RU2687748C1 - Способ получения нанодисперсного магнитоактивного рентгеноконтрастного средства - Google Patents

Способ получения нанодисперсного магнитоактивного рентгеноконтрастного средства Download PDF

Info

Publication number
RU2687748C1
RU2687748C1 RU2018137744A RU2018137744A RU2687748C1 RU 2687748 C1 RU2687748 C1 RU 2687748C1 RU 2018137744 A RU2018137744 A RU 2018137744A RU 2018137744 A RU2018137744 A RU 2018137744A RU 2687748 C1 RU2687748 C1 RU 2687748C1
Authority
RU
Russia
Prior art keywords
solution
particles
citric acid
tantalum
hours
Prior art date
Application number
RU2018137744A
Other languages
English (en)
Inventor
Михаил Азарьевич Медков
Владимир Иосифович Апанасевич
Павел Александрович Лукьянов
Ольга Вячеславовна Таракова
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН)
Priority to RU2018137744A priority Critical patent/RU2687748C1/ru
Application granted granted Critical
Publication of RU2687748C1 publication Critical patent/RU2687748C1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Изобретение относится к медицине, в частности к рентгенологии, и может быть использовано в качестве рентгеноконтрастного средства при рентгенологических исследованиях различных органов. Способ включает осаждение магнетита Fe3O4 из раствора, содержащего соли железа (II) и железа (III), концентрированным раствором аммиака при значении рН реакционной смеси не менее 10 в присутствии стабилизатора - лимонной кислоты, взятой из расчета 0,02-0,5 моль на 1 моль образующегося по стехиометрии коллоидного Fe3O4, который обрабатывают в автоклаве при 100°С в течение 20-30 мин, затем при 180°С в течение 12-16 часов, после чего выделяют декантацией на внешнем магните и промывают. Добавляют к полученному осадку водный раствор аммиака, затем в полученную суспензию вводят лимонную кислоту и раствор тантала во фтористоводородной кислоте при рН реакционной смеси 9-11. Обрабатывают полученную смесь в автоклаве при 100°С в течение 20-30 мин, затем при 180°С в течение 12-16 часов с получением осадка ферримагнитных частиц Fe3O4 размером 70-400 нм, покрытых рентгеноконтрастной оболочкой оксида тантала Ta2O5. Отфильтровывают и промывают полученный осадок. Технический результат - повышение устойчивости получаемого магнитоактивного рентгеноконтрастного средства к седиментации, улучшение стабильности его водной суспензии за счет оптимизации размеров его частиц при одновременном увеличении прочности и повышении адгезии их рентгеноконтрастной оболочки к ферримагнитному ядру. 1 табл., 4 пр.

