RU2684235C2 - Полиэпитопная противоопухолевая вакцинная конструкция, содержащая эпитопы опухоль-ассоциированных антигенов, фармацевтическая композиция и ее применение для стимуляции специфического противоопухолевого иммунного ответа - Google Patents
Полиэпитопная противоопухолевая вакцинная конструкция, содержащая эпитопы опухоль-ассоциированных антигенов, фармацевтическая композиция и ее применение для стимуляции специфического противоопухолевого иммунного ответа Download PDFInfo
- Publication number
- RU2684235C2 RU2684235C2 RU2016146939A RU2016146939A RU2684235C2 RU 2684235 C2 RU2684235 C2 RU 2684235C2 RU 2016146939 A RU2016146939 A RU 2016146939A RU 2016146939 A RU2016146939 A RU 2016146939A RU 2684235 C2 RU2684235 C2 RU 2684235C2
- Authority
- RU
- Russia
- Prior art keywords
- seq
- tumor
- polyepitope
- terminus
- constructs
- Prior art date
Links
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 75
- 239000000427 antigen Substances 0.000 title claims abstract description 75
- 108091007433 antigens Proteins 0.000 title claims abstract description 75
- 102000036639 antigens Human genes 0.000 title claims abstract description 75
- 230000004936 stimulating effect Effects 0.000 title claims description 6
- 229940022399 cancer vaccine Drugs 0.000 title description 5
- 230000005975 antitumor immune response Effects 0.000 title description 2
- 239000008194 pharmaceutical composition Substances 0.000 title 1
- 229960005486 vaccine Drugs 0.000 claims abstract description 46
- 201000011510 cancer Diseases 0.000 claims abstract description 37
- 230000002163 immunogen Effects 0.000 claims abstract description 24
- 230000000259 anti-tumor effect Effects 0.000 claims description 32
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 26
- 108090000623 proteins and genes Proteins 0.000 claims description 26
- 230000004044 response Effects 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 20
- 102000004169 proteins and genes Human genes 0.000 claims description 20
- 108010075704 HLA-A Antigens Proteins 0.000 claims description 19
- 230000006698 induction Effects 0.000 claims description 19
- 102000039446 nucleic acids Human genes 0.000 claims description 15
- 108020004707 nucleic acids Proteins 0.000 claims description 15
- 150000007523 nucleic acids Chemical class 0.000 claims description 15
- 206010006187 Breast cancer Diseases 0.000 claims description 12
- 208000026310 Breast neoplasm Diseases 0.000 claims description 12
- 208000002154 non-small cell lung carcinoma Diseases 0.000 claims description 12
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 claims description 12
- 206010009944 Colon cancer Diseases 0.000 claims description 11
- 208000001333 Colorectal Neoplasms Diseases 0.000 claims description 11
- 108090000848 Ubiquitin Proteins 0.000 claims description 10
- 102000044159 Ubiquitin Human genes 0.000 claims description 10
- 241000124008 Mammalia Species 0.000 claims description 8
- 108010076504 Protein Sorting Signals Proteins 0.000 claims description 3
- 210000004698 lymphocyte Anatomy 0.000 claims description 3
- 101001023379 Homo sapiens Lysosome-associated membrane glycoprotein 1 Proteins 0.000 claims description 2
- 210000004900 c-terminal fragment Anatomy 0.000 claims description 2
- 102000053262 human LAMP1 Human genes 0.000 claims description 2
- 102000011786 HLA-A Antigens Human genes 0.000 claims 5
- 125000006850 spacer group Chemical group 0.000 abstract description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract 1
- 230000000694 effects Effects 0.000 abstract 1
- 230000002265 prevention Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 238000002560 therapeutic procedure Methods 0.000 abstract 1
- 210000004443 dendritic cell Anatomy 0.000 description 34
- 210000004027 cell Anatomy 0.000 description 22
- 108090000765 processed proteins & peptides Proteins 0.000 description 20
- 102100028972 HLA class I histocompatibility antigen, A alpha chain Human genes 0.000 description 15
- 102000004196 processed proteins & peptides Human genes 0.000 description 14
- -1 hMena Proteins 0.000 description 12
- 210000005087 mononuclear cell Anatomy 0.000 description 12
- 108020004414 DNA Proteins 0.000 description 11
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 11
- 210000004881 tumor cell Anatomy 0.000 description 11
- 229940021995 DNA vaccine Drugs 0.000 description 10
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 10
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 10
- 230000001472 cytotoxic effect Effects 0.000 description 9
- 238000013461 design Methods 0.000 description 9
- 230000028993 immune response Effects 0.000 description 9
- 239000013612 plasmid Substances 0.000 description 9
- 108010041986 DNA Vaccines Proteins 0.000 description 8
- 230000000890 antigenic effect Effects 0.000 description 8
- 231100000433 cytotoxic Toxicity 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 102100039361 Chondrosarcoma-associated gene 2/3 protein Human genes 0.000 description 7
- 101000745414 Homo sapiens Chondrosarcoma-associated gene 2/3 protein Proteins 0.000 description 7
- 102100034256 Mucin-1 Human genes 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 238000011282 treatment Methods 0.000 description 7
- 210000000612 antigen-presenting cell Anatomy 0.000 description 6
- 238000009169 immunotherapy Methods 0.000 description 6
- BJHCYTJNPVGSBZ-YXSASFKJSA-N 1-[4-[6-amino-5-[(Z)-methoxyiminomethyl]pyrimidin-4-yl]oxy-2-chlorophenyl]-3-ethylurea Chemical compound CCNC(=O)Nc1ccc(Oc2ncnc(N)c2\C=N/OC)cc1Cl BJHCYTJNPVGSBZ-YXSASFKJSA-N 0.000 description 5
- 102000018651 Epithelial Cell Adhesion Molecule Human genes 0.000 description 5
- 108010066687 Epithelial Cell Adhesion Molecule Proteins 0.000 description 5
- 101001133056 Homo sapiens Mucin-1 Proteins 0.000 description 5
- 108010053099 Vascular Endothelial Growth Factor Receptor-2 Proteins 0.000 description 5
- 102100033177 Vascular endothelial growth factor receptor 2 Human genes 0.000 description 5
- SSOORFWOBGFTHL-OTEJMHTDSA-N (4S)-5-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[2-[(2S)-2-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S,3S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-5-carbamimidamido-1-[[(2S)-5-carbamimidamido-1-[[(1S)-4-carbamimidamido-1-carboxybutyl]amino]-1-oxopentan-2-yl]amino]-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-1-oxohexan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]carbamoyl]pyrrolidin-1-yl]-2-oxoethyl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-(1H-imidazol-4-yl)-1-oxopropan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-4-[[(2S)-2-[[(2S)-2-[[(2S)-2,6-diaminohexanoyl]amino]-3-methylbutanoyl]amino]propanoyl]amino]-5-oxopentanoic acid Chemical compound CC[C@H](C)[C@H](NC(=O)[C@@H](NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H]1CCCN1C(=O)CNC(=O)[C@H](Cc1c[nH]c2ccccc12)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](Cc1ccccc1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](Cc1ccccc1)NC(=O)[C@H](Cc1c[nH]cn1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@@H](N)CCCCN)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O SSOORFWOBGFTHL-OTEJMHTDSA-N 0.000 description 4
- 102100023003 Ankyrin repeat domain-containing protein 30A Human genes 0.000 description 4
- 102000030431 Asparaginyl endopeptidase Human genes 0.000 description 4
- 102100021663 Baculoviral IAP repeat-containing protein 5 Human genes 0.000 description 4
- 102100025570 Cancer/testis antigen 1 Human genes 0.000 description 4
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 description 4
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 4
- 102000003817 Fos-related antigen 1 Human genes 0.000 description 4
- 108090000123 Fos-related antigen 1 Proteins 0.000 description 4
- 101710088083 Glomulin Proteins 0.000 description 4
- 101000757191 Homo sapiens Ankyrin repeat domain-containing protein 30A Proteins 0.000 description 4
- 101000856237 Homo sapiens Cancer/testis antigen 1 Proteins 0.000 description 4
- 101000914324 Homo sapiens Carcinoembryonic antigen-related cell adhesion molecule 5 Proteins 0.000 description 4
- 101000914321 Homo sapiens Carcinoembryonic antigen-related cell adhesion molecule 7 Proteins 0.000 description 4
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 description 4
- 101000617725 Homo sapiens Pregnancy-specific beta-1-glycoprotein 2 Proteins 0.000 description 4
- 101000687905 Homo sapiens Transcription factor SOX-2 Proteins 0.000 description 4
- 101000801433 Homo sapiens Trophoblast glycoprotein Proteins 0.000 description 4
- 102000043129 MHC class I family Human genes 0.000 description 4
- 108091054437 MHC class I family Proteins 0.000 description 4
- 102000036673 PRAME Human genes 0.000 description 4
- 108060006580 PRAME Proteins 0.000 description 4
- 102100023832 Prolyl endopeptidase FAP Human genes 0.000 description 4
- 102000004245 Proteasome Endopeptidase Complex Human genes 0.000 description 4
- 108090000708 Proteasome Endopeptidase Complex Proteins 0.000 description 4
- 108010002687 Survivin Proteins 0.000 description 4
- 102100024270 Transcription factor SOX-2 Human genes 0.000 description 4
- 102100033579 Trophoblast glycoprotein Human genes 0.000 description 4
- 108010053096 Vascular Endothelial Growth Factor Receptor-1 Proteins 0.000 description 4
- 102100033178 Vascular endothelial growth factor receptor 1 Human genes 0.000 description 4
- 125000000539 amino acid group Chemical group 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 108010055066 asparaginylendopeptidase Proteins 0.000 description 4
