RU2722062C2 - Детектор излучения и устройство формирования изображения - Google Patents

Детектор излучения и устройство формирования изображения Download PDF

Info

Publication number
RU2722062C2
RU2722062C2 RU2018123953A RU2018123953A RU2722062C2 RU 2722062 C2 RU2722062 C2 RU 2722062C2 RU 2018123953 A RU2018123953 A RU 2018123953A RU 2018123953 A RU2018123953 A RU 2018123953A RU 2722062 C2 RU2722062 C2 RU 2722062C2
Authority
RU
Russia
Prior art keywords
layer
radiation
detector
conductive
radiation detector
Prior art date
Application number
RU2018123953A
Other languages
English (en)
Other versions
RU2018123953A (ru
RU2018123953A3 (ru
Inventor
БУКЕР Роджер СТЕДМЭН
Каролина РИББИНГ
Вальтер РЮТТЕН
Гереон ФОГТМАЙЕР
Original Assignee
Конинклейке Филипс Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Конинклейке Филипс Н.В. filed Critical Конинклейке Филипс Н.В.
Publication of RU2018123953A publication Critical patent/RU2018123953A/ru
Publication of RU2018123953A3 publication Critical patent/RU2018123953A3/ru
Application granted granted Critical
Publication of RU2722062C2 publication Critical patent/RU2722062C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/243Modular detectors, e.g. arrays formed from self contained units
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/244Auxiliary details, e.g. casings, cooling, damping or insulation against damage by, e.g. heat, pressure or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/241Electrode arrangements, e.g. continuous or parallel strips or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/247Detector read-out circuitry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/249Measuring radiation intensity with semiconductor detectors specially adapted for use in SPECT or PET

