RU2685762C1 - Способ импульсного нейтрон-нейтронного каротажа - Google Patents

Способ импульсного нейтрон-нейтронного каротажа Download PDF

Info

Publication number
RU2685762C1
RU2685762C1 RU2018102739A RU2018102739A RU2685762C1 RU 2685762 C1 RU2685762 C1 RU 2685762C1 RU 2018102739 A RU2018102739 A RU 2018102739A RU 2018102739 A RU2018102739 A RU 2018102739A RU 2685762 C1 RU2685762 C1 RU 2685762C1
Authority
RU
Russia
Prior art keywords
neutron
rock
time distribution
charge
thermal
Prior art date
Application number
RU2018102739A
Other languages
English (en)
Inventor
Виталий Иванович Микеров
Александр Павлович Кошелев
Амир Мухитдинович Хусаинов
Original Assignee
Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") filed Critical Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа")
Priority to RU2018102739A priority Critical patent/RU2685762C1/ru
Priority to EA201892457A priority patent/EA035972B1/ru
Application granted granted Critical
Publication of RU2685762C1 publication Critical patent/RU2685762C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/04Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging
    • G01V5/08Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays
    • G01V5/10Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays using neutron sources

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Использование: для импульсного нейтрон-нейтронного каротажа. Сущность изобретения заключается в том, что облучают породу импульсным потоком быстрых нейтронов, регистрируют временные распределения потоков тепловых и эпитепловых нейтронов, регистрируют заряд, образованный по крайней мере в одном детекторе тепловых нейтронов потоком падающих на него нейтронов с момента начала нейтронного импульса и до начала следующего нейтронного импульса, дополнительно обеспечивая тем самым регистрацию временного распределения заряда, вызванного быстрыми нейтронами, а также регистрацию временных распределений потоков эпитепловых и тепловых нейтронов при частоте следования регистрируемых событий, приводящей к просчетам в счетном режиме регистрации, сохраняют полученное временное распределение заряда, повторяют процесс регистрации для N≥1 нейтронных импульсов, при этом каждое последующее временное распределение заряда суммируют с сохраненным, сравнивают полученное временное распределение с набором временных распределений из базы данных, заранее рассчитанных для скважинного прибора при различных влажности горной породы, параметрах скважины, промывочной жидкости и аттестованных путем измерения временных распределений заряда данным способом на геофизических моделях горных пород, в базе данных находят временное распределение, соответствующее по критериями сравнения зарегистрированному временному распределению, влажность горной породы, параметры скважины, промывочной жидкости считают совпадающими с влажностью горной породы, параметрами скважины и промывочной жидкости, использованными при расчете временного распределения, соответствующего зарегистрированному временному распределению. Технический результат: повышение точности измерения влажности горной породы путем измерения временного распределения заряда, образованного по крайней мере в одном детекторе тепловых нейтронов, дополнительно обеспечивая тем самым регистрацию временного распределения заряда, вызванного быстрыми нейтронами, а также регистрацию временных распределений потоков эпитепловых и тепловых при частоте следования регистрируемых событий, приводящей к просчетам в счетном режиме регистрации. 3 ил.

