SI9200102A - Electronic commutationed motor regulated with dc impulses - Google Patents

Electronic commutationed motor regulated with dc impulses Download PDF

Info

Publication number
SI9200102A
SI9200102A SI9200102A SI9200102A SI9200102A SI 9200102 A SI9200102 A SI 9200102A SI 9200102 A SI9200102 A SI 9200102A SI 9200102 A SI9200102 A SI 9200102A SI 9200102 A SI9200102 A SI 9200102A
Authority
SI
Slovenia
Prior art keywords
motor
pole
poles
rotor
phase
Prior art date
Application number
SI9200102A
Other languages
Slovenian (sl)
Inventor
Jurica Zadravec
Original Assignee
Imp Crpalke D D
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imp Crpalke D D filed Critical Imp Crpalke D D
Priority to SI9200102A priority Critical patent/SI9200102A/en
Priority to EP93109394A priority patent/EP0574010A2/en
Publication of SI9200102A publication Critical patent/SI9200102A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/04Synchronous motors for single-phase current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

An electronically commutated motor which is controlled by DC pulses is constructed in such a manner that it can be controlled by a cost-effective and simple electronic commutator which produces rectangular waveform control pulses by means of which the individual phases of the motor are switched on and off. This property of the motor is achieved by means of a special design of the salient poles 4, 4', 4'' for the individual phases, the centre angle tau of these salient poles 4, 4', 4'' being identical to one another, and also being identical for the magnetic poles 3 of the rotor 2. During operation of the motor, only one pole 4, 4', 4'' is always active, that is to say is excited via the excitation winding (energising winding) 6, 6', 6'', while in contrast the other pole which is associated with the same phase is passive and can be composed of a plurality of other salient poles or of passive pole segments 7, 7', 7'' whose planes of symmetry are directed radially from the stator 1 in the direction of the rotor 2. The common width of this passive pole is in this case a multiple of the centre angle. <IMAGE>

Description

Elektronsko komutiran motor, krmiljen z enosmernimi impulziElectronically switched motor controlled by DC pulses

Izum spada v področje gradnje električnih strojev z elektronsko komutacijo in se po MKP uvršča v razred H 02K 29/00.The invention belongs to the field of construction of electrical machines with electronic switching and is classified in class H 02K 29/00 by MKP.

Elektronsko komutirani stroji so sinhronski stroji, opremljeni z magnetnimi senzorji, ki otipavajo lego rotorja in krmilijo posamezna fazna navitja statorja, tako da so vzbujena vedno tista fazna navitja statorja, ki glede na trenutno lego rotorja povzročijo največji moment na gredi motoija.Electronically switched machines are synchronous machines equipped with magnetic sensors that sense the rotor position and control individual stator winding phases, so that those stator windings are always excited, which, given the current rotor position, cause maximum momentum on the moto shaft.

Inducirana napetost znanega sinhronskega stroja je izmenična, njen časovni potek pa je običajno sinusen. Zato mora elektronski komutator generirati izmenično napetost s sinusnim časovnim potekom, da lahko z električno energijo napaja fazna navitja elektronsko komutiranega stroja. Pri tem so osnovne funkcije elektronskega komutatorja ugotavljanje lege rotorja, generiranje izmenične napetosti, to je razsmerjanje s tako frekvenco, ki ustreza trenutni hitrosti vrtenja rotorja, ter razporejanje električne energije na posamezna fazna navitja v odvisnosti od trenutne lege rotorja. Pri tem so dodatne funkcije elektronskega komutatorja še omejevanje in regulacija električnega toka, regulacija števila vrtljajev motorja, zaščita motorja in drugo.The induced voltage of a known synchronous machine is alternating, and its time course is usually sine. Therefore, the electronic commutator must generate alternating voltage with a sine-wave path in order to be able to supply electrical power to the phase windings of the electronically switched machine. The basic functions of the electronic commutator are to determine the rotor position, to generate alternating voltage, that is, to rotate at such a frequency that corresponds to the current speed of rotation of the rotor, and to distribute electricity to individual phase windings depending on the current rotor position. Additional features of the electronic commutator include limitation and control of electric current, regulation of engine speed, motor protection and more.

