the size of the YAI platform (12) is 3 cm x 3 cm. The production method of the closed and integrated YAI platform (12), which was developed to examine the micro-nano scale thermal transfer subject to the invention, is also within the scope of the protection of the invention. In its most general form, the production method of a closed and integrated YAI platform (12) developed for the examination of heat transfer at the micro-nano scale, which is the subject of the invention; a.Obtaining the emitter (5) by coating a silicon carbide thin film (2) on the silicon substrate (1) and obtaining the collector (6) by coating a silicon carbide thin film (2) on the silicon substrate (1), b. Coating the silicon carbide thin films (2) of the emitter (5) and collector (6) with silicon dioxide thin film (3) to form intermediate columns, patterning the surfaces of the said silicon dioxide thin film (3), d. the contact surface will be the patterned surface. In the following way, the distance between the emitter (5) and the collector (6) is closed by combining them under vacuum in a way that is smaller than the thermal radiation wavelength (A) and parallel to each other, and by cutting the integrated structure (7) obtained in e.e1, individual chips, that is, YAI platforms (12), are obtained. It includes the steps of the process. In an embodiment of the invention, in step c, the thick square wall (8), thin square wall (9), column (10) and/or hexagonal honeycomb (ll) pattern is patterned. In an embodiment of the invention, in step a, silicon carbide thin film (2) is coated with the RF magnetron sputtering technique. In one embodiment of the invention, silicon carbide thin film (2) is coated with the RF magnetron sputtering technique with an integrated SiC target. In one embodiment of the invention, silicon carbide thin film (2) is coated with a monolithic SiC target using the RF magnetron sputtering technique. In an embodiment of the invention, in step b, the silicon dioxide thin film (3) is coated with plasma-assisted chemical vapor deposition technique. In an embodiment of the invention, in step c, the surfaces of the silicon dioxide thin film (3) are patterned with the photolithography technique. In an embodiment of the invention, in step d, the emitter (5) and collector (6) are joined from silicon dioxide contact surfaces coated with plasma-assisted chemical vapor deposition technique with chemical activation. In an embodiment of the invention, in step d, the emitter (5) and collector (6) are joined from silicon dioxide contact surfaces coated with plasma-assisted chemical vapor deposition technique by plasma activation. In an embodiment of the invention, in step d, the emitter (5) and collector (6) are joined from the thermal oxide (SiO2) contact surfaces by plasma activation. In an embodiment of the invention, 4 YAI platforms (12) with a surface area of 3 cm x 3 cm are obtained by cutting the combined integrated structure (7) at step e. The integrated structure (7) is the version of the YAI platform (12) before it was reduced to 3 cm x 3 cm. The YAI platform (l2), which is the subject of an embodiment of the invention, is given in Figure 2b and a view of the systems in the literature where YAI is examined is given in Figure Za. In literature in general. While the installation of the platform required for the examination of YAI requires holding and positioning the emitter (5) and collector (6) with the material holder (13) as required by the system, as shown in Figure-Za, the YAI platform subject to the invention shown in Figure-Zb (12) an integrated and closed system. Each YAI platform (12) is a designated `d. It will have the distance value. It is produced as follows. The production steps of the YAI platform (l2), which is the subject of an embodiment of the invention, are summarized schematically in Figure B. Silicon carbide thin film for the YAI device/YAI platform (l2) subject to the invention. (2) The coating was carried out by RF magnetron sputtering method. Silicon dioxide thin film (3) coating on silicon carbide thin film (2) was carried out by plasma assisted chemical vapor deposition (PECVD) method. As can be seen in the last stage of Figure-3a, the contact surfaces of Si Kaizeme coated with silicon carbide thin film (2) are silicon dioxide thin film (3). Since one of the combined SiC-coated Si wafers will be the emitter (5) by heating one side, and the collector (6) by cooling one side of the other, it