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

Группа изобретений относится к детектору прямого преобразования. Детектор излучения содержит множество детекторных модулей, расположенных рядом друг с другом. Каждый детекторный модуль содержит сенсорный слой, первый электрод, осажденный на первую поверхность сенсорного слоя, обращенную к падающему излучению, второй электрод, осажденный на вторую поверхность сенсорного слоя, противоположную первой поверхности, считывающую электронику в электрическом контакте со вторым электродом, и носитель для несения сенсорного слоя и считывающей электроники. Детектор излучения дополнительно содержит электропроводный слой проводимости и антирассеивающую компоновку, которые расположены друг над другом и покрывают множество детекторных модулей на стороне, обращенной к падающему излучению. Технический результат – упрощение конструкции для упрощения распределения требуемого высокого напряжения по множеству детекторных модулей. 2 н. и 7 з.п. ф-лы, 6 ил.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к детектору излучения и устройству формирования изображения, использующему такой детектор излучения.
УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ
Детекторы с энергетическим разрешением для счета фотонов используют материалы для сенсоров прямого преобразования, например, теллурид кадмия (CdTe) или теллурид цинка-кадмия (CZT). Эти материалы сенсоров представляют собой полупроводниковые соединения, которые требуют высоковольтного смещения (например, 300 В/мм), чтобы обеспечить однородное электрическое поле внутри объема. Как и при обычной КТ, детекторы спектральной КТ требуют предоставления большого покрытия. Поэтому детекторы спектральной КТ также должны иметь тайлы со всех сторон, что в конечном итоге позволяет расширить площадь детекторов до любого желаемого размера.
Изготовление блока детекторов спектральной КТ, имеющего тайлы с четырех сторон, само по себе не разрешает все проблемы, влияющие на возможность расширения площади детекторов. В отличие от обычных детекторов, верхняя сторона детектора также требует смещения, то есть напряжение смещения должно подаваться на каждый тайл или блок детектора. Для детектора с ограниченным покрытием высокое напряжение может быть подано, например, на катод посредством небольшого кабеля через развязывающий конденсатор. Однако для крупных детекторов распределение высокого напряжения невозможно через решения, использующие кабель, так как обычно требуется пайка (т. е. влияет на эксплуатационную годность) и будет влиять на спектр воздействующего рентгеновского излучения.
В документе US2001/035497 A1 раскрывается детектор излучения с полупроводниковым компонентом обнаружения с электродами на каждой стороне, который соединен со электронной схемой считывания, размещенной на платформе. В документе US2008/175347 A1 раскрывается детектор прямого преобразования излучения с антирассеивающей сборкой. В документ US 2009/0045347 A1 раскрывается детекторный модуль, содержащий множество подмодулей прямого преобразования, каждый из которых имеет обратный контакт, и коллиматор рассеянного излучения, охватывающий детекторные подмодули.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Целью настоящего изобретения является создание детектора излучения и устройства формирования изображения с использованием такого детектора излучения, который имеет простую конструкцию для легкого распределения требуемого высокого напряжения по множеству детекторных модулей.
В первом аспекте настоящего изобретения представлен детектор излучения, содержащий:
- множество детекторных модулей, расположенных рядом друг с другом, причем каждый детекторный модуль содержит
сенсорный слой для преобразования падающего излучения в электрические заряды,
первый электрод, осажденный на первую поверхность сенсорного слоя, обращенную к падающему излучению,
второй электрод, осажденный на вторую поверхность сенсорного слоя, противоположную первой поверхности,
считывающую электронику в электрическом контакте со вторым электродом, и
носитель для несения сенсорного слоя и считывающей электроники,
- электропроводный слой проводимости, и
- антирассеивающая компоновка,
причем указанный слой проводимости и указанная антирассеивающая компоновка расположены друг над другом, причем
- антирассеивающая компоновка покрывает множество детекторных модулей на стороне, обращенной к падающему излучению, и изготовлена из проводящего материала; и
- слой проводимости расположен между антирассеивающей компоновкой и множеством детекторных модулей и содержит проводящий, механически сжимаемый демпфирующий слой; и
- i) антирассеивающая компоновка содержит вывод для приема напряжения или ii) детектор излучения дополнительно содержит проводящий распределительный слой, расположенный между демпфирующим слоем и антирассеивающей компоновкой, причем указанный распределительный слой содержит вывод для приема напряжения, и изоляционный слой, расположенный между распределительным слоем и антирассеивающей компоновкой.
В дополнительном аспекте настоящего изобретения представлено устройство формирования изображения, содержащее детектор излучения, как раскрыто в настоящем документе, для обнаружения излучения от отображаемого объекта в ответ на излучение от источника излучения внутри отображаемого объекта или вне отображаемого объекта.
Слой проводимости расположен между антирассеивающей компоновкой и множеством детекторных модулей и содержит проводящий, механически сжимаемый демпфирующий слой.
Предпочтительные варианты осуществления изобретения определены в зависимых пунктах формулы изобретения. Следует понимать, что заявляемое устройство формирования изображения имеет подобные и/или идентичные предпочтительные варианты осуществления, как и заявленный детектор излучения, а именно, как определено в зависимых пунктах формулы изобретения и как описано здесь.
Настоящее изобретение основано на идее использования общего проводящего элемента (то есть общего слоя проводимости), чтобы либо прямо или косвенно (через антирассеивающую компоновку) контактировать с первым электродом подгрупп, или, предпочтительно, с каждым детекторным модулем (т.е. каждый тайлом). Таким образом, комбинация антирассеивающей компоновки и общего проводящего элемента предпочтительно покрывает первые электроды групп или все детекторные модули. Общий проводящий элемент действует как распределитель напряжения. Это устраняет необходимость какой-либо дополнительной сложной маршрутизации со стороны детектора, то есть не требуется отдельных соединительных элементов или кабелей между первыми электродами.
Демпфирующий слой обеспечивает равномерное давление контактов по всему детектору излучения и гарантирует, что определенная степень неравномерности не ухудшает надлежащий высоковольтный контакт с каждым детекторным модулем.