Description

Изобретение относится к медицине, в частности к рентгенологии, и может быть использовано в качестве рентгеноконтрастного средства при рентгенологических исследованиях различных, преимущественно полых, органов.
В рентгенологической практике среди рентгеноконтрастных средств главное место занимают йодсодержащие препараты. Однако их использование для контрастирования полых органов и внутрисосудистого введения сопровождается рядом побочных эффектов. Отмечено их токсическое действие на кровь, почки, печень и щитовидную железу. Наиболее перспективными для рентгенодиагностики являются нетоксичные рентгеноконтрастные соединения тантала. В то же время рентгеноконтрастные препараты не могут необходимое время быть зафиксированными в нужной области из-за протекающих физиологических процессов, обусловленных током крови, лимфы и сократительной деятельности полых органов, что обусловливает интерес к созданию магнитоуправляемых нетоксичных рентгеноконтрастных средств, содержащих в качестве магнитных частиц ферримагнетики, в частности, магнетит.
Известно (RU 2497546, опубл. 2013.11.10) контрастное средство, используемое в диагностике для проведения магнитно-резонансной томографии и рентгеновской компьютерной томографии и способ его получения. Известное средство содержит сложный оксид железа в концентрации 600 мг/мл, а также 2,4 мг/л лимонной кислоты для стабилизации размера частиц сложного оксида железа в диапазоне 5-10 нм, 140 мг/мл цитрата натрия для стабилизации структуры контрастного средства, 160 г/л полиэтиленгликоля и 460 мг/мл воды для инъекций. Способ получения указанного выше контрастного средства включает интенсивное перемешивание на скорости 800 об/мин растворенных в воде солей трех- и двухвалентного железа и гидрата аммония с получением высокодисперсного сложного оксида железа, добавление к нему лимонной кислоты с последующим введением полиэтиленгликоля и разбавленного в воде цитрата натрия при интенсивном перемешивании, охлаждение полученного продукта и отделение от него нерастворенного цитрата натрия. Известное средство и способ его получения характеризуются следующими недостатками. Частицы магнетита с размерами в диапазоне 5-10 нм являются однодоменными и теряют ферримагнитные свойства. Известно, что для ферримагнетиков существует критический размер (dкр), ниже которого его частицы становятся однодоменными. Для ферримагнетика Fe3O4 при комнатной температуре экспериментально установленное значение dкр≥50 нм. Частицы с размером меньше критического переходят в суперпарамагнитное состояние, вследствие чего уже не могут удерживаться внешним магнитным полем в заданной области, например, в зоне злокачественной опухоли. Недостатком, связанным с малым размером частиц магнетита, является сложность их отделения от других продуктов реакции. Эти частицы в присутствии ПАВ (лимонной кислоты) практически невозможно осадить простым отстаиванием и промыть, как указано в известном патенте. Для отмывания таких частиц в процессе синтеза необходимо высокооборотное центрифугирование. Кроме того, установлено, что оболочка из полиэтиленгликоля (ПЭГ), согласно известному способу формируемая на наночастицах магнетита, может оказывать отрицательное воздействие на живой организм. Исследования показывают, что обработанные полиэтиленгликолем эритроциты становятся иммуногенными и обладают, соответственно, низкой выживаемостью в организме реципиента при трансфузии.
Наиболее близким к заявляемому является способ получения дисперсного магнитоактивного рентгеноконтрастного средства (RU 2639567, опубл. 2017.12.12), содержащего оксид железа Fe3O4 и оксид тантала Ta2O5, путем последовательного осаждения из соответствующих растворов, содержащих соединения железа либо соединения тантала, с помощью раствора аммиака при рН смеси не менее 10 в присутствии олеата натрия в качестве стабилизатора, при этом в водный раствор, содержащий соль железа (II) и соль железа (III), добавляют концентрированный раствор аммиака до значения рН смеси не менее 10 и раствор олеата натрия; в полученную смесь вводят содержащий тантал водный фторидный либо водный сульфооксалатный раствор, добавляют раствор аммиака до значения рН не менее 10 и раствор олеата натрия, перемешивают в течение 5-10 минут.Дают отстояться в течение 0,5 часа, сливают часть раствора над осадком, а оставшуюся пульпу фильтруют. Осадок на фильтре дважды промывают водой, после чего его распульповывают в воде и диспергируют ультразвуком.