is necessary to select the contact surface with low thermal conductivity, such as SiO, in order to examine near-field radiation in a closed system. Contact areas and shapes of different sizes were created to examine the effect of contact surfaces on conduction heat transfer. The mentioned different sized contact areas and shapes are thick square walls (8), thin square walls (9), columns (10) and hexagonal honeycomb column (ll) and are shown in Figure-Bb. The inner surfaces of the materials created by photolithography are given in Figure-3b and the outer surfaces are given in Figure-3c before combining them in a vacuum environment so that the patterns on them are mirror images of each other. There are codes defining the internal pattern on the outer surface of the produced YAI platform (12), and the pattern related to these codes was created by photolithography. Since this YAI platform (12) can be used in atmospheric conditions and only the space where YAI will take place will be vacuum, the assembly of the system was done in a vacuum environment. After assembly, the structure whose outer surface is shown in Figure-3c is obtained as 4 YAI devices of 3 cm x 3 cm size. It was cut in the direction shown by the dashed lines. The production method of the YAI platform (12) subject to the invention is explained in more detail below. l) Silicon carbide thin film (2) coating: Two different RF magnetron sputtering recipes have been developed for coating Si wafers with SiC using the RF magnetron sputtering method: integrated SiC target material (2" diameter) and monolithic SiC target material (4" diameter). . a) Development of RF Magnetron Sputtering Recipe with Integrated SiC Target In the integrated SiC target material, the SiC target is combined with a copper (Cu) plate, and the manufacturer aims to ensure effective heat management of the target during the process with the help of the high-conductivity Cu plate and to protect the SiC target from thermal shocks. . RF magnetron sputtering recipe parameters developed using integrated SiC target: 150 sccm Ar flow, 75% gate valve position (1.3XlO*2 Torr pirani vacuum gauge value, 1.6xlO'3 Torr ion gauge pressure value) and l5 rpm silicon It started with the rotation speed of the substrate (l). For the use of the integrated target material, the power increase-decrease rates during the coating process are determined by the manufacturer as Ji) W/min. After plasma was formed, the parameters were set to 100 sccm Ar flow, 60% inlet valve position, 4.3 mTorr pirani vacuum gauge value, 1.3 mTorr ion gauge pressure value. When 62 W RF power was reached, the parameters were defined as 100 sccm Ar flow, 61% inlet valve position and 15 rpm rotation speed of the substrate to be coated, and coating was started. A coating speed of approximately 1 nm/min was achieved with this recipe. In subsequent processes, the same recipe was used for different periods of time and its repeatability was proven. In Figure-4a and Figure-4b, the recipe developed for the RF magnetron sputtering process with integrated target material and the process voltage of the processes performed with high repeatability - RF power (Figure-4a) and silicon carbide thin as read from the thickness monitor (TM). The process times corresponding to the film (2) value are shown (Figure-4b). The developed recipe has high repeatability as shown in Figure-4a and Figure-4b. b) Development of RF Magnetron Sputtering Recipe with a Monolithic SiC Target. Since the monolithic target does not have a conductive (e.g. Cu) back plate as in the integrated target, in case the target material breaks due to thermal shocks, the SiC material is more sensitive to heating as it cannot be held together. In order to prevent overheating of the monolithic target, the coating recipe was developed as 30 min process, 30 min stop (break), 30 min process under the conditions of 150 W RF power, 3 mTorr process pressure and 50 sccm Ar flow. Process outputs are 148 W and 75 volts. As a result of the process, approximately 50 mm SiC film was coated and the coating speed was obtained as 0.833 nm/min with this recipe. 