Če želimo doseči dober izkoristek stroja, mora biti elektronski komutator dobro prilagojen na lastnosti motorja, kajti vsaka razlika med obliko, to je časovnim potekom inducirane napetosti motoija ter obliko napajalne napetosti, ki jo generira elektronski komutator, se spremeni v izgubo.In order to achieve good machine efficiency, the electronic commutator must be well adapted to the characteristics of the motor, since any difference between the shape, that is, the timing of the induced moto voltage and the shape of the supply voltage generated by the electronic commutator, changes to a loss.

Tehnični problem pri elektronsko komutiranih motorjih, ki se zaradi svoje velike specifične moči in dolge življenske dobe vedno bolj uveljavljajo, je takšna konstrukcija motorja, ki bo omogočala uporabo enostavnega in cenenega elektronskega komutatorja, pri čemer pa bo ohranjen dober izkoristek motorja.The technical problem of electronically commutated motors, which are becoming increasingly popular due to their high specific power and long life, is an engine design that will make it possible to use a simple and inexpensive electronic commutator while maintaining good engine efficiency.

Rešitev tehničnega problema bomo podrobneje opisali v nadaljevanju in prikazali na risbah, kjer prikazujejo:The solution to the technical problem will be described in more detail below and shown in the drawings showing:

sl. 1 prerez skozi enofazni sinhronski stroj z diagramom poteka inducirane napetosti pravokotne oblike sl. 2 prerez skozi enofazno izvedbo sinhronskega stroja po izumu z diagramom poteka inducirane napetosti pravokotne oblike sl. 3 prerez skozi trifazno izvedbo sinhronskega stroja po izumu sl. 4 enofazno vezalno shemo elektronskega komutatorja po izumu.FIG. 1 is a cross-section through a single-phase synchronous machine with a flow diagram of the induced voltage of a rectangular shape; 2 is a cross-sectional view through a single-phase embodiment of the synchronous machine according to the invention with a flow diagram of the induced rectangular voltage of FIG. 3 is a cross-sectional view through a three-phase embodiment of the synchronous machine according to the invention; 4 is a single-phase circuit diagram of an electronic commutator of the invention.

Najenostavnejši elektronski komutator, kar jih je možno zgraditi, vsebuje -za napajanje vsake faze senzor lege rotorja, elektronsko stikalo za vklop in izklop faze, omejilnik toka in omejilnik prenapetosti, ki nastane ob izklopu faze.The simplest electronic switch that can be built contains - for powering each phase, the rotor position sensor, electronic phase switch on and off, current limiter and surge limiter that occurs when the phase is switched off.

Tak najenostavnejši elektronski komutator lahko za vsako fazo generira enosmerne impulze električne napetosti pravokotne oblike. Če želimo s tem komutatorjem krmiliti motor z definirano smerjo vrtenja, mora biti motor izdelan tako, da je inducirana napetost pravokotne oblike (da je časovni potek inducirane napetosti pravokotne oblike), da je motor izdelan v dvo- ali večfazni izvedbi in da motor mora brezhibno delovati s polvalnim napajanjem.Such a simplest electronic commutator can generate rectangular electrical current pulses for each phase. In order to control the motor with a defined direction of rotation with this commutator, the motor must be designed in such a way that the rectangular voltage is induced (that the time of the induced voltage is rectangular), that the motor is designed in two- or multiphase design and that the motor is faultless operate with half-wave power.