- 230000007402 cytotoxic response Effects 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 230000001024 immunotherapeutic effect Effects 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- 102000005727 Mammaglobin A Human genes 0.000 description 3
- 108010031030 Mammaglobin A Proteins 0.000 description 3
- 206010027476 Metastases Diseases 0.000 description 3
- 108700005078 Synthetic Genes Proteins 0.000 description 3
- 230000024932 T cell mediated immunity Effects 0.000 description 3
- 108010017842 Telomerase Proteins 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000001093 anti-cancer Effects 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 210000000987 immune system Anatomy 0.000 description 3
- 230000005847 immunogenicity Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 229920001184 polypeptide Polymers 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 238000001890 transfection Methods 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- 102100030346 Antigen peptide transporter 1 Human genes 0.000 description 2
- 102100030343 Antigen peptide transporter 2 Human genes 0.000 description 2
- 102000000820 Enterotoxin Receptors Human genes 0.000 description 2
- 108010001687 Enterotoxin Receptors Proteins 0.000 description 2
- 108010023335 Member 2 Subfamily B ATP Binding Cassette Transporter Proteins 0.000 description 2
- 108010008707 Mucin-1 Proteins 0.000 description 2
- 108010033276 Peptide Fragments Proteins 0.000 description 2
- 102000007079 Peptide Fragments Human genes 0.000 description 2
- 206010060862 Prostate cancer Diseases 0.000 description 2
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 2
- 230000005867 T cell response Effects 0.000 description 2
- 101800000849 Tachykinin-associated peptide 2 Proteins 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000001464 adherent effect Effects 0.000 description 2
- 230000030741 antigen processing and presentation Effects 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000003013 cytotoxicity Effects 0.000 description 2
- 231100000135 cytotoxicity Toxicity 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- 210000003162 effector t lymphocyte Anatomy 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 102000054766 genetic haplotypes Human genes 0.000 description 2
- 230000003308 immunostimulating effect Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- 230000001394 metastastic effect Effects 0.000 description 2
- 206010061289 metastatic neoplasm Diseases 0.000 description 2
- 238000011275 oncology therapy Methods 0.000 description 2
- 230000002018 overexpression Effects 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 238000012913 prioritisation Methods 0.000 description 2
- 229940034080 provenge Drugs 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 210000002345 respiratory system Anatomy 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- 125000001417 5'-guanylyl group Chemical group C=12N=C(N([H])[H])N([H])C(=O)C=1N=C([H])N2[C@@]1([H])[C@@](O[H])([H])[C@@](O[H])([H])[C@](C(OP(=O)(O[H])[*])([H])[H])([H])O1 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 101150029707 ERBB2 gene Proteins 0.000 description 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 1
- 102100027627 Follicle-stimulating hormone receptor Human genes 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000862396 Homo sapiens Follicle-stimulating hormone receptor Proteins 0.000 description 1
- 101000692455 Homo sapiens Platelet-derived growth factor receptor beta Proteins 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 1
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 1
- 102000043131 MHC class II family Human genes 0.000 description 1
- 108091054438 MHC class II family Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 102100026547 Platelet-derived growth factor receptor beta Human genes 0.000 description 1
- 108010001267 Protein Subunits Proteins 0.000 description 1
- 102000002067 Protein Subunits Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 102000040856 WT1 Human genes 0.000 description 1
- 108700020467 WT1 Proteins 0.000 description 1
- 101150084041 WT1 gene Proteins 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 150000001413 amino acids Chemical group 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 230000006023 anti-tumor response Effects 0.000 description 1
- 238000011319 anticancer therapy Methods 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 201000008274 breast adenocarcinoma Diseases 0.000 description 1
- 238000002619 cancer immunotherapy Methods 0.000 description 1
- 238000009566 cancer vaccine Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 238000002659 cell therapy Methods 0.000 description 1
- 229940030156 cell vaccine Drugs 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000003636 conditioned culture medium Substances 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 description 1
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 description 1
- 201000004101 esophageal cancer Diseases 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 229960002518 gentamicin Drugs 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 230000008348 humoral response Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 210000001821 langerhans cell Anatomy 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012737 microarray-based gene expression Methods 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 238000012243 multiplex automated genomic engineering Methods 0.000 description 1
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 108010091748 peptide A Proteins 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 102000027426 receptor tyrosine kinases Human genes 0.000 description 1
- 108091008598 receptor tyrosine kinases Proteins 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000003153 stable transfection Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229940022511 therapeutic cancer vaccine Drugs 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000003146 transient transfection Methods 0.000 description 1
- 238000013520 translational research Methods 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 230000037455 tumor specific immune response Effects 0.000 description 1
- 210000004981 tumor-associated macrophage Anatomy 0.000 description 1
- 238000002255 vaccination Methods 0.000 description 1
- 210000001215 vagina Anatomy 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K19/00—Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/62—DNA sequences coding for fusion proteins
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pharmacology & Pharmacy (AREA)
- Gastroenterology & Hepatology (AREA)
- Veterinary Medicine (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Wood Science & Technology (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Toxicology (AREA)
- Immunology (AREA)
- Epidemiology (AREA)
- Peptides Or Proteins (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Изобретение относится к области биохимии. Предложены иммуногенные полиэпитопные вакцинные конструкции, содержащие эпитопы опухоль-ассоциированных антигенов - ЦТЛ-эпитопы и Т-хелперные эпитопы - и оптимизированные спейсерные последовательности. Изобретение может быть использовано для профилактики и терапии раковых заболеваний. 10 н. и 3 з.п. ф-лы, 9 ил., 1 пр.
Description
Изобретение относится к области биотехнологии, а именно - к новым иммуногенным полиэпитопным вакцинным конструкциям, содержащим эпитопы опухоль-ассоциированных антигенов (ЦТЛ-эпитопы и/или Т-хелперные эпитопы) и оптимизированные спейсерные последовательности.
Изобретение может быть использовано для индивидуальной профилактики и терапии раковых заболеваний, в частности, для лечения больных различными эпителиальными формами злокачественных новообразований, в том числе раком молочной железы, колоректальным раком, немелкоклеточным раком легкого и другими видами рака, за счет индукции антиген-специфического иммунного ответа с применением аутологичных дендритных клеток, трансфицированных ДНК-вакцинными конструкциями, кодирующими полиэпитопные иммуногены, содержащие антигенные детерминанты, специфичные для опухоль-ассоциированных антигенов HER-2, mammaglobin-A, NY-BR-1, hMena, WT1, теломераза hTERT, survivin, р53, MUC1, MAGE-A10, NY-ESO-1, MAGE-А3, PRAME, ЕрСАМ, СЕА, GuanylylCyclase С, 5Т4, Legumain, VEGFR-1, VEGFR-2, FAP, Fos-related antigen-1, Brachyury, SOX2, Snail1, Snail2.
Перспективным подходом к лечению рака является активная иммунотерапия, которая в настоящее время представляется неотъемлемой частью современной клинической практики. Поскольку главная цель иммунотерапии при онкологии заключается в обеспечении сильного и устойчивого опухолеспецифического иммунного ответа, достижение подобных результатов возможно через стимуляцию CD4+ и CD8+ Т-клеток [Pardoll and Topalian, 1998; Hungetal., 1998; Marzoetal., 2000; Qin and Blankenstein, 2000]. CD8(+) цитотоксические Т-лимфоциты (ЦТЛ) являются главными эффекторными клетками противоракового иммунного ответа, образование которых зависит от подходящего антигена-мишени и эффективной презентации данного антигена иммунной системе пациента с участием антигенпрезентирующих клеток (АПК). Дендритные клетки являются наиболее эффективными АПК и единственными клетками, способными представлять новые антигены неактивированным Т-клеткам. Поэтому применение аутологичных дендритных клеток, трансфицированных уникальными ДНК-вакцинными конструкциями, кодирующими искусственные полиэпитопные белки-иммуногены, представляет собой хороший инструмент для презентации антигенов иммунной системе пациента.