Недостатком известного способа является формирование крупных частиц с ферритным ядром микронных размеров, подверженных быстрой седиментации в составе суспензии и требующих диспергирования перед применением, причем при длительном хранении выпавший осадок частиц магнитоактивного рентгеноконтрастного средства, полученного известным способом, настолько уплотняется, что практически не поддается диспергированию. Под действием аммиака на поверхности ферримагнитных частиц Рез04 формируется аморфный слой оксида тантала с низкой адгезией к ядру, что также отрицательно сказывается на стабильности полученного средства, сохранении его свойств с течением времени.
Задачей изобретения является создание способа получения магнитоактивного рентгеноконтрастного средства, устойчивого к седиментации и стабильного при хранении.
Технический результат способа заключается в повышении устойчивости получаемого магнитоактивного рентгеноконтрастного средства к седиментации и улучшении стабильности его водной суспензии за счет формирования частиц оптимального размера, увеличения их прочности и возрастания адгезии их рентгеноконтрастной оболочки к ферримагнитному ядру.
Указанный технический результат достигают способом получения нанодисперсного магнитоактивного рентгеноконтрастного средства, содержащего оксид железа Fe3O4 и оксид тантала Ta2O5, путем последовательного осаждения из раствора, содержащего соли железа (II) и железа (III), и, соответственно, из раствора тантала во фтористоводородной кислоте с помощью концентрированного раствора аммиака, используемого в количестве, обеспечивающем значение рН реакционной смеси не менее 9, в присутствии стабилизатора, с последующим выделением и промыванием осажденных продуктов, в котором, в отличие от известного, в качестве стабилизатора используют лимонную кислоту из расчета 0,02-0,5 моля на 1 моль образующегося магнетита Fe3O4, при этом полученный виде коллоидных частиц магнетит подвергают термообработке в автоклаве при 100°С в течение 20-30 мин, затем при 180°С в течение 12-16 ч, после чего декантацией на внешнем магните выделяют осадок Fe3O4, к промытому осадку добавляют водный раствор аммиака с получением суспензии, вводят в нее лимонную кислоту из расчета 0,02-0,5 моля на 1 моль содержащегося в суспензии Fe3O4 и раствор тантала во фтористоводородной кислоте, и подвергают полученный продукт термообработке в автоклаве при 100°С в течение 20-30 мин, затем при 1800С в течение 12-16 часов и после промывания подвергают лиофильной сушке. Способ осуществляют следующим образом.
Готовят смесь растворимых солей двух- и трехвалентного железа, например, сульфата FeSO4 и хлорида FeCl3, с лимонной кислотой и добавляют при перемешивании 4-12 М водный раствор аммиака до значения рН=10-11 и выше.
Коллоидный раствор магнетита, образующегося в процессе синтеза согласно уравнению реакции:
FeSO4+2FeCl3+8NH4OH=Fe3O4+6NH4Cl+(NH4)2SO4+4H2O,
содержит аморфные частицы Fe3O4, размер который, как установлено экспериментально, находится в непосредственной зависимости от концентрации лимонной кислоты в реакционной смеси, при этом их оптимальный размер обеспечивается при соотношении 0,02-0,5 моля лимонной кислоты на один моль синтезируемого магнетита.
Таким образом, для получения частиц магнетита размером 70-400 нм, который является оптимальным для обеспечения устойчивости его суспензии, берут 1 моль сульфата FeSO4, 2 моля хлорида FeCl3 и лимонную кислоту из расчета 0,02-0,5 молей на 1 моль синтезируемого Fe3O4. Образовавшийся после добавления концентрированного раствора аммиака коллоидный раствор, содержащий магнетит Fe3O4 в виде аморфных частиц, помещают в автоклав.
После обработки полученного коллоидного раствора в автоклаве при 100°С в течение 20-30 мин, затем при 180°С в течение 12-16 часов аморфные частицы Fe3O4 переходят в кристаллическое состояние. Эти частицы размером 70-400 нм выделяют декантацией на внешнем магните и десятикратно промывают дистиллированной водой.
К полученным ферримагнитным частицам добавляют 4-12 М водный раствор аммиака с получением суспензии. В подготовленную суспензию вводят лимонную кислоту из расчета 0,02-0,5 молей на 1 моль содержащегося в суспензии Fe3O4 и раствор тантала во фтористоводородной кислоте, поддерживая значение рН реакционной смеси в интервале 10-11. На поверхности ферримагнитных частиц Fe3O4 формируется рентгеноконтрастный слой оксида тантала, для стабилизации и закрепления которого полученный продукт нагревают в автоклаве при 100°С в течение 20-30 мин, затем при 180°С в течение 12-16 часов. Образовавшиеся ферримагнитные рентгеноконтрастные наночастицы выделяют декантацией на внешнем магните и десятикратно промывают дистиллированной водой.