Предпочтительно, чтобы слой проводимости покрывал множество детекторных модулей на стороне, обращенной к падающему излучению, а антирассеивающая компоновка располагалась со стороны слоя проводимости, обращенной к падающему излучению. В другом варианте осуществления антирассеивающая компоновка покрывает множество детекторных модулей на стороне, обращенной к падающему излучению, и слой проводимости расположен со стороны слоя проводимости, обращенного к падающему излучению.
Предпочтительно, чтобы первый электрод мог действовать как катод, в то время как второй электрод предпочтительно мог действовать как анод. Однако в других вариантах осуществления первый электрод может действовать как анод, в то время как второй электрод действует как катод, то есть общий электрод является анодом, а катод обладает структурой, то особенно важно, если используются детекторы, относящиеся к дырочной группе (например, кремний с проводимостью р-типа).
Сам слой проводимости может служить в качестве общего проводящего элемента для подачи высокого напряжения на детекторные модули, для чего слой проводимости содержит вывод для приема напряжения. В других вариантах осуществления высокое напряжение предоставляется от (внешнего) источник напряжения к другому слою детектора излучения и проводится через слой проводимости внутри детектора излучения.
Существуют различные варианты осуществления демпфирующего слоя. В одном из вариантов осуществления демпфирующий слой содержит проводящий лист или пену. Такой лист или пена обеспечивают требуемую функцию, обеспечивающую равномерное давление контактов.
Демпфирующий слой может быть изготовлен из Ni, Au, Ag и Cu или лент металлической сетки или из проводящих полимеров или пенистых материалов или сеток, или эластомерных межсоединений (например, эластомеров углерода, металлических эластомеров, PET, например, со встроенными проводниками, такими как углерод или металлы). Предпочтительно, чтобы проводимость имела место только по оси z (толщина), то есть металлы обычно являются проводящими «стержнями». Типичными видами использования являются ЖК-контакты, MEMS и т. д.
В другом варианте осуществления демпфирующий слой содержит множество пружинных элементов, которые могут быть механически закреплены на антирассеивающей компоновке. Это обеспечивает еще одно механически простое решение для обеспечения равномерного давления контактов.
В одном варианте антирассеивающая компоновка изготовлена из проводящего материала. Таким образом, предпочтительно, чтобы она могла выступать в качестве общего проводящего элемента для распределения высокого напряжения по детекторным модулям, для чего предпочтительно, чтобы антирассеивающая компоновка содержала вывод для приема напряжения.
В другом варианте Детектор излучения может дополнительно содержать проводящий распределительный слой, расположенный между демпфирующим слоем и антирассеивающей компоновкой. Также этот распределительный слой может предпочтительно служить в качестве общего проводящего элемента для распределения высокого напряжения по детекторным модулям, для чего распределительный слой содержит вывод для приема напряжения. Проводящий распределительный слой может также служить в качестве проводящего слоя, а демпфирующий слой также можно пропустить.
Кроме того, детектор излучения может дополнительно содержать изоляционный слой, расположенный между распределительным слоем и антирассеивающей компоновкой. Этот изоляционный слой гарантирует, что антирассеивающая компоновка не находится в электрическом контакте со слоем, служащим общим проводящим элементом.
Предпочтительно, чтобы детекторные модули были выполнены с возможностью отдельного удаления. Следовательно, в случае повреждения модуля его можно легко заменить, а модули также можно изготовлять проще, чем один большой блок детекторов.
В практической реализации слой проводимости имеет толщину в диапазоне от 50 мкм до 10 мм, в частности в диапазоне от 100 мкм до 2 мм.
Предпочтительно, чтобы детектор излучения использовался для обнаружения рентгеновского или гамма-излучения. Излучение может испускаться источником излучения, расположенным вне отображаемого объекта (например, источником рентгеновского излучения или источником гамма-излучения) или расположенным внутри отображаемого объекта (например, радиоизотопом или зондом, введенным в отображаемый объект). Устройство формирования изображения может, таким образом, быть рентгеновской установкой, КТ- установкой, ПЭТ- установкой, ОФЭКТ- установкой и т.д. Помимо детекторов излучения раскрытое устройство формирования изображения может, таким образом, дополнительно содержать источник излучения для испускания излучения через отображаемый объект.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Эти и другие аспекты настоящего изобретения будут очевидны и проиллюстрированы со ссылкой на описанный(е) ниже вариант(ы) осуществления. На следующих чертежах
на Фиг.1 показано перспективное изображение в разобранном виде первого варианта осуществления детектора излучения в соответствии с настоящим изобретением,
на Фиг.2 показано перспективное изображение в разобранном виде второго варианта осуществления детектора излучения в соответствии с настоящим изобретением,
на Фиг.3 показано перспективное изображение в разобранном виде третьего варианта осуществления детектора излучения в соответствии с настоящим изобретением,
на Фиг.4 показано перспективное изображение в разобранном виде четвертого варианта осуществления детектора излучения в соответствии с настоящим изобретением,
на Фиг.5 показано перспективное изображение в разобранном виде пятого варианта осуществления детектора излучения в соответствии с настоящим изобретением,
на Фиг.6 показано перспективное изображение в разобранном виде шестого варианта осуществления детектора излучения в соответствии с настоящим изобретением,
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
На Фиг.1 показано перспективное изображение в разобранном виде первого варианта осуществления детектора 1 излучения в соответствии с настоящим изобретением. Большой детектор 1 излучения содержит множество тайлов (то есть детекторных модулей) 10, 20, причем показаны только два соседних тайла. Каждый тайл 10, 20 содержит один или несколько датчиков 11, 21 прямого преобразования, один или несколько ASIC 12, 22 (например, электронных схемах считывания, например электроника с энергетическим разрешением для счета фотонов) и подложка 13, 23 (то есть носитель) для монтажа, т.е. несения датчиков 11, 21 и ASIC 12, 22. Каждый из датчиков 11, 21 прямого преобразования содержит сенсорный слой 14, 24 для преобразования падающего излучения в электрические заряды, первый электрод 15, 25, осажденный на первую поверхность сенсорного слоя 14, 24, обращенную к падающему излучению 100 (например, рентгеновскому излучению или гамма-излучению), и второй электрод 16, 26, осажденный на вторую поверхность сенсорного слоя 14, 24 противоположную первой поверхности. Более подробная информация о межсоединении второго уровня между ASIC 12, 22, которые находятся в электрическом контакте со вторым электродом 16, 26 и датчиками 11, 21 прямого преобразования, не отображена. Второй электрод может содержать, таким образом, один электрод или множество электродов, расположенных в массиве.
