RU2781017C1 - Способ получения алюмосиликатных наногубок - Google Patents

Способ получения алюмосиликатных наногубок Download PDF

Info

Publication number
RU2781017C1
RU2781017C1 RU2021112878A RU2021112878A RU2781017C1 RU 2781017 C1 RU2781017 C1 RU 2781017C1 RU 2021112878 A RU2021112878 A RU 2021112878A RU 2021112878 A RU2021112878 A RU 2021112878A RU 2781017 C1 RU2781017 C1 RU 2781017C1
Authority
RU
Russia
Prior art keywords
sponges
nanosponges
gel
dried
nano
Prior art date
Application number
RU2021112878A
Other languages
English (en)
Inventor
Ольга Юрьевна Голубева
Юлия Александровна Аликина
Original Assignee
Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН) filed Critical Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН)
Application granted granted Critical
Publication of RU2781017C1 publication Critical patent/RU2781017C1/ru

Links

Images

Abstract

Изобретение относится к способу получения алюмосиликатных наногубок, согласно которому наногубки получают в результате гидротермальной обработки исходного геля, для приготовления которого нитрат алюминия девятиводный в количестве 16,2 г полностью растворяют в 10 мл дистиллированной воды, затем добавляют 85 мл этилового спирта и 10 мл тетраэтоксисилана, перемешивают до однородности, после чего добавляют 10 г гидроксида аммония до образования консистенции густого геля, полученную субстанцию высушивают при 100°С в течение 24 ч, прокаливают при температуре 550°С в течение 4 ч, после чего проводят гидротермальную обработку высушенных гелей при температуре 220°С в стальных автоклавах с коэффициентом заполнения 0.8, для чего 1 г геля заливают 35 мл водного раствора соляной кислоты с рН 2,6, при этом продолжительность синтеза составляет от 72 до 96 ч, после чего продукты кристаллизации промывают дистиллированной водой и сушат при 100°С в течение 12 ч. 4 ил., 2 табл., 9 пр.