2) Silicon dioxide thin film (3) coating Silicon dioxide thin film (3) coating on silicon carbide thin films (2) was carried out by PECVD method at 12 sccm SiH4, 1420 power and 300 °C. 3) Patterning of silicon dioxide thin film (3) by photolithography. Silicon. As a result of patterning the dioxide thin film (3) and applying it on the SiC coated samples, the junction (contact) areas of the structure were created. In the design of SiO contact zones, (i) the ratio of the conductive heat transfer area (Ar) to the conduction heat transfer area (AC) (AI/Ad) and (ii) the bending of the surfaces due to the difference between the vacuum inside the device and the atmospheric pressure in the external environment are critical parameters. Conductive heat transfer on SiOz surfaces However, choosing the contact surfaces as SiO2, which does not have high conductivity, keeps this mechanism less effective. Heat transfer by convection is neglected due to the vacuum gap (4) between the SiC surfaces (as there is no heat-carrying medium (e.g. gas) between them). Since it is aimed to examine the near-field radiation between the YAI platform (12), which is the subject of the invention, and SiC-coated Si environments, the Pir/AC ratio should be maximum in order to minimize the conduction heat transfer from the auxiliary SiO2 surfaces, which allow the near-field radiation to occur in a closed and integrated environment. It is essential to minimize the expected bending due to the pressure difference between the cavity and the external environment, to prevent the emitter (5)-collector (6) contact in extreme bending situations and to obtain as uniform a d distance as possible. In this context, 11 configurations have been modeled. The models that best meet both of the mentioned criteria are thin square walls (9), straight columns (10) and hexagonal honeycomb columns (ll) and a comparison model of thick square walls (8) are shown in Figures Right to 5d. The design of the photolithography mask used in the production of the sematized structures in Figures 5a-5d is shown in Figure 6. A photolithography mask containing the exact symmetry of the design in question was also produced and applied to the other stamp to be combined. 81813, a positive photoresist (PR), was used for photolithography and the following steps were carried out. i)Dehydration bake: Applied in the oven at 10 °C for 10 minutes. When the material reached room temperature, it was removed from the oven. ii) Spin coating: In order for the PR to adhere better to the sample, HDMS was applied to the surface by spin coating at 3000 rpm for 30 seconds. Afterwards, PR was coated with the same parameters. iii)Soft bake: Applied with a hot plate at 115 °C for 1 minute. iv) Exposure to UV light: Applied with EVG620 for 5 seconds. V)Developing: Applied with MF319 for 60 seconds. Vi)Hard bake: Applied in the oven at 10°C for 5 minutes. After step vi, the structure (1:7) was etched with SiO2 by dipping it into buffered hydrofluoric acid (buffered HF) until the sample temperature dropped to 70°C or below, and the sample was washed with deionized water after PR was removed by dipping it into PRS-2000. 4) Bonding of the patterned SiOz and SiC-coated Si wafer duo under vacuum. Wafer bonding is the permanent joining of two aligned wafers. In the production of the YAI platform (12) subject to the invention, fusion bonding technique was used to combine SiC coated Si wafers (emitter (5) and collector (6)) from the SiOz contact surface. The outer surface of the samples, on the inner surface of which the patterns shown in Figures 5a to 5d were applied by photolithography, were also patterned. The patterns transferred to the inner and outer surfaces of the building are shown schematically in Figure-3b and Figure-3c. The photolithography process for patterning purposes involves placing the material on a hot plate, placing it in ovens with various sample holders and subjecting it to the heating process, etc. Since it requires contact with the material due to the processes involved, there is a risk of contamination on the treated surfaces. However, fusion joining is extremely sensitive to roughness and particle contamination on the surfaces to be joined. Considering that both sides of the sample will contact various surfaces during the photolithography stage of the samples, it is important to protect the surfaces and minimize particle contamination. a.Fashion bonding Since fusion bonding depends on the structure and roughness of the surface to be joined, Imi process al. By chemical activation from SiO2 surfaces coated with PECVD, a2. By PECVD and plasma activation from SiO2 surfaces, a3. It was carried out by plasma activation from SiO2 surfaces grown on Si by thermal oxidation. get. Joining from PECVD SiOz contact surfaces (by