Enofazna izvedba sinhronskega stroja, čigar inducirana napetost je pravokotne oblike, je shematsko prikazana na sl. 1. Tak stroj ima stator 1, na katerem je nameščeno vzbujevalno navitje 6, medtem ko sta na rotorju 2 nameščena dva trajna magneta 3 izmenične polaritete. Znano je, da so pogoji za doseganje pravokotne oblike inducirane napetosti naslednji: gostota magnetnega polja v zračni reži mora biti konstantna, poli morajo biti izraženi in širina pola mora biti enaka polovni delitvi t. Kot je razvidno iz slike 1, pa je pri teh pogojih mogoče na stroj namestiti samo dva pola 4, to je en polovni par. Ali z drugimi besedami: stroj je mogoče izdelati samo v enofazni izvedbi. Da bi lahko izdelali stroj z definirano smerjo vrtenja, to je, da bi lahko izdelali večfazni stroj z izraženimi poli, je nujno treba pridobiti prostor na obodu statorja 1. Zato raziščimo, kaj se zgodi, če je širina statorskega pola mnogokratnik polovne delitve.A single-phase embodiment of a synchronous machine whose induced voltage is of rectangular shape is shown schematically in FIG. 1. Such a machine has a stator 1 on which an excitation coil 6 is mounted, while two permanent magnets 3 of alternating polarity are mounted on the rotor 2. It is known that the conditions for attaining the rectangular shape of the induced voltage are as follows: the density of the magnetic field in the air gap must be constant, the poles must be expressed, and the width of the pole must be equal to the half division t. As can be seen from Figure 1, however, under these conditions, only two poles 4 can be fitted to the machine, that is, one half pair. Or in other words: the machine can only be manufactured in a single-phase version. In order to produce a machine with a defined direction of rotation, that is, in order to produce a multiphase machine with pronounced poles, it is essential to obtain space at the circumference of stator 1. Therefore, let us investigate what happens if the width of the stator pole is a multiple of half division.

Slika 2 shematsko prikazuje enofazen sinhronski stroj, kije sestavljen iz statorja 1 in rotorja 2. Na rotor 2 so nameščeni štirje trajni magneti 3 izmenične polaritete. Stator 1 je opremljen z dvema poloma 4 in 5. Zgornji pol 4 ima širino pola rotorja t, medtem ko ima spodnji pol 5 širino pola 3t. Zgornji pol 4 opremimo z vzbujevalnim navitjem 6 in ga imenujemo aktiven pol, medtem ko pol 5 ni vzbujen in ga imenujemo pasiven pol. Če stroj po sliki 2 priključimo na napetost, ugotovimo, da se obnaša podobno, kot stroj po sliki 1. Časovni potek inducirane napetosti stroja po sliki 2 je enak časovnemu poteku inducirane napetosti stroja po sliki 1. Oba poteka inducirane napetosti sta pravokotne oblike. Pač pa lahko v prostor, ki ga zavzema pasivni pol, namestimo navitja drugih faz, kijih vzbujamo takrat, ko navitje 6 ni vzbujano.Figure 2 schematically shows a single-phase synchronous machine consisting of stator 1 and rotor 2. Four permanent magnets of 3 alternating polarity are mounted on rotor 2. Stator 1 is provided with two poles 4 and 5. The upper pole 4 has a rotor pole width t, while the lower pole 5 has a pole width 3t. We equip the upper pole 4 with an excitation winding 6 and call it the active pole, while pole 5 is not excited and it is called the passive pole. If the machine according to Fig. 2 is connected to a voltage, it is found that it behaves similarly to the machine according to Fig. 1. The time course of the induced voltage of the machine according to Fig. 2 is equal to the time course of the induced voltage of the machine according to Fig. 1. Both runs of the induced voltage are rectangular. Alternatively, windings of other phases can be installed in the space occupied by the passive pole, which is excited when winding 6 is not excited.

Najprimernejšo število faz stroja po izumu izberemo glede na zahtevo, da mora stroj delovati s polvalnim vzbujanjem. Za polvalno vzbujanje je najprimernejši trifazni sistem, pri katerem predstavljata druga in tretja faza negativni polval prve faze.The most appropriate number of phases of the machine according to the invention is selected according to the requirement that the machine must be operated with half-wave excitation. For three-wave excitation, a three-phase system is preferred, in which the second and third phases represent the negative first-phase waves.