В этом варианте первый электрод 15, 25 действует как катод, а второй электрод 16, 26 действует как анод. Существуют другие варианты осуществления, в которых первый электрод 15, 25 действует как анод, а второй электрод 16, 26 действует как катод. На вершине каждого тайла 10, 20 расположен общий электропроводящий демпфирующий слой 30, служащий в этом варианте осуществления в качестве слоя проводимости и покрывающий множество тайлов 10, 20 на стороне, обращенной к падающему излучению 100. Демпфирующий слой 30 в этом варианте осуществления выполнен в виде проводящего листа или пены и обеспечивает электрический контакт с первыми электродами 15, 25, действующими в качестве катода. Предпочтительно, чтобы проводящий демпфирующий слой 30 можно было механически сжать и распределить между всеми тайлами 10, 20 или их подмножеством.
Наверху демпфирующего слоя 30 антирассеивающая компоновка 40, в частности одномерная или, как изображено, двумерная антирассеивающая решетка (ASG), обращенная к падающему излучению 100. В этом варианте осуществления антирассеивающая компоновка 40 выполнена из электропроводящего материала и, таким образом, устанавливает электрический контакт с электропроводящим демпфирующим слоем 30. Антирассеивающая компоновка 40 дополнительно электрически соединена с источником 200 высокого напряжения, для чего предпочтительно, чтобы она содержала вывод 41 для приема напряжения от источника 200.
Такая компоновка детектора 1 излучения обеспечивает, что напряжение смещения, подаваемое источником 200, эффективно распределяется по каждому отдельному тайлу 10, 20.
Поскольку антирассеивающие решетки обычно изготавливают из металлов с низким удельным сопротивлением, например, W (вольфрама), последовательное сопротивление от высокого напряжения 200 до демпфирующего слоя 30 может поддерживаться очень низким на очень большой площади, даже если используется одна точка контакта. Можно найти проводящие листы для использования в качестве демпфирующего слоя 30 с достаточно низким поверхностным сопротивлением (<0,2 Ом/квадрат). Так как контакт антирассеивающей решетки 40 по определению находится сверху каждого отдельного тайла 10, 20, последовательное сопротивление на тайл также поддерживается достаточно низким. Другими словами, антирассеивающая решетка 40 с низким сопротивлением используется для распределения высокого напряжения, тогда как несколько более резистивный проводящий лист 30 будет воздействовать на каждый тайл 10, 20 только локально. Таким образом обеспечивается однородное распределение высокого напряжения на большой площади.
Хотя на Фиг.1 показаны только два тайла 10, 20, имеющие один общий демпфирующий слой 30, следует понимать, что его можно масштабировать до любой площади и количества тайлов. На практике демпфирующие слои 30 могут быть разделены между ограниченным количеством тайлов для облегчения обслуживания, то есть замена тайла не требует удаления демпфирующего слоя 30, покрывающего весь набор тайлов 10, 20. Таким образом, демпфирующий слой 30 может иметь множество форм-факторов, от одного проводящего листа на детектор излучения до, например, наличия одного листа на ряд или колонку тайлов.
Поскольку материалы прямого преобразования, такие как CZT, хрупкие, то чувствительны к избыточному давлению, сжимаемый проводящий лист является предпочтительным для использования в качестве демпфирующего слоя 30, чтобы избежать прямого и точного контакта ламелей антирассеивающей решетки 40 с первыми электродами 15, 25 (катод) сенсорных слоев 14, 24 (хотя это, как правило, возможно в других вариантах осуществления). Сжимаемые проводящие листы также компенсируют небольшие различия в высоте детекторных модулей 10, 20. Доступны такие проводящие листы различной толщины (например, 1 мм) и могут работать при температурах от -40 до+70° C. Примеры таких листов доступны у нескольких поставщиков (например, Laird Technologies с сетками Ni/Cu). Если поглощение сетки Ni/Cu считается слишком высоким, материал типа материала для эластомерного межсоединения с проводящими канавками или стержнями может использоваться с одним и тем же шагом в качестве антирассеивающей решетки 40. Хотя это может создать определенные трудности с точки зрения выравнивания, доступны проводящие канавки в диапазоне 100 мкм, которые снижают вероятность поглощения рентгеновских лучей поверх эффективных пикселей датчика. Другим примером проводящих листов является проводящая полимерная пена, как, например, широко используемая в электронной промышленности, для защиты чувствительных интегральных схем от электрических разрядов во время транспортировки (например, поставляемые Vermason).
На Фиг.2 показано перспективное изображение в разобранном виде второго варианта осуществления детектора 2 излучения в соответствии с настоящим изобретением. В этом варианте осуществления проводящий распределительный слой 50 расположен между демпфирующим слоем 30 (служащим в качестве проводящего слоя) и антирассеивающей решеткой 40. Например, тонкая металлическая фольга, например, из алюминия или металлического листа с гальванопокрытием для хорошего электрического контакта, может быть размещена поверх демпфирующего слоя 30 для предоставления низкоомного распределительного слоя 50 для высокого напряжения, подаваемого источником 200 через вывод 51. Этот металлический лист может быть изготовлен из множества материалов или металлов с тонкопленочным гальванопокрытием (например, Al, Cu, Zn, Ag, Mg, Ti, сплавов, ITO (TCO и т. д.), углерода (например, нанотрубок, графена) или металлической микроструктуры). Тонкий слой легкого металла будет иметь минимальное влияние на обнаруженные спектры излучения.
Необязательно, как показано в этом варианте осуществления, распределительный слой 50 покрыт изоляционным слоем 60 (т.е. расположен между распределительным слоем 50 и антирассеивающей решеткой 40), так что антирассеивающая решетка 40 не подключена к высокому напряжению, если это желательно, или может быть заземлена в целях электробезопасности.
Использование тонкой металлической фольги большой площади в качестве распределительного слоя 50 также выгодно, если сама антирассеивающая решетка 40 выполнена как черепичное покрытие, то есть состоит из небольших блоков или подрешеток. С такими малыми блоками распределение высокого напряжения через антирассеивающую решетку более сложно и требует дополнительных средств для соединения блоков или подрешеток.
Кроме того, в одном из вариантов осуществления антирассеивающая решетка 40 может быть расположена в непосредственном контакте с детекторными блоками 10, 20, так что промежуточный слой (например, демпфирующий слой) не требуется.
Если антирассеивающая решетка 40 выполнена как черепичное покрытие, она может снова находиться в прямом контакте с детекторными блоками 10, 20, чтобы обеспечить правильное выравнивание антирассеивающей решетки 40 и детекторных блоков 10, 20. В этом случае демпфирующий слой 30 может располагаться поверх антирассеивающей решетки 40, обеспечивая распределение высокого напряжения.