chemical activation): In this investigation, a 200 nm thick silicon dioxide thin film (3), whose inner surface is as shown in Figures 10 to 5d, was coated and patterned directly on the Si wafer with PECVD. This sample is an unpatterned 200 nm PECVD silicon dioxide thin film. It is combined with (3) coated Si wafers. Silicon is used in this review due to the lack of direct effect of the silicon carbide thin film (2) in the bonding stage. carbide thin film (2) is not included. The assembly steps are summarized below. l-PECVD silicon dioxide thin film (3) coating (Since the coating was done before, the flake duo was cleaned in piranha solution to prevent contamination from the carrier box.) 2-Oxide densification: 1.5 at 300°C in EVGSZO was carried out under vacuum for one hour. 3- Chemical-mechanical polishing: Not done. 4- Megasonic cleaning: Not done. - Activation with plasma: Not done. Instead, chemical activation was performed with NH4OHzHgb:H2O (6:1:3) solution. The samples to be combined were kept in activation solution at 80 °C for 30 minutes. Afterwards, the samples were rinsed with deionized water for 5 minutes and dried under vacuum. 6-Fusion bonding: It was carried out with EVGSZOIS under vacuum by applying 10 kN force to the samples to be bonded at 300°C for 1.5 hours. 7-IR examination: Not done. 8-Annealing after bonding: Not done. 9- Characterization: At this stage, examination was performed with c-SAM (scanning acoustic microscope) at 200 MHz. It is shown in Figure 7 that the 10 kN force applied for joining did not cause the upper sample to collapse on the lower sample. The dark colored areas show the contact areas, and the light colored areas show the regions that do not come into contact with each other and have a vacuum environment in between. Particularly, coalescence occurred in the middle of the structure and towards the outer wall of the flake. After the examination to obtain a high-resolution (10 µm) c-SAM image, it was seen that the junction between the two flakes was not preserved. This high resolution review took 6 hours. For this reason, it can be said that after assembly, the integrated structure (7) remained assembled for less than 6 hours. a2. Joining from PECVD SiO2 contact surfaces (with plasma activation): For this process, Si flakes coated on a 50 nm silicon carbide thin film (2) were combined by activating with O2 plasma for 60 seconds after being patterned as shown in Figures 5a to 5d. Figures 8a and 8b show that the c-SAM characterization made as a result of fusion assembly shows that the flakes are partially fused. It has been observed that the joining is more smooth, especially in the area where the columns are located, compared to other regions. As in the al process, the union between these two was not permanent. a3. Thermal oxide (SiO2) joining from the contact surfaces (by plasma activation): In this process, Si flakes, on which a silicon dioxide thin film (3) with a thickness of 1.2 um was grown by thermal oxidation, were combined. In previous fusion bonding experiments, to release any gases trapped in the samples before bonding, the stamp pairs were first heated to 300 °C and then contacted by applying a force of 10 kN. In this experiment (a3), the flake pair was first brought into contact and then heated to 300 °C. Other process steps were kept the same. The c-SAM characterization result after fusion is shown in Figure-9. When Figure-9 is examined, it can be seen that the two stamps have been successfully and permanently joined. As can be seen from the dark color on the unpatterned part of the stamp, sufficient contact has been formed between the SiO2 surfaces. There is a good joint quality, especially in the upper left (thick square wall (8)) and lower right (columned (10)) structure. ) Obtaining the YAI platform (12) by cutting the integrated structure (7). The last step is to obtain 4 chips (YAI test sample, YAI platform (12)) with a surface of 3 cm x 3 cm by cutting the integrated structure (7). Since desired, the outer surface pattern shown in Figure-3c and the identifiers of the geometries in Figures-5a to 5d have been applied to the exterior of the integrated structure (7) in order to prevent the cutting process from damaging the chips and SiO2 walls. The integrated structure (7) was cut in line with the dashed lines shown in Figure 1. Flat cut (FC) cutting speed was applied as 1 mm/min in the process. Thanks to the silicon-based closed and integrated