В практику лечения онкозаболеваний введен препарат против рака простаты, основанный на описанном выше подходе. Это - первая в истории медицины лечебная аутологичная противораковая вакцина Provenge компании Dendreon, одобренная Управлением по контролю за качеством пищевых продуктов и лекарственных препаратов США (Food and Drug Administration, FDA) в марте 2010 г. Вакцина Provenge основана на использовании одного конкретного белка, гиперэкспрессирующегося в клетках опухоли. Фактически почти любой белок, гиперэкспрессирующийся в раковой клетке, может служить подходящей мишенью. Сейчас множество групп исследователей занимаются разработкой терапевтических противораковых вакцин на базе различных ассоциированных с РМЖ антигенов, например, такого, как белок HER-2/neu. В качестве антигенов в них используются фрагменты как внеклеточной, так и внутриклеточной частей белка. В состав некоторых вакцин входил единственный пептид Е75 (369-377) (Mittendorfetal., 2008), другие содержали различные пептиды из HER-2/neu (LiY. etal., 2009). Клинические испытания различных конструкций для индукции ЦТЛ-ответа на базе HER-2/neu показали их низкую токсичность и отсутствие аутоиммунных реакций, при этом в ряде случаев развивались HER2-специфичные клеточный и гуморальный ответы (Disis M.L etal., 1998, Salazar L.G. etal., 2003; Disis M.L. etal., 2004). ДНК-вакцинные конструкции, содержащие эпитопы других антигенов (АГ), также проходят стадии доклинических и клинических испытаний.
Однако, несмотря на некоторые описанные выше успехи, до сих пор не существует одобренной для применения вакцины против РМЖ и большинства других видов рака. Поэтому актуальной задачей является разработка высокоспецифичного противоопухолевого иммуногена и вакцины на его основе, способной эффективно индуцировать цитотоксические Т-лимфоциты (ЦТЛ) и таким образом обеспечивать эффективный противоопухолевый иммунный ответ.
В настоящее время известно большое количество поли-ЦТЛ-эпитопных вакцинных конструкций, содержащих обычно до десятка или несколько более эпитопов.
Известна полиэпитопная конструкция для иммунотерапии колоректального рака, содержащая 11 эпитопов из нескольких опухоль-ассоциированных антигенов колоректального рака (RU 2507265, C12N 15/63, 2014). Была показана иммуногенность конструкции, а также активация противоопухолевых цитотоксических клеток, необходимых для уничтожения опухолевых клеток. Это в очередной раз подтверждает применимость полиэпитопных вакцинных конструкций для иммунотерапии онкологических заболеваний.
В описанной полиэпитопной конструкции Т-хелперные эпитопы и эпитопы ЦТЛ находятся в одной конструкции, что затрудняет эффективную экспрессию как ЦТЛ-эпитопов, так и Т-хелперных эпитопов.
Известны подходы по разработке полиэпитопных конструкций для иммунотерапии немелкоклеточного рака легкого (Identification of HLA-A*0201-restricted Cytotoxic Т Lymphocyte Epitope from TRAG-3Antigen, Zhu et al., ClinCancerRes 2003, Mai, 1). В работе определен HLA-А2.1-рестриктированный ЦТЛ эпитоп антигена TRAG-3, который экспрессируется в 54% клеток карциномы НМРЛ. Гаплотип HLA-A2.1 выбран потому, что HLA-А2.1-экспрессирующие индивидуумы составляют доминирующую долю популяции. Показано, что ЦТЛ, индуцированные пептидом 58-66 антигена TRAG-3, лизирует клетки LB373-MEL, экспрессирующие и TRAG-3 и HLA-А2.1. То есть пептид TRAG-3(58-66) (ILLRDAGLV) является HLA-A2.1-рестриктированным ЦТЛ-эпитопом, способным индуцировать TRAG-3-специфические ЦТЛ in vitro. Это делает его пригодным для специфической иммунотерапии НМРЛ.
Однако использование одного или даже десяти эпитопов - это недостаточно для вызова эффективного иммунотерапевтического ответа. Поэтому здесь существует вопрос увеличения числа использованных эпитопов из по возможности большего количества опухоль-ассоциированных антигенов.
Известна полиэпитопная конструкция, принятая за прототип, применяемая в способе стимуляции цитотоксического иммунного ответа против клеток опухолевой линии аденокарциномы молочной железы, экспрессирующих специфические антигены, с помощью дендритных клеток, трансфицированных полиэпитопной ДНК-конструкцией (RU 2520091, C12N 5/0784, 2014).Последовательность полиэпитопной конструкции приведена в международной заявке «Полиэпитопные конструкции и методы их получения и использования» (WO 2011110953, C07K 14/435, 2011).Генерация антигенспецифических клеток осуществлялось путем магнитной трансфекции полученных зрелых ДК полиэпитопными конструкциями, в том числе HLA-А*0201-специфической полиэпитопной конструкцией, содержащие эпитопы опухоль-ассоциированного антигена Her2. При оценке эффективности индуцированного противоопухолевого цитотоксического ответа, например, против клеток рака молочной железы были достигнуты значения 13,2%.
Вышеописанная конструкция содержит эпитопы только из белка HER2, что несколько ограничивает эффективность противораковой терапии. Использование большего количества эпитопов из разных опухоль-ассоциированных антигенов позволяет преодолеть возможное отсутствие гиперэкспрессии отдельного антигена в раковых клетках, а также преодолеть гетерогенность экспрессии антигенов различными раковыми клетками внутри одной опухоли.
Все вышеописанные полиэпитопные конструкции предназначены для стимуляции цитотоксического иммунного ответа одного конкретного вида рака и их эффективность ограничена.
Задачей изобретения является создание полиэпитопных конструкций, нацеленных на терапию нескольких видов рака, а именно рака молочной железы (РМЖ), колоректального рака (КРР), немелкоклеточного рака легкого (НМРЛ), что оказывает более эффективное терапевтическое действие, а также способов применения этих композиций.
Поставленная задача решается созданием противоопухолевых вакцинных конструкций путем выбора наилучших антигенов с наибольшей иммунотерапевтической эффективностью, на основе отбора ЦТЛ-эпитопов, специфичных для гаплотипа HLA-А*0201 и затем, объединение ЦТЛ-эпитопов в единую последовательность с учетом данных о процессинге и презентации АГ для чего предложены:
Полиэпитопная противоопухолевая вакцинная конструкция (SEQ ID NO 1), обеспечивающая индукцию ответа CD8+ Т-лимфоцитов, представляющая собой искусственный полиэпитопный белок-иммуноген, содержащий множественные рестриктированные HLA-A*0201 ЦТЛ-эпитопы, выбранные из опухоль-ассоциированных антигенов, слитый с N-конца с убиквитином, содержащий на С-конце Т-хелперный эпитоп PADRE, приведенная на фиг. 1.
Полиэпитопная противоопухолевая вакцинная конструкция (SEQ ID NO 2), обеспечивающая индукцию ответа CD8+ Т-лимфоцитов, представляющая собой искусственный полиэпитопный белок-иммуноген, содержащий множественные рестриктированные HLA-A*0201 ЦТЛ-эпитопы, выбранные из опухоль-ассоциированных антигенов, слитый с N-конца с убиквитином, содержащий на С-конце Т-хелперный эпитоп PADRE, приведенная на фиг. 2.
Полиэпитопная противоопухолевая вакцинная конструкция (SEQ ID NO 3), обеспечивающая индукцию ответа CD8+ Т-лимфоцитов, представляющая собой искусственный полиэпитопный белок-иммуноген, содержащий множественные рестриктированные HLA-А*0201 ЦТЛ-эпитопы, выбранные из опухоль-ассоциированных антигенов, слитый с N-конца с убиквитином, содержащий на С-конце Т-хелперный эпитоп PADRE, приведенная на фиг. 3.