Slika 3 predstavlja trifazno izvedbo stroja po izumu. Stroj je sestavljen iz statorja 1 in rotorja 2 ter seveda neprikazanih ostalih standardnih delov motorja, kot so ohišje, ležaji, gred ter drugi znani strojni elementi. Na rotor 2 so nameščeni štirje trajni magneti 3 izmenične polaritete. Stator 1 je opremljen s tremi izraženimi poli 4, 4’, 4, ki imajo širino pola τ (enako polovni delitvi) in so opremljeni z navitji 6, 6’, 6. Stator 1 ima torej tri aktivne pole. Če vzbujamo en sam aktivni pol 4 širine t, tedaj ves preostali del statorja 1 širine (2ir-r) predstavlja aktivnemu polu 4 prirejen pasivni pol, ki ima širino pola 3t in je sestavljen iz več delnih polovnih segmentov 4’, 4, 7, 7’, 7. Dobili smo trifazni motor, ki bo imel naslednje značilnosti v tem, da bo motor brezhibno deloval, če posamezna fazna navitja zapovrstjo napajamo z enosmernimi impulzi električne energije, pri čemer je smer vrtenja deločena z vrstnim redom vzbujanja posameznih faz. Inducirana napetost v posameznih faznih navitjih pa ima pravokoten časovni potek.3 is a three-phase embodiment of the machine according to the invention. The machine consists of a stator 1 and a rotor 2 and, of course, other standard engine parts, such as a housing, bearings, a shaft and other known machine elements, are not shown. Four permanent magnets of 3 alternating polarity are mounted on rotor 2. Stator 1 is equipped with three pronounced poles 4, 4 ', 4, which have a pole width τ (equal to half division) and are equipped with windings 6, 6', 6. Stator 1 therefore has three active poles. If a single active pole 4 of width t is excited, then the rest of the stator 1 of width (2ir-r) represents an active passive 4 having a pole width of 3t and consisting of several partial half segments 4 ', 4, 7. 7 ', 7. We have obtained a three-phase motor, which will have the following characteristics in that the motor will function smoothly if the individual phase windings are fed in sequence by direct current pulses of electricity, with the direction of rotation being divided by the order of excitation of the individual phases. The induced voltage in the individual phase windings, however, has a rectangular time course.

Za krmiljenje elektronskega komutatorja je treba v motor vgraditi še magnetne senzorje 8, 8’, 8, ki so nameščeni nad rotorjem in so za kot β, ki ustreza 90 stopinjam električnega kota, zasukani od simetrale pola, ki ga posamezni senzor krmili.In order to control the electronic commutator, magnetic sensors 8, 8 ', 8 must also be installed in the motor above the rotor and rotated by an angle of β equal to 90 degrees of the electric angle from the pole of the pole that the individual sensor controls.

S tem smo dobili stroj, čigar elektronsko krmiljenje je kar se da enostavno. Vezje tega krmilja je razvidno iz slike 4.This gives us a machine whose electronic control is as easy as possible. The circuit of this control can be seen in Figure 4.

Magnetni senzor MS vklaplja tranzistor Tp tranzistor pa vklaplja tranzistor T2. Oba tranzistorja delujeta kot stikali, da so izgube kar se da majhne. Maksimalni tok (zagonski tok motorja) tranzistorja T2 lahko omejimo z omejitvijo napetosti baze tranzistorja T2. To nalogo opravi Zener-dioda Z. Dioda Dx dvigne potencial emitorja tranzistorja Tp da le-ta po potrebi popolnoma zapre. Diodi D2 in D3 predstavljata električno povezavo s predhodno fazo na priključku I in nasledjo fazo na priključku II z nalogo, da ob vklopu določene faze predhodna faza izklopi brez ozira na signal magnetnega senzorja. S tem se odpravi prikrivanje vklopa dveh faz.The magnetic sensor MS switches on the transistor T p the transistor turns on the transistor T 2 . Both transistors act as switches to minimize losses. The maximum current (motor starting current) of transistor T 2 can be limited by limiting the voltage of the base of transistor T 2 . This task is performed by Zener diode Z. Diode D x raises the emitter potential of transistor T p to close it completely when needed. Diodes D 2 and D 3 present electrical connection to the previous phase at terminal I and the next phase at terminal II with the task of switching off the previous phase without switching on the magnetic sensor signal when the particular phase is switched on. This eliminates the concealment of switching on two phases.

Za odpravljanje prenapetostnih konic, ki nastanejo ob izklopu posamezne faze, opremimo posamezne pole s pomožnim navitjem 9, 9’, 9 in ga s pomočjo diode D4 vežemo v protistiku z navitjem 6, 6’, 6 na napetost, kot je to razvidno iz vezalne sheme slika 4. Ob izklopu faznega navitja 6 se inducira napetost tudi v pomožnem navitju 9. Energija, nakopičena v induktivnosti pola, se s pomočjo pomožnega navitja 9, 9’, 9 in diode D4 vrača v omrežje, medtem ko inducirana napetost v negativnem polvalu ne zadošča, da bi po pomožnem navitju 9, 9’, 9 pognala kratkostični tok.To eliminate the overvoltage peaks that occur when the individual phase is switched off, equip individual poles with auxiliary winding 9, 9 ', 9 and connect it to the voltage counter with winding 6, 6', 6 by means of diode D 4 , as shown in wiring diagrams Fig. 4. When phase winding 6 is switched off, voltage is also induced in the auxiliary winding 9. The energy accumulated in the pole inductance is returned to the grid by the auxiliary winding 9, 9 ', 9 and diode D 4 , while the induced voltage in the negative pole is not sufficient to drive the short-circuit current after the auxiliary winding 9, 9 ', 9.

Claims (4)

1. Elektronsko komutiran motor, krmiljen z enosmernimi impulzi, označen s tem, da so na obodu rotorja (2) pritrjeni najmanj štirje magnetni poli (3) in da izstopajo iz statorja (1) radialno proti rotorju (2) najmanj trije izraženi poli (4, 4’, 4) ter v simetralah med izraženimi poli (4, 4’, 4) najmanj trije pasivni polovi segmenti (7, 7’, 7), pri čemer imajo magnetni poli (3) medsebojno enak središčni kot (r), ki je hkrati enak tudi za vse izražene pole (4, 4’, 4) ter so na vseh izraženih polih (4, 4,’, 4) nameščena tako fazna navitja (6,6’, 6), kakor tudi pomožna navitja (9,9’, 9).Electronically commutated, single-impulse-controlled motor, characterized in that at least four magnetic poles (3) are fixed at the periphery of the rotor (2) and protrude from the stator (1) radially against the rotor (2) by at least three expressed poles ( 4, 4 ', 4) and in symmetry between the expressed poles (4, 4', 4) of at least three passive pole segments (7, 7 ', 7), with the magnetic poles (3) having the same center angle (r) , which is at the same time the same for all the expressed poles (4, 4 ', 4) and on all the expressed poles (4, 4,', 4) both phase windings (6,6 ', 6) and auxiliary windings are installed (9.9 ', 9). 2. Motor po zahtevku 1, označen s tem, da so magnetni poli (3) trajni magneti.Motor according to claim 1, characterized in that the magnetic poles (3) are permanent magnets. 3. Motor po zahtevku 1, označen s tem, da so magnetni poli (3) elektromagnetni.Motor according to claim 1, characterized in that the magnetic poles (3) are electromagnetic. 4. Motor po zahtevku 1, označen s tem, da so na enih koncih izraženih polov (4, 4’, 4) v rotacijski smeri pritrjeni magnetni senzorji (8,8’, 8).Motor according to claim 1, characterized in that the magnetic sensors (8,8 ', 8) are fixed in rotational direction at one end of the poles (4, 4', 4).
SI9200102A 1992-06-11 1992-06-11 Electronic commutationed motor regulated with dc impulses SI9200102A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI9200102A SI9200102A (en) 1992-06-11 1992-06-11 Electronic commutationed motor regulated with dc impulses
EP93109394A EP0574010A2 (en) 1992-06-11 1993-06-11 Electronically commutated motor controlled with direct-current pulses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI9200102A SI9200102A (en) 1992-06-11 1992-06-11 Electronic commutationed motor regulated with dc impulses

Publications (1)

Publication Number Publication Date
SI9200102A true SI9200102A (en) 1993-12-31

Family

ID=20430955

Family Applications (1)

Application Number Title Priority Date Filing Date
SI9200102A SI9200102A (en) 1992-06-11 1992-06-11 Electronic commutationed motor regulated with dc impulses

Country Status (2)

Country Link
EP (1) EP0574010A2 (en)
SI (1) SI9200102A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2028747A1 (en) * 2007-08-23 2009-02-25 Young-Chun Jeung Two-phase DC brushless motor
TWI586078B (en) * 2016-09-06 2017-06-01 The stator structure of the motor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA788070A (en) * 1963-03-12 1968-06-18 H. Wessels Johannes Self starting brushless direct current motor
SU458926A1 (en) * 1973-09-25 1975-01-30 Днепропетровский горный институт Apparatus for improving commutator commutation of electrical machines
JPS5722367A (en) * 1980-07-15 1982-02-05 Tokyo Parts Kogyo Kk Commutatorless motor
DE3042497A1 (en) * 1980-11-11 1982-07-29 Magnet Bahn Gmbh Electric drive or generator with permanent magnet rotor - has sensor for switching stator current conductors at correct relative position
US4575652A (en) * 1984-09-27 1986-03-11 Synektron Corporation Permanent magnet motor having high starting torque and narrowly-defined detent zones
EP0182702B2 (en) * 1984-11-13 1994-04-20 Digital Equipment Corporation Brushless DC motor
GB8521009D0 (en) * 1985-08-22 1985-09-25 Jones G Electrical machines

Also Published As

Publication number Publication date
EP0574010A3 (en) 1994-02-16
EP0574010A2 (en) 1993-12-15

Similar Documents

Publication Publication Date Title
US7898135B2 (en) Hybrid permanent magnet motor
Pollock et al. The flux switching motor, a DC motor without magnets or brushes
US4761590A (en) Electric motor
US10263480B2 (en) Brushless electric motor/generator
US6424114B1 (en) Synchronous motor
KR970060638A (en) Brushless DC motor
US4978878A (en) Electric multipolar machine
EP1192700B1 (en) Electrical machines
WO1990002437A1 (en) An electric motor
Erdman et al. Electronically commutated dc motors for the appliance industry
US3590353A (en) Electronically commutated motor having an outside rotor and an inside position detector
KR0167573B1 (en) Brushless induction synchronous motor with two stators
US8581465B2 (en) Generator
KR910017709A (en) 2 stator induction synchronous motor
US3281629A (en) Control system for sequentially energizing motor phase windings
JP2017225203A (en) Switched reluctance motor drive system
SI9200102A (en) Electronic commutationed motor regulated with dc impulses
US8143830B2 (en) Brushless motor apparatus
JPS60128857A (en) Hybrid polyphase type stepping motor
US10749397B2 (en) Brushless DC dynamo
RU2089991C1 (en) Reluctance commutated motor
CN114400854B (en) Homopolar four-phase brushless alternating-current generator
RU2241298C1 (en) Electrical machine
SU1095323A1 (en) Thyratron motor
KR900000102B1 (en) Brushless dc motor