platform that is the subject of the invention, micro-nano scale heat transfer can be examined under atmospheric conditions, standard operating conditions, without requiring a vacuum environment other than the YAI platform (12). With the help of the patterned silicon dioxide thin film (3) surfaces on the YAI platform (12), a solution is provided to the distance and parallelism problems in the technique. In addition, considering the targeted experiments to be carried out on the 30 mm It provides physical convenience and applicability for the use of equipment. Since SiC supports surface phonon polaritons, it has been frequently examined in theoretical YAI studies and its positive effect on system efficiency has been presented. The use of SiC in the platform and its derivatives subject to the invention is advantageous due to its favorable properties such as high melting temperature, operability at high temperatures, thermal stability and mechanical strength, in addition to supporting surface phonon polaritons. TR TR TR

Claims (1)

1.ISTEMLER .Mikro-nano ölçekte isinim transferinin incelenmesi için kapali ve entegre bir platform olup, Özelligi; - silisyum alttas (l) üzerine kaplanmis silisyum karbür ince film (2) içeren bir yayici(5), er silisyum alttas (l) üzerine kaplanmis silisyum karbür ince film (2) içeren bir toplayici(6), - yayici (5) ve toplayicinin (6) silisyum karbür ince filmleri (2) üzerine kaplanmis ve yayici (5) ve toplayicinin (6) aralarindaki mesafenin isil isinim dalga boyundan (A) küçük ve birbirine paralel olmasini saglayacak sekilde vakum ortaminda birlestirildiginde yayici (5) ve toplayici (6) arasinda temas yüzeyi görevi görecek silisyum dioksit ara sütunlar içermesi ve - bahsedilen ara sütunlarin temas yüzeylerinin desenli olmasi ile karakterize edilmesidir. . Isteni l'e göre bir` platforni olup, özelligi; desenin kalin kare duvar (8), ince kare duvar (9), sütun (lO) ve/Veya altigen bal petegi (ll) deseni olmasidir. .Istem l'e göre bir platform olup, özelligi; silisyum dioksit ince filmlerin (3) birbirinin ayna görüntüsü olacak sekilde birlesmis olmasidir. .Istem l'e göre bir platform olup, özelligi; yayici (5) ve toplayicinin (6) silisyum alttaslarinin (l), temas yüzeyi desenini tanimlayici kodlar içermesidir. Istem l'e göre bir platform olup, özelligi; yüzey boyutlarinin 3 cm x 3 cm olmasidir. 6.Mikro-nano ölçekte isinim transferinin incelenmesi için gelistirilen kapali ve entegre bir platformun üretim yöntemi olup, Özelligi; a.silisyum alttas (l) üzerine silisyum karbür ince film (2) kaplanarak yayicinin (5) elde edilmesi ve silisyum alttas (1) üzerine silisyum karbür ince film (2) kaplanarak toplayicinin (6) elde edilmesi, b.yayici (5) ve toplayicinin (6) silisyum karbür ince filmlerinin (2) üzerinin ara sütunlari olusturmak üzere silisyum dioksit ince film (3) ile kaplanmasi, (L bahsedilen silisyum dioksit ince film (3) yüzeylerinin desenlenmesi, da temas yüzeyi desenli yüzeyi olacak sekilde, yayici (5) ve toplayicinin (6) aralarindaki mesafenin isil isinim dalga boyundan (h) küçük ve birbirine paralel olacak sekilde yayici (5) ve toplayicinin (6) vakum altinda birlestirilerek kapatilmasi, e.elde edilen entegre yapinin (7) kesilerek tekil YAI platformunun (l2) elde edilmesi islem basamaklarini içermesidir. Istem 6'ya göre bir yöntem olup, özelligi; c basamaginda kalin kare duvar (8), ince kare duvar (9), sütun (lO) ve/Veya altigen bal petegi (ll) deseni ile desenlenmesidir. . Istem 6'ya göre bir yöntem olup, özelligi; a basamaginda silisyum karbür ince filmin (2) RF magnetron saçtirma teknigiyle kaplanmasidir. 9. Istem 6'ya göre bir yöntem olup, özelligi; silisyum karbür ince filmin (2) entegre SiC hedef ile RF magnetron saçtirma teknigiyle kaplanmasidir. 10. Istem 6'ya göre bir yöntem olup, özelligi; silisyum karbür ince filmin (2) yekpare SiC hedef ile RF magnetron saçtirma teknigiyle kaplanmasidir. 11. Istem 6'ya göre bir yöntem olup, özelligi; b basamaginda silisyum dioksit ince filmin (3), plazma destekli kimyasal buhar biriktirme teknigiyle kaplanmasidir. 12. Istem 6'ya göre bir yöntem olup, özelligi; c basamagindasilisyum dioksit ince film (3) yüzeylerinin fotolitografi teknigiyle desenlenmesidir. 13. Istem 6'ya göre bir yöntem olup, özelligi; d basamaginda yayici (5) ve toplayicinin (6) kimyasal aktivasyonla plazma destekli kimyasal buhar biriktirme teknigiyle kaplanmis silisyum dioksit temas yüzeylerinden birlestirilmesidir. 