Полиэпитопная противоопухолевая вакцинная конструкция (SEQ ID NO 4), обеспечивающая индукцию ответа CD8+ Т-лимфоцитов, представляющая собой искусственный полиэпитопный белок-иммуноген, содержащий множественные рестриктированные HLA-А*0201 ЦТЛ-эпитопы, выбранные из опухоль-ассоциированных антигенов, слитый с N-конца с убиквитином, содержащий на С-конце Т-хелперный эпитоп PADRE, приведенная на фиг. 4.
Полиэпитопная противоопухолевая вакцинная конструкция (SEQ ID NO 5), обеспечивающая индукцию ответа CD8+ Т-лимфоцитов, представляющая собой искусственный полиэпитопный белок-иммуноген, содержащий множественные рестриктированные HLA-А*0201 ЦТЛ-эпитопы, выбранные из опухоль-ассоциированных антигенов, слитый с N-конца с убиквитином, содержащий на С-конце Т-хелперный эпитоп PADRE, приведенная на фиг. 5.
Полиэпитопная противоопухолевая вакцинная конструкция (SEQ ID NO 6), обеспечивающая индукцию ответа CD4+ Т-хелперных лимфоцитов, представляющая собой искусственный полиэпитопный белок-иммуноген, содержащий множественные Т-хелперные эпитопы, выбранные из опухоль-ассоциированных антигенов, слитый с N-конца с сигнальным пептидом, а с С-конца -с С-концевым фрагментом белка LAMP-1 человека, приведенная на фиг. 6.
Набор изолированных полиэпитопных конструкций для стимуляции ответа Т-лимфоцитов, состоящий из двух или более конструкций, выбранных из числа SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6.
Изолированная нуклеиновая кислота, кодирующая указанные конструкции.
Наряду с полиэпитопными конструкциями и изолированной нуклеиновой кислотой в изобретении предложены способы применения указанных конструкций, а именно:
Способ применения указанных конструкций или нуклеиновой кислоты для стимуляции ответа Т-лимфоцитов у млекопитающего, включающий введение указанному млекопитающему указанных конструкций или нуклеиновой кислоты.
Способ применения указанных конструкций или нуклеиновой кислоты для лечения эпителиальных форм злокачественных новообразований у млекопитающего, включающий введение млекопитающему указанных конструкций или нуклеиновой кислоты.
Способ применения конструкций или нуклеиновой кислоты для лечения эпителиальных форм злокачественных новообразований, представляющих собой рак молочной железы.
Способ применения конструкций или нуклеиновой кислоты для лечения эпителиальных форм злокачественных новообразований, представляющих собой колоректальный рак.
Способ применения конструкций или нуклеиновой кислоты для лечения эпителиальных форм злокачественных новообразований, представляющих собой немелкоклеточный рак легкого.
Поиск по источникам информации показал, что предложенное изобретение является новым и соответствует требованию «изобретательский уровень». В известных полиэпитопных конструкциях содержится от 1 до нескольких десятков эпитопов. В заявляемых пяти полиэпитопных противоопухолевых вакцинных конструкциях (фиг. 1-5) содержится порядка 200 эпитопов. Кроме того, в отдельную конструкцию выделены Т-хелперные эпитопы (фиг. 6). Разнесение эпитопов ЦТЛ и Т-хелперов по разным конструкциям позволило нам поместить их в более подходящее окружение путем использования соответствующих сигнальных последовательностей и других транслокационных мотивов для направления конструкций в нужный клеточный компартмент. Использование большого количества эпитопов из разных опухоль-ассоциированных антигенов позволяет преодолеть возможное отсутствие гиперэкспрессии отдельного антигена в раковых клетках, а также преодолеть гетерогенность экспрессии антигенов различными раковыми клетками внутри одной опухоли.
Принципиальным отличием также является использование для презентации дендритным клеткам нескольких полиэпитопных конструкций (в заявленном изобретении -пять конструкций), содержащих большое количество (порядка 200) эпитопов из более чем двух десятков опухоль-ассоциированных антигенов, специфичных не только для одной нозологии, например, рака молочной железы, но и для многих других эпителиальных форм рака, включая колоректальный рак и немелкоклеточный рак легкого. Это происходит за счет индукции антиген-специфического иммунного ответа с применением аутологичных дендритных клеток, трансфицированных ДНК-вакцинными конструкциями, кодирующими полиэпитопные иммуногены, содержащие антигенные детерминанты, специфичные для опухоль-ассоциированных антигенов, которые специфичны не только для одного вида рака, но для целого спектра нозологий.
На фиг. 1 представлена полиэпитопная противоопухолевая вакцинная конструкция (SEQ ID NO 1);
на фиг. 2 представлена полиэпитопная противоопухолевая вакцинная конструкция (SEQ ID NO 2);
на фиг. 3 представлена полиэпитопная противоопухолевая вакцинная конструкция (SEQ ID NO 3);
на фиг. 4 представлена полиэпитопная противоопухолевая вакцинная конструкция (SEQ ID NO 4);
на фиг. 5 представлена полиэпитопная противоопухолевая вакцинная конструкция (SEQ ID NO 5);
на фиг. 6 представлена полиэпитопная противоопухолевая вакцинная конструкция (SEQ ID NO 6).
Заявленные в изобретении конструкции создаются следующим образом.
Выбор антигенов
Выбор антигенов является одним из наиболее важных этапов конструирования. Для выбора антигенов используется анализ публикаций в реферируемых журналах и базы данных клинических испытаний http://clinicaltrials.gov. Учитываются объективные параметры и мнения экспертов. Основополагающая подборка опухоль-ассоциированных антигенов с приоритизацией раковых антигенов приведена в работе (Cheever и соавт., 2009).
Помимо антигенов, характерных для определенных видов рака, выделяют «метастатические» антигены. Это основано на том, что крупной первичной опухоли иммунный ответ не очень страшен, поэтому надо бороться с метастазами. Процессы метастазирования разных видов рака весьма похожи. К таким «метастатическим» антигенам относятся: MUC1, матриксные металл опротеазы, рецепторные тирозинкиназы: HER2, EGFR, FSHR, c-Met, PDGFR. Новый интересный подход - вакцина против опухоль-ассоциированных макрофагов, предполагается, что с ее помощью будет меняться микроокружение опухоли (Xiangetal., 2008). Современный обзор по терапевтическим противораковым вакцинам и опухоль-ассоциированными антигенами приведен в работе (Schlom, 2012; Mostafa, Morris, 2014).
Важным критерием выбора антигенов для включения эпитопов из них в состав вакцинных конструкций является выполнение одного из трех условий: либо вакцина на базе такого антигена находится на I-III стадиях клинических испытаний, либо проводятся испытания вакцины на животных, либо, для более новых антигенов, упоминание их в качестве перспективных иммуногенов (Bei, Scardino, 2010; Milanietal., 2014). Важно, чтобы частота встречаемости антигена у больных была относительно высокой (не менее 20%). Важно, чтобы был высокий уровень экспрессии при определенном виде рака (Milanietal., 2013).
На основе опубликованных литературных данных по клиническим испытаниям противораковых вакцин были определены АГ с наибольшей иммунотерапевтической эффективностью: HER-2, mammaglobin-A, NY-BR-1, hMena, WT1, теломераза hTERT, survivin, р53, MUC1, MAGE-A10, NY-ESO-1, MAGE-А3, PRAME, ЕрСАМ, СЕА, GuanylylCyclaseC, 5Т4, Legumain, VEGFR-1, VEGFR-2, FAP, Fos-relatedantigen-1, Brachyury, SOX2, Snail1, Snail2.
Выбор Т-клеточных эпитопов
Предсказание ЦТЛ-эпитопов проводилось на сервере IEDB с помощью метода ANN (метод, основанный на нейронных сетях). Абсолютно такие же результаты выдает сервер NetMHC (Lundegaardetal., 2010), но он менее удобен для работы, так как ограничивает число запросов в сутки с одного IP-адреса. Другие методы предсказания выдают сходные результаты. Также мы использовали разработанное нами программное обеспечение TEpredict, предназначенное для предсказания Т-клеточных эпитопов и основных этапов процессинга антигенов (Антонец, Максютов, 2010).
Предсказание ЦТЛ-эпитопов проводилось для аллельного варианта молекул МНС класса I HLA-A*0201. Пептиды, для которых предсказанное значение pIC50 (характеристика аффинности взаимодействия пептида с молекулой МНС) было больше 6.8, были отобраны для дальнейшего анализа.
В литературе считается, что значение <50 nM соответствует сильному связыванию, от 50 до 500 - слабому связыванию. Есть мнение, что из-за клональной селекции для эпитопов с наиболее сильным связыванием отсутствуют распознающие их Т-клетки, поэтому для каждого антигена было взято несколько эпитопов.