Во втором варианте осуществления детектора 2 излучения демпфирующий слой 30 (например, проводящая пена, как показано на Фиг.1) не является абсолютно необходимым, как показано на Фиг.3, показывающем перспективное изображение в разобранном виде третьего варианта осуществления детектора 3 излучения в соответствии с настоящим изобретением. Следовательно, в этом варианте осуществления имеет место прямой контакт между распределительным слоем 50 и первыми электродами 15, 25 тайлов 10, 20. Использование демпфирующего слоя 30, как предусмотрено во втором варианте осуществления, является, однако, полезно для обеспечения равномерного давления контактов по всему детектору излучения и для обеспечения того, чтобы определенная степень неравномерности не ухудшала надлежащий контакт высокого напряжения с каждым тайлом.
На Фиг.4 показано перспективное изображение в разобранном виде четвертого варианта осуществления детектора 4 излучения в соответствии с настоящим изобретением. В этом варианте осуществления проводящий сам по себе демпфирующий слой 30 (предпочтительно в виде проводящей пены) используется в качестве проводящего слоя и для распределения высокого напряжения, подаваемого внешним источником питания через вывод 31. Таким образом, антирассеивающая решетка 40 не нуждается в электрическом подключении к источнику высокого напряжения, а также не требуется электропроводность.
Поскольку CZT-датчики обычно проявляют слабые темновые токи, а максимальный фототок на тайл также довольно низкий (например, 20 мкА/тайл), лист (в качестве демпфирующего слоя) может иметь достаточно низкое сопротивление для того, чтобы отвечать требованиям (например, лист, образующий сжимаемую металлическую сетку). Как дополнительные меры, например, можно использовать несколько контактов 31 по бокам демпфирующего слоя 30, чтобы гарантировать, что высокое напряжение остается достаточно однородным по всей группе тайлов, чтобы избежать зависящей от положения характеристики детектора излучения, например, переходные ответы CZT могут быть медленнее в тех местах, где высокое напряжение является самым низким.
Качество высоковольтного контакта между проводящим слоем и первыми электродами (катодами) можно легко оценить, наблюдая ухудшение спектров амплитуд импульса. Сжатый по времени спектр может указывать на высокое сопротивление контакта с катодом. Однако объемное удельное сопротивление датчика очень велико, так что основным потенциальным фактором является не сопротивление контакта самих катодов, а скорее распределение напряжения по проводящему слою, то есть демпфирующему слою 30 в первом, втором и четвертом вариантах осуществления и распределительному слою 50 в третьем варианте осуществления, соответственно. С этой целью предпочтительным вариантом может быть распределение высокого напряжения с использованием антирассеивающей решетки 40 или распределительного слоя 50.
Предпочтительно, чтобы антирассеивающая компоновка 40 была выполнена в виде антирассеивающей решетки большой площади. Такая решетка может, например, быть изготовлена посредством лазерного спекания и может использоваться в качестве носителя для нескольких тайлов детектора. Проводящая пена в качестве демпфирующего слоя является одним из вариантов электрического интерфейса, то есть в роли слоя проводимости.
На Фиг.5 показано перспективное изображение в разобранном виде пятого варианта осуществления детектора 5 излучения в соответствии с настоящим изобретением. В соответствии с этим вариантом осуществления электрические пружинные контакты 33 предусмотрены в качестве демпфирующего слоя 32 (служащего также слоем проводимости). Пружинные контакты предпочтительно расположены (в частности, механически закреплены) на нижней поверхности антирассеивающей решетки 43 и контактируют с тайлами 10, 11. Технология лазерного спекания может использоваться для предоставления возможности специального производства электрических пружинных контактов в заранее определенный положениях антирассеивающей решетки, которая делает возможными отдельные (множественные) электрические контакты с каждым тайлом.
На Фиг.6 показано перспективное изображение в разобранном виде шестого варианта осуществления детектора 6 излучения в соответствии с настоящим изобретением. В этом варианте осуществления антирассеивающая компоновка 40 непосредственно покрывает множество детекторных модулей 10, 20, а слой 30 проводимости расположен со стороны проводящего слоя, обращенного к падающему излучению 100. Напряжение подается на слой 30 проводимости и распределяется от слоя 30 проводимости через (электропроводящее) антирассеивающую компоновку 40 к детекторным модулям 10, 20. Таким образом, обеспечивается надлежащее выравнивание антирассеивающей компоновки 40 и детекторных модулей 10, 20.
В другом варианте осуществления антирассеивающая компоновка 40 может быть даже полностью исключена, так что слой 30 проводимости находится в прямом контакте с элементами детектора, принимает напряжение от источника 200 напряжения и распределяет принимаемое напряжение на элементы 10, 20 детектора. Такой вариант осуществления, например, можно использовать в медицинских применениях, таких как спектральная рентгеновская или фотон-счетная/спектральная маммография, где реальный детектор обычно поставляется без антирассеивающей решетки, а антирассеивающая решетка является необязательной и будет добавлена врачом по своему усмотрению. Также при таких применениях детектор может быть разделен на более мелкие модули (тайлы), и распределение напряжения может быть достигнуто, как описано в настоящем документе.
Настоящее изобретение особенно подходит для детекторов большой площади для спектральной КТ, но также применимо к неразрушающему контролю (NDT), осмотру багажа или любым другим устройствам формирования изображения и методам, где детекторы прямого преобразования используются на большой площади.
Хотя изобретение было проиллюстрировано и подробно описано на чертежах и предшествующем описании, такие иллюстрации и описание должны рассматриваться как иллюстративные или приведенные в качестве примера, а не ограничивающие; изобретение не ограничивается описанными вариантами осуществления. Изучив чертежи, раскрытие и приложенную формулу изобретения, специалисты в данной области смогут понять и осуществить при практической реализации заявленного изобретения другие вариации показанных вариантов осуществления.
В формуле изобретения слово «содержит» не исключает других элементов или этапов, и формы единственного числа не исключают множественного числа. Один элемент или другой блок может выполнить функции нескольких пунктов, перечисленных в формуле изобретения. Сам факт того, что определенные меры перечислены во взаимно отличных зависимых пунктах формулы изобретения, не указывает на то, что сочетание этих мер нельзя использовать с пользой.
Любые ссылочные позиции в формуле изобретения не должны рассматриваться в качестве ограничения объема.