Description

Изобретение относится к радиационным способам бесконтактного измерения нейтронно-физических характеристик вещества с помощью нейтронного излучения, а именно методу импульсного нейтрон-нейтронного каротажа.
Импульсный нейтрон-нейтронный каротаж применяют в обсаженных скважинах для литологического расчленения разрезов и выделения коллекторов, выявления водо- и нефтегазонасыщенных пластов, определения положений водонефтяного контакта, определения газожидкостных контактов, оценки пористости пород, количественной оценки начальной, текущей и остаточной нефтенасыщенности, контроля за процессом испытания и освоения скважин («Техническая инструкция по проведению геофизических исследований и работ с приборами на кабеле в нефтяных и газовых скважинах РД 153-39.0-072-01», Москва – 2002).
Известен «Способ определения влажности», при котором измеряемый материал облучают быстрыми нейтронами от источника, регистрируют поток замедленных нейтронов, образующихся в материале, двумя группами детекторов-счетчиков медленных нейтронов, максимумы спектральной чувствительности которых разнесены в пределах диапазона энергий замедляющихся нейтронов, например, при помощи кадмиевого фильтра, измеряют выходные сигналы от каждой из групп детекторов в отсутствии анализируемого материала, а также после поочередной подачи материала с известной влажностью. Патент РФ №2251684; МПК: G01N23/12; 10.05.2005. 2005. Аналог.
Недостатком аналога является ограниченная область применения способа, используемого, в основном, для определенного влажности угля (кокса) и относительно низкая точность измерения влажности горной породы в скважине при наличии в ней кристаллизационной (связанной) воды, поскольку потоки нейтронов на обе группы детекторов определяются общим содержанием воды, а не только водой, содержащейся в поровом пространстве.
Известен «Импульсный нейтронный способ определения влажности материалов», заключающийся в том, что контролируемый материал облучают быстрыми нейтронами с энергией 2,5 МэВ, измеряют поток быстрых нейтронов во время нейтронных импульсов, в промежутках между нейтронными импульсами регистрируют тепловые нейтроны, образующиеся в контролируемом материале, нормируют количество зарегистрированных тепловых нейтронов на поток быстрых нейтронов, определяют влажность контролируемого материала путем сравнения нормированного значения количества зарегистрированных тепловых нейтронов со значениями, полученными из калибровочных измерений с тестовыми образцами. Патент РФ № 2582901, МПК: G01N 23/05. 27.04.2016. Аналог.
Недостатком аналога является относительно низкая точность измерения влажности горной породы в скважине при наличии в ней кристаллизационной (связанной) воды, поскольку поток тепловых нейтронов определяется общим содержанием воды, а не только водой, содержащейся в поровом пространстве. Относительно низкая точность измерения влажности может быть обусловлена также наличием в породе примесей, заметно поглощающих тепловые нейтроны.
Известен «Импульсный нейтронный способ определения влажности материалов», заключающийся в том, что исследуемый материал облучают импульсным потоком быстрых нейтронов, регистрируют временное распределение потока тепловых нейтронов, определяют время от начала нейтронного импульса до наступления максимума потока тепловых нейтронов, регистрируют временное распределение потока эпитепловых нейтронов и определяют среднее время пребывания нейтрона в эпитепловой области. Авторское свидетельство СССР № 1114156; G01N23/02; 23.04.1991. Прототип.
Недостатком прототипа является относительно низкая точность измерения влажности горной породы при частоте следования регистрируемых событий, приводящей к просчетам в счетном режиме регистрации.
Техническим результатом изобретения является повышение точности измерения влажности горной породы, в том числе, при частоте следования регистрируемых событий, приводящей к просчетам в счетном режиме регистрации.
Это достигается путем измерения временного распределения заряда, образованного, по крайней мере, в одном детекторе тепловых нейтронов, дополнительно обеспечивая тем самым регистрацию временного распределения заряда, вызванного быстрыми нейтронами, а также регистрацию временных распределений потоков эпитепловых и тепловых при частоте следования регистрируемых событий, приводящей к просчетам в счетном режиме регистрации.