Были предсказаны эпитопы размером 9 и 10 а.о., также использовались эпитопы из литературных источников. Количество эпитопов размером 9 для каждого антигена выбиралось исходя из размеров и важности антигена, обычно порог был в районе 500 nM, для тех антигенов, для которых было предсказано много сильных эпитопов (NY-BR-1, hTERT, MUC1) - в районе 50 nM. Эпитопы размером 10 использовались только при предсказанной константе связывания <50 nM и при отсутствии точного совпадения с используемыми эпитопами размером 9.
Эпитопы из литературных источников (включая совпавшие с предсказанными) повторялись в конструкциях по 2 раза (Wanetal., 2012).
Предсказание Т-хелперных эпитопов (рестриктированных молекулами МНС класса II) проводилось с использованием программ TEpredict и NetMHC.
Одним из механизмов формирования эффективного иммунного ответа на опухоль является индукция CD8+ ЦТЛ. Индукция происходит за счет распознавания CD8+ ЦТЛ процессированных антигенных пептидных фрагментов в ассоциации с молекулами МНС класса I на поверхности АПК. Антигенные пептиды образуются в цитоплазме клетки в результате расщепления антигенов протеасомами. Протеасомы представляют собой внутриклеточный комплекс из 12-15 различных регуляторных и протеолитических белковых субъединиц (Rock, Goldberg, 1999; Niedermannetal., 1999).
Образование комплексов антигенных пептидов с молекулами МНС класса I происходит в эндоплазматическом ретикулуме, куда пептиды попадают с участием гетеродимерных транспортных белков, кодируемых двумя генами ТАР1 и ТАР2. Наиболее эффективный перенос происходит в том случае, если пептиды содержат 8-15 аминокислотных остатков. После образования комплекса антигенный пептид-молекула МНС класса I, готовый комплекс переносится на поверхность АПК.
Конструирование искусственных полиэпитопных иммуногенов
Несмотря на то, что первые работы показали способность полиэпитопных конструкций, составленных в результате простого объединения эпитопов, индуцировать цитотоксический Т-клеточный ответ на все эпитопы, включенные в состав таких антигенов (Thomsonetal., 1995), в дальнейшем было показано, что иммуногенность пептидов в составе полиэпитопа в значительной степени зависит от фланкирующих аминокислотных остатков, и что при конструировании полиэпитопных иммуногенов следует учитывать особенности протеасомного процессинга антигенов и взаимодействия пептидов с ТАР. Было показано, что введение в состав полиэпитопного иммуногена спейсерных аминокислотных последовательностей, обеспечивающих образование сайтов протеасомного расщепления между эпитопами и оптимизирующих связывание пептидных фрагментов с ТАР, приводит к увеличению иммуногенности таких конструкций за счет повышения эффективности процессинга и презентации целевых эпитопов иммунной системе. В настоящее время известны аминокислотные мотивы, определяющие аффинность связывания олигопептидов с комплексом ТАР (Peters В etal., 2003, J. Immunol, 171: 1741-1749; Doitchinova I. etal., 2004, J. Immunol, 173: 6813-6819), и вырожденные мотивы, определяющие эффективность сайтов (иммуно)протесомного расщепления (Toesetal., 2001). На основе анализа эффективности процессинга антигенов и аффинности связывания пептидов с ТАР нами был разработан простой алгоритм конструирования поли-ЦТЛ-эпитопных иммуногенов за счет подбора оптимальных спейсерных последовательностей для каждой пары эпитопов.
Дизайн полиэпитопных вакцинных конструкций
Согласно приведенным выше данным, отобранные нами ЦТЛ-эпитопы, были предсказаны с учетом протеасомного процессинга. Для этого использовали программу NetChop (IEDB AnalysisResource), основанную на нейронных сетях. А также, с учетом ТАР-процессинга, для предсказания которого использовалась функция, предложенная (Petersetal., 2003). Функция Peters добавляет к N-концу пептида А либо AY. Для объединения в единую конструкцию использовали случайное перемешивание эпитопов. При этом в составе полиэпитопного иммуногена эпитопы могут перекрываться между собой как минимум одним аминокислотным остатком. Два, три и более эпитопов могут последовательно (стык в стык) располагаться внутри полипептида. Альтернативно, любые два эпитопа могут разделяться спейсерами А, АА, AAA. Выбор типа объединения эпитопов определяется теоретическим предсказанием процессинга полиэпитопной конструкции согласно условиям, описанным выше. При этом эпитопы внутри полипептидного иммуногена могут располагаться в произвольном порядке. Длина каждого эпитопа от 8 до 10 аминокислотных остатков, а суммарная полиэпитопная конструкция, ограничивается 1000 ак.
Таким образом, разработана стратегия создания искусственных полиэпитопных вакцинных конструкций (белков-иммуногенов), содержащих множественные ЦТЛ- и Т-хелперные эпитопы опухоль-ассоциированных антигенов, обеспечивающая индукцию эффективного противоопухолевого клеточного иммунного ответа.
Одним из примеров полиэпитопных иммуногенов, содержащих антигенные детерминанты, специфичные белкам HER-2, mammaglobin-A, NY-BR-1, hMena, WT1, теломераза hTERT, survivin, р53, MUC1, MAGE-A10, NY-ESO-1, MAGE-А3, PRAME, EpCAM, CEA, GuanylylCyclaseC, 5T4, Legumain, VEGFR-1, VEGFR-2, FAP, Fos-relatedantigen-1, Brachyury, SOX2, Snail1, Snail2 с учетом эффективности протеасомного процессинга, взаимодействия антигенных пептидов с ТАР1/ТАР2 с целью увеличения эффективности презентации эпитопов на поверхности АПК по сравнению с использованием нативных АГ, является:
Полиэпитопная противоопухолевая вакцинная конструкция (SEQ ID NO 1), специфичная HLA-A*0201 (см. фиг.. 1);
Полиэпитопная противоопухолевая вакцинная конструкция (SEQ ID NO 2), специфичная HLA-A*0201 (см. фиг. 2);
Полиэпитопная противоопухолевая вакцинная конструкция (SEQ ID NO 3), специфичная HLA-А*0201 (см. фиг. 3);
Полиэпитопная противоопухолевая вакцинная конструкция (SEQ ID NO 4), специфичная HLA-А*0201 (см. фиг. 4);
Полиэпитопная противоопухолевая вакцинная конструкция (SEQ ID NO 5), специфичная HLA-A*0201 (см. фиг. 5);
Полиэпитопная противоопухолевая вакцинная конструкция (SEQ ID NO 6) (см. фиг. 6).
Способы применения полиэпитопных вакцинных конструкций, заявленных в изобретении.
Стратегия вакцинации предполагает совместное введение пациенту одной или нескольких конструкций для вызова ответа CD8+ ЦТЛ и одной или нескольких конструкций для вызова ответа CD4+ Т-хелперных лимфоцитов.
Полиэпитопные конструкции согласно настоящему изобретению могут быть введены непосредственное виде очищенных рекомбинантных белков, но предпочтительно их вводят в виде части иммуногенных композиций, содержащих фармацевтически приемлемый носитель и/или вспомогательное вещество. В одном из конкретных вариантов осуществления полиэпитопные конструкции согласно настоящему изобретению вводят совместно (вместе в одной композиции или отдельно в двух разных композициях, которые могут быть введены одновременно или последовательно в тот же участок или в разные участки) с адъювантом. Может быть применен любой известный в данной области техники адъювант. Предпочтительно, эти адъюванты представляют собой фармацевтически приемлемые для применения у людей. Кроме того, они могут быть введены в составе вирусоподобных частиц, липосом, в комбинации с катионными пептидами и других иммуностимулирующих комплексов. Предложенные полиэпитопные иммуногены могут быть использованы в различных комбинациях, вместе и по отдельности.
Полиэпитопные конструкции согласно настоящему изобретению также могут быть введены в виде нуклеиновых кислот, кодирующих такие полиэпитопные конструкции (например, плазмиды, вирусные или любые другие соответствующие векторы). Предложенные полиэпитопные конструкции могут быть использованы, например, в виде ДНК-вакцины - плазмиды со встроенным геном, кодирующим целевую полиэпитопную конструкцию. Ген, кодирующий целевой полиэпитопный иммуноген, может быть встроен в геном вируса или бактерии для получения вакцинного штамма микроорганизма. Вместе с целевым полиэпитопным иммуногеном в состав плазмиды или в геном вакцинного штамма микроорганизма могут быть встроены гены, кодирующие дополнительные факторы, стимулирующие развитие клеточного иммунного ответа, например, ИЛ-12, ИЛ-23, ГМ-КСФ и другие.