Claims (29)

1. Детектор излучения, содержащий:
- множество детекторных модулей (10, 20), расположенных рядом друг с другом, причем каждый детекторный модуль содержит:
сенсорный слой (14, 24) для преобразования падающего излучения (100) в электрические заряды,
первый электрод (15, 25), осажденный на первую поверхность сенсорного слоя, обращенную к падающему излучению (100),
второй электрод (16, 26), осажденный на вторую поверхность сенсорного слоя, противоположную первой поверхности,
считывающую электронику (12, 22) в электрическом контакте со вторым электродом, и
носитель (13, 23) для несения сенсорного слоя и считывающей электроники,
- электропроводный слой проводимости и
- антирассеивающую компоновку (40),
причем указанный слой (30, 32, 50) проводимости и указанная антирассеивающая компоновка (40) расположены друг над другом,
причем
антирассеивающая компоновка (40) покрывает множество детекторных модулей на стороне, обращенной к падающему излучению (100); и изготовлена из проводящего материала; и
- слой проводимости расположен между антирассеивающей компоновкой и множеством детекторных модулей и содержит проводящий, механически сжимаемый демпфирующий слой (30, 32); и
- i) антирассеивающая компоновка (40) содержит вывод (41) для приема напряжения или ii) детектор излучения дополнительно содержит проводящий распределительный слой (50), расположенный между демпфирующим слоем (30, 32) и антирассеивающей компоновкой (40), причем указанный распределительный слой (50) содержит вывод (51) для приема напряжения, и изоляционный слой (60), расположенный между распределительным слоем (50) и антирассеивающей компоновкой (40).
2. Детектор излучения по п.1,
в котором слой проводимости содержит вывод (31, 51) для приема напряжения.
3. Детектор излучения по п.1,
в котором демпфирующий слой содержит проводящий лист или пену (30), в частности изготовлен из Ni, Au, Ag и Cu, или лент металлической сетки, или из проводящих полимеров, или пенистых материалов или сеток, или эластомерных межсоединений.
4. Детектор излучения по п.1,
в котором демпфирующий слой (32) содержит множество пружинных элементов (33).
5. Детектор излучения по п.4,
в котором пружинные элементы (33) механически закреплены на антирассеивающей компоновке.
6. Детектор излучения по п.1,
в котором детекторные модули (10, 20) выполнены с возможностью отдельного удаления.
7. Детектор излучения по п.1,
в котором слой (30, 32, 50) проводимости имеет толщину в диапазоне от 50 мкм до 10 мм, в частности в диапазоне от 100 мкм до 2 мм.
8. Устройство формирования изображения, содержащее детектор (1, 2, 3, 4, 5, 6) излучения по п.1, для обнаружения излучения от отображаемого объекта в ответ на излучение (100) от источника излучения внутри отображаемого объекта или вне отображаемого объекта.
9. Устройство формирования изображения по п.8,
дополнительно содержащее источник излучения для испускания излучения через отображаемый объект.
RU2018123953A 2015-12-03 2016-12-02 Детектор излучения и устройство формирования изображения RU2722062C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP15197765.9 2015-12-03
EP15197765 2015-12-03
PCT/EP2016/079620 WO2017093500A1 (en) 2015-12-03 2016-12-02 Radiation detector and imaging apparatus