Технический результат достигается тем, что в способе импульсного нейтрон-нейтронного каротажа, заключающемся в облучении породы импульсным потоком быстрых нейтронов, регистрации временных распределений потоков тепловых и эпитепловых нейтронов, регистрируют заряд, образованный, по крайней мере, в одном детекторе тепловых нейтронов потоком падающих на него нейтронов с момента начала нейтронного импульса и до начала следующего нейтронного импульса, дополнительно обеспечивая тем самым регистрацию временного распределения заряда, вызванного быстрыми нейтронами, а также регистрацию временных распределений потоков эпитепловых и тепловых нейтронов при частоте следования регистрируемых событий, приводящей к просчетам в счетном режиме регистрации, сохраняют полученное временное распределение заряда, повторяют процесс регистрации для N≥1 нейтронных импульсов, при этом каждое последующее временное распределение заряда суммируют с сохраненным, сравнивают полученное временное распределение с набором временных распределений из базы данных, заранее рассчитанных для скважинного прибора при различных влажности горной породы, параметрах скважины, промывочной жидкости и аттестованных путем измерения временных распределений заряда данным способом на геофизических моделях горных пород, в базе данных находят временное распределение, соответствующее по критериями сравнения зарегистрированному временному распределению, влажность горной породы, параметры скважины, промывочной жидкости считают совпадающими с влажностью горной породы, параметрами скважины и промывочной жидкости, использованными при расчете временного распределения, соответствующего зарегистрированному временному распределению.
Сущность изобретения поясняется на Фиг. 1–3 в случае применения одного детектора тепловых нейтронов. В общем случае их может быть несколько.
На Фиг. 1 схематично показаны состав и взаимное расположение основных элементов одного из возможных устройств скважинного прибора, обеспечивающего реализацию предлагаемого способа, где:
1 – охранный корпус,
2 - импульсный источник быстрых нейтронов,
3 – детектор тепловых нейтронов.
На Фиг. 2 показана зависимость от времени удельного энерговыделения в детекторе 3 тепловых нейтронов при использовании в его качестве пропорционального 3Не счетчика и составляющие удельного энерговыделения, рассчитанные для кальцита влажностью (нейтронной пористостью) 14,9% при его облучении 14 МэВ нейтронами с длительностью нейтронного импульса 1 мкс, где:
4 – зависимость полного удельного энерговыделения в детекторе 3,
5 - зависимость удельного энерговыделения в детекторе 3, вызываемого быстрыми нейтронами с энергией 14 МэВ - 40 кэВ,
6 - зависимость удельного энерговыделения в детекторе 3, вызываемого эпитепловыми нейтронами с энергией 40 кэВ – 0,414 эВ,
7 - зависимость удельного энерговыделения в детекторе 3, вызываемого тепловыми нейтронами с энергией менее 0,414 эВ.
На Фиг. 3 показаны рассчитанные зависимости удельного энерговыделения в детекторе 3 тепловых нейтронов при использовании в его качестве пропорционального 3Не счетчика при различной влажности кальцита при его облучении 14 МэВ нейтронами с длительностью нейтронного импульса 1 мкс, где:
8 - зависимость удельного энерговыделения в детекторе 3 для кальцита влажностью 0,8%,
9 - зависимость удельного энерговыделения в детекторе 3 для кальцита влажностью 14,9%,
10 - зависимость удельного энерговыделения в детекторе 3 для кальцита влажностью 36,4%,
11 - зависимость удельного энерговыделения в детекторе 3 для пресной воды.
Скважинное устройство на Фиг. 1 содержит цилиндрический охранный корпус 1 и выполняется из стали толщиной в несколько миллиметров.
Импульсный источник 2 быстрых нейтронов может быть выполнен в виде генератора нейтронов с энергией 2,5 МэВ или 14 МэВ и служит для облучения горной породы импульсами быстрых нейтронов.
Детектор 3 тепловых нейтронов служит для регистрации поступающих на него нейтронов. В качестве детектора 3 может использоваться 3Не пропорциональный счетчик. Детектор 3 может быть выполнены в виде кассеты, содержащей несколько пропорциональных счетчиков. По отношению к импульсному источнику 2 детектор 3 обычно располагается на расстоянии L<15 см соосно с охранным корпусом 1.
Образованный в детекторе 3 заряд пропорционален удельному энерговыделению в детекторе 3 (зависимость 4 на Фиг. 2).
Величина энерговыделения (заряда), возникающего в детекторе 3 под действием быстрых нейтронов, определяется их потоком и средней энергией, передаваемой 3Не за счет упругого рассеяния быстрых нейтронов.
Величина энерговыделения (заряда), возникающего в детекторе 3 под действием эпитепловых и тепловых нейтронов, прямо пропорциональна потоку на него этих нейтронов, поскольку при их захвате ядром 3Не выделяется одна и та же энергия, равная 0,76 Мэв/нейтрон.