Description

Изобретение относится к способам получения неорганических наногубок на основе синтетических алюмосиликатов со структурой каолинита, для использования в качестве носителей лекарственных препаратов и других активных компонентов, эффективных сорбентов широкого спектра (очистка воды, медицинские сорбенты, в том числе энтеросорбенты, лимфосорбенты, основа раневых покрытий, и т.д.).
В настоящее время наноразмерные частицы находят все большее применение во всех сферах науки, медицины и техники ввиду своих уникальных механических, магнитных, оптических и электрических свойств, а также повышенных адсорбционных и каталитических способностей. Наночастицы, нанотрубки, нановолокна, наносферы и др. широко используются в наноэлектронике, при создании композиционных материалов, в качестве носителей лекарственных препаратов и т.д [1-5]. В современных научных публикациях встречаются работы по синтезу и исследованию наногубок, которые рассматриваются как материалы с большим потенциалом применения из-за их значительной внутренней поверхности и объема пор: в качестве носителей для адресной доставки лекарств, адсорбентов и катализаторов [6]. Существуют различные подходы формирования наногубчатых структур, однако наиболее распространенным является метод получения наногубок путем сшивания (реакция поликонденсации) цикломальтоолигосахаридов, в частности р-циклодекстрина, с различными органическими или неограническими агентами [7]. Однако, этот процесс требует региоселективного добавления реагентов, оптимальных условий реакции, тщательного подбора сшивающего агента [8, 9] и эффективного удаления побочных продуктов.
Известен способ [10] получения полимерных наночастиц на основе N-алкилированного 4-винилпиридина - поливинилпиридиниевых наногубок с целью формирования покрытий стенок кварцевого капилляра. Наногубки были приготовлены путем смешивания разбавленных растворов пиридиния и алкилирующих реагентов в диметилсульфоксиде с последующим нагреванием в течение заданного времени при выбранной температуре. Продукт реакции осаждали органическими растворителями. После гомогенизации объединенные растворы нагревали при 60°С в течение 8 ч. Реакционную смесь выливали в избыток диэтилового эфира, жидкость декантировали и осадок трижды экстрагировали этиловым спиртом. Полученный полимер отфильтровывали, промывали диэтиловым эфиром, сушили в вакууме и растворяли в бидистиллированной воде [11]. Недостатком описанного способа является то, что получаемый продукт является полимерным, его получение требует использования большого количества различных токсичных органических соединений, технология является многостадийной, а сам продукт несет постоянный положительный заряд поверхности, что ограничивает сферы его применения.
Из патента US 2006/0251561 известен способ получения частиц кремниевых наногубчатых частиц из порошка кремния, являющегося отходом металлургического производства, с начальным размером частиц в диапазоне 1-4 мкм. Порошок кремния измельчают до получения частиц, имеющих размер 0.1-40 мкм, далее их разделяют, чтобы изолировать частицы кремния, имеющие размер от 1 до 4.0 мкм. Полученные частицы кремния подвергаются кислотному травлению (предпочтительно смесью HF:HNO3:H2O в соотношении 4:1:20) с образованием кремниевых пористых структур, каждая частица которых состоит из множества нанокристаллов с порами, расположенными между нанокристаллами. Недостатком данного метода является использование в качестве исходных материалов отходов металлургических производств, содержащих примеси, невозможность контроля параметров пористой структуры и недоказанность авторами наличия губчатой структуры у получаемого продукта.
Известен способ получения алюмосиликатных наногубок [13] путем гидротермальной обработки алюмосиликатных гелей. Однако в описанных условиях гидротермальной обработки (температура 220°С, нейтральная среда, продолжительности синтеза 6-7 суток) может быть получен только продукт, представляющий собой смесь частиц с наногубчатой, сферической и нанотрубчатой морфологиями, обладающими различными пористо-текстурными и сорбционными характеристиками.
Наиболее близким по технической сущности и достигаемому результату является способ получения наногубок [12] на основе природных алюмосиликатных нанотрубок галлуазита и сшивающего агента циклодекстрина, включающий следующие стадии: а) взаимодействие нанотрубок галлуазита с избытком 3-меркаптопропилтриметоксисилана в условиях отсутствия растворителя при микроволновом облучении, с получением HNT-SH; б) получение органо-неогранических наногубок HNT-CD путем катализируемой азобисизобутиронитрилом (AIBN) реакции полимеризации (в микроволновой печи при времени облучения 1 ч при 100°С при отсутствии растворителя) гептакис-6-(трет-бутилдиметилсилил)-2-аллилокси-β-циклодекстрина с HNT-SH; в) промывка получаемого продукта CH2Cl2 и СН3ОН для удаления катализатора и некоторых остаточных непрореагировавших реагентов. Недостатком описанного способа является многостадийность процесса, необходимость использования специфических реагентов и природных нанотрубок галлуазита, а также низкое значение удельной поверхности полученных наногубок (19.9 м2/г).
Задача изобретения заключается в разработке простого способа получения алюмосиликатов с наногубчатой морфологией с контролируемыми пористо-текстурными и сорбционными характеристиками.
Сущность заявленного технического решения выражается в следующей совокупности существенных признаков, достаточной для решения указанной заявителем технической проблемы и получения обеспечиваемого изобретением технического результата.
Способ получения алюмосиликатных наногубок, характеризующийся тем, что наногубки получают в результате гидротермальной обработки исходного геля, для приготовления которого нитрат алюминия девятиводный в количестве 16.2 г полностью растворяют в 10 мл дистиллированной воды, затем добавляют 85 мл этилового спирта и 10 мл тетраэтоксисилана, перемешивают до однородности, после чего добавляют 10-12 г гидроксида аммония до образования консистенции густого геля, полученную субстанцию высушивают при 100°С в течение 24 ч, прокаливают при температуре 550°С в течение 4 ч., после чего проводят гидротермальную обработку высушенных гелей в стальных автоклавах, для чего 1 г геля заливают 35 мл раствора с коэффициентом заполнения 0.8 при температуре 220°С в водном растворе соляной кислоты с рН 2.6, при этом продолжительность синтеза составляет от 72 до 122 ч., после чего продукты кристаллизации промывают дистиллированной водой и сушат при 100°С в течение 12 ч.