Publications (3)

Publication Number Publication Date
RU2018123953A RU2018123953A (ru) 2020-01-13
RU2018123953A3 RU2018123953A3 (ru) 2020-03-03
RU2722062C2 true RU2722062C2 (ru) 2020-05-26

Family

ID=54783424

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018123953A RU2722062C2 (ru) 2015-12-03 2016-12-02 Детектор излучения и устройство формирования изображения

Country Status (6)

Country Link
US (1) US10444381B2 (ru)
EP (1) EP3384320B8 (ru)
JP (1) JP6721682B2 (ru)
CN (1) CN108291974B (ru)
RU (1) RU2722062C2 (ru)
WO (1) WO2017093500A1 (ru)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3232229A1 (en) * 2016-04-13 2017-10-18 Nokia Technologies Oy Apparatus for sensing radiation
DE102017200653A1 (de) * 2017-01-17 2018-07-19 Siemens Healthcare Gmbh Röntgendetektor mit einer Anordnung von einer pixelierten zweiten Elektrode und eines Streustrahlengitters
EP3444826A1 (en) * 2017-08-14 2019-02-20 Koninklijke Philips N.V. Low profile anti scatter and anti charge sharing grid for photon counting computed tomography
CN108042151B (zh) * 2017-12-21 2024-04-30 上海六晶科技股份有限公司 一种医学影像系统用防散射格栅装置的制备方法
US10988375B1 (en) * 2018-10-04 2021-04-27 EngeniusMicro, LLC Systems, methods, and devices for mechanical isolation or mechanical damping of microfabricated inertial sensors
EP3839575A1 (en) 2019-12-17 2021-06-23 Koninklijke Philips N.V. Photon counting detector
JP7492388B2 (ja) 2020-07-03 2024-05-29 キヤノンメディカルシステムズ株式会社 放射線検出器および放射線診断装置
US11835666B1 (en) * 2020-07-31 2023-12-05 Redlen Technologies, Inc. Photon counting computed tomography detector with improved count rate stability and method of operating same
CN112462413B (zh) * 2020-11-09 2023-04-14 东软医疗系统股份有限公司 探测器模块、探测器和成像装置
US11568988B2 (en) 2021-01-12 2023-01-31 Emed Labs, Llc Health testing and diagnostics platform

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010035497A1 (en) * 2000-04-27 2001-11-01 Guillaume Montemont Detector support device for detecting ionizing radiations
US20080175347A1 (en) * 2007-01-23 2008-07-24 John Eric Tkaczyk Method and apparatus to reduce charge sharing in pixellated energy discriminating detectors
US20090045347A1 (en) * 2007-08-17 2009-02-19 Siemens Aktiengesellschaft Detector module, radiation detector and radiation recording device
RU2445647C2 (ru) * 2006-11-17 2012-03-20 Конинклейке Филипс Электроникс Н.В. Детектор излучения с несколькими электродами на чувствительном слое

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2629215B1 (fr) * 1988-03-23 1990-11-16 Commissariat Energie Atomique Ensemble de detection pour tomographie a rayonnements ionisants
IL96623A0 (en) * 1989-12-26 1991-09-16 Gen Electric Low capacitance,large area semiconductor photodetector and photodetector system
US6472668B1 (en) * 2000-11-24 2002-10-29 Koninklijke Philips Electronics N.V. High voltage distribution system for CZT arrays
JP2006015523A (ja) * 2004-06-30 2006-01-19 Konica Minolta Holdings Inc 成形方法及び成形装置
EP1815270A2 (en) * 2004-07-14 2007-08-08 Orbotech Medical Solutions Ltd. Radiation detector head
EP2087373B1 (en) * 2006-11-20 2016-03-09 Koninklijke Philips N.V. Detector head proximity sensing and collision avoidance
JP4720797B2 (ja) * 2007-06-28 2011-07-13 カシオ計算機株式会社 燃料電池装置及び電子機器
US7955992B2 (en) * 2008-08-08 2011-06-07 Redlen Technologies, Inc. Method of passivating and encapsulating CdTe and CZT segmented detectors
KR101634250B1 (ko) 2010-06-21 2016-06-28 삼성전자주식회사 대면적 엑스선 검출기 및 제조방법
CN102798882B (zh) * 2012-05-03 2016-07-06 西北核技术研究所 一种压接结构的电流型czt探测器
US20140348290A1 (en) 2013-05-23 2014-11-27 General Electric Company Apparatus and Method for Low Capacitance Packaging for Direct Conversion X-Ray or Gamma Ray Detector
DE102014222690A1 (de) * 2014-11-06 2016-05-12 Siemens Aktiengesellschaft Detektormodul für einen Röntgendetektor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010035497A1 (en) * 2000-04-27 2001-11-01 Guillaume Montemont Detector support device for detecting ionizing radiations
RU2445647C2 (ru) * 2006-11-17 2012-03-20 Конинклейке Филипс Электроникс Н.В. Детектор излучения с несколькими электродами на чувствительном слое
US20080175347A1 (en) * 2007-01-23 2008-07-24 John Eric Tkaczyk Method and apparatus to reduce charge sharing in pixellated energy discriminating detectors
US20090045347A1 (en) * 2007-08-17 2009-02-19 Siemens Aktiengesellschaft Detector module, radiation detector and radiation recording device

Also Published As

Publication number Publication date
JP2019504295A (ja) 2019-02-14
RU2018123953A (ru) 2020-01-13
JP6721682B2 (ja) 2020-07-15
CN108291974B (zh) 2022-08-09
US10444381B2 (en) 2019-10-15
WO2017093500A1 (en) 2017-06-08
RU2018123953A3 (ru) 2020-03-03
EP3384320B8 (en) 2020-04-15
EP3384320A1 (en) 2018-10-10
US20180356541A1 (en) 2018-12-13
CN108291974A (zh) 2018-07-17
EP3384320B1 (en) 2020-03-11

Similar Documents

Publication Publication Date Title
RU2722062C2 (ru) Детектор излучения и устройство формирования изображения
US8859975B2 (en) Radiation detector module
US9306108B2 (en) Radiation detector
EP2410735A2 (en) Digital radiographic imaging arrays with reduced noise
EP2748638B1 (en) Radiation-sensitive detector device with charge-rejecting segment gaps
US20190154851A1 (en) Direct photon conversion detector
CN107850678B (zh) 用于辐射成像模态装置的探测器阵列的探测器单元
US10684379B2 (en) X-ray detector with heating layer on converter material
JP2021536580A (ja) マルチピース単層放射線検出器
US9651686B2 (en) X-ray detectors having photoconductors including current resistance layers
CN103097913A (zh) 具有操纵电极的辐射探测器
CN100449765C (zh) x射线检查设备
US20120043633A1 (en) Radiation detector
US8815627B2 (en) Method of manufacturing an ionizing radiation detection device
CN114879242A (zh) 一种传感器、x射线探测器及其应用
WO2016078930A1 (en) Radiation detector core assembly
US20240219589A1 (en) Direct attach radiation detector structures including a carrier board and methods of fabrication thereof
CN116247066B (zh) X射线探测器和探测方法
US11348964B2 (en) Pixel definition in a porous silicon quantum dot radiation detector
CN118215861A (zh) 具有屏蔽电子器件层的图像传感器
McConnell et al. The development of coplanar CZT strip detectors for gamma-ray astronomy
Chen A novel detector micro-module for computed tomography