Полинуклеотидные фрагменты, кодирующие целевые полиэпитопные иммуногены (либо векторные микроорганизмы, несущие соответствующие гены), могут быть использованы для стабильной или транзиентной трансфекции (или инфекции) клеток, например, антигенпрезентирующих клеток (дендритных клеток, клеток Лангерганса или других АПК). Эти клетки могут быть использованы для клеточной терапии (для стимуляции иммунного ответа insitu) или для стимуляции формирования эффекторных CD8+ и/или CD4+ Т-лимфоцитов invitroc целью использования полученных антигенспецифических эффекторных Т-лимфоцитов в качестве клеточной вакцины.
Предложенные полиэпитопные иммуногены, а также векторные микроорганизмы или иммуностимулирующие комплексы, содержащие гены, кодирующие данные иммуногены, или рекомбинантные полиэпитопные белки, а также АПК, презентирующие предложенные иммуногены, или антигенспецифичные эффекторные Т-лимфоциты, полученные ex vivo могут быть использованы в качестве профилактической или терапевтической противораковой вакцины, в том числе в качестве дополнения различных других схем терапии.
Полипептидные конструкции из нуклеиновых кислот и композиции согласно настоящему изобретению можно вводить разными путями. Например, их можно вводить в слизистую оболочку (например, влагалища, носа, нижних дыхательных путей или желудочно-кишечного тракта - например, прямой кишки). Описанные формы данных вакцинных конструкций могут вводиться подкожно, внутрикожно, внутримышечно, внутривенно, орально, через респираторный тракт, в различных сочетаниях, любым другим образом.
Специалистам в области техники, к которой относится настоящее изобретение, ясно, что данное изобретение может быть воплощено в иных формах, нежели изложенные выше, не отступая при этом от сущности и основных характеристик изобретения. Следовательно, изложенные выше конкретные варианты изобретения следует рассматривать как иллюстрирующие, но не ограничивающие. Кроме того, следует понимать, что процедуры и материалы, не описанные конкретно в данной заявке, являются стандартными процедурами и материалами, известными специалисту. Для лучшего понимания сущности изобретения ниже следуют примеры его осуществления. Следует понимать, что указанные примеры приведены исключительно в иллюстративных целях и не предполагают какого-либо ограничения объема предложенного изобретения.
ПРИМЕРЫ
В изобретении использовали протокол получения активированных ДНК-вакцинами, содержащими полиэпитопные иммуногены, дендритных клеток (ДК) и пула обученных и размноженных ex vivo цитотоксических Т-лимфоцитов, с целью формирования полноценного противоракового иммунного ответа invivo.
Для полученных полиэпитопных иммуногенов были созданы соответствующие искусственные гены. Полинуклеотидные последовательности были оптимизированы для экспрессии в клетках человека, для чего из искусственных генов были исключены редко используемые кодоны. Дизайн нуклеотидных последовательностей проводили с таким расчетом, чтобы минимизировать сложность вторичной структуры матричной РНК.
Для создания ДНК-вакцинных конструкций с использованием полученных искусственных генов была выбрана плазмида pmax.
Было создано несколько конструкций:
Конструкция pmax-CTL1, содержащая эпитопы из MAGE-A10, NY-ESO-1 и MUC-1.
Конструкция pmax-CTL2, содержащая эпитопы из MAGE-А3, PRAME, ЕрСАМ и MUC-1.
Конструкция pmax-CTL3, содержащая эпитопы из ЕрСАМ, СЕА, GuanylylCyclase С и 5Т4.
Конструкция pmax-CTL4, содержащая эпитопы из Legumain, VEGFR-1, VEGFR-2, FAP и Fos-related antigen-1.
Конструкция pmax-CTL5, содержащая эпитопы из Brachyury, SOX2, Snail1 и Snail2.
Конструкция pmax-PolyTh, содержащая эпитопы из HER2, hTERT, р53, WT1, NY-ESO-1, VEGFR-2, survivin и MAGE-A3.
Техническим результатом является создание такого комплекса вакцинных конструкций, который обеспечивает формирование эффективного протективного и терапевтического клеточного иммунного ответа не только антигенспецифических цитотоксических CD8+ Т-лимфоцитов, но и интенсивный ответ CD4+ Т-лимфоцитов. Указанный технический результат достигается получением вышеперечисленных конструкций (pmax-CTL1, pmax-CTL2, pmax-CTL3, pmax-CTL4, pmax-CTL5, pmax-PolyTh).
Далее проводилась оценка эффективности индукции Т-клеточного ответа invitro с помощью полученных полиэпитопных конструкций.
Выделенную из периферической крови онкологических больных (рак молочной железы, немелкоклеточный рак легкого и колоректальный рак) прилипающую фракцию мононуклеарных клеток культивировали в концентрации в полной среде, содержащей 10% эмбриональной телячьей сыворотки, 2 мМ L-глютамина, 10 мМ HEPES, 5×10-5 мМ 2-меркаптоэтанола, 80 мкг/мл гентамицина, 100 мкг/мл ампициллина в атмосфере 5% СО2 при 37°C с добавлением рчГМ-КСФ (50 нг/мл) и рчИЛ-4 (100 нг/мл). Через 72 часа культивирования к полученным незрелым ДК добавляли рчФНО-α в дозе 25 нг/мл для до созревания и культивировали их еще 24 часа. Затем проводили магнитную трансфекцию описанных ДНК-конструкций в полученные зрелые дендритные клетки с помощью коммерческого набора MATra-А («Promokine», США). Спустя 24 ч полученные антиген-активированные дендритные клетки культивировали с неприлипшей фракцией мононуклеарных клеток в соотношении 1:10. Далее для определения модуляции цитотоксической активности Т-лимфоцитов с помощью полученных ДК оценивали гибель опухолевых клеток в цитотоксическом тесте. Для этого к мононуклеарным клеткам больного, которые предварительно сокультивировали с трансфицированными плазмидами ДК, добавляли аутологичные опухолевые клетки. Цитотоксичность оценивали по увеличению содержания внутриклеточного фермента лактатдегидрогеназы в кондиционной среде в результате гибели опухолевых клеток. Показано достоверное повышение значения цитотоксичности, что служит показателем активации противоопухолевых цитотоксических клеток, необходимых для уничтожения опухолевых клеток (рис. 1, 2 и 3).
На рисунке 1 представлен цитотоксический ответ культуры мононуклеарных клеток больных раком молочной железы, сокультивированных с аутологичными дендритными клетками, трансфицированных полиэпитопной ДНК-конструкцией, против аутологичных опухолевых клеток (n=14), где
МНК - мононуклеарные клетки;
МНК+ДК(0) - МНК, сокультивированные с дендритными клетками (ДК) без нагрузки антигеном;
МНК+ДК(К) - МНК, сокультивированные с ДК, трансфицированные контрольной ДНК-конструкцией без опухолевых антигенов;
МНК+ДК(Т) - МНК, сокультивированные с ДК, трансфицированные ДНК-конструкцией, кодирующей эпитопы опухоль-ассоциированных антигенов.
Данные представлены в виде медианы и размаха квартилей. Стрелками обозначены достоверные различия между группами (р≤0,05).
На рисунке 2 представлен цитотоксический ответ культуры мононуклеарных клеток больных немелкоклеточным раком легкого, сокультивированных с аутологичными дендритными клетками, трансфицированных полиэпитопной ДНК-конструкцией, против аутологичных опухолевых клеток (n=13), где
МНК - мононуклеарные клетки без культивирования с ДК;
МНК+ДК(0) - совместная культура МНК и нетрансфицированных ДК; МНК+ДК(К) - совместная культура МНК и ДК, трансфицированных контрольной плазмидой;
МНК+ДК(Т) - совместная культура МНК и ДК, трансфицированных целевой плазмидой (конструкцией);
Данные представлены в виде медианы и размаха квартилей. Стрелками обозначены достоверные различия между группами (р≤0,05).
На рисунке 3 представлен цитотоксический ответ культуры мононуклеарных клеток больных колоректальным раком, сокультивированных с аутологичными дендритными клетками, трансфицированных полиэпитопной ДНК-конструкцией, против аутологичных опухолевых клеток (n=10), где
МНК - мононуклеарные клетки,
МНК+ДК(0) - мононуклеарные клетки, культивированные в присутствии дендритных клеток без трансфекции ДНК-конструкций,
МНК+ДК(К) - мононуклеарные клетки, культивированные в присутствии дендритных клеток, трансфицированных контрольной плазмидой,
МНК+ДК(Т) - мононуклеарные клетки, культивированные в присутствии дендритных клеток, трансфицированных целевой плазмидой (ДНК-конструкции).