Заявленная совокупность существенных признаков обеспечивает достижение технического результата, который заключается в том, что заявленная одностадийная гидротермальная обработка исходных гелей без использования органических сшивающих агентов, например, циклодекстрина, обеспечивает получение неорганического продукта, химический состав которого отвечает формуле алюмосиликатов группы каолинита Al2Si2O5(OH)4⋅nH2O, характеризующихся высокими значениями удельной поверхности (до 500 м2/г), высокими значениями сорбционной емкости по отношению к катионным (метиленовый голубой - 75 мг/г) и анионным (кармуазин - 10 мг/г) органическим красителям, изменяющие значения дзета-потенциала поверхности в зависимости от рН среды от -12 до 10 мВ.
Сущность изобретения поясняется электронными микрофотографиями алюмосиликатных наногубок, получаемых заявленным способом, при этом. на фиг. 1 - представлены микрофотографии образцов, полученных при рН 2.6 (НС1), на фиг. 2 - образцов, полученных методом сканирующей электронной микроскопией с использованием метода фокусирования ионного пучка (ФИП-СЭМ), на фиг. 3 - образцов, полученных при рН 9.2 (NaOH), на фиг. 4 - образцов, полученных при рН 7.0 (H2O).
Основные характеристики алюмосиликатных наногубок и главным образом высокие значения удельной поверхности и сорбционной емкости алюмосиликатных наногубок, получаемых заявленным способом, по отношению к положительно-заряженному красителю метиленовому голубому приведены в таблице 1.
Figure 00000001
Получаемые наногубки являются неорганическими, их химический состав отвечает формуле алюмосиликатов группы каолинита Al2Si2O5(OH)4⋅nH2O, они не содержат примесей, их получение не требуют специфических дорогостоящих реактивов, в следствие чего способ их получения не является трудоемким и многостадийным, имеется возможность контроля пористо-текстурных характеристик путем варьирования условий гидротермального синтеза. Получаемые в результате реализации заявленного способа материалы имеют наногубчатую морфологию, обладают высокими значениями удельной поверхности и сорбционной емкости по отношению к положительно-заряженному красителю метиленовому голубому (МГ) - в нейтральной среде, и отрицательно-заряженному кармуазину (К) - в кислой среде, что открывает широкие перспективы их применения в экологии, едицине и катализе.
Осуществление заявленного способа поясняется следующими примерами, сведенными в таблицу 2.
Figure 00000002
Figure 00000003
Как видно из таблицы 2, использование в качестве реакционной среды при гидротермальной обработке гелей раствора соляной кислоты с рН=2.6 (Примеры 1-3) позволяет получить алюмосиликаты исключительно с наногубчатой морфологией. Использование щелочной среды (Примеры 4-6) и нейтральной (Примеры 7-9) не приводит к формированию губчатой морфологии либо приводит к формированию смешанной морфологии. Оптимальной температурой для получения губчатой структуры является 220°С. При меньшей температуре получаемый продукт является полностью аморфным, а более высокая температура приводит к появлению частиц с другой морфологией (сферической, слоистой) помимо губчатой. Оптимальной продолжительностью синтеза является время от 3 до 6 суток, т.к. за это время могут быть получены наногубки со значительными значениями удельной поверхности и сорбционной емкости. Увеличение продолжительности синтеза приводит к появлению сферических частиц в продуктах кристаллизации и снижению как удельной поверхности, так и сорбционной емкости образцов.
Данный результат позволяет говорить о перспективах применения алюмосиликатных материалов в качестве универсальных сорбентов для очистки воды, медицинских сорбентов, носителей лекарственных препаратов и катализаторов.
Использование заявленного технического решения возможно с использованием известных технических и технологических средств.
Использованные источники
1. Tharmavaram М., Rawtani D., Pandey G. Fabrication routes for one-dimensional nanostructures via block copolymers // Nano Convergence. V. 4 (1). 2017. P. 12. DOI:10.1186/s40580-017-0106-l.
2. Pandey G., Munguambe D.M., Tharmavaram M., Rawtani D., Agrawal Y.K. Halloysite nanotubes - an efficient 'nano-support' for the immobilization of a-amylase // Appl. Clay Sci. V. 136. 2017. P. 184-191. DOI: 10.1016/j.clay.2016.11.034.
3. Pandey G., Rawtani D., Agrawal Y.K. Aspects of Nanoelectronics in materials Development. A. Kar (Ed.), Nanoelectronics and Materials Development, InTech. 2016. P. 23-39. DOI: 10.5772/64414.
4. Hussain С.M.,
Figure 00000004
R. Use of nanomaterials for environmental analysis // Modern Environmental Analysis Techniques for Pollutants. 2020. P. 277-322. DOI: 10.1016/b978-0-12-816934-6.00011 -4.
5.
Figure 00000005
R.,
Figure 00000006
S., Hussain С.M. Membrane applications of nanomaterials // Handbook of Nanomaterials in Analytical Chemistry. 2020. P. 159-182. DOI: 10.1016/b978-0-12-816699-4.00007.
6. Shringirishi M., Prajapati S. K., Manor A., Alok S., Yadav P., Verma A. Nanosponges: a potential nanocarrier for novel drug delivery-a review // Asian Рас J Trop Dis. 2014. V.4(Suppl 2): S519-S526.
7. Ahmed R. Z., Patil G., Zaheer Z. Nanosponges - a completely new nano-horizon: pharmaceutical applications and recent advances. // Drug Development and Industrial Pharmacy. 2012. V. 39(9). P. 1263-1272. DOI:10.3109/03639045.2012.694610.
8. Rossi В., Caponi S. Castiglione F., Corezzi S., Fontana A., Giarola M, Mariotto G., Mele A., Petrillo C, Trotta F., et al. Networking Properties of Cyclodextrin-Based Cross-Linked Polymers Probed by Inelastic Light-Scattering Experiments //J. Phys. Chem. 2012. V. 116. P. 5323-5327.
9. Ganazzoli F., Castiglione F., Mele A., Raffaini G. A. Molecular dynamics study of cyclodextrin nanosponge models // J. Incl. Phenom. Macrocycl. Chem. 2012.V. 75 (3-4). P. 263-268. DOI:10.1007/s10847-012-0126-8.
10. Polikarpova D. A., Makeeva D. V., Kartsova L. A., Davankov V. A., Pavlova L. A. Поли-4-винилпиридиниевые наногубки в качестве модификаторов электрофоретических систем для разделения заряженных аналитов // Аналитика и контроль. 2019. Т. 23. №3. С.343-353.
11. Pavlova L.A., Davankov V.A., Timofeeva G.I., H'in M.M., Bladodatskih I.V., Sinitsyna O.V., Matveev V.V., Chalykh A.E. Nanosponges as products of 4-vinilpyridine and poly-4-vinilpyridines N-alkylation in diluted solutions // Polymer Science Series A. 2013. V. 55. N. 10. P. 1263-1273. DOI: 10.7868/S050754751309006.7.
12. Massaro M., Colletti C.G., Lazzara G., Gueraelli S., Noto R., Riela S. Synthesis and Characterization of Halloysite-Cyclodextrin Nanosponges for Enhanced Dyes Adsorption // ACS Sustainable Chem. Eng. 2017. V. 5. P. 3346-3352.
13. Golubeva O. Yu, Alikina Yu. A., Kalashnikova T. A. Influence of hydrothermal synthesis conditions on the morphology and sorption properties of porous aluminosilicates with kaolinite and halloysite structures // Applied Clay Science. 2020. V. 199. 105879.

