RU2671244C1 - Имитатор помеховых радиосигналов - Google Patents

Имитатор помеховых радиосигналов Download PDF

Info

Publication number
RU2671244C1
RU2671244C1 RU2017139346A RU2017139346A RU2671244C1 RU 2671244 C1 RU2671244 C1 RU 2671244C1 RU 2017139346 A RU2017139346 A RU 2017139346A RU 2017139346 A RU2017139346 A RU 2017139346A RU 2671244 C1 RU2671244 C1 RU 2671244C1
Authority
RU
Russia
Prior art keywords
signal
output
radio
control
quadrature modulator
Prior art date
Application number
RU2017139346A
Other languages
English (en)
Inventor
Николай Афанасьевич Важенин
Андрей Павлович Плохих
Гарри Алексеевич Попов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследовательский университет)"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследовательский университет)" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследовательский университет)"
Priority to RU2017139346A priority Critical patent/RU2671244C1/ru
Application granted granted Critical
Publication of RU2671244C1 publication Critical patent/RU2671244C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/38Jamming means, e.g. producing false echoes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Radio Relay Systems (AREA)

Abstract

Изобретение относится к радиотехническому испытательному оборудованию для проведения стендовых испытаний радиоэлектронных комплексов космических аппаратов (КА) и может использоваться для имитации помеховых радиосигналов, включая излучение электрических ракетных двигателей (ЭРД), на бортовые радиосистемы КА. Достигаемый технический результат - расширение функциональных возможностей за счет одновременной имитации полного спектра воздействующих на радиосистемы КА излучений, включая информационный сигнал с тепловыми шумами и излучение ЭРД. Указанный результат достигается за счет того, что имитатор помеховых радиосигналов содержит двухканальный векторный генератор (1), при этом каждый канал векторного генератора (1) включает генератор несущей частоты (2, 5), квадратурный модулятор (3, 6), подключенный к выходу генератора несущей частоты (2, 5), и блок управления (4, 7), выходы которого подключены к управляющим входам генератора несущей частоты и квадратурного модулятора. К входам блоков управления (4, 7) через преобразователи сигналов (10, 11) подключены блоки памяти (8, 9). Первый блок памяти (8) содержит данные об информационном сигнале, второй (9) - данные о помеховом излучении, создаваемом ЭРД. Выход первого квадратурного модулятора (3) подключен к первому входу сумматора сигналов (16) через последовательно соединенные первый коммутатор (12) и первый усилитель мощности сигнала (14) с управляемым коэффициентом усиления. Выход второго квадратурного модулятора (6) подключен ко второму входу сумматора сигналов (16) через последовательно соединенные второй коммутатор (13) и второй усилитель мощности сигнала (15) с управляемым коэффициентом усиления. Выход сумматора (16) соединен с излучающей антенной (18) через усилитель мощности результирующего сигнала (17). Выходы управляющей ПЭВМ (19) подключены к управляющим входам блоков управления (4, 7), коммутаторов (12, 13) и усилителей мощности сигналов (14, 15). 2 з.п. ф-лы, 1 ил.