14. Istem 6'ya göre bir yöntem olup, özelligi; d basamaginda yayici (5) ve toplayicinin (6) plazma aktivasyonuyla plazma destekli kimyasal buhar biriktirme teknigiyle kaplanmis silisyum dioksit temas yüzeylerinden birlestirilmesidir. 15. Istem 6'ya göre bir yöntem olup, özelligi; d basamaginda yayici (5) ve toplayicinin (6) plazma aktivasyonuyla termal oksit (SiOz) temas yüzeylerinden birlestirilmesidir. Istem 6'ya göre bir yöntem olup, özelligi; e basamaginda 3 cm x 3 cm'lik yüzey alanina sahip 4 adet YAI platformunun (12) birlestirilmis entegre yapidan (7) kesilerek elde edilmesidir. TR TR TR1.CLAIMERS: It is a closed and integrated platform for examining thermal transfer at the micro-nano scale. Its features are; - an emitter (5) containing a silicon carbide thin film (2) coated on a silicon substrate (l), a collector (6) containing a silicon carbide thin film (2) coated on a silicon substrate (l), - an emitter (5) and When the silicon carbide thin films (2) are coated on the collector (6) and combined in a vacuum environment to ensure that the distance between the emitter (5) and collector (6) is smaller than the thermal radiation wavelength (A) and parallel to each other, the emitter (5) and collector (6) It is characterized by the fact that it contains silicon dioxide intermediate columns that will serve as the contact surface between ) and that the contact surfaces of the said intermediate columns are patterned. . It is a platform according to demand and its feature is; The pattern is a thick square wall (8), thin square wall (9), column (10) and/or hexagonal honeycomb (11) pattern. It is a platform according to claim 1 and its feature is; The silicon dioxide thin films (3) are combined in a way that they are mirror images of each other. It is a platform according to claim 1 and its feature is; The silicon substrates (l) of the emitter (5) and collector (6) contain codes that define the contact surface pattern. It is a platform according to claim 1 and its feature is; The surface dimensions are 3 cm x 3 cm. 6. It is the production method of a closed and integrated platform developed for the examination of thermal transfer at the micro-nano scale. Its features are; a. Obtaining the emitter (5) by coating a silicon carbide thin film (2) on the silicon substrate (1) and obtaining the collector (6) by coating a silicon carbide thin film (2) on the silicon substrate (1), b. Emitter (5) and coating the silicon carbide thin films (2) of the collector (6) with silicon dioxide thin film (3) to form intermediate columns, (L) patterning the surfaces of the said silicon dioxide thin film (3), and the contact surface being the patterned surface, emitter ( 5) and the collector (6) are combined and closed under vacuum so that the distance between them is less than the thermal radiation wavelength (h) and parallel to each other, and the resulting integrated structure (7) is cut and the individual YAI platform ( l2) is a method according to claim 6, and its feature is; in step c, with thick square wall (8), thin square wall (9), column (10) and/or hexagonal honeycomb (11) pattern. It is a method according to claim 6 and its feature is; In step a, the silicon carbide thin film (2) is coated with the RF magnetron sputtering technique. 9. It is a method according to claim 6, characterized in that; It is the coating of silicon carbide thin film (2) with an integrated SiC target by RF magnetron sputtering technique. 10. It is a method according to claim 6, characterized in that; It is the coating of silicon carbide thin film (2) with a monolithic SiC target by RF magnetron sputtering technique. 11. It is a method according to claim 6, characterized in that; In step b, the silicon dioxide thin film (3) is coated with plasma-assisted chemical vapor deposition technique. 12. It is a method according to claim 6, characterized in that; In step c, the surfaces of silicon dioxide thin film (3) are patterned using photolithography technique. 13. It is a method according to claim 6, characterized in that; In step d, the emitter (5) and collector (6) are combined with silicon dioxide contact surfaces coated with plasma-assisted chemical vapor deposition technique with chemical activation. 14. It is a method according to claim 6, characterized in that; In step d, the emitter (5) and collector (6) are combined with silicon dioxide contact surfaces coated with plasma-assisted chemical vapor deposition technique with plasma activation. 15. It is a method according to claim 6, characterized in that; In step d, the emitter (5) and collector (6) are joined on the thermal oxide (SiOz) contact surfaces by plasma activation. It is a method according to claim 6 and its feature is; In step e, 4 YAI platforms (12) with a surface area of 3 cm x 3 cm are obtained by cutting them from the combined integrated structure (7). TR TR TR
TR2020/22603A 2020-12-31 2020-12-31 A SILICUM-BASED CLOSED AND INTEGRATED PLATFORM FOR INVESTIGATION OF RADIATION TRANSFER ON THE MICRO-NANO SCALE TR202022603A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TR2020/22603A TR202022603A1 (en) 2020-12-31 2020-12-31 A SILICUM-BASED CLOSED AND INTEGRATED PLATFORM FOR INVESTIGATION OF RADIATION TRANSFER ON THE MICRO-NANO SCALE
PCT/TR2021/051588 WO2022146393A2 (en) 2020-12-31 2021-12-29 A silicon-based closed and integrated platform for the investigation of radiation transfer at micro-nano scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2020/22603A TR202022603A1 (en) 2020-12-31 2020-12-31 A SILICUM-BASED CLOSED AND INTEGRATED PLATFORM FOR INVESTIGATION OF RADIATION TRANSFER ON THE MICRO-NANO SCALE

Publications (1)

Publication Number Publication Date
TR202022603A1 true TR202022603A1 (en) 2022-07-21

Family

ID=82261041

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2020/22603A TR202022603A1 (en) 2020-12-31 2020-12-31 A SILICUM-BASED CLOSED AND INTEGRATED PLATFORM FOR INVESTIGATION OF RADIATION TRANSFER ON THE MICRO-NANO SCALE

Country Status (2)

Country Link
TR (1) TR202022603A1 (en)
WO (1) WO2022146393A2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100031990A1 (en) * 2008-08-01 2010-02-11 University Of Kentucky Research Foundation Cascaded Photovoltaic and Thermophotovoltaic Energy Conversion Apparatus with Near-Field Radiation Transfer Enhancement at Nanoscale Gaps
WO2013159075A1 (en) * 2012-04-19 2013-10-24 Cornell University Near-field radiative thermal coupling and related devices and techniques
GB2517696A (en) * 2013-08-27 2015-03-04 Ibm Nanodevice assemblies

Also Published As

Publication number Publication date
WO2022146393A2 (en) 2022-07-07
WO2022146393A3 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
US7838322B1 (en) Method of enhancing an etch system
KR101884487B1 (en) Etch-resistant coating on sensor wafers for in-situ measurement
JP7498225B2 (en) In-line chamber metrology
Chen et al. Quasiballistic thermal transport from nanoscale heaters and the role of the spatial frequency
Arrighi et al. Heat dissipation in few-layer MoS2 and MoS2/hBN heterostructure
Kasirga Thermal Conductivity Measurements in Atomically Thin Materials and Devices
Iqbal et al. Measuring Near-Field Radiative Heat Transfer in a Graphene-Si C Heterostructure
TR202022603A1 (en) A SILICUM-BASED CLOSED AND INTEGRATED PLATFORM FOR INVESTIGATION OF RADIATION TRANSFER ON THE MICRO-NANO SCALE
Laamanen et al. Thin film absorbers for visible, near-infrared, and short-wavelength infrared spectra
Kim et al. Extension of the T-bridge method for measuring the thermal conductivity of two-dimensional materials
Yang Experimental and numerical investigation of pool boiling heat transfer on engineered nano-finned surfaces
TW202307398A (en) Apparatus for measuring thickness of thin film in real time
Mu SiN Drum Resonator Fabrication and Integrated Actuation Using Substrate Capacitors
Noori et al. Wafer Bonding for Processing Small Wafers in Large Wafer Facilities
Al-Mumen et al. Characterization of surface heat convection of bilayer graphene
Artvin Fabrication of nanostructured samples for the investigation of near field radiation transfer
Kasirga et al. Thermal conductivity measurements via the bolometric effect
Elahi Thermoreflectance Technique for Thermal Properties Measurement of Micro/Nanoscale Cantilever Beams
Hwang et al. Silicon Phononic Nanowires Enable Ultra-Low Thermal Conductivity Measured by Raman Spectroscopy
Wu et al. Micro-Raman measurement of thickness in microelectromechanical silicon structures
Zemel Radiative interactions with micromachined surfaces: Spectral polarized emittance. Final report
Cianci et al. Silicon grisms fabricated by anisotropic wet etching and direct silicon bonding for high-resolution IR spectroscopy
Wu Experimental Investigation of Size Effects on Surface Phonon Polaritons and Phonon Transport
Zhou et al. Performance-Enhanced CMOS Polysilicon Microbolometer with Narrow Supporting Arms
Noori et al. Processing Smaller Wafers in a Large Wafer Designated Fabrication Facility