Данные представлены в виде медианы и размаха квартилей. Стрелками обозначены достоверные различия между группами (р≤0,05).
Таким образом, совместное культивирование МНК с ДК, трансфицированными ДНК-конструкцией, кодирующей эпитопы опухоль-ассоциированных антигенов, является эффективным способом генерации специфических цитотоксических клеток мононуклеарного происхождения, что проявляется в усилении их цитотоксического противоопухолевого ответа.
Селекция опухоль-ассоциированных антигенов, эпитопы из которых использованы для создания вакцинных конструкций, осуществлялась на основе специфичности для иммунотерапии нескольких эпителиальных злокачественных новообразований, в том числе рака молочной железы, колоректального рака и немелкоклеточного рака легкого. Предложенные ДНК-конструкции могут быть использованы также при других видах злокачественных новообразований эпителиального генеза, например, рак яичника, рак пищевода, рак простаты и других видов рака. Такое массированное применение полиэпитопных конструкций, совместно содержащих большое количество целевых эпитопов из основных опухоль-ассоциированных антигенов, дает возможность получать более уверенное и более эффективное иммунотерапевтическое противоопухолевое воздействие в первую очередь за счет более широкого спектра применимости как к отдельным клеткам конкретной раковой опухоли (за счет более уверенного нацеливания на раковые клетки из-за большего числа мишеней-эпитопов в применяемых полиэпитопных конструкциях), так и на опухоль в целом (за счет большего покрытия клеток опухоли, опять же за счет более уверенного нацеливания на раковые клетки из-за большего числа мишеней-эпитопов в применяемых полиэпитопных конструкциях).
Литература
1. Антонец Д.В., Максютов А.З. TEpredict: программное обеспечение для предсказания Т-клеточных эпитопов. // Молекулярная биология. 2010. Т. 44, С. 130-139.
2. Bei R., Scardino А. ТАА Polyepitope DNA-Based Vaccines: A Potential Tool for Cancer Therapy. // J. Biomedicine and Biotechnology. 2010. V. 2010. Article ID 102758. doi: 10.1155/2010/102758.
3. Cheever M.A., Allison J.P., Ferris A.S., Finn O.J., Hastings B.M., Hecht T.T., Mellman I., Prindiville S.A., Viner J.L., Weiner L.M., Matrisian L.M.. The Prioritization of Cancer Antigens: A National Cancer Institute Pilot Project for the Acceleration of Translational Research. // Clin. Cancer Res. 2009. V. 15. P. 5323-5337. doi: 10.1158/1078-0432.CCR-09-0737.
4. Lundegaard C., Hoof I., Lund O., Nielsen M. State of the art and challenges in sequence based T-cell epitope prediction. // Immunome Res. 2010. V. 6. Suppl. 2. S3, doi: 10.1186/1745-7580-6-S2-S3.
5. Milani A., Sangiolo D., Montemurro F., Aglietta M., Valabrega G. Active immunotherapy in HER2 overexpressing breast cancer: current status and future perspectives. // Ann. Oncol. 2013. V. 24. №7. P. 1740-1748.
6. Milani A., Sangiolo D., Aglietta M., Valabrega G. Recent advances in the development of breast cancer vaccines. // Breast Cancer: Targets and Therapy. 2014. V. 6. P. 159-168.
7. Mostafa A.A., Morris D.G. Immunotherapy for Lung Cancer: Has it Finally Arrived? // Frontiers in Oncology. 2014. 4:288. doi: 10.3389/fonc.2014.00288.
8. Niedermann G., Geier E., Lucchiari-Hartz M., Hitziger N.. Ramsperger A., Eichmann K. The specificity of proteasomes: impact on MHC class I processing and presentation of antigens. // Immunol. Rev. 1999. V. 172. P. 29-48.
9. Peters B, Bulik S, Tampe R, Van Endert PM & H.G. Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors. Journal of immunology (Baltimore, Md.: 1950). 2003. 171, 1741-9.
10. Rock K.L., Goldberg A.L. Degradation of cell proteins and the generation of MHC class l-presented peptides. // Annu. Rev. Immunol. 1999. V. 17. P. 739-779.
11. Schlom J. Therapeutic Cancer Vaccines: Current Status and Moving Forward. // J. Natl. Cancer Inst. 2012. V. 104. №8. P. 599-613. doi: 10.1093/jnci/djs033.
12. Wan Y., Wang J., Zhou H., Hu Z., Ren X., Xu J. The Average IFN-γ Secreting Capacity of Specific CD8+ T Cells Is Compromised While Increasing Copies of a Single T Cell Epitope Encoded by DNA Vaccine. // Clinical and Developmental Immunology. 2012; 2012: 478052. doi: 10.1155/2012/478052.
13. Xiang R., Luo Y., Niethammer A.G., Reisfeld R.A. Oral DNA vaccines target the tumor vasculature and microenvironment and suppress tumor growth and metastasis. // Immunol. Rev. 2008. V. 222. P. 117-128. doi: 10.1111/j.1600-065X.2008.00613.x.
14. Zhu В., Chen Z., Cheng X., Lin Z., Guo J., Jia Z.,Zou L, Wang Z., Hu Y., Wang D., Wu Y. Identification of HLA-A*0201 -restricted Cytotoxic T - Lymphocyte Epitope from TRAG-3 Antigen. // Clinical Cancer Research. 2003. V. 9. P. 1850-1857.
15. Bei R., Scardino A. TAA Polyepitope DNA-Based Vaccines: A Potential Tool for Cancer Therapy. // Journal of Biomedicine and Biotechnology. 2010. Article ID 102758, 12 pages; doi: 10.1155/2010/102758.
16. Mostafa A.A., Morris Don G. Immunotherapy for lung cancer: has it finally arrived? // Frontiers in Oncology. 2014. V. 4. P. 1-7.
Claims (13)
1. Полиэпитопная противоопухолевая вакцинная конструкция (SEQ ID NO 1), обеспечивающая индукцию ответа CD8+ Т-лимфоцитов, представляющая собой искусственный полиэпитопный белок-иммуноген, содержащий множественные рестриктированные HLA-A*0201 ЦТЛ-эпитопы, выбранные из опухоль-ассоциированных антигенов, слитый с N-конца с убиквитином, содержащий на С-конце Т-хелперный эпитоп PADRE, приведенная на фиг. 1.
2. Полиэпитопная противоопухолевая вакцинная конструкция (SEQ ID NO 2), обеспечивающая индукцию ответа CD8+ Т-лимфоцитов, представляющая собой искусственный полиэпитопный белок-иммуноген, содержащий множественные рестриктированные HLA-A*0201 ЦТЛ-эпитопы, выбранные из опухоль-ассоциированных антигенов, слитый с N-конца с убиквитином, содержащий на С-конце Т-хелперный эпитоп PADRE, приведенная на фиг. 2.
3. Полиэпитопная противоопухолевая вакцинная конструкция (SEQ ID NO 3), обеспечивающая индукцию ответа CD8+ Т-лимфоцитов, представляющая собой искусственный полиэпитопный белок-иммуноген, содержащий множественные рестриктированные HLA-A*0201 ЦТЛ-эпитопы, выбранные из опухоль-ассоциированных антигенов, слитый с N-конца с убиквитином, содержащий на С-конце Т-хелперный эпитоп PADRE, приведенная на фиг. 3.
4. Полиэпитопная противоопухолевая вакцинная конструкция (SEQ ID NO 4), обеспечивающая индукцию ответа CD8+ Т-лимфоцитов, представляющая собой искусственный полиэпитопный белок-иммуноген, содержащий множественные рестриктированные HLA-A*0201 ЦТЛ-эпитопы, выбранные из опухоль-ассоциированных антигенов, слитый с N-конца с убиквитином, содержащий на С-конце Т-хелперный эпитоп PADRE, приведенная на фиг. 4.
5. Полиэпитопная противоопухолевая вакцинная конструкция (SEQ ID NO 5), обеспечивающая индукцию ответа CD8+ Т-лимфоцитов, представляющая собой искусственный полиэпитопный белок-иммуноген, содержащий множественные рестриктированные HLA-A*0201 ЦТЛ-эпитопы, выбранные из опухоль-ассоциированных антигенов, слитый с N-конца с убиквитином, содержащий на С-конце Т-хелперный эпитоп PADRE, приведенная на фиг. 5.