Claims (1)

  1. Способ получения алюмосиликатных наногубок, согласно которому наногубки получают в результате гидротермальной обработки исходного геля, для приготовления которого нитрат алюминия девятиводный в количестве 16,2 г полностью растворяют в 10 мл дистиллированной воды, затем добавляют 85 мл этилового спирта и 10 мл тетраэтоксисилана, перемешивают до однородности, после чего добавляют 10 г гидроксида аммония до образования консистенции густого геля, полученную субстанцию высушивают при 100°С в течение 24 ч, прокаливают при температуре 550°С в течение 4 ч, после чего проводят гидротермальную обработку высушенных гелей при температуре 220°С в стальных автоклавах с коэффициентом заполнения 0,8, для чего 1 г геля заливают 35 мл водного раствора соляной кислоты с рН 2,6, при этом продолжительность синтеза составляет от 72 до 96 ч, после чего продукты кристаллизации промывают дистиллированной водой и сушат при 100°С в течение 12 ч.
RU2021112878A 2021-05-04 Способ получения алюмосиликатных наногубок RU2781017C1 (ru)

Publications (1)

Publication Number Publication Date
RU2781017C1 true RU2781017C1 (ru) 2022-10-05

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2561117C1 (ru) * 2014-04-08 2015-08-20 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН) Способ получения сорбента для очистки растворов от ионов тяжелых металлов

