RU2675620C1 - Способ управления мощностью статического компенсатора реактивной мощности, работающего в сети синусоидального переменного напряжения - Google Patents

Способ управления мощностью статического компенсатора реактивной мощности, работающего в сети синусоидального переменного напряжения Download PDF

Info

Publication number
RU2675620C1
RU2675620C1 RU2018116931A RU2018116931A RU2675620C1 RU 2675620 C1 RU2675620 C1 RU 2675620C1 RU 2018116931 A RU2018116931 A RU 2018116931A RU 2018116931 A RU2018116931 A RU 2018116931A RU 2675620 C1 RU2675620 C1 RU 2675620C1
Authority
RU
Russia
Prior art keywords
voltage
reactive power
reactive
static
compensator
Prior art date
Application number
RU2018116931A
Other languages
English (en)
Inventor
Дмитрий Иванович Панфилов
Михаил Георгиевич Асташев
Original Assignee
Дмитрий Иванович Панфилов
Михаил Георгиевич Асташев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дмитрий Иванович Панфилов, Михаил Георгиевич Асташев filed Critical Дмитрий Иванович Панфилов
Priority to RU2018116931A priority Critical patent/RU2675620C1/ru
Application granted granted Critical
Publication of RU2675620C1 publication Critical patent/RU2675620C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/70Regulating power factor; Regulating reactive current or power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

Изобретение относится к области электротехники и электроэнергетики и может быть использовано в электрических сетях в устройствах поперечной компенсации для управления реактивной мощностью с целью уменьшения потерь электрической энергии и регулирования напряжения в местах установки данных устройств в линию электропередачи (ЛЭП). Техническим результатом является улучшение технико-экономических показателей статических компенсаторов реактивной мощности. В способе управления мощностью статического компенсатора реактивной мощности, работающего в сети синусоидального переменного напряжения и содержащего последовательное соединение реактивного элемента и управляющего устройства, используют задание величины, генерируемой статическим компенсатором реактивной мощности, измеряют напряжения на входных зажимах статического компенсатора реактивной мощности, вычисляют требуемое действующее значение напряжения, прикладываемого к реактивному элементу, соответствующее заданной величине реактивной мощности, используют задание управляющего воздействия на управляющее устройство, обеспечивающее формирование напряжения на реактивном элементе с требуемым действующим значением. За счет управления управляющим устройством обеспечивают формирование синусоидального напряжения на реактивном элементе во всем диапазоне регулирования мощности статического компенсатора реактивной мощности, а управление изменением напряжения на реактивном элементе осуществляют в одни и те же моменты по отношению к приложенному к статическому компенсатору реактивной мощности синусоидальному напряжению. 2 ил.

Description

Изобретение относится к области электротехники и электроэнергетики и может быть использовано в электрических сетях в устройствах поперечной компенсации для управления реактивной мощностью с целью уменьшения потерь электрической энергии и регулирования напряжения в местах установки данных устройств в линию электропередачи (ЛЭП).
Известен способ регулирования реактивной мощности статических компенсаторов реактивной мощности, включающих ограниченное количество реактивных элементов и управляющее устройство в виде многополюсного ключевого коммутатора, использующий управление ключевым коммутатором для формирования требуемой величины реактивного сопротивления статического компенсатора реактивной мощности за счет управления соединением реактивных элементов и синхронизирующий момент управления изменением эквивалентного реактивного сопротивления статического компенсатора реактивной мощности относительно приложенного к нему синусоидального напряжения (Патент RU 2641643). Достоинством данного способа является синусоидальная форма регулируемого тока статического компенсатора реактивной мощности. Основным недостатком способа является необходимость использования большого количества реактивных элементов в схемах статического компенсатора реактивной мощности.
Наиболее близким прототипом предлагаемого способа является способ управления реактивной мощностью, при котором статический компенсатор реактивной мощности состоит из последовательного соединения реактивного элемента и управляющего устройства, и управление реактивной мощностью реализуют с помощью управления управляющим устройством, формирующим требуемое действующее значение напряжения на реактивном элементе и соответственно требуемую величину реактивной мощности. При этом в качестве управляющего устройства используют управляемый ключ, и формирование требуемого действующего значения напряжения на реактивном элементе осуществляется методом фазового управления. Таким образом, осуществляя отпирание управляемого ключа в разные моменты времени относительно приложенного к статическому компенсатору реактивной мощности напряжения управляют действующим значением напряжения на реактивном элементе (Рыжов Ю.П. Дальние электропередачи сверхвысокого напряжения: учебник для вузов - М.: Издательский дом МЭИ, 2007, с. 302-303). Основным недостатком, присущим способу - прототипу, является несинусоидальная форма тока, протекающего через реактивный элемент, из-за несинусоидальной формы напряжения, прикладываемого к реактивному элементу. Это приводит к ухудшению качества регулирования мощности статического компенсатора реактивной мощности, необходимости применения фильтров высших гармоник, ухудшению его технико-экономических показателей в целом.
Технической задачей предлагаемого изобретения является улучшение качества реактивной мощности статических компенсаторов реактивной мощности во всем диапазоне ее регулирования.
Техническим результатом, на получение которого направлено предлагаемое техническое решение, является улучшение технико-экономических показателей статических компенсаторов реактивной мощности и показателей качества электрической энергии, генерируемой ими.
Технический результат достигается тем, что в способе управления мощностью статического компенсатора реактивной мощности, работающего в сети синусоидального переменного напряжения и содержащего последовательное соединение реактивного элемента и управляющего устройства, использующем задание величины генерируемой статическим компенсатором реактивной мощности, измерение напряжения на входных зажимах статического компенсатора реактивной мощности, вычисление требуемого действующего значения напряжения, прикладываемого к реактивному элементу, соответствующего заданной величине реактивной мощности, задание управляющего воздействия на управляющее устройство, обеспечивающее формирование напряжения на реактивном элементе с требуемым действующим значением, за счет управления управляющим устройством обеспечивают формирование синусоидального напряжения на реактивном элементе во всем диапазоне регулирования мощности статического компенсатора реактивной мощности, а управление изменением напряжения на реактивном элементе осуществляют в одни и те же моменты по отношению к приложенному к статическому компенсатору реактивной мощности синусоидальному напряжению.
Сущность изобретения поясняется чертежами, где на фиг. 1 представлена структура устройства, реализующего предлагаемый способ управления статическим компенсатором реактивной мощности, на фиг. 2 приведен пример схемы статического компенсатора реактивной мощности, иллюстрирующей работу предлагаемого способа.
На фиг. 1 сеть синусоидального переменного напряжения отображена источником синусоидального переменного напряжения 1, параллельно которому своими зажимами 2 и 3 подключен статический компенсатор реактивной мощности 4, включающий управляющий элемент 5 и реактивный элемент 6. Первый выход управляющего элемента 5 подключен к зажиму 2 статического компенсатора реактивной мощности 4, а второй выход управляющего элемента 5 соединен с первым выходом реактивного элемента 4, второй выход которого подключен к зажиму 3 статического компенсатора реактивной мощности 4. Вход управления управляющего элемента 5 соединен с выходом системы управления 7. Первый вход системы управления 7 соединен с выходом датчика напряжения 8, первый и второй входы которого подключены к зажимам 2 и 3 статического компенсатора реактивной мощности 4 соответственно. Второй вход системы управления 7 соединен с выходом блока 9 задания уровня реактивной мощности.
На фиг. 2 приведена одна из возможных схем построения статического компенсатора реактивной мощности 4, реализующая предложенный способ управления. На схеме фиг. 2 управляющий элемент 5 реализован на основе трансформатора 10 и ключевого коммутатора 11. Трансформатор 10 содержит выходную обмотку 12, включенную последовательно с реактивным элементом 6, в качестве которого в приведенном устройстве используется индуктивный реактор, и входные обмотки 13 и 14. При этом выводы выходной обмотки 12 трансформатора 10 являются выходами управляющего элемента 5. Ключевой коммутатор 11 содержит две параллельные ветви. Первая параллельная ветвь образована последовательным соединением ключей 15, 16, 17, а вторая параллельная ветвь образована последовательным соединением ключей 18, 19, 20. Выходы ключей 15 и 18, не соединенные с выходами ключей 16 и 19, объединены и подключены к зажиму 3 статического компенсатора реактивной мощности 4. Выходы ключей 17 и 20, не соединенные с выходами ключей 16 и 19, объединены и подключены к зажиму 2 статического компенсатора реактивной мощности 4. Входы управления ключей 15, 16, 17, 18, 19, 20 подключены к выходу системы управления 7 и образуют общий вход управления управляющего элемента 5. Выводы входной обмотки 13 трансформатора 10 подключены к общим точкам соединения ключей 16, 17 и 19, 20 соответственно. Выводы входной обмотки 14 трансформатора 10 подключены к общим точкам соединения ключей 15, 16и 18, 19 соответственно.
Заявляемый способ управления осуществляется следующим образом.
Величина реактивной мощности, генерируемой статическим компенсатором реактивной мощности 4, определяется величиной реактивного сопротивления реактивного элемента 6, и величиной действующего значения синусоидального напряжения, приложенного к реактивному элементу 6. В качестве реактивного элемента 6, используемого при реализации заявляемого способа, могут выступать как индуктивный реактор, так и конденсатор. Действующее значение синусоидального напряжения, приложенного к реактивному элементу 6, определяется суммой напряжения источника питания 1 и напряжения на выходе управляющего элемента 5, т.е. напряжения на выходной обмотке 12 трансформатора 10 на схеме фиг. 2.
При получении от блока 9 задания уровня реактивной мощности нового значения требуемой величины генерируемой реактивной мощности, система управления 7 определяет требуемую величину действующего значения синусоидального напряжения на реактивном элементе 6, соответствующую заданной величине реактивной мощности. На основе информации о действующем значении напряжения на входных зажимах 2, 3 статического компенсатора реактивной мощности 4, поступающей в систему управления 7 с выхода датчика напряжения 8, и вычисленной требуемой величине действующего значения напряжения на реактивном элементе 6 система управления 7 вычисляет необходимую величину напряжения на выходе управляющего элемента 5, после чего передает на вход управления управляющего элемента 5 советующее управляющее воздействие, обеспечивающее формирование необходимого (вычисленного) напряжения на выходе управляющего элемента 5.
С целью обеспечения максимального быстродействия регулирования реактивной мощности и исключения при регулировании переходных процессов в схеме статического компенсатора реактивной мощности 4, управление изменением напряжения на выходе управляющего элемента 5 система управления 7 осуществляет синхронизовано с напряжением, приложенным к статическому компенсатору реактивной мощности 4, в одни и те же моменты времени на периоде изменения данного напряжения. При этом выбор указанных моментов времени зависит от типа используемого в составе статического компенсатора реактивной мощности 4 реактивного элемента 6.
В примере, приведенном на фиг. 2, управляющий элемент 5 за счет различных комбинаций включения ключей 15, 16, 17, 18, 19, 20 ключевого коммутатора 11 позволяет сформировать на своем выходе 7 различные по величине синусоидальные напряжения, которые будут либо складываться, либо вычитаться с синусоидальным напряжением на входных зажимах 2 и 3 статического компенсатора реактивной мощности 4. Таким образом, в рассматриваемом примере это будет обеспечивать 7 различных дискретных уровней синусоидального напряжения на реактивном элементе 6, что будет соответствовать 7 различным уровням реактивной мощности, генерируемой статическим компенсатором 4. Следует отметить, что увеличивая количество входных обмоток трансформатора 10 и добавляя ключи в коммутатор 11 можно увеличивать количество дискретных уровней регулирования реактивной мощности до требуемых значений. При этом в отличие от способа - прототипа формируемое на выходе управляющего элемента 5 напряжение будет иметь синусоидальную форму без содержания высших гармонических составляющих в его спектре, что позволит обеспечить максимально возможное качество генерируемого статическим компенсатором реактивного тока во всем диапазоне регулирования мощности статического компенсатора реактивной мощности 4.
Принимая во внимание вышесказанное, можно сделать вывод, что заявляемый способ управления мощностью статического компенсатора реактивной мощности 4, построенного на основе одного реактивного элемента, в отличие от способа-прототипа позволяет обеспечить предельно-возможные показатели качества электрической энергии при регулировании реактивной мощности в полном диапазоне.
Таким образом, осуществление совокупности признаков заявляемого способа управления обеспечивает достижение указанного технического результата.

Claims (1)

  1. Способ управления мощностью статического компенсатора реактивной мощности, работающего в сети синусоидального переменного напряжения и содержащего последовательное соединение реактивного элемента и управляющего устройства, использующий задание величины, генерируемой статическим компенсатором реактивной мощности, измерение напряжения на входных зажимах статического компенсатора реактивной мощности, вычисление требуемого действующего значения напряжения, прикладываемого к реактивному элементу, соответствующего заданной величине реактивной мощности, задание управляющего воздействия на управляющее устройство, обеспечивающее формирование напряжения на реактивном элементе с требуемым действующим значением, отличающийся тем, что за счет управления управляющим устройством обеспечивают формирование синусоидального напряжения на реактивном элементе во всем диапазоне регулирования мощности статического компенсатора реактивной мощности, а управление изменением напряжения на реактивном элементе осуществляют в одни и те же моменты по отношению к приложенному к статическому компенсатору реактивной мощности синусоидальному напряжению.
RU2018116931A 2018-05-08 2018-05-08 Способ управления мощностью статического компенсатора реактивной мощности, работающего в сети синусоидального переменного напряжения RU2675620C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018116931A RU2675620C1 (ru) 2018-05-08 2018-05-08 Способ управления мощностью статического компенсатора реактивной мощности, работающего в сети синусоидального переменного напряжения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018116931A RU2675620C1 (ru) 2018-05-08 2018-05-08 Способ управления мощностью статического компенсатора реактивной мощности, работающего в сети синусоидального переменного напряжения

Publications (1)

Publication Number Publication Date
RU2675620C1 true RU2675620C1 (ru) 2018-12-21

Family

ID=64753561

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018116931A RU2675620C1 (ru) 2018-05-08 2018-05-08 Способ управления мощностью статического компенсатора реактивной мощности, работающего в сети синусоидального переменного напряжения

Country Status (1)

Country Link
RU (1) RU2675620C1 (ru)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2711537C1 (ru) * 2018-12-28 2020-01-17 Дмитрий Иванович Панфилов Статический компенсатор реактивной мощности
RU2726935C1 (ru) * 2020-03-27 2020-07-17 Акционерное общество "Научно-технический центр Федеральной сетевой компании Единой энергетической системы" Способ управления мощностью статического компенсатора мощности, работающего в сети синусоидального переменного напряжения
RU2734399C1 (ru) * 2020-06-11 2020-10-15 Дмитрий Иванович Панфилов Трехфазный статический компенсатор мощности
RU2739578C1 (ru) * 2020-04-24 2020-12-28 Акционерное общество "Научно-технический центр Федеральной сетевой компании Единой энергетической системы" Способ управления мощностью статического компенсатора мощности, работающего в сети синусоидального переменного напряжения
RU2742942C1 (ru) * 2020-07-20 2021-02-12 Дмитрий Иванович Панфилов Способ управления режимами работы линии электропередачи
RU2749279C1 (ru) * 2020-11-23 2021-06-08 Дмитрий Иванович Панфилов Способ управления режимом работы линии электропередачи и устройство для его реализации
RU2786122C1 (ru) * 2022-01-24 2022-12-19 Дмитрий Иванович Панфилов Способ симметрирования режима работы трехпроводной линии электропередачи

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2136071C1 (ru) * 1998-02-13 1999-08-27 Александров Георгий Николаевич Управляемый шунтирующий реактор
RU2282295C2 (ru) * 2004-09-20 2006-08-20 Открытое акционерное общество "Всероссийский научно-исследовательский и проектно-конструкторский институт электровозостроения" (ОАО "ВЭлНИИ") Способ управления компенсатором реактивной мощности и устройство его реализующее
US7638986B2 (en) * 2006-06-28 2009-12-29 Mitsubishi Electric Corporation Control system for static VAR compensator
KR100980854B1 (ko) * 2009-09-30 2010-09-10 한국전력공사 정지형 보상기 및 이의 제어 방법
WO2011113471A1 (en) * 2010-03-15 2011-09-22 Areva T&D Uk Ltd Static var compensator with multilevel converter
JP2017054479A (ja) * 2015-09-08 2017-03-16 エルエス産電株式会社Lsis Co., Ltd. 静止型無効電力補償装置及びその動作方法
EP3261209A1 (en) * 2016-06-24 2017-12-27 Siemens Aktiengesellschaft Method, control apparatus, system and computer program product for reactive power and voltage control in distribution grids
RU2641643C2 (ru) * 2016-06-09 2018-01-19 Дмитрий Иванович Панфилов Способ управления управляемым шунтирующим реактором и устройство для его осуществления

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2136071C1 (ru) * 1998-02-13 1999-08-27 Александров Георгий Николаевич Управляемый шунтирующий реактор
RU2282295C2 (ru) * 2004-09-20 2006-08-20 Открытое акционерное общество "Всероссийский научно-исследовательский и проектно-конструкторский институт электровозостроения" (ОАО "ВЭлНИИ") Способ управления компенсатором реактивной мощности и устройство его реализующее
US7638986B2 (en) * 2006-06-28 2009-12-29 Mitsubishi Electric Corporation Control system for static VAR compensator
KR100980854B1 (ko) * 2009-09-30 2010-09-10 한국전력공사 정지형 보상기 및 이의 제어 방법
WO2011113471A1 (en) * 2010-03-15 2011-09-22 Areva T&D Uk Ltd Static var compensator with multilevel converter
JP2017054479A (ja) * 2015-09-08 2017-03-16 エルエス産電株式会社Lsis Co., Ltd. 静止型無効電力補償装置及びその動作方法
RU2641643C2 (ru) * 2016-06-09 2018-01-19 Дмитрий Иванович Панфилов Способ управления управляемым шунтирующим реактором и устройство для его осуществления
EP3261209A1 (en) * 2016-06-24 2017-12-27 Siemens Aktiengesellschaft Method, control apparatus, system and computer program product for reactive power and voltage control in distribution grids

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2711537C1 (ru) * 2018-12-28 2020-01-17 Дмитрий Иванович Панфилов Статический компенсатор реактивной мощности
RU2726935C1 (ru) * 2020-03-27 2020-07-17 Акционерное общество "Научно-технический центр Федеральной сетевой компании Единой энергетической системы" Способ управления мощностью статического компенсатора мощности, работающего в сети синусоидального переменного напряжения
RU2739578C1 (ru) * 2020-04-24 2020-12-28 Акционерное общество "Научно-технический центр Федеральной сетевой компании Единой энергетической системы" Способ управления мощностью статического компенсатора мощности, работающего в сети синусоидального переменного напряжения
RU2734399C1 (ru) * 2020-06-11 2020-10-15 Дмитрий Иванович Панфилов Трехфазный статический компенсатор мощности
RU2742942C1 (ru) * 2020-07-20 2021-02-12 Дмитрий Иванович Панфилов Способ управления режимами работы линии электропередачи
RU2749279C1 (ru) * 2020-11-23 2021-06-08 Дмитрий Иванович Панфилов Способ управления режимом работы линии электропередачи и устройство для его реализации
RU2786122C1 (ru) * 2022-01-24 2022-12-19 Дмитрий Иванович Панфилов Способ симметрирования режима работы трехпроводной линии электропередачи
RU2792862C1 (ru) * 2022-06-09 2023-03-28 Дмитрий Иванович Панфилов Способ управления мощностью статического компенсатора реактивной мощности, работающего в сети синусоидального переменного напряжения
RU2792409C1 (ru) * 2022-07-25 2023-03-22 Дмитрий Иванович Панфилов Способ управления режимами работы линии электропередачи с помощью управляемого компенсатора мощности
RU2786130C1 (ru) * 2022-08-08 2022-12-19 Дмитрий Иванович Панфилов Статический компенсатор реактивной мощности
RU2804403C1 (ru) * 2023-03-15 2023-09-28 Дмитрий Иванович Панфилов Способ управления мощностью статического компенсатора реактивной мощности, работающего в сети синусоидального напряжения

Similar Documents

Publication Publication Date Title
RU2675620C1 (ru) Способ управления мощностью статического компенсатора реактивной мощности, работающего в сети синусоидального переменного напряжения
CN110277789B (zh) 电网多时段无功优化方法及装置
Busarello et al. Passive filter aided by shunt compensators based on the conservative power theory
RU2641643C2 (ru) Способ управления управляемым шунтирующим реактором и устройство для его осуществления
Keskes et al. Transient stability enhancement and voltage regulation in SMIB power system using SVC with PI controller
RU2711537C1 (ru) Статический компенсатор реактивной мощности
RU186406U1 (ru) Устройство автоматической компенсации реактивной мощности
Szabó et al. Control of a SVC for power factor correction
RU2498475C2 (ru) Способ управления устройством компенсации реактивной мощности в питающей сети
Belloni et al. A series compensation device for the LV power quality improvement
Levačić et al. An overview of harmonics in power transmission networks
Paulraj et al. Mitigation of power loss in transmission and distribution line using STATCOM
RU2512886C1 (ru) Устройство компенсации высших гармоник и коррекции коэффициента мощности сети
RU2697505C1 (ru) Автоматическое устройство и способ компенсации потерь на реактивную составляющую в сетях переменного тока
RU2524347C2 (ru) Устройство компенсации тока замыкания на землю в трехфазных электрических сетях (варианты)
RU2697259C1 (ru) Устройство для пофазной компенсации реактивной мощности
RU2802915C1 (ru) Способ регулирования компенсатора реактивной мощности
RU183180U1 (ru) Устройство для автоматической компенсации тока однофазного замыкания на землю в электрических сетях с изолированной нейтралью
RU179418U1 (ru) Устройство поперечной компенсации реактивной мощности
RU2745329C1 (ru) Трехфазный статический компенсатор мощности
Carastro et al. Mitigation of voltage dips and voltage harmonics within a micro-grid, using a single shunt active filter with energy storage
Waghamare et al. Industrial purposed advance controlling strategy for SVC compensator firing system using microprocessor
Saggu et al. Power quality improvement in induction furnace using eleven level cascaded inverter based DSTATCOM
Spasojević et al. Application of a thyristor-controlled series reactor to reduce arc furnace flicker
RU2749279C1 (ru) Способ управления режимом работы линии электропередачи и устройство для его реализации