Description

Изобретение относится к радиотехническому испытательному оборудованию для проведения стендовых испытаний радиоэлектронных комплексов космических аппаратов (КА) и может использоваться для имитации в наземных условиях воздействия широкого спектра помехового излучения (радиосигналов), включая излучение электрических ракетных двигателей (ЭРД), на бортовые радиосистемы КА.
Известны имитаторы радиосигналов различной формы с модуляцией, структурными признаками и другими параметрами реальных сигналов. Так, например, в патенте RU 2207586 C2 (опубликован 27.06.2003) описан имитатор радиосигналов, содержащий генератор синхросигнала опорной частоты, устройство считывания данных (цифровой процессор), устройство записи данных (цифровой процессор), блок памяти, устройство управления потоками данных, полосовой фильтр, устройство переноса сигналов на требуемую радиочастоту, аналого-цифровой преобразователь и управляемые делители частоты. При работе имитатора радиосигналов генератор синхросигнала опорной частоты непрерывно формирует синусоидальное колебание с фиксированной высокостабильной частотой или поток прямоугольных импульсов с фиксированной частотой. Набор данных для каждого вида имитируемого сигнала получают либо в результате предварительного формирования цифровой математической модели сигнала, либо путем записи принятого из эфира сигнала в цифровом виде. Имитируемый радиосигнал воспроизводится из блока памяти или входной сигнал записывается в блок памяти без пропуска отдельных мгновенных значений сигнала.
Имитатор источников радиоизлучений, описанный в патенте RU 2591045 C1 (опубликован 10.07.2016), обеспечивает расширение функциональных возможностей за счет имитации пространственно разнесенных источников радиоизлучений. Имитатор содержит генератор синхросигналов, устройство управления, запоминающее устройство, накапливающий сумматор. Каналы формирования сигналов включают запоминающее устройство хранения значений фазовых сдвигов, фазосдвигающее устройство и устройство формирования сигнала. Имитируемые сигналы формируются с заданными фазовыми сдвигами относительно сигнала в опорном канале.
Указанные выше известные имитаторы помеховых радиосигналов не обеспечивают генерацию широкого спектра помеховых сигналов, характерных для условий космического пространства и воздействующих на радиосистемы КА. Расширение спектра и параметров имитируемых радиосигналов относится к одной из важных задач при исследовании воздействия помехового излучения на бортовой радиотехнический комплекс КА в случае использования в составе двигательной установки ЭРД, являющихся интенсивными источниками широкополосного помехового излучения (Электрические ракетные двигатели космических аппаратов и их влияние на радиосистемы космической связи / Н.А. Важенин [и др.]. М.: ФИЗМАТЛИТ, 2013. С. 122-126).
Наиболее близким аналогом изобретения является программируемый имитатор помеховых радиосигналов, выполненный на базе векторного генератора сигналов (Кубов Е.И., Болдырев А.И. Применение векторных генераторов в области радиоконтроля и защиты информации // Специальная техника. 2007. №1. URL: http://www.ess.ru/sites/default/files/files/articles/2007/01/2007_01_05.pdf (дата обращения: 16.10.2017). Известный имитатор включает в свой состав блок управления, персональную электронно-вычислительную машину (ПЭВМ) со специальным программным обеспечением, включающим библиотеку моделей сигналов, блок внешней памяти, генератор несущей частоты, квадратурный модулятор, двухканальный усилитель мощности и антенны с различными частными диапазонами.
Применение в имитаторе унифицированного векторного генератора сигналов позволяет реализовать структурную схему, посредством которой диапазон выходных частот имитатора определяется генератором несущей частоты. Вид модуляции, структура и ширина спектра модулированного сигнала зависят от характеристик универсального квадратурного модулятора. Мощность выходного сигнала определяется характеристиками усилителя мощности. Усилитель мощности для повышения качества усиления выходного сигнала разделен на два блока (канала) с независимыми выходами. К каждому блоку подключена антенна с выделенным частотным поддиапазоном.
За счет использования векторного генератора сигналов устройство позволяет имитировать различные типы радиосигналов:
- сигнал с аналоговой амплитудной, частной и фазовой модуляцией несущей частоты с возможностью установки параметров модуляции;
- сигнал передатчика с цифровыми видами модуляции;
- сигнал передатчика шумоподобного сигнала;
- сигнал передатчика, работающего в режиме с псевдослучайной перестройкой рабочей частоты.
С помощью векторных генераторов сигналов осуществляется модуляция сигнала с формированием характеристик сигнала во временной и частотной областях посредством двухкомпонентного (векторного) процесса, отражающего изменения во времени амплитуды и фазы исходного сигнала (Силантьев В.А. Применение векторных анализаторов сигналов в системах радиоконтроля. / Специальная техника, 2002, №5, с. 31-40).
Следует отметить, что при использовании в имитаторе одноканального векторного генератора можно формировать только один излучающий сигнал с конкретным видом модуляции, имитирующим сигнал передачи определенного радиоэлектронного устройства. При решении задачи, связанной с оценкой помехоустойчивости радиоэлектронного комплекса КА, требуется создавать не только информационный сигнал конкретной радиолинии связи, но и помеховую обстановку на борту КА в целом. При этом одним из интенсивных источников помехового радиоизлучения являются ЭРД, входящие в состав двигательной установки КА.
Изобретение направлено на создание условий для полной имитации помеховой обстановки на борту КА в условиях космического пространства при работающих ЭРД. Вместе с имитацией помехового излучения во всем диапазоне воздействия радиосигналов на бортовые системы КА необходимо обеспечить возможность одновременной имитации информационного сигнала (канала радиосвязи) и излучения работающих ЭРД. Решение данных проблем позволяет достичь новый технический результат, связанный с расширением функциональных возможностей имитатора помеховых радиосигналов за счет одновременной имитации полного спектра воздействующих на радиосистемы КА излучений, включая информационный сигнал (канал связи) и помеховое излучение ЭРД. Кроме того, с помощью изобретения обеспечивается возможность имитации отдельного вида помехового излучения и различных комбинаций спектров помехового излучения с информационным сигналом. Создание таких условий, за счет расширенных функциональных возможностей имитатора, позволит достоверно и полно исследовать в наземных условиях воздействие помехового излучения на радиосистемы КА, соответствующее реальным условиям функционирования КА в космическом пространстве. Проведение таких исследований необходимо для оценки помехоустойчивости бортовых радиосистем КА при работающих ЭРД.
Технический результат достигается с помощью имитатора помеховых радиосигналов, включая излучение ЭРД, воздействующих на радиосистемы космического аппарата. Имитатор содержит двухканальный векторный генератор, каждый из каналов которого включает генератор несущей частоты, квадратурный модулятор, подключенный к выходу генератора несущей частоты, и блок управления, выходы которого подключены к управляющим входам генератора несущей частоты и квадратурного модулятора. В состав имитатора входят два блока памяти, два коммутатора, два усилителя мощности сигналов с управляемыми коэффициентами усиления, усилитель мощности результирующего сигнала, сумматор сигналов с двумя входами и одним выходом и управляющий процессор. Первый блок памяти, содержащий данные об информационном сигнале, подключен к первому блоку управления векторного генератора. Второй блок памяти, содержащий данные о помехах, создаваемых ЭРД, подключен ко второму блоку управления векторного генератора.
Выход первого квадратурного модулятора векторного генератора подключен к первому входу сумматора сигналов через последовательно соединенные первый коммутатор и первый усилитель мощности сигнала с управляемым коэффициентом усиления. Выход второго квадратурного модулятора подключен ко второму входу сумматора сигналов через последовательно соединенные второй коммутатор и второй усилитель мощности сигнала с управляемым коэффициентом усиления. Выход сумматора соединен с излучающей антенной через усилитель мощности результирующего сигнала. Управляющий процессор подключен к управляющим входам блоков управления векторного генератора, коммутаторов и усилителей мощности сигналов с управляемым коэффициентом усиления. В качестве управляющего процессора может использоваться ПЭВМ.
В случае использования баз данных информационных и помеховых радиосигналов в формате, не совместимом с базовым форматом «.wv» входных данных векторного генератора, в состав имитатора включаются два преобразователя сигнала. Совместимость формата передаваемых данных обеспечивается за счет подключения первого блока памяти, содержащего данные об информационном сигнале, к первому блоку управления векторного генератора через первый преобразователь сигнала. Второй блок памяти, содержащий данные о помехах, создаваемых ЭРД, подключается ко второму блоку управления векторного генератора через второй преобразователь сигнала. Управляющие входы преобразователей сигналов подключаются выходам управляющего процессора.
Далее изобретение поясняется описанием конкретного примера выполнения имитатора помеховых радиосигналов, включая излучение ЭРД, воздействующих на радиосистемы КА. Имитатор предназначен для проведения наземных стендовых испытаний бортового радиотехнического оборудования КА. На поясняющем чертеже изображена общая схема имитатора.
Имитатор помеховых радиосигналов, включая излучение ЭРД, воздействующих на бортовые радиосистемы КА, содержит двухканальный векторный генератор (ДВГ) 1. Первый канал ДВГ 1 образован последовательно соединенными первым генератором несущей частоты (ГНЧ1) 2 и первым квадратурным модулятором (КМ1) 3. Управляющие входы ГНЧ1 2 и КМ1 3 подключены к выходам первого блока управления (БУ1) 4. Второй канал ДВГ 1 образован последовательно соединенными вторым генератором несущей частоты (ГНЧ2) 5 и вторым квадратурным модулятором (КМ2) 6. Управляющие входы ГНЧ2 5 и КМ2 6 подключены к выходам второго блока управления (БУ2) 7.
Имитатор содержит два блока памяти (БП1 и БП2) 8 и 9 и два преобразователя сигналов (ПС1 и ПС2) 10 и 11.. Первый блок памяти (БП1) 8, содержащий данные об информационном сигнале, подключен к входу БУ1 4 через первый преобразователь сигнала (ПС1) 10. Второй блок памяти (БП2) 9, содержащий данные о помехах, создаваемых ЭРД, подключен к входу БУ2 7 через второй преобразователь сигнала (ПС2) 11. Преобразователи ПС1 10 и ПС2 11 используются в рассматриваемом примере реализации изобретения для преобразование библиотек данных, содержащихся в блоках БП1 8 и БП2 9, в файлы формата «.wv», который является базовым форматом для современных векторных генераторов.
В состав имитатора входят также коммутаторы (КОМ1, КОМ2) 12 и 13, усилители мощности сигналов (УС1, УС2) 14 и 15 с управляемыми коэффициентами усиления, сумматор сигналов (СС) 16 с двумя входами и одним выходом, усилитель мощности результирующего сигнала (УСР) 17 и излучающую антенну (ИА) 18.
Выходы модуляторов КМ1 3 и КМ2 6 соединены соответственно с входами первого коммутатора КОМ1 12 и второго коммутатора КОМ2 13. Выходы коммутаторов КОМ1 12 и КОМ2 13 подключены соответственно к входам первого и второго усилителей УС1 14 и УС2 15. Выход усилителя УС1 14 связан с первым входом сумматора СС 16, выход усилителя УС2 15 - со вторым входом сумматора СС 16. Выход сумматора СС 16 подключен через усилитель УСР 17 к антенне ИА 18.
В качестве управляющего процессора в рассматриваемом примере используется ПЭВМ 19. Управляющие выходы ПЭВМ 19 подключены к управляющим входам блоков БУ1 4 и БУ2 7, управляемых преобразователей ПС1 10 и ПС2 11, коммутаторов КОМ1 12 и КОМ2 13 и усилителей УС1 14 и УС2 15.
Имитация помеховых радиосигналов, включая излучение ЭРД, осуществляется с помощью имитатора следующим образом.
Исходная информация о помехах, включая помеховое излучение ЭРД, и информационных сигналах хранится в виде баз данных в блоках памяти БП1 8 и БП2 9. Информация представляется в виде цифровых отсчетов I и Q, являющихся компонентами (составляющими) вектора сигнала. Компоненты I и Q представляют собой проекции амплитуды (вектора) сигнала на действительную и мнимую оси. Технически цифровые отсчеты I и Q могут быть получены в виде временных реализаций на выходе типового спектроанализатора, работающего в режиме «zero-Span» (на чертеже не показан). На вход спектроанализатора подаются соответствующие информационные радиосигналы или помеховые сигналы. Спектроанализатор настраивается на заданную центральную частоту спектра сигналов, воздействующих на радиосистемы КА, и оцифровывает все сигналы, попадающие в его полосу пропускания шириной, например, 160 МГц. Перекрытие всего частотного диапазона излучения обеспечивается за счет изменения центральной частоты с шагом, равным ширине полосы пропускания (160 МГц), при этом на каждом шаге изменения частоты записываются временные реализации I и Q компонент.
Цифровые отсчеты компонент I и Q хранятся в базах данных (библиотеках), записанных в блоки памяти БП1 8 и БП2 9. В первый блок БП1 8 записываются цифровые отсчеты, относящиеся к информационному сигналу (каналу связи) радиосистемы КА и шумовым помехам окружающего космического пространства. Во второй блок БП2 9 записываются цифровые отсчеты, относящиеся к помеховому излучению, создаваемому работающими ЭРД. Для сопряжения форматов файлов данных, хранящихся в блоках БП1 8 и БП2 9 с файловой системой блоков управления генератора ДВГ 1 используются преобразователи ПС1 10 и ПС2 11, с помощью которых файлы баз данных преобразуются в файлы формата «.wv», воспринимаемые операционной системой типовых векторных генераторов. Применение преобразователей сигналов не требуется, если файлы баз данных записаны в блоках БП1 8 и БП2 9 в формате «.wv».
По управляющим сигналам ПЭВМ 19 значения квадратурных составляющих I и Q считываются в заданном формате и передаются в блоки управления БУ1 4 и БУ2 7. В каждом канале ДВГ 1 с помощью блоков управления БУ1 4 и БУ2 7 выставляется необходимая центральная частота для генераторов ГНЧ1 2 и ГНЧ2 5. Данная частота соответствует частоте испытываемого радиоприемного тракта радиосистемы КА. С помощью генераторов ГНЧ1 2 и ГНЧ2 5 осуществляется генерация сигналов в заданном частотном диапазоне и модуляция генерируемых сигналов квадратурными составляющими I и Q в каналах генератора ДВГ 1. Модуляция генерируемых сигналов производится в квадратурных модуляторах КМ1 3 и КМ2 6, управляемых соответствующими блоками БУ1 4 и БУ2 7. Следует отметить, что модуляция сигналов осуществляется независимо в каждом канале векторного генератора ДВГ 1. Предполагается, что полоса пропускания бортового радиоприемного тракта всегда меньше полосы оцифровки информационного сигнала и помех.
Далее модулированные информационные сигналы и помехи из двух каналов ДВГ 1 поступают через коммутаторы КОМ1 12 и КОМ2 13, управляемые ПЭВМ 19, в усилители УС1 14 и УС2 15, с помощью которых задается весовое соотношение (отношение сигнал/помеха по мощности) модулированных сигналов и помех, которые генерируются в первом и втором каналах генератора ДВГ 1. После установки соотношения сигнал/помеха по мощности сформированные процессы, первый из которых имитирует информационный сигнал с шумовой составляющей, а второй -помеховое излучение, создаваемое ЭРД, поступают на входы сумматора СС 16. На выходе сумматора СС 16 формируется результирующий сигнал, содержащий излучение ЭРД и информационный сигнал с тепловыми шумами, при заданном соотношении составляющих компонент результирующего сигнала.
Сигнал, получаемый на выходе из сумматора СС 16, усиливается с помощью усилителя УСР 17 и излучается в окружающее пространство через антенну ИА 18. В случае использования имитатора для излучения в широком диапазоне частот могут применяться несколько каналов излучения сигнала с усилителями мощности сигнала и излучающими антеннами, перекрывающими заданный частотный диапазон. Данный вариант выполнения передатчика используется в устройстве-прототипе.
Описанный выше имитатор обеспечивает имитацию помеховых радиосигналов при различных комбинациях и соотношениях по уровню мощности информационных сигналов (каналов радиосвязи) с тепловыми шумами и помехового излучения ЭРД, которые можно задавать с помощью управляющего процессора. Имея предварительно сформированные базы данных, содержащие цифровые отсчеты I и Q для информационных сигналов и реализаций излучения ЭРД, можно последовательно моделировать различные режимы помеховой обстановки для бортовых радиосистем КА, в том числе: при работающих ЭРД, при выключенных ЭРД, при изменении параметров помехового излучения, связанного с изменением режима работы ЭРД. Функциональные возможности имитатора позволяют достоверно и полно исследовать воздействие помехового излучения на радиосистемы КА при проведении наземных стендовых испытаний в условиях, наиболее приближенных к условиям функционирования КА в космическом пространстве.

Claims (3)

1. Имитатор помеховых радиосигналов, включая излучение электрических ракетных двигателей, воздействующих на радиосистемы космического аппарата, содержащий векторный генератор, управляющий процессор, блоки памяти, усилители мощности сигналов и по меньшей мере одну излучающую антенну, отличающийся тем, что векторный генератор выполнен двухканальным, каждый из каналов которого включает генератор несущей частоты, квадратурный модулятор, подключенный к выходу генератора несущей частоты, и блок управления, выходы которого подключены к управляющим входам генератора несущей частоты и квадратурного модулятора, в состав имитатора входят два блока памяти, два коммутатора, два усилителя мощности сигналов с управляемыми коэффициентами усиления, сумматор сигналов с двумя входами и одним выходом и усилитель мощности результирующего сигнала, при этом первый блок памяти, содержащий данные об информационном сигнале, подключен к первому блоку управления векторного генератора, второй блок памяти, содержащий данные о помехах, создаваемых электрическими ракетными двигателями, подключен ко второму блоку управления векторного генератора, выход первого квадратурного модулятора подключен к первому входу сумматора сигналов через последовательно соединенные первый коммутатор и первый усилитель мощности сигнала с управляемым коэффициентом усиления, выход второго квадратурного модулятора подключен ко второму входу сумматора сигналов через последовательно соединенные второй коммутатор и второй усилитель мощности сигнала с управляемым коэффициентом усиления, выход сумматора соединен с излучающей антенной через усилитель мощности результирующего сигнала, выходы управляющего процессора подключены к управляющим входам блоков управления векторного генератора, коммутаторов и усилителей мощности сигналов с управляемым коэффициентом усиления.
2. Имитатор по п. 1, отличающийся тем, что содержит два преобразователя сигналов, при этом первый блок памяти, содержащий данные об информационном сигнале, подключен к первому блоку управления векторного генератора через первый преобразователь сигнала, второй блок памяти, содержащий данные о помехах, создаваемых электрическими ракетными двигателями, подключен ко второму блоку управления векторного генератора через второй преобразователь сигнала, причем управляющие входы преобразователей сигналов подключены к выходам управляющего процессора.
3. Имитатор по п. 1, отличающийся тем, что в качестве управляющего процессора использована персональная электронно-вычислительная машина.
RU2017139346A 2017-11-14 2017-11-14 Имитатор помеховых радиосигналов RU2671244C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017139346A RU2671244C1 (ru) 2017-11-14 2017-11-14 Имитатор помеховых радиосигналов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017139346A RU2671244C1 (ru) 2017-11-14 2017-11-14 Имитатор помеховых радиосигналов

