SU502205A1 - Eddy current device for monitoring electrically conductive products - Google Patents

Eddy current device for monitoring electrically conductive products

Info

Publication number
SU502205A1
SU502205A1 SU1978321A SU1978321A SU502205A1 SU 502205 A1 SU502205 A1 SU 502205A1 SU 1978321 A SU1978321 A SU 1978321A SU 1978321 A SU1978321 A SU 1978321A SU 502205 A1 SU502205 A1 SU 502205A1
Authority
SU
USSR - Soviet Union
Prior art keywords
sensor
phase
electrically conductive
eddy current
frequency
Prior art date
Application number
SU1978321A
Other languages
Russian (ru)
Inventor
Юрий Яковлевич Останин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to SU1978321A priority Critical patent/SU502205A1/en
Application granted granted Critical
Publication of SU502205A1 publication Critical patent/SU502205A1/en

Links

Description

1one

Изобретение относитс  к области неразрушающего контрол  токовихревым методом электропроводных изделий и может быть использовано дл  контрол  электромагнитных параметров.The invention relates to the field of non-destructive testing by a vortex method of electrically conductive products and can be used to control electromagnetic parameters.

Известны токовихревые устройства дл  контрол  электропроводных изделий, содержащие генератор, выполненный в виде усилител  с положительной обратной св зью, датчик параметрического типа и частотомер. Недостатком известных устройств  вл етс  зависимость показаний этих устройств от зазора между датчиком и изделием, что снижает точность измерени  параметров изделий.Eddy current devices for monitoring electrically conductive products are known, comprising a generator configured as an amplifier with positive feedback, a parametric type sensor, and a frequency counter. A disadvantage of the known devices is the dependence of the readings of these devices on the gap between the sensor and the product, which reduces the accuracy of measurement of the parameters of the products.

С целью повышени  точности контрол  электромагнитных параметров издели  предложенное устройство снабжено включенными в цепи обратной св зи последовательно соединенными с датчиком фазовращателем и четырехполюсником с линейной фазочастотной характеристикой, а датчик выполнен трансформаторным.In order to improve the accuracy of monitoring the electromagnetic parameters of the product, the proposed device is equipped with a phase shifter and a quadrupole with linear phase-frequency characteristic connected in series with the sensor, and the sensor is transformer-based.

На фиг. 1 показана структурна  схема предлагаемого устройства; на фиг. 2 - годографы вносимой э. д. с. дл  трансформаторного датчика; па фпг. 3 - фазочастотпа  характеристика четырехполюспика.FIG. 1 shows a block diagram of the proposed device; in fig. 2 - hodographs introduced by e. d. for transformer sensor; pa fpg. 3 - phase characteristic four-pole characteristic.

Устройство содержпт усилитель 1, фазовращатель 2, четырехполюсник 3 с линейной фазочастотной характеристикой, трансформаторный датчик 4, эталонное изделие 5, контролируемое изделие 6, частотомер 7 и компенсатор 8 начального напр жени .The device contains an amplifier 1, a phase shifter 2, a quadrupole 3 with a linear phase-frequency characteristic, a transformer sensor 4, a reference product 5, a controlled product 6, a frequency meter 7, and an initial voltage compensator 8.

Усилитель, фазовращатель, компенсатор иAmplifier, Phaser, Compensator and

трансформаторный датчик соединены каскадпо-последовательно в замкнутую систему с положительной обратной св зью. Коэффициент передачи системы в разомкнутом состо нии за счет усилител  сделан больше единицы (баланс амплитуд) прп минимально возможном коэффициенте передачи трансформаторного датчика. Фазовращатель компенсирует начальный набег фазы, а компенсатор - начальное напр жение датчика. В измерительной зоне датчика располагаетс  контролируемое изделие. Частотомер соединен с выходом усилител  и регистрирует изменение частоты.The transformer sensor is connected in cascade in series to a closed system with positive feedback. The transmission coefficient of the system in the open state at the expense of the amplifier is made larger than one (amplitude balance). The minimum possible transmission coefficient of the transformer sensor is made. The phase shifter compensates the initial phase shift, and the compensator compensates the initial voltage of the sensor. A monitored product is located in the measuring area of the sensor. The frequency meter is connected to the output of the amplifier and registers the change in frequency.

Устройство работает следующим образом.The device works as follows.

При номинальном значении зазора ho от датчика до издели  и номинальном значении толщины /о издели , фазовый сдвиг вносимой э. д. с. относительно тока равен сро. Суммарный набег фаз по замкнутому контуру в режиме генерации должен равн тьс  нулю (баланс фаз). Дл  этого фазовращателем 2 ввод т начальный сдвиг фаз (-сро). В итоге автогенератор работает на частоте /о.With the nominal gap value ho from the sensor to the product and the nominal thickness / of the product, the phase shift is e. d. relative to current The total phase incursion in a closed loop in the generation mode must be zero (phase balance). For this, phase shifter 2 introduces an initial phase shift (-cro). As a result, the oscillator operates at a frequency / o.

При уменьшении толщины издели  до /iWhen reducing the thickness of the product to / i

фаза вносимой э. д. с. измен етс  до значени phase introduced by e. d. changes to value

Фь В результате по вл етс  набег фазы АФ Ф1-фо и частота генерации измен етс  до значени  /ь При этом за счет линейной фазочастотной характеристики четырехполюсника приращение частоты пр мо пропорционально изменению фазы и соответственно параметру издели . При увеличении толщины до /2 измеп етс  фаза вносимой э.д.с. до ф2 и частота уменьшаетс  до значени  /2.As a result, the phase shift of AF F1-pho appears and the generation frequency changes to the value of /. At the same time, due to the linear phase-frequency characteristic of the quadrupole, the frequency increment is directly proportional to the phase change and, accordingly, to the product parameter. As the thickness increases to / 2, the phase of the emf applied changes. to f2 and the frequency decreases to a value of / 2.

Применение четырехполюсника с линейной фазочастотиой характеристикой позвол ет производить преобразование параметров издели , вли ющих на фазу вносимой э. д. с. непосредственно в частоту, причем закон преобразовани  «приращение фазы-приращение частоты - линейный.The use of a quadrupole with a linear phase-frequency characteristic allows the conversion of the product parameters that affect the phase of the input em. d. directly into the frequency, with the conversion law "phase increment-frequency increment linear.

В силу того, что линии вли ни  зазора (hi-kg) близки к радиальным пр мым, фаза и, следовательно, частота при его изменении остаетс  посто нной. Поэтому предлагаемое Зстройство подавл ет вли ние изменений зазора .Due to the fact that the lines of influence of the gap (hi-kg) are close to the radial straight lines, the phase and, consequently, the frequency with its change remains constant. Therefore, the proposed Device suppresses the effect of gap changes.

Предлагаемое устройство может быть использовано во всех случа х толщинометрии и электромагнитного контрол , когда полезна  информаци  заключена в изменении фазы вносимой э.д.с. и ее приращений дл  различных датчиков.The proposed device can be used in all cases of thickness measurement and electromagnetic control, when useful information is contained in a change in the phase of the emf applied. and its increments for various sensors.

Claims (1)

Формула изобретени Invention Formula Токовихревое устройство дл  контрол  электропроводных изделий, содержащее генератор , выполненный в виде усилител  с фазовращателем в цепи его положительной и обратной св зи, датчик и частотомер, отличающеес  тем, что, с целью повышени  точности контрол , оно снабжено включенными в цепь обратной св зи последовательно соединенными с датчиком компенсатором начального напр жени  и четырехполюсником с линейной фазочастотной характеристикой, а датчик выполнен трансформаторным.An eddy current device for monitoring electrically conductive products, comprising a generator made in the form of an amplifier with a phase shifter in its positive and feedback circuits, a sensor and a frequency meter, characterized in that, in order to improve the control accuracy, it is provided with connected in series feedback with a sensor with an initial voltage compensator and a quadrupole with linear phase-frequency characteristic, and the sensor is transformer-made.
SU1978321A 1973-12-24 1973-12-24 Eddy current device for monitoring electrically conductive products SU502205A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU1978321A SU502205A1 (en) 1973-12-24 1973-12-24 Eddy current device for monitoring electrically conductive products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU1978321A SU502205A1 (en) 1973-12-24 1973-12-24 Eddy current device for monitoring electrically conductive products

Publications (1)

Publication Number Publication Date
SU502205A1 true SU502205A1 (en) 1976-02-05

Family

ID=20570138

Family Applications (1)

Application Number Title Priority Date Filing Date
SU1978321A SU502205A1 (en) 1973-12-24 1973-12-24 Eddy current device for monitoring electrically conductive products

Country Status (1)

Country Link
SU (1) SU502205A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5453689A (en) * 1991-12-06 1995-09-26 Massachusetts Institute Of Technology Magnetometer having periodic winding structure and material property estimator
US5793206A (en) * 1995-08-25 1998-08-11 Jentek Sensors, Inc. Meandering winding test circuit
US6144206A (en) * 1997-01-06 2000-11-07 Jentek Sensors, Inc. Magnetometer with waveform shaping
US6188218B1 (en) 1997-10-29 2001-02-13 Jentek Sensors, Inc. Absolute property measurement with air calibration
US6377039B1 (en) 1997-11-14 2002-04-23 Jentek Sensors, Incorporated Method for characterizing coating and substrates
US6420867B1 (en) 1997-03-13 2002-07-16 Jentek Sensors, Inc. Method of detecting widespread fatigue and cracks in a metal structure
US6486673B1 (en) 1997-01-06 2002-11-26 Jentek Sensors, Inc. Segmented field dielectrometer
US6781387B2 (en) 1997-01-06 2004-08-24 Jentek Sensors, Inc. Inspection method using penetrant and dielectrometer

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6252398B1 (en) 1991-12-06 2001-06-26 Massachusetts Institute Of Technology Apparatus and methods for obtaining increased sensitivity, selectivity and dynamic range in property measurement using magnetometers
US5453689A (en) * 1991-12-06 1995-09-26 Massachusetts Institute Of Technology Magnetometer having periodic winding structure and material property estimator
US5629621A (en) * 1991-12-06 1997-05-13 Massachusetts Institute Of Technology Apparatus and methods for obtaining increased sensitivity, selectivity and dynamic range in property measurement using magnetometers
US5990677A (en) * 1991-12-06 1999-11-23 Massachusetts Institute Of Technology Apparatus and methods for obtaining increased sensitivity, selectivity and dynamic range in property measurement using magnetometer
US6433542B2 (en) 1991-12-06 2002-08-13 Massachusetts Institute Of Technology Apparatus and method for obtaining increased sensitivity, selectivity and dynamic range in property measurement using magnetometers
US5793206A (en) * 1995-08-25 1998-08-11 Jentek Sensors, Inc. Meandering winding test circuit
US5966011A (en) * 1995-08-25 1999-10-12 Jentek Sensors, Inc. Apparatus for measuring bulk materials and surface conditions for flat and curved parts
US6198279B1 (en) 1995-08-25 2001-03-06 Jentek Sensors, Inc. Test material analysis using offset scanning meandering windings
US6351120B2 (en) 1995-08-25 2002-02-26 Jentek Sensors, Inc. Test circuit on flexible membrane with adhesive
US6486673B1 (en) 1997-01-06 2002-11-26 Jentek Sensors, Inc. Segmented field dielectrometer
US6144206A (en) * 1997-01-06 2000-11-07 Jentek Sensors, Inc. Magnetometer with waveform shaping
US6781387B2 (en) 1997-01-06 2004-08-24 Jentek Sensors, Inc. Inspection method using penetrant and dielectrometer
US6420867B1 (en) 1997-03-13 2002-07-16 Jentek Sensors, Inc. Method of detecting widespread fatigue and cracks in a metal structure
US6188218B1 (en) 1997-10-29 2001-02-13 Jentek Sensors, Inc. Absolute property measurement with air calibration
USRE39206E1 (en) * 1997-10-29 2006-07-25 Jentek Sensors, Inc. Absolute property measurement with air calibration
US6377039B1 (en) 1997-11-14 2002-04-23 Jentek Sensors, Incorporated Method for characterizing coating and substrates

Similar Documents

Publication Publication Date Title
SU502205A1 (en) Eddy current device for monitoring electrically conductive products
NL8005486A (en) STABILIZED VOLTAGE / FREQUENCY CRYSTAL CONVERTER WITH DIGITAL SCALE FOR FLOW METERS.
US4074194A (en) Watt meter providing electrical signal proportional to power
US4050015A (en) Control of microwave generator-cavity resonator combinations for gas analyzer
US4257123A (en) Device for monitoring the performance of a transmitter
US4958523A (en) Apparatus for measuring the flow rate of electrically conductive liquids
NL8005745A (en) METHOD AND APPARATUS FOR MEASURING DIGITAL MEASUREMENTS OF INCREMENTALLY DIVIDED TRACK ANGLES.
SU993153A1 (en) Device for measuring non-magnetic material specific resistance
SU437982A1 (en) Time-impulse parameter meter
SU549766A1 (en) Device for detecting metal objects
SU907478A1 (en) Flux meter
SU379884A1 (en) DEVICE FOR MEASURING THE INDUCTION OF WEAK CONSTANT MAGNETIC FIELDS
SU1219992A1 (en) Method of contactless measurement of conducting body magnetic permeability
SU854141A1 (en) Radioisotope device
SU362984A1 (en) ELECTROMAGNETIC DEVICE FOR MEASURING THE THICKNESS OF THE CURRENT CONDUCTING PRODUCTS
SU557271A1 (en) Method of measuring flow (velocity) of electrically conductive media
SU855569A1 (en) Method of determining dynamic curves of ferromagnetic material reversal of magnetization
SU907480A1 (en) Device for measuring differential reversible and non-reversible magnetic permeability
SU1115138A2 (en) Device for measuring hall emf
SU853566A1 (en) Comrlex resistance component transducer
SU434329A1 (en) METHOD FOR LINEARIZATION OF DIFFERENTIAL FREQUENCY SENSORS CHARACTERISTICS
SU706797A1 (en) Magnetic field pulse measuring method
SU817592A1 (en) Thermoanemometric device for measuring gas flow rate
SU779903A1 (en) Digital phase meter
SU864106A1 (en) Method of magnetic noise structuroscopy of articles from ferromagnetic materials