RU2670468C2 - Состав для стабилизации природных и техногенных грунтов - Google Patents

Состав для стабилизации природных и техногенных грунтов Download PDF

Info

Publication number
RU2670468C2
RU2670468C2 RU2017109938A RU2017109938A RU2670468C2 RU 2670468 C2 RU2670468 C2 RU 2670468C2 RU 2017109938 A RU2017109938 A RU 2017109938A RU 2017109938 A RU2017109938 A RU 2017109938A RU 2670468 C2 RU2670468 C2 RU 2670468C2
Authority
RU
Russia
Prior art keywords
sodium
soil
cement
composition
stabilization
Prior art date
Application number
RU2017109938A
Other languages
English (en)
Other versions
RU2017109938A (ru
RU2017109938A3 (ru
Inventor
Сергей Фёдорович Шмотьев
Сергей Юрьевич Плинер
Евгений Васильевич Рожков
Вячеслав Михайлович Сычев
Ольга Владимировна Миловидова
Original Assignee
Общество с ограниченной ответственностью Производственно-коммерческая фирма "Стройпрогресс" (ООО ПКФ "Стройпрогресс")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью Производственно-коммерческая фирма "Стройпрогресс" (ООО ПКФ "Стройпрогресс") filed Critical Общество с ограниченной ответственностью Производственно-коммерческая фирма "Стройпрогресс" (ООО ПКФ "Стройпрогресс")
Priority to RU2017109938A priority Critical patent/RU2670468C2/ru
Publication of RU2017109938A publication Critical patent/RU2017109938A/ru
Publication of RU2017109938A3 publication Critical patent/RU2017109938A3/ru
Application granted granted Critical
Publication of RU2670468C2 publication Critical patent/RU2670468C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/26Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/146Silica fume
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • C04B22/142Sulfates
    • C04B22/147Alkali-metal sulfates; Ammonium sulfate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/16Sulfur-containing compounds
    • C04B24/18Lignin sulfonic acid or derivatives thereof, e.g. sulfite lye
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil

Abstract

Изобретение относится к дорожному и аэродромному строительству и может быть использовано для стабилизации и укрепления грунтов при реконструкциях, ремонтах, для устройства дополнительных слоев оснований, оснований и покрытий со слоем износа всех типов дорожных одежд для районов со среднемесячной температурой воздуха наиболее холодного месяца до -30°C. Состав для стабилизации природных и техногенных грунтов содержит, мас.%: меланин 0,01-0,5, формиат кальция 0,5-3,0, золу-унос 1,0-8,0, стекло натриевое 0,01-1,0, олеат натрия 0,01-0,5, лигносульфонат технический ЛСТ 0,1-1,0, доломитовую муку 0,5-3,0, известь гашеную 1,0-3,0, этилсиликонат натрия 0,01-0,5, активный микрокремнезем 0,01-0,1, метилсиликонат натрия 0,2-1,0, сульфаты натрия, аммония и железа 0,02-0,5, цемент 78-96,63. В качестве цемента используют цемент марки ПЦ 500 Д0 или ЦЕМ I 42,5Н. Технический результат – повышение качества стабилизации грунта за счет снижения возможности образования в нем усадочных трещин, выбоин и участков, подверженных морозному пучению, повышение прочностных характеристик грунта. 1 з.п. ф-лы, 2 табл.

Description

Изобретение относится к дорожному и аэродромному строительству и может быть использовано для стабилизации и укрепления грунтов при реконструкциях, ремонтах, для устройства дополнительных слоев оснований, оснований и покрытий со слоем износа всех типов дорожных одежд для районов со среднемесячной температурой воздуха наиболее холодного месяца до -30°С, а также для устройства оснований переходного типа дорожных одежд, площадок различного назначения.
Одним из эффективных способов повышения несущей способности земляного полотна и дорожных одежд является применение составов для стабилизации различных грунтов. На сегодняшний день, многие дороги эксплуатируются на грани возможностей, заложенных в них при строительстве: это и устаревшие конструктивные решения, и стремительное увеличение грузопотока и грузоподъемности подвижного состава. Все это приводит к тому, что нагрузки, которые испытывают дороги, превышают несущую способность существующих дорожных одежд. Проблема увеличения несущей способности строящихся объектов современной транспортной инфраструктуры во многих странах мира решается посредством применения новых технологий и материалов, которые позволяют как увеличить долговечность дорожного полотна, так и получить заметный экономический эффект за счет снижения сроков строительства и увеличения межремонтного срока эксплуатации этих объектов. Исходя из этого, особое внимание уделяется местным, доступным для применения и дешевым материалам, подвергаемым укреплению. Следует использовать как природные грунты различного состава, так и твердые обломочные отходы производства, и некондиционные каменные материалы, называемые искусственными грунтами в соответствии с ГОСТ 25100-2011.
Известен состав (смесь) для укрепления грунтов включающая неорганическое вяжущее - цемент и химическую добавку, в качестве которой используют кремнийорганическую гидрофобизирующую жидкость ГКЖ-94 (полиэтилгидросилоксан) (см. Безрук В.М. Укрепление грунтов в дорожном и аэродромном строительстве. Изд. «Транспорт». 1971 г., с. 125-126).
Наиболее близким по технической сущности является состав для стабилизации грунта содержащий гипс, цемент, известь и минеральную добавку, в который дополнительно введены доменный шлак и базальтовые волокна, а в качестве минеральной добавки вводится сажа при следующем соотношении компонентов, в мас.%: гипс 15-42; известь 17-23; цемент 9-14; доменный шлак 9-14; базальтовое волокно 0,1-1,0; сажа 17-22. Гранулометрический состав каждого компонента не превышает 0,8 мм (см. патент РФ №2281356 от 03.02.2005). Известный состав для стабилизации грунта имеет недостаточное качество стабилизации грунта за счет возможности образования в нем усадочных трещин, этот процесс связан с внутренними напряжениями в грунте обработанном данным составом и резким набором прочности 4 часа, через трещины вода проникает в основание полотна и вызывает значительное ослабление прочности и несущей способности, в дальнейшем это приводит к образованию выбоин, и морозному пучению в результате чего сокращается время эксплуатации объекта.
Технической задачей, на решение которой направлено заявляемое техническое решение является повышение качества стабилизации грунта за счет снижения возможности образования в нем усадочных трещин, выбоин, и участков подверженных морозному пучению, что повышает прочностные характеристики грунта и приводит к увеличению срока его эксплуатации.
Указанная техническая задача достигается тем, что в состав для стабилизации грунтов, содержащий цемент, известь гашеную, золу-унос, дополнительно введены меланин, формиат кальция, стекло натриевое, олеат натрия, лигносульфонат, активный микрокремнезем, доломитовая мука, этилсиликонат натрия, метилсиликонат натрия, сульфаты натрия, аммония и железа, при следующем соотношении компонентов, мас.%:
Меланин 0,01-0,5
Формиат кальция 0,5-3,0
Зола-унос 1,0-8,0
Стекло натриевое 0,01-1,0
Олеат натрия 0,01-0,5
Лигносульфонат 0,1-1,0
Доломитовая мука 0,5-3,0
Известь гашеная 1,0-3,0
Этилсиликонат натрия 0,01-0,5
Активный микрокремнезем 0,01-0,1
Метилсиликонат натрия 0,2-1,0
Сульфаты натрия, аммония, железа 0,02-0,5
Цемент 78-96,63
По результатам испытаний различных цементов были определены основные показатели, такие как нормальная густота цементного теста, сроки схватывания, равномерность изменения объема и др. На основании полученных результатов наиболее подходящим по своим физико-механическим свойствам является цемент марки ПЦ 500 Д0 или ЦЕМ I42,5Н. Цемент М500 Д0 - цемент без активных минеральных добавок, изготавливаемый на основе клинкера нормированного состава с содержанием трехкальциевого алюмината в количестве не более 8% по массе в соответствии с требованиями ГОСТ 10178-85 «Портландцемент и шлакопортландцемент. Технические условия». Цемент ПЦ 500-Д0 является условным аналогом ЦЕМ I 42,5Н, сертифицируемого по ГОСТ 31108-2003.
Основу стабилизирующей добавки составляет цемент марки М500Д0 или портландцемент класса ЦЕМ I 42,5Н.
В качестве наполнителей применяются следующие составляющие: меланин и формиат кальция способствуют ускорению набора прочности, зола-унос улучшает зерновой состав и упаковку смеси, натриевое стекло совместно с олеат натрия способствуют увеличению показателя водостойкости, технический лигносульфонат совместно с активным микрокремнеземом улучшают технологические свойства смеси, доломитовая мука, известь гашеная улучшают процессы твердения, этилсиликонат натрия, метилсиликонат натрия, сульфаты натрия, аммония, железа увеличивают показатель морозостойкости.
Так как грунты представляют собой сложную термодинамическую систему, которая является многофазной и неоднородной применение всех вышеперечисленных составляющих наполнителей в совокупности позволяет решить проблему накопления остаточных деформаций дорожных одежд, что в свою очередь будет способствовать увеличению срока службы объекта. Минеральные частицы грунта могут иметь размеры различного фракционного состава, а это существенно отличает их своими свойствами.
Для подбора составов для стабилизации грунта были выбраны наиболее распространенные на территории РФ специфические грунты - мерзлые грунты, слабые грунты, просадочные, набухающие, элювиальные грунты, а также супесь, суглинок, песок. В качестве техногенного грунта были использованы отходы производства, накопленные в течении продолжительного количества времени, состоящие из шлака, различной пыли циклонов, сырца и т.д.
Такой грунт из-за наличия большого количества пылеватых включений нецелесообразно использовать для дорожного и гражданского строительства так как при применении пылеватых грунтов велика вероятность появления пучинистых участков.
Используемый грунт (супесь, суглинок и др.) представляет собой сложную термодинамическую систему, которая является многофазной и неоднородной. В составе объема грунта присутствуют вещества в трех фазовых состояниях: минеральные частицы (твердая фаза); грунтовая вода (жидкая фаза); газ и пар (газообразная фаза).
Большое разнообразие грунта обусловлено и разнообразными размерами минеральных частиц поэтому грунты существенно отличаются друг от друга по своим свойствам.
Между минеральными частицами грунта могут существовать цементационные или коллоидные связи, прочность которых определяет степень связности грунта. Если напряжения в скелете грунта не превышают прочности связей между минеральными частицами (эта прочность называется структурной), скелет деформируется упруго. Грунт является открытой термодинамической системой в отношении процессов массопереноса (воды или минеральных частиц). Явление массопереноса в форме движения поровой воды учитывается в теории фильтрационной консолидации грунтов (выдавливание воды из пор при уменьшении их объема под действием нагрузки). Явление массопереноса в форме перемещения минеральных частиц грунта учитывается при изучении суффозионных процессов в грунтах (вымыв из грунта компонентов скелета под воздействием фильтрационного потока). Минеральные частицы специфических грунтов (суглинки, супеси, глины и д.р.), а также связи между ними могут состоять из растворимых солей. В этом случае миграция поровой воды может приводить к химической суффозии (растворение и перенос вещества в растворенном виде). Присутствие в поровой воде растворов солей, кислот и щелочей делает ее агрессивной по отношению к конструкциям.
При использовании предлагаемой стабилизирующей добавки происходит сложный процесс, в результате которого влага из грунта участвует в процессе гидратации. Реакция гидратации оксидов образует нерастворимые гидратированные соединения, которые распределяясь вдоль микропористой структуры грунта (супесь, суглинок, глина, и др.), снижают пористость, ограничивают набухание, делают грунт более плотным. Такое действие уменьшает пластичность грунта и улучшает механические свойства, увеличивая несущую способность, срок эксплуатации с учетом износа и размораживания-замораживания, стабилизирует механические свойства грунта, делая его нечувствительным к воздействию температуры и влаги.
Для подтверждения заявленного изобретения в лабораторных условиях были исследованы составы стабилизирующей добавки, названной как стабилизатор цементный, далее СЦ и экспериментально выведен состав для стабилизации грунтов (качественный и количественный). Ниже приведены примеры, которые показывают возможность решения поставленной технической задачи в указанных пределах. Примеры заявленных составов приведены в таблице 1.
Стабилизирующую добавку получали путем механического смешения. Все составы подбирались в соответствии с рекