RU2784046C1 - Арсенид-галлиевый буферный усилитель - Google Patents

Арсенид-галлиевый буферный усилитель Download PDF

Info

Publication number
RU2784046C1
RU2784046C1 RU2022122037A RU2022122037A RU2784046C1 RU 2784046 C1 RU2784046 C1 RU 2784046C1 RU 2022122037 A RU2022122037 A RU 2022122037A RU 2022122037 A RU2022122037 A RU 2022122037A RU 2784046 C1 RU2784046 C1 RU 2784046C1
Authority
RU
Russia
Prior art keywords
output
bipolar
bipolar transistor
transistors
transistor
Prior art date
Application number
RU2022122037A
Other languages
English (en)
Inventor
Николай Николаевич Прокопенко
Алексей Андреевич Жук
Анна Витальевна Бугакова
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ)
Application granted granted Critical
Publication of RU2784046C1 publication Critical patent/RU2784046C1/ru

Links

Images

Abstract

Изобретение относится к области микроэлектроники. Технический результат: создание двухтактного буферного усилителя, реализуемого на JFET арсенид-галлиевых полевых транзисторах с управляющим p-n переходом и биполярных GaAs p-n-p транзисторах, который имеет малый статический ток потребления и обеспечивает в относительно низкоомной нагрузке токи двух направлений. Для этого предложен арсенид-галлиевый буферный усилитель, который содержит вход (1) и выход (2) устройства, входной полевой транзистор (3), первую (4) шину источника питания, выходной биполярный транзистор (5), вторую (6) шину источника питания, первый (7) токостаблизирующий двухполюсник. В схему введены первый (8) и второй (9) биполярные транзисторы, базы которых объединены и подключены к выходу (2) устройства и коллектору первого (8) биполярного транзистора, эмиттеры первого (8) и второго (9) биполярных транзисторов подключены к истоку входного полевого транзистора (3), а коллектор второго (9) биполярного транзистора связан с базой выходного биполярного транзистора (5). 6 ил.

Description

Изобретение относится к области микроэлектроники и может быть использовано в качестве выходного каскада различных аналоговых устройств, в т.ч. допускающих работу в условиях воздействия проникающей радиации, низких и высоких температур.
Известно значительное количество схем выходных каскадов и буферных усилителей (БУ) аналоговых микроэлектронных изделий, которые реализуются на биполярных (BJT) и полевых (JFet, КМОП, КНИ, КНС и др.) транзисторах, а также при их совместном включении [1-25].
Во многих применениях схема БУ адаптируется под конкретные технологические процессы и внешние воздействующие факторы, т.к. только в этом случае обеспечивается реализациях предельных параметров БУ.
В настоящее время в российской и зарубежной микроэлектронике уделяется повышенное внимание арсенид-галлиевым микросхемам. Данное направление создания электронной компонентной базы относится к числу наиболее перспективных в задачах космического приборостроения. Однако, особенности арсенид-галлиевых технологических процессов накладывают существенные ограничения на типы реализуемых транзисторов и их характеристики. Так, например, арсенид-галлиевый технологический процесс, предлагаемый фирмами США [26-29], а также Минским научно-исследовательским институтом радиоматериалов (https://mniirm.by/), ориентирован на изготовление аналоговых схем, содержащих только полевые GaAs транзисторы с управляющим p-n переходом и биполярные GaAs p-n-p транзисторы. Применение других полупроводниковых приборов не допускается. Это накладывает существенные ограничения на схемотехнику аналоговых устройств, ориентированных на данный технологический процесс.
Ближайшим прототипом (фиг. 1) заявляемого устройства является буферный усилитель, представленный в патенте US 4.492.932, fig. 3, 1985 г. Он содержит вход 1 и выход 2 устройства, входной полевой транзистор 3, затвор которого соединен с входом 1 устройства, сток связан с первой 4 шиной источника питания, выходной биполярный транзистор 5, эмиттер которого соединен с выходом 2 устройства, коллектор подключен ко второй 6 шине источника питания, а база связана со второй 6 шиной источника питания через первый 7 токостаблизирующий двухполюсник.
Существенный недостаток БУ – прототипа состоит в том, что он не может обеспечить в относительно низкоомной нагрузке Rн токи двух направлений, т.е. он не работает в двухтактном режиме класса АВ.
Основная задача предполагаемого изобретения состоит в создании двухтактного буферного усилителя, реализуемого на JFET арсенид-галлиевых полевых транзисторах с управляющим p-n переходом и биполярных GaAs p-n-p транзисторах, который имеет малый статический ток потребления и обеспечивает в относительно низкоомной нагрузке токи двух направлений.
Поставленная задача достигается тем, что в буферном усилителе фиг. 1, содержащем вход 1 и выход 2 устройства, входной полевой транзистор 3, затвор которого соединен с входом 1 устройства, сток связан с первой 4 шиной источника питания, выходной биполярный транзистор 5, эмиттер которого соединен с выходом 2 устройства, коллектор подключен ко второй 6 шине источника питания, а база связана со второй 6 шиной источника питания через первый 7 токостаблизирующий двухполюсник, предусмотрены новые элементы и связи - в схему введены первый 8 и второй 9 биполярные транзисторы, базы которых объединены и подключены к выходу 2 устройства и коллектору первого 8 биполярного транзистора, эмиттеры первого 8 и второго 9 биполярных транзисторов подключены к истоку входного полевого транзистора 3, а коллектор второго 9 биполярного транзистора связан с базой выходного биполярного транзистора 5.
На чертеже фиг. 1 показана схема буферного усилителя – прототипа.
На чертеже фиг. 2 представлена схема заявляемого буферного усилителя в соответствии с формулой изобретения.
На чертеже фиг. 3 приведена схема для моделирования GaAs БУ фиг. 2 в среде LTspice при t=27 oC, +Vcc=-Vee=10 В, I1=100 мкА, Rload=1 МОм, параметрах ширины и длины канала VT1: 10u/ 0.2u.
На чертеже фиг. 4 показана амплитудная характеристика БУ фиг. 3 в среде LTspice.
На чертеже фиг. 5 представлена схема для моделирования GaAs БУ фиг. 2 в среде LTspice при t=27oC, +Vcc=-Vee=10 В, I1=100 мкА, Rload=1 МОм, параметрах ширины и длины канала VT1: 100u/ 0.2u.
На чертеже фиг. 6 приведена амплитудная характеристика БУ фиг. 5 в среде LTspice.
Арсенид-галлиевый буферный усилитель фиг. 2 содержит вход 1 и выход 2 устройства, входной полевой транзистор 3, затвор которого соединен с входом 1 устройства, сток связан с первой 4 шиной источника питания, выходной биполярный транзистор 5, эмиттер которого соединен с выходом 2 устройства, коллектор подключен ко второй 6 шине источника питания, а база связана со второй 6 шиной источника питания через первый 7 токостаблизирующий двухполюсник. В схему введены первый 8 и второй 9 биполярные транзисторы, базы которых объединены и подключены к выходу 2 устройства и коллектору первого 8 биполярного транзистора, эмиттеры первого 8 и второго 9 биполярных транзисторов подключены к истоку входного полевого транзистора 3, а коллектор второго 9 биполярного транзистора связан с базой выходного биполярного транзистора 5. На чертеже фиг. 2 двухполюсник 10 моделирует свойства нагрузки Rн.
Рассмотрим работу предлагаемого буферного усилителя фиг. 2.
Статический режим БУ на чертеже фиг. 2 определяется первым 7 токостаблизирующим двухполюсником. При этом в схеме выполняются следующие токовые уравнения Кирхгофа
Figure 00000001
,
Figure 00000002
,
Figure 00000003
,
Figure 00000004
где IS3=ID3 – ток истока и ток стока входного полевого транзистора 3,
Figure 00000005
– ток базы выходного биполярного транзистора 5, первого 8 и второго 9 биполярных транзисторов при токе эмиттера, равном току I0.
При положительном приращении напряжения на входе 1 увеличивается ток нагрузки двухполюсника 10 через эмиттерно-базовый p-n переход первого 8 биполярного транзистора, что приводит к увеличению тока эмиттера и коллектора второго 9 биполярного транзистора и запиранию выходного биполярного транзистора 5. При этом максимальный выходной ток
Figure 00000006
будет определяться шириной канала входного полевого транзистора 3, а малосигнальное выходное сопротивление БУ фиг. 2 принимает относительно небольшие значения:
Figure 00000007
где
Figure 00000008
мВ – температурный потенциал,
S3 – крутизна стоко-затворной характеристики входного полевого транзистора 3,
I0 – статический ток эмиттера первого 8 биполярного транзистора.
При отрицательном приращении напряжения на входе 1 уменьшается ток истока входного полевого транзистора 3, а также ток эмиттера и коллектора первого 8 и второго 9 биполярных транзисторов. В результате выходной биполярный транзистор 5 обеспечивает отрицательное приращение тока в двухполюснике нагрузки 10, причем максимальные значения этого тока
Figure 00000009
где
Figure 00000010
– коэффициент усиления по току базы выходного биполярного транзистора 5.
Компьютерное моделирование схемы фиг. 2 в среде LTspice (фиг. 3, фиг. 4, фиг. 5, фиг. 6) показывает, что заявляемая схема при ее реализации в рамках арсенид-галлиевых технологий [26-29] обеспечивает двуполярное изменение тока нагрузки при относительно небольших сопротивлениях Rн.
Таким образом, заявляемое устройство имеет существенные преимущества в сравнении с БУ-прототипом.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Патент RU № 2523947 fig. 4, 2014 г.
2. Патент WO 2007135139, 2007 г.
3. Патент US 4.743.862, 1988 г.
4. Патент US 6.433.638, fig. 1a-2, 2002 г.
5. Патентная заявка US 20050253653, 2005 г.
6. Патент US 4.825.174, fig. 3, fig. 6, 1989 г.
7. Патент RU 2099856, fig. 3, 1997 г.
8. Патент US 4.904.953, fig. 2, 1990 г.
9. Патент US 7.896.339, fig. 4, 2011 г.
10. Патент US 6.342.814, 2002 г.
11. Патентная заявка US 2010/0182086, 2010 г.
12. Патент US 5.387.880, fig. 1, 1995 г.
13. Патент US 4.598.253, 1986 г.
14. Патент US 4.667.165, fig. 2, 1987 г.
15. Патент US 4.596.958, 1986 г.
16. Патент US 7.116.172, fig. 4, fig. 5, 2006 г.
17. Патент US 5.648.743, 1997 г.
18. Патент US 5.367.271, fig. 2, 1994 г.
19. Патентная заявка US 2000/0112075, fig. 3, 2000 г.
20. Патент US 5.065.043, fig. 1f, 1991 г.
21. Патентная заявка US 2007/0115056, fig. 2, 2007 г.
22. Патент US 7.548.117, fig. 5, 2009 г.
23. Патент EP 0 293486 B1, fig. 5, 1991 г.
24. Патент US 4.420.726, fig. 1 – fig. 3, 1983 г.
25. Проектирование низкотемпературных и радиационно-стойких аналоговых микросхем для обработки сигналов датчиков: монография / Н.Н. Прокопенко, О.В. Дворников, А.В. Бугакова. – М.: СОЛОН-Пресс, 2021. – 200 с.
26. M. Fresina, "Trends in GaAs HBTs for wireless and RF," 2011 IEEE Bipolar/BiCMOS Circuits and Technology Meeting, Atlanta, GA, USA, 2011, pp. 150-153. doi: 10.1109/BCTM.2011.6082769
27. P. J. Zampardi, M. Sun, C. Cismaru and J. Li, "Prospects for a BiCFET III-V HBT Process," 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), La Jolla, CA, USA, 2012, pp. 1-3. doi: 10.1109/CSICS.2012.6340116
28. W. Liu, D. Hill, D. Costa and J. S. Harris, "High-performance microwave AlGaAs-InGaAs Pnp HBT with high-DC current gain," in IEEE Microwave and Guided Wave Letters, vol. 2, no. 8, pp. 331-333, Aug. 1992. doi: 10.1109/75.153604
29. Peatman W. et al. InGaP-Plus™: advanced GaAs BiFET technology and applications // CS MANTECH Conference, May 14-17, 2007, Austin, Texas, USA. pp. 243-246.

Claims (1)

  1. Арсенид-галлиевый буферный усилитель, содержащий вход (1) и выход (2) устройства, входной полевой транзистор (3), затвор которого соединен с входом (1) устройства, сток связан с первой (4) шиной источника питания, выходной биполярный транзистор (5), эмиттер которого соединен с выходом (2) устройства, коллектор подключен ко второй (6) шине источника питания, а база связана со второй (6) шиной источника питания через первый (7) токостаблизирующий двухполюсник, отличающийся тем, что в схему введены первый (8) и второй (9) биполярные транзисторы, базы которых объединены и подключены к выходу (2) устройства и коллектору первого (8) биполярного транзистора, эмиттеры первого (8) и второго (9) биполярных транзисторов подключены к истоку входного полевого транзистора (3), а коллектор второго (9) биполярного транзистора связан с базой выходного биполярного транзистора (5).
RU2022122037A 2022-08-15 Арсенид-галлиевый буферный усилитель RU2784046C1 (ru)

Publications (1)

Publication Number Publication Date
RU2784046C1 true RU2784046C1 (ru) 2022-11-23

Family

ID=

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4492932A (en) * 1982-09-20 1985-01-08 Asulab S.A. Amplifier circuit having a high-impedance input and a low-impedance output
RU2766868C1 (ru) * 2021-09-08 2022-03-16 федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) Арсенид-галлиевый буферный усилитель
RU2767976C1 (ru) * 2021-09-09 2022-03-22 федеральное государственное бюджетное образовательное учреждение высшего образования «Донской государственный технический университет» (ДГТУ) Арсенид-галлиевый выходной каскад усилителя мощности
RU2770912C1 (ru) * 2021-10-06 2022-04-25 федеральное государственное бюджетное образовательное учреждение высшего образования «Донской государственный технический университет» (ДГТУ) Дифференциальный усилитель на арсенид-галлиевых полевых транзисторах

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4492932A (en) * 1982-09-20 1985-01-08 Asulab S.A. Amplifier circuit having a high-impedance input and a low-impedance output
RU2766868C1 (ru) * 2021-09-08 2022-03-16 федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) Арсенид-галлиевый буферный усилитель
RU2767976C1 (ru) * 2021-09-09 2022-03-22 федеральное государственное бюджетное образовательное учреждение высшего образования «Донской государственный технический университет» (ДГТУ) Арсенид-галлиевый выходной каскад усилителя мощности
RU2770912C1 (ru) * 2021-10-06 2022-04-25 федеральное государственное бюджетное образовательное учреждение высшего образования «Донской государственный технический университет» (ДГТУ) Дифференциальный усилитель на арсенид-галлиевых полевых транзисторах

Similar Documents

Publication Publication Date Title
JP2010278521A (ja) 電力増幅器
RU2784046C1 (ru) Арсенид-галлиевый буферный усилитель
Larson et al. An ultrahigh-speed GaAs MESFET operational amplifier
Tomana et al. A hybrid silicon carbide differential amplifier for 350 degrees C operation
RU2766868C1 (ru) Арсенид-галлиевый буферный усилитель
RU2784049C1 (ru) Неинвертирующий выходной каскад арсенид-галлиевого операционного усилителя
RU2773912C1 (ru) Арсенид-галлиевый выходной каскад быстродействующего операционного усилителя
RU2796638C1 (ru) Биполярно-полевой арсенид-галлиевый буферный усилитель
RU2789482C1 (ru) Двухтактный арсенид-галлиевый буферный усилитель с малой зоной нечувствительности амплитудной характеристики
RU2390916C1 (ru) Прецизионный операционный усилитель
RU2784376C1 (ru) АРСЕНИД-ГАЛЛИЕВЫЙ БУФЕРНЫЙ УСИЛИТЕЛЬ НА ОСНОВЕ n-КАНАЛЬНЫХ ПОЛЕВЫХ И p-n-p БИПОЛЯРНЫХ ТРАНЗИСТОРОВ
RU2767976C1 (ru) Арсенид-галлиевый выходной каскад усилителя мощности
RU2536672C1 (ru) Составной транзистор с малой выходной емкостью
Muller et al. A small chip size 2 W, 62% efficient HBT MMIC for 3 V PCN applications
RU2788498C1 (ru) Арсенид-галлиевый буферный усилитель на полевых и биполярных p-n-p транзисторах
JP2012023583A (ja) 差動増幅回路、レギュレータモジュール及びハイパワーアンプ
RU2786943C1 (ru) Арсенид-галлиевый входной дифференциальный каскад класса ав быстродействующего операционного усилителя
Chumakov et al. Gallium arsenide buffer amplifier
RU2771316C1 (ru) Арсенид-галлиевый буферный усилитель
Fathi et al. Sensors and amplifiers: Sensor output signal amplification systems
Zhang et al. Emitter-length scalable small signal and noise modeling for InP heterojunction bipolar transistors
AA et al. Output Stages of Operational Amplifiers Based on Gallium Arsenide NJFET and Bipolar PNP Transistors.
Dvornikov et al. Methodology of Circuit Modeling of Charge-Sensitive Amplifiers Based on Wide-Band-Gap (GaAs, GaN) D-FETs
Cherepanov et al. Integrated low noise amplifiers for cryogenic applications
Kim et al. Integrated amplifiers using fully ion-implanted InP JFETs with high transconductance