Во время импульса источника 2 и некоторое время после него на детектор поступают в основном быстрые нейтроны как непосредственно от источника, так и со стороны окружающего вещества (зависимость 5 на Фиг. 2 для нейтронов с энергией 14 МэВ – 40 кэВ). Из-за замедления быстрых нейтронов в веществе средняя энергия этих нейтронов постоянно уменьшается. Время замедления быстрых нейтронов сильно зависит от нейтронной пористости горной породы и уменьшается с ее увеличением.
Из зависимости 5 видно, что заряд, возникающий в детекторе 3 тепловых нейтронов при t≈ 0,1 мкс от начала нейтронного импульса, может быть использован для мониторирования выхода импульсного источника 2.
Через несколько микросекунд после начала нейтронного импульса на детектор начинают поступать эпитепловые нейтроны (зависимость 6 на Фиг. 2 для нейтронов с энергией 40 кэВ – 0,414 эВ). В случае короткого ~1 мкс нейтронного импульса максимальная величина заряда (потока) достигается примерно через t≈2-3 мкс и затем быстро спадает с постоянной спада не более нескольких десятков микросекунд. Зависимость 6 показывает, что поток при t≈2-3 мкс в основном вызван эпитепловыми нейтронами.
Тепловые нейтроны начинают поступать на детектор через несколько десятков микросекунд после начала нейтронного импульса (зависимость 7 на Фиг. 2 для нейтронов с энергией <0,414 эВ). В случае нейтронного импульса длительностью около 1 мкс поток достигает максимума к моменту времени t~10-20 мкс. Зависимость 7 показывает, что при t>≈20 мкс этот поток в основном вызван тепловыми нейтронами.
Постоянная спада потока тепловых нейтронов на детектор зависит от нейтронной пористости горной породы и практически не превышает 1 мс. Поэтому при частоте повторения импульсов менее 100 Гц к моменту прихода следующего импульса тепловые нейтроны в горной породе вымирают и с приходом следующего импульса процесс полностью повторяется.
В настоящее время для измерения влажности горной породы методом импульсного нейтрон-нейтронного каротажа используются эпитепловые и тепловые нейтроны. Для их регистрации применяются пропорциональные 3Не или 10В счетчики.
Время сбора заряда, образованного в пропорциональном счетчике в результате захвата нейтрона составляет около 1-4 мкс [D. Mazed, S. Mameri, R. Ciolini. Design parameters and technology optimization of 3He-filled proportional counter for thermal neutron detection and spectrometry applications. Radiation Measurements 47 (2012) 577-587]. Соответствующее «мертвое» время для пропорциональных счетчиков составляет <10 мкс [G.P. Manessi. Development of advanced radiation monitors for pulsed neutron fields. PhD thises. (2015) 1-147, p.16]. Указанное мертвое время неизбежно приводит к просчету нейтронов при частоте регистрируемых событий более (5-10) кГц. Такая частота может иметь место при регистрации нейтронов во время сравнительно короткого и мощного нейтронного импульса и некоторое время после него.
«Временной спектр скоростей счета для отечественной низкочастотной аппаратуры сильно искажен просчетами, причем применяемая методика коррекции ограничивается просчетами до 2-кратных, что явно недостаточно. Основным интерпретационным параметром является измеряемый временной декремент спада нейтронов или фотонов, который зависит не только от свойств пласта, но и от условий измерения - конструкции и заполнения скважины, величины зонда. Полученное значение декремента к тому же обычно не обеспечивается оценкой его точности» (С.Г. Бородин. «Глубокая обработка данных импульсного нейтронного каротажа нефтегазовых скважин», автореферат диссертации на соискание ученой степени кандидата физико-математических наук, Москва – 2009).
Предлагаемый способ импульсного нейтрон-нейтронного каротажа обеспечивает регистрацию нейтронов во всем временном интервале с начала нейтронного импульса, в том числе, и при наложении регистрируемых событий. Способ основан на измерении зависимости от времени величины заряда, образуемого в детекторе 3 тепловых нейтронов нейтронами различной энергии, как во время нейтронных импульсов, так и между ними с помощью усилителя-интегратора.
Усилитель-интегратор, как в случае высокой частоты следования регистрируемых событий, так и в случае их частичного наложения работает в зарядовом режиме, в котором заряд, собранный с выхода счетчика, пропорционален числу зарегистрированных нейтронов и выделяющейся при этом энергии [I. Rios, J. Gonzalez, and R.E. Mayer. Total fluence influence on the detected magnitude of neutron burst using proportional detectors. Radiation Measurement 53-54 (2013) 31-37; J. Moreno, L. Birstein, R.E. Mayer et al. System for measurement of low yield neutron pulses from D-D fusion reactions based upon a 3He proportional counter. Meas. Sci. Technol. 19 (2008) IOPScience 087002 (5pp)].