Publications (1)

Publication Number Publication Date
RU2671244C1 true RU2671244C1 (ru) 2018-10-30

Family

ID=64103250

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017139346A RU2671244C1 (ru) 2017-11-14 2017-11-14 Имитатор помеховых радиосигналов

Country Status (1)

Country Link
RU (1) RU2671244C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2724039C1 (ru) * 2019-07-15 2020-06-18 Тимофей Андреевич Семенюк Устройство для блокирования несанкционированной передачи информации управления
RU2745257C1 (ru) * 2020-06-17 2021-03-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Владимирский Государственный Университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ) Устройство для блокирования радиоуправляемой несанкционированной аппаратуры

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5549477A (en) * 1992-11-17 1996-08-27 Honeywell Inc. Integrated aircraft survivability equipment in-flight simulation
RU2108677C1 (ru) * 1994-06-23 1998-04-10 Военная академия связи Устройство формирования радиопомех
US6106298A (en) * 1996-10-28 2000-08-22 Lockheed Martin Corporation Reconfigurable easily deployable simulator
JP2004108938A (ja) * 2002-09-18 2004-04-08 Toshiba Corp レーダ・ターゲット波模擬装置
RU2329603C2 (ru) * 2006-04-26 2008-07-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт "Градиент" Устройство для создания прицельных помех радиолокационным станциям
RU2510138C2 (ru) * 2011-02-17 2014-03-20 Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации Способ создания ответных помех

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5549477A (en) * 1992-11-17 1996-08-27 Honeywell Inc. Integrated aircraft survivability equipment in-flight simulation
RU2108677C1 (ru) * 1994-06-23 1998-04-10 Военная академия связи Устройство формирования радиопомех
US6106298A (en) * 1996-10-28 2000-08-22 Lockheed Martin Corporation Reconfigurable easily deployable simulator
JP2004108938A (ja) * 2002-09-18 2004-04-08 Toshiba Corp レーダ・ターゲット波模擬装置
RU2329603C2 (ru) * 2006-04-26 2008-07-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт "Градиент" Устройство для создания прицельных помех радиолокационным станциям
RU2510138C2 (ru) * 2011-02-17 2014-03-20 Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации Способ создания ответных помех

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
КУБОВ Е.И. и др. Применение векторных генераторов в области радиоконтроля и защиты информации. Специальная техника, 2007, N 1. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2724039C1 (ru) * 2019-07-15 2020-06-18 Тимофей Андреевич Семенюк Устройство для блокирования несанкционированной передачи информации управления
RU2745257C1 (ru) * 2020-06-17 2021-03-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Владимирский Государственный Университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ) Устройство для блокирования радиоуправляемой несанкционированной аппаратуры

Similar Documents

Publication Publication Date Title
CN106501782B (zh) 一种多通道卫星导航和干扰信号模拟源及信号模拟方法
CN108872955B (zh) 雷达回波信号模拟方法及系统
US9654986B2 (en) Wireless transceiver test bed system and method
CN111289952B (zh) 雷达目标回波模拟方法及装置
RU2671244C1 (ru) Имитатор помеховых радиосигналов
CN103116170A (zh) Gnss的基于天线阵列干扰抑制模块的室内测试系统
US6526365B1 (en) Low-power/wideband transfer function measurement method and apparatus
US7489274B2 (en) System and method for generating a very high frequency omnidirectional range signal
US11726175B2 (en) Real-time closed-loop digital radar simulator
US4423418A (en) Simulator of multiple electromagnetic signal sources such as in a radar signal field
CN103067105B (zh) 多普勒频移器及通信模块的多普勒频移测试装置、方法
CN110988821B (zh) 雷达目标模拟器及其控制方法
CN115015854A (zh) 一种多通道星载sar回波模拟器
Gandhi et al. Design and development of dynamic satellite link emulator with experimental validation
US11372084B2 (en) Target signal generation
Hickling et al. Recording and replay of GNSS RF signals for multiple constellations and frequency bands
Gruber et al. A simulator to generate VLBI baseband data in Matlab
Mikhailov DRFM Jammer Test Solutions.
Mordachev et al. Virtual Testing Area” for Solving EMC Problems of Spatially Distributed Radiosystems based on Automated Double-Frequency Test System
KR102182281B1 (ko) Qm급 주파수 합성기 시험치구
SU1121682A1 (ru) Устройство дл моделировани ультракоротковолнового радиоканала в системе св зи
Linhart et al. Measuring RF circuits response using software defined radio system
Dixe et al. Metrological Evaluation of Software-Defined Radios (Adalm-Pluto and LimeSDR usb) in Radio Frequency Signal Generation
RU2291461C2 (ru) Двухканальный имитатор радиосигналов
CN117040446A (zh) 一种宽瞬时带宽同时多功能辐射源系统架构