6. Полиэпитопная противоопухолевая вакцинная конструкция (SEQ ID NO 6), обеспечивающая индукцию ответа CD4+ Т-хелперных лимфоцитов, представляющая собой искусственный полиэпитопный белок-иммуноген, содержащий множественные Т-хелперные эпитопы, выбранные из опухоль-ассоциированных антигенов, слитый с N-конца с сигнальным пептидом, а с С-конца - с С-концевым фрагментом белка LAMP-1 человека, приведенная на фиг. 6.
7. Набор изолированных полиэпитопных конструкций для стимуляции ответа Т-лимфоцитов, состоящий из двух или более конструкций, выбранных из числа SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5,SEQ ID NO 6.
8. Набор изолированных нуклеиновых кислот для стимуляции ответа Т-лимфоцитов, содержащий две или более нуклеиновые кислоты, кодирующие полиэпитопные конструкции из числа SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6 по пп. 1-6 формулы.
9. Способ применения набора по п. 7 или набора по п. 8 для стимуляции ответа Т-лимфоцитов у млекопитающего, включающий введение указанному млекопитающему указанных конструкций по п. 7 или нуклеиновых кислот по п. 8.
10. Способ применения набора по п. 7 или набора по п. 8 для лечения эпителиальных форм злокачественных новообразований у млекопитающего, включающий введение указанному млекопитающему указанных конструкций по п. 7 или нуклеиновых кислот по п. 8.
11. Способ по п. 10, отличающийся тем, что эпителиальная форма злокачественных новообразований представляет собой рак молочной железы.
12. Способ по п. 10, отличающийся тем, что эпителиальная форма злокачественных новообразований представляет собой колоректальный рак.
13. Способ по п. 10, отличающийся тем, что эпителиальная форма злокачественных новообразований представляет собой немелкоклеточный рак легкого.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016146939A RU2684235C2 (ru) | 2016-11-29 | 2016-11-29 | Полиэпитопная противоопухолевая вакцинная конструкция, содержащая эпитопы опухоль-ассоциированных антигенов, фармацевтическая композиция и ее применение для стимуляции специфического противоопухолевого иммунного ответа |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016146939A RU2684235C2 (ru) | 2016-11-29 | 2016-11-29 | Полиэпитопная противоопухолевая вакцинная конструкция, содержащая эпитопы опухоль-ассоциированных антигенов, фармацевтическая композиция и ее применение для стимуляции специфического противоопухолевого иммунного ответа |
Publications (3)
Publication Number | Publication Date |
---|---|
RU2016146939A RU2016146939A (ru) | 2018-05-29 |
RU2016146939A3 RU2016146939A3 (ru) | 2018-05-29 |
RU2684235C2 true RU2684235C2 (ru) | 2019-04-04 |
Family
ID=62557539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016146939A RU2684235C2 (ru) | 2016-11-29 | 2016-11-29 | Полиэпитопная противоопухолевая вакцинная конструкция, содержащая эпитопы опухоль-ассоциированных антигенов, фармацевтическая композиция и ее применение для стимуляции специфического противоопухолевого иммунного ответа |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2684235C2 (ru) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011110953A2 (en) * | 2010-03-09 | 2011-09-15 | Artemev, Timur | Polyepitope constructs and methods for their preparation and use |
RU2507265C2 (ru) * | 2012-05-12 | 2014-02-20 | Федеральное государственное бюджетное учреждение "Научно-исследовательский институт клинической иммунологии" Сибирского отделения Российской академии медицинских наук (ФГБУ "НИИКИ" СО РАМН) | РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pCI-UB-POLYEPI, СОДЕРЖАЩАЯ ЭПИТОПЫ ОПУХОЛЬ-АССОЦИИРОВАННЫХ АНТИГЕНОВ ДЛЯ КОЛОРЕКТАЛЬНОГО РАКА, И СПОСОБ ЕЕ ПРИМЕНЕНИЯ ДЛЯ СТИМУЛЯЦИИ СПЕЦИФИЧЕСКОГО ПРОТИВООПУХОЛЕВОГО ИММУННОГО ОТВЕТА ПРОТИВ КЛЕТОК КОЛОРЕКТАЛЬНОГО РАКА |
RU2520091C2 (ru) * | 2012-08-16 | 2014-06-20 | Общество с ограниченной ответственностью "АваксисБио" | Способ стимуляции цитотоксического иммунного ответа против клеток опухолевой линии аденокарциномы молочной железы, экспрессирующих специфические антигены, с помощью дендритных клеток, трансфецированных полиэпитопной днк-конструкцией |
-
2016
- 2016-11-29 RU RU2016146939A patent/RU2684235C2/ru not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011110953A2 (en) * | 2010-03-09 | 2011-09-15 | Artemev, Timur | Polyepitope constructs and methods for their preparation and use |
RU2507265C2 (ru) * | 2012-05-12 | 2014-02-20 | Федеральное государственное бюджетное учреждение "Научно-исследовательский институт клинической иммунологии" Сибирского отделения Российской академии медицинских наук (ФГБУ "НИИКИ" СО РАМН) | РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pCI-UB-POLYEPI, СОДЕРЖАЩАЯ ЭПИТОПЫ ОПУХОЛЬ-АССОЦИИРОВАННЫХ АНТИГЕНОВ ДЛЯ КОЛОРЕКТАЛЬНОГО РАКА, И СПОСОБ ЕЕ ПРИМЕНЕНИЯ ДЛЯ СТИМУЛЯЦИИ СПЕЦИФИЧЕСКОГО ПРОТИВООПУХОЛЕВОГО ИММУННОГО ОТВЕТА ПРОТИВ КЛЕТОК КОЛОРЕКТАЛЬНОГО РАКА |
RU2520091C2 (ru) * | 2012-08-16 | 2014-06-20 | Общество с ограниченной ответственностью "АваксисБио" | Способ стимуляции цитотоксического иммунного ответа против клеток опухолевой линии аденокарциномы молочной железы, экспрессирующих специфические антигены, с помощью дендритных клеток, трансфецированных полиэпитопной днк-конструкцией |
Also Published As
Publication number | Publication date |
---|---|
RU2016146939A (ru) | 2018-05-29 |
RU2016146939A3 (ru) | 2018-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11298398B2 (en) | Method of treating a philadelphia chromosome-positive tumor | |
US20110311472A1 (en) | Application of mrna for use as a therapeutic against tumour diseases | |
JP7232825B2 (ja) | 腫瘍関連抗原エピトープの微生物叢(microbiota)配列変異体 | |
WO2003055439A2 (en) | Her2/neu target antigen and use of same to stimulate an immune response | |
US20160166665A1 (en) | Cellular immunity inducing vaccine | |
WO2015134577A1 (en) | Dna vector and transformed tumor cell vaccines | |
US8053421B2 (en) | DNA vaccines against tumor growth and methods of use thereof | |
RU2684235C2 (ru) | Полиэпитопная противоопухолевая вакцинная конструкция, содержащая эпитопы опухоль-ассоциированных антигенов, фармацевтическая композиция и ее применение для стимуляции специфического противоопухолевого иммунного ответа | |
US10286050B2 (en) | Multi-epitope TARP peptide vaccine and uses thereof | |
AU2002304165B9 (en) | Polynucleotide vaccine | |
US10695408B2 (en) | Xenogenic normal tissue-derived vaccines for breaking the immune tolerance to tumor-associated, antigens | |
US20090246213A1 (en) | Vaccine comprising a polynucleotide encoding an antigen recognized by a cd4+ helper t-cell and a polynucleotide encoding a tumor specific or associated antigen recognized by a cd8+ ctl | |
Menez-Jamet et al. | Development of optimized cryptic peptides for immunotherapy | |
AU7909700A (en) | New lymphocytes, a process for preparing the same and their use in therapeutics | |
Bhattacharya-Chatterjee et al. | T Lymphocytes | |
JPWO2021005338A5 (ru) | ||
Abu | Identification of Glypican3-derived Long Peptides Capable of Inducing both CTL and Th cells and Useful for Immunotherapy of Hepatocellular Carcinoma | |
JPWO2020260897A5 (ru) | ||
EP3193916A2 (en) | Immunogenic polypeptide composed of hla-b7 restricted tumor antigen-derived optimized cryptic peptides, and uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FA92 | Acknowledgement of application withdrawn (lack of supplementary materials submitted) |
Effective date: 20180814 |
|
FZ9A | Application not withdrawn (correction of the notice of withdrawal) |
Effective date: 20180913 |