Измеряемая зависимость сигнала нейтронного детектора от времени, начиная с момента излучения быстрых нейтронов, позволяет дифференцировать процессы замедления и поглощения нейтронов в геофизической среде и существенно повысить контрастность выделения пластов, насыщенных продуктивными углеводородами.
Способ реализуют следующим образом.
Размещают скважинный прибор в скважине. Включают импульсный источник 2 на генерацию импульсов быстрых нейтронов. Быстрые нейтроны импульсного источника 2, а также быстрые нейтроны, рассеявшиеся в окружающей среде во время нейтронного импульса, образовавшиеся со временем эпитепловые и тепловые нейтроны частично попадают в детектор 3 тепловых нейтронов, сигнал на выходе которого определяется количеством взаимодействий тех или иных нейтронов с веществом внутри детектора 3 в соответствующие моменты времени и выделяющейся при этом энергией. Зависимость сигнала детектора 3 от времени при различной влажности горной породы аналогична зависимостям 8-11.
Сигнал, поступающий с выхода детектора 3 усиливается с помощью электронной схемы (на Фиг. 1 не показана), оцифровывается и передается в наземную аппаратуру. В общем случае в состав электронной схемы входит усилитель-интегратор, процессор и блок телеметрии. В наземной аппаратуре временная зависимость сигнала сохраняется в памяти персонального компьютера.
Процесс повторяется для N≥1 нейтронных импульсов, при этом каждую последующую зависимость сигнала от времени для детектора 3 суммируют с предыдущей. Число нейтронных импульсов N определяется заданной точностью измерений.
При достаточно низком потоке нейтронов на детектор 3 и/или достаточно больших временах после нейтронного импульса регистрация временной зависимости потока нейтронов может также осуществляться в счетном режиме.
В наземной аппаратуре полученную временную зависимость сравнивают с набором зависимостей из базы данных, рассчитанных заранее для горной породы различной влажности, при различных параметрах скважины и обсадной колонны, а также промывочной жидкости и аттестованных путем измерений указанных зависимостей данным способом на геофизических моделях горных пород.
Для сравнения могут, например, использоваться методы корреляционного анализа. Степень соответствия экспериментальной зависимости, полученной с детектора 3, расчетным зависимостям может определяться, например, посредством выборочного коэффициента ранговой корреляции Спирмена (А.К. Чернышов. Использование методов математической статистики для анализа сигналов, полученных экспериментальным путем, с небольшим количеством выборок, http://hi-tech.asu.edu.ru; М.А. Харченко. Корреляционный анализ. Учебное пособие. Издательско-полиграфический центр Воронежского государственного университета, 2008 г.).
Из базы данных выбирают расчетную зависимость наиболее близкую, в соответствии с применяемыми критериями оценки, к зависимости, зарегистрированной детектором 3. Влажность горной породы, а также параметры скважины принимают совпадающими с влажностью и параметрами, использованными при получении расчетной зависимости.
Таким образом, заявленный технический результат: повышение точности измерения влажности горной породы, в том числе, при частоте следования регистрируемых событий, приводящей к просчетам в счетном режиме регистрации, достигается с помощью импульсного источника 2 быстрых нейтронов и детектора 3 тепловых нейтронов, расположенных в охранном корпусе 1 скважинного прибора, путем измерения зависимости от времени сигнала, возникающего, по крайней мере, в одном детекторе тепловых нейтронов, начиная с момента начала нейтронного импульса источника 2 быстрых нейтронов и до следующего импульса, обеспечивая измерение дополнительно, помимо потока эпитепловых 6 и тепловых 7 нейтронов, также потока быстрых 5 нейтронов.
Полученную зависимость сигнала детектора 3 от времени, аналогичную зависимостям 8-11, сравнивают с набором зависимостей из базы данных, заранее рассчитанных для скважинного прибора при различной влажности горной породы, параметрах скважины, промывочной жидкости и аттестованных путем измерений указанных временных зависимостей данным способом на геофизических моделях горных пород, в базе данных находят зависимость, соответствующую по критериями сравнения зарегистрированному временному распределению, влажность горной породы, параметры скважины, промывочной жидкости считают совпадающими с влажностью горной породы, параметрами скважины и промывочной жидкости, использованными при расчете временного распределения, соответствующего зарегистрированному временному распределению.