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2561117C1 (ru) * 2014-04-08 2015-08-20 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН) Способ получения сорбента для очистки растворов от ионов тяжелых металлов

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Olga Yu Golubeva et al. "Influence of hydrothermal synthesis conditions on the morphology and sorption properties of porous aluminosilicates with kaolinite and halloysite structures", Applied Clay Science, 2020, P. 1-12. Голубева О. Ю. "Пористые алюмосиликаты со слоистой и каркасной структурой: синтез, свойства и разработка композиционных материалов на их основе для решения задач медицины, экологии и катализа", диссертация на соискание ученой степени доктора химических наук, 2016, С. 1-438. Бочкарев В. В. "Оптимизация технологических процессов органического синтеза: учебное пособие", 2010, Издательство Томского политехнического университета, С.1-185. Marina Massaro et al. "Synthesis and Characterization of Halloysite-Cyclodextrin Nanosponges for Enhanced Dyes Adsorption", ACS Sustainable Chemistry and Engineering, 2017, Vol.5, No.4, P. 3346-3352. *
Асланян И. Р. и др. "ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВЕННЫХ ФАКТОРОВ, СУЩЕСТВЕННО ВЛИЯЮЩИХ НА ТЕХНОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ МОДЕЛЬНЫХ КОМПОЗИЦИЙ", Труды ВИАМ, 2018, No. 12 (72), С.3-13. *

Similar Documents

Publication Publication Date Title
Danyliuk et al. Halloysite nanotubes and halloysite-based composites for environmental and biomedical applications
Ariga et al. Inorganic nanoarchitectonics for biological applications
Dolatkhah et al. Magnetite/polymer brush nanocomposites with switchable uptake behavior toward methylene blue
Teng et al. Electrospun cyclodextrin-functionalized mesoporous polyvinyl alcohol/SiO2 nanofiber membranes as a highly efficient adsorbent for indigo carmine dye
US10464811B2 (en) Method of forming a particulate porous metal oxide or metalloid oxide
Choo et al. Chitosan/halloysite beads fabricated by ultrasonic-assisted extrusion-dripping and a case study application for copper ion removal
Marandi et al. Hydrogel with high laponite content as nanoclay: swelling and cationic dye adsorption properties
Du et al. One-step growth of porous cellulose beads directly on bamboo fibers via oxidation-derived method in aqueous phase and their potential for heavy metal ions adsorption
Qian et al. Zwitterionic polymer chain-assisted lysozyme imprinted core-shell carbon microspheres with enhanced recognition and selectivity
Sengel et al. Halloysite-carboxymethyl cellulose cryogel composite from natural sources
Nguyen et al. Enhanced protein adsorption capacity of macroporous pectin particles with high specific surface area and an interconnected pore network
Lu et al. Designing and controlling the morphology of spherical molecularly imprinted polymers
KR20170053635A (ko) 생체-거대분자를 분리하기 위한 흡착 물질
Airoldi et al. Hydrophobic contribution to amoxicillin release associated with organofunctionalized mesoporous SBA-16 carriers
Jadhav et al. Effect of multimodal pore channels on cargo release from mesoporous silica nanoparticles
Govan et al. Imogolite: a nanotubular aluminosilicate: synthesis, derivatives, analogues, and general and biological applications
RU2781017C1 (ru) Способ получения алюмосиликатных наногубок
Gottuso et al. Functionalization of mesoporous silica nanoparticles through one-pot co-condensation in w/o emulsion
Mao et al. Biomimetic nanowire structured hydrogels as highly active and recyclable catalyst carriers
El Nahrawy et al. Synthesis and Characterization of Hybrid Chitosan/Calcium Silicate Nanocomposite Prepared Using Sol-Gel Method
CN103242519A (zh) 两亲性聚合物及其制备方法和应用
Qiao et al. l-Arginine-Catalyzed Synthesis of Nanometric Organosilica Particles through a Waterborne Sol–Gel Process and Their Porous Structure Analysis
WO2008058996A2 (de) Verfahren zur herstellung von magnetischen kieselsäurepartikeln
Abramson et al. Highly porous and monodisperse magnetic silica beads prepared by a green templating method
Tello et al. Fabrication of hydrogel microspheres via microfluidics using inverse electron demand Diels–Alder click chemistry-based tetrazine-norbornene for drug delivery and cell encapsulation applications