Благодаря оптимальному размеру частиц магнитоактивного рентгеноконтрастного средства, полученного предлагаемым способом при заявленном соотношении исходных компонентов, его препараты в виде суспензии в физиологическом растворе, спонтанно не седиментируют в течение длительного времени, и как показывает эксперимент, не осаждаются центрифугированием при 3000 об/мин в течение 10 мин.
Результаты экспериментальной проверки зависимости размера формируемых частиц Fe3O4, определяющего скорость седиментации получаемого средства и его магнитные свойства, от относительного содержания используемой в качестве стабилизатора лимонной кислоты даны в таблице и частично отражены в приведенных примерах.
Средство обладает хорошими магнитными и рентгеноконтрастными характеристиками. Его препараты, не содержащие поверхностно-активных веществ и полиэтиленгликоля, обнаруживают хорошую биосовместимость. Как показали эксперименты, они нетоксичны для мышей при перитонеальном введении в дозе 20 г/кг.
Примеры конкретного осуществления способа.
Пример 1
К смеси, содержащей 10 мл 1 MFeSO4, 20 мл 1 М FeCl3 и 3 мл 1 М лимонной кислоты, добавляли 4 М водный раствор аммиака до рН 11. При этом образуется 0.01 моль магнетита (мольное отношение лимонная кислота/магнетит равно 0,3). Нагревали при 100°С в течение 30 мин, затем при 180°С в течение 12 часов. Наночастицы Fe3O4 выделяли путем декантации на магните, отмывали дистиллированной водой и лиофильно высушивали. В результате получены ферримагнитные частицы с размерами, близкими к 107 нм.
Далее к суспензии, содержащей 1,45 г полученных, как описано выше, частиц Fe3O4 в 22 мл 4 М водного раствора аммиака, добавляли 2 мл 1 М лимонной кислоты, затем 56 мл 0,055 М раствора тантала во фтористоводородной кислоте, при значении рН реакционной среды равном 9.
Затем нагревали при 100°С в течение 20 мин, затем при 180°С в течение 16 часов. Полученные наночастицы выделяли декантацией на внешнем магните, десятикратно промывали дистиллированной водой и лиофильно высушивали. В результате получено магнитоактивное рентгеноконтрастное средство типа ядро-оболочка Fe3O4@Ta2O5.
Препарат в виде порошкообразного средства, суспензированного в физиологическом растворе, устойчив к седиментации в течение длительного времени, не осаждается центрифугированием при 3000 об/мин в течение 10 мин. Нетоксичен для мышей при перитонеальном введении в дозе 20 г/кг и ниже.
Пример 2
К смеси, содержащей 10 мл 1 М FeSO4, 20 мл 1 М FeCl3 и 1 мл 1 М лимонной кислоты, добавляли 4 М водный раствор аммиака до рН 11 (мольное отношение лимонная кислота/магнетит равно 0,1). Нагревали при 100°С в течение 30 мин и при 180°С в течение 12 часов. Наночастицы отмывали декантацией на магните дистиллированной водой и лиофильно высушивали. В результате получены ферримагнитные частицы размером примерно 125 нм.
Далее к суспензии, содержащей 1,45 г полученного Fe3O4 (6,25 ммоля) в 22 мл 12 М водного раствора аммиака, добавляли 2 мл 1 М лимонной кислоты, затем 56 мл 0,055 М раствора тантала во фтористоводородной кислоте при рН реакционной смеси 9. нагревали при 100°С в течение 20 мин, затем при 180°С в течение 16 часов.
Дальнейшую обработку проводили аналогично примеру 1 с получением аналогичного результата. Пример 3
При добавлении к смеси, содержащей 10 мл 1 М FeSO4, 20 мл 1 М FeCl3 и 1 М раствор лимонной кислоты в количестве 6 мл (мольное отношение лимонная кислота/магнетит более 0,5), 4 М водного раствора аммиака образуются частицы магнетита с размерами меньше критического, не обладающие ферримагнитными свойствами. Частицы с такими размерами являются суперпарамагнитными, полученное средство на их основе с ядром из Fe3O4 и оболочкой из Ta2O5 при исследованиях не может удерживаться магнитным полем в заданной зоне, например, в зоне злокачественного новообразования.
Пример 4
К смеси, содержащей 10 мл 1 М FeSO4, 20 мл 1 М FeCl3 и одномолярный раствор лимонной кислоты в количестве 0,1 мл (мольное отношение лимонная кислота/магнетит менее 0,02), добавляли аммиак в виде 4 М водного раствора. В результате получались слишком крупные (микронного размера) частицы магнетита, которые оседали в физиологическом растворе в течение 30 мин без внешнего магнитного поля. Использование магнитоактивного средства с ядром такого размера нецелесообразно, тем более что, при длительном хранении его осадок сильно уплотняется и не поддается суспензированию.
Figure 00000001
* - - не оседают на постоянном магните, +- оседают в течение 2 мин, ++-оседают в течение 15 сек, +++- оседают мгновенно

Claims (1)

  1. Способ получения нанодисперсного магнитоактивного рентгеноконтрастного средства, содержащего оксид железа Fe3O4 и оксид тантала Ta2O5, путем их последовательного осаждения соответственно из раствора, содержащего соли железа (II) и железа (III), и из раствора тантала во фтористоводородной кислоте концентрированным раствором аммиака при рН смеси не менее 9 в присутствии стабилизатора с последующим выделением и промыванием полученных частиц, отличающийся тем, что в качестве стабилизатора используют лимонную кислоту из расчета 0,02-0,5 моль на 1 моль образующегося магнетита Fe3O4, при этом полученный в виде коллоидных частиц магнетит подвергают термообработке в автоклаве при 100°С в течение 20-30 мин, затем при 180°С в течение 12-16 ч, после чего декантацией на внешнем магните выделяют осадок Fe3O4, к промытому осадку добавляют водный раствор аммиака с получением суспензии, вводят в нее лимонную кислоту из расчета 0,02-0,5 моль на 1 моль содержащегося в суспензии Fe3O4 и раствор тантала во фтористоводородной кислоте и подвергают полученный продукт термообработке в автоклаве при 100°С в течение 20-30 мин, затем при 180°С в течение 12-16 часов и после промывания подвергают лиофильной сушке.
RU2018137744A 2018-10-25 2018-10-25 Способ получения нанодисперсного магнитоактивного рентгеноконтрастного средства RU2687748C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018137744A RU2687748C1 (ru) 2018-10-25 2018-10-25 Способ получения нанодисперсного магнитоактивного рентгеноконтрастного средства

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018137744A RU2687748C1 (ru) 2018-10-25 2018-10-25 Способ получения нанодисперсного магнитоактивного рентгеноконтрастного средства

Publications (1)

Publication Number Publication Date
RU2687748C1 true RU2687748C1 (ru) 2019-05-16

Family

ID=66578917

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018137744A RU2687748C1 (ru) 2018-10-25 2018-10-25 Способ получения нанодисперсного магнитоактивного рентгеноконтрастного средства

Country Status (1)

Country Link
RU (1) RU2687748C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2777899C1 (ru) * 2018-07-19 2022-08-11 Бекман Каултер, Инк. Магнитные частицы
US11530437B2 (en) 2018-07-19 2022-12-20 Beckman Coulter, Isse. Magnetic particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673554A (en) * 1984-12-18 1987-06-16 Sumitomo Chemical Company, Limited Method of purifying tantalum
RU2497546C1 (ru) * 2012-04-23 2013-11-10 Общество с ограниченной ответственностью "Ланда Фармасьютикалз" Магнитно-резонансное и рентгеновское контрастное средство и способ его получения
RU2639567C1 (ru) * 2016-08-09 2017-12-21 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Способ получения магнитоактивного рентгеноконтрастного средства

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673554A (en) * 1984-12-18 1987-06-16 Sumitomo Chemical Company, Limited Method of purifying tantalum
RU2497546C1 (ru) * 2012-04-23 2013-11-10 Общество с ограниченной ответственностью "Ланда Фармасьютикалз" Магнитно-резонансное и рентгеновское контрастное средство и способ его получения
RU2639567C1 (ru) * 2016-08-09 2017-12-21 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Способ получения магнитоактивного рентгеноконтрастного средства

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Lin HY et al. "Iron oxide/tantalum oxide core-shell magnetic nanoparticle-based microwave-assisted extraction for phosphopeptide enrichment from complex samples for MALDI MS analysis" Anal Bioanal Chem. 2009, 394(8), P. 2129-36. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2777899C1 (ru) * 2018-07-19 2022-08-11 Бекман Каултер, Инк. Магнитные частицы
US11530437B2 (en) 2018-07-19 2022-12-20 Beckman Coulter, Isse. Magnetic particles

Similar Documents

Publication Publication Date Title
Kwon et al. Large‐scale synthesis and medical applications of uniform‐sized metal oxide nanoparticles
Shen et al. Iron oxide nanoparticle based contrast agents for magnetic resonance imaging
DE3751918T2 (de) Biodegradierbares superparamagnetisches material zur verwendung in klinischen anwendungen
KR101642903B1 (ko) 친수성 물질이 코팅된 산화철 나노입자의 제조방법 및 이를 이용하는 자기공명영상 조영제
JP5765520B2 (ja) 磁性粒子含有水分散体の製造方法
JP3337075B2 (ja) 小粒子径水溶性カルボキシ多糖−磁性酸化鉄複合体
EP0525199B2 (en) Composition containing ultrafine particles of magnetic metal oxide
Yang et al. One-step hydrothermal synthesis of highly water-soluble secondary structural Fe3O4 nanoparticles
JPH07500823A (ja) 医療診断イメージング用処理アパタイト粒子
JP5997609B2 (ja) 親水性のα−ヒドロキシホスホン酸コンジュゲートによる水不溶性ナノ粒子の処理、こうして修飾されたナノ粒子、及び造影剤としてのそれの使用
WO1992022586A1 (en) Oxidized composite comprising water-soluble carboxypolysaccharide and magnetic iron oxide
CN106913885B (zh) 一种磁性纳米粒子及其制备方法和应用
EP2833916A1 (en) Magnetic nanoparticles dispersion, its preparation and diagnostic and therapeutic use
CN105412949A (zh) 一种rgd多肽靶向的锌掺杂的四氧化三铁纳米颗粒的制备方法
RU2687748C1 (ru) Способ получения нанодисперсного магнитоактивного рентгеноконтрастного средства
KR102008041B1 (ko) Peg 치환된 알파-히드록시 포스포네이트 셸을 가지는 초상자성 나노입자
RU2419454C1 (ru) Магнитно-резонансное и рентгеновское контрастное средство на основе сложного оксида железа и способ его получения
EP2647391B1 (en) Mri contrast agent containing composite particles
JP2007277131A (ja) 磁気共鳴画像用造影剤
CN104822391A (zh) 磁性纳米粒子分散体、其制备及诊断和治疗用途
WO1990001939A1 (en) Agent for thermotherapy
JP2006347949A (ja) 磁性粒子含有医薬用原薬
CN116942639A (zh) 一种基于外泌体与金属有机框架结构的纳米颗粒的制备方法
CN110478499A (zh) 一种BiOI-蛋白质复合纳米片CT影像探针的制备方法
BR102015013031B1 (pt) Nanopartículas e seu uso como agente de contraste em imagem por ressonância magnética