Claims (1)

  1. Способ импульсного нейтрон-нейтронного каротажа, заключающийся в облучении породы импульсным потоком быстрых нейтронов, регистрации временных распределений потоков тепловых и эпитепловых нейтронов, отличающийся тем, что регистрируют заряд, образованный по крайней мере в одном детекторе тепловых нейтронов потоком падающих на него нейтронов с момента начала нейтронного импульса и до начала следующего нейтронного импульса, дополнительно обеспечивая тем самым регистрацию временного распределения заряда, вызванного быстрыми нейтронами, а также регистрацию временных распределений потоков эпитепловых и тепловых нейтронов при частоте следования регистрируемых событий, приводящей к просчетам в счетном режиме регистрации, сохраняют полученное временное распределение заряда, повторяют процесс регистрации для N≥1 нейтронных импульсов, при этом каждое последующее временное распределение заряда суммируют с сохраненным, сравнивают полученное временное распределение с набором временных распределений из базы данных, заранее рассчитанных для скважинного прибора при различных влажности горной породы, параметрах скважины, промывочной жидкости и аттестованных путем измерения временных распределений заряда данным способом на геофизических моделях горных пород, в базе данных находят временное распределение, соответствующее по критериями сравнения зарегистрированному временному распределению, влажность горной породы, параметры скважины, промывочной жидкости считают совпадающими с влажностью горной породы, параметрами скважины и промывочной жидкости, использованными при расчете временного распределения, соответствующего зарегистрированному временному распределению.
RU2018102739A 2018-01-24 2018-01-24 Способ импульсного нейтрон-нейтронного каротажа RU2685762C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2018102739A RU2685762C1 (ru) 2018-01-24 2018-01-24 Способ импульсного нейтрон-нейтронного каротажа
EA201892457A EA035972B1 (ru) 2018-01-24 2018-11-27 Способ импульсного нейтрон-нейтронного каротажа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018102739A RU2685762C1 (ru) 2018-01-24 2018-01-24 Способ импульсного нейтрон-нейтронного каротажа

Publications (1)

Publication Number Publication Date
RU2685762C1 true RU2685762C1 (ru) 2019-04-23

Family

ID=66314643

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018102739A RU2685762C1 (ru) 2018-01-24 2018-01-24 Способ импульсного нейтрон-нейтронного каротажа

Country Status (2)

Country Link
EA (1) EA035972B1 (ru)
RU (1) RU2685762C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1340332A1 (ru) * 1985-07-09 1990-09-30 Особое проектно-конструкторское бюро Научно-производственного объединения "Черметавтоматика" Способ измерени влажности сыпучих материалов
SU1114156A1 (ru) * 1982-10-15 1991-04-23 Особое проектно-конструкторское бюро Научно-производственного объединения "Черметавтоматика" Импульсный нейтронный способ определени влажности материалов
RU2251684C1 (ru) * 2003-08-11 2005-05-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт технической физики и автоматизации" (ФГУП ВНИИТФА) Способ определения влажности
JP2011027559A (ja) * 2009-07-27 2011-02-10 Hitachi Engineering & Services Co Ltd 水分測定装置及び水分測定方法
RU2582901C1 (ru) * 2015-03-27 2016-04-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Импульсный нейтронный способ определения влажности материалов

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3602713A (en) * 1970-07-08 1971-08-31 Jacob Kastner Passive moisture meter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1114156A1 (ru) * 1982-10-15 1991-04-23 Особое проектно-конструкторское бюро Научно-производственного объединения "Черметавтоматика" Импульсный нейтронный способ определени влажности материалов
SU1340332A1 (ru) * 1985-07-09 1990-09-30 Особое проектно-конструкторское бюро Научно-производственного объединения "Черметавтоматика" Способ измерени влажности сыпучих материалов
RU2251684C1 (ru) * 2003-08-11 2005-05-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт технической физики и автоматизации" (ФГУП ВНИИТФА) Способ определения влажности
JP2011027559A (ja) * 2009-07-27 2011-02-10 Hitachi Engineering & Services Co Ltd 水分測定装置及び水分測定方法
RU2582901C1 (ru) * 2015-03-27 2016-04-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Импульсный нейтронный способ определения влажности материалов

Also Published As

Publication number Publication date
EA201892457A3 (ru) 2019-08-30
EA201892457A2 (ru) 2019-07-31
EA035972B1 (ru) 2020-09-08

Similar Documents

Publication Publication Date Title
RU2199010C2 (ru) Способ и устройство для измерения характеристик скважин и свойств образований
CA1193759A (en) Method and apparatus for determining the density characteristics of underground earth formations
US9477006B2 (en) Pulsed neutron well logging method for determining multiple formation parameters
RU127487U1 (ru) Комплексная спектрометрическая аппаратура ядерного каротажа
US20080087837A1 (en) Non-invasive method for measuring soil water content or snow water equivalent depth using cosmic-ray neutrons
NO343322B1 (no) Fremgangsmåte og apparat for å estimere kildebergartinnhold av en jordformasjon
US4350887A (en) Method of assaying uranium with prompt fission and thermal neutron borehole logging adjusted by borehole physical characteristics
RU2397513C1 (ru) Способ нейтронного гамма-каротажа и устройство для его осуществления
EP0387449B1 (en) Pulsed neutron porosity logging
US5521378A (en) Method and apparatus for gamma ray logging of underground formations
US20020150194A1 (en) Method and device for non-invasive soil carbon content and distribution measurements
RU2351962C1 (ru) Способ оценки насыщения коллектора с использованием генератора нейтронов и спектрометрической регистрации гамма-излучения
RU2685762C1 (ru) Способ импульсного нейтрон-нейтронного каротажа
US11402338B2 (en) System and method of using energy correlated timing spectra to locate subsurface objects
AU2023200483B2 (en) Neutron Time Of Flight Wellbore Logging
RU2582901C1 (ru) Импульсный нейтронный способ определения влажности материалов
RU2690095C1 (ru) Устройство для измерения нейтронной пористости
CN104634795A (zh) 一种可有效检测深部土体重金属元素的环境孔压探头
RU2578050C1 (ru) Скважинное устройство с двухсторонним расположением измерительных зондов
RU2254597C2 (ru) Способ импульсного нейтронного каротажа и устройство для его осуществления
RU2073895C1 (ru) Способ нейтронного активационного каротажа и устройство для его осуществления
Flaska et al. Pulse-shape discrimination for identification of neutron sources using the BC-501A liquid scintillator
RU152464U1 (ru) Устройство для измерения влажности материала
Wang et al. A novel pulsed neutron uranium logging instrument with two epithermal neutron detectors
Jolie et al. Diffuse degassing measurements as a geochemical exploration tool: a case study from the Brady’s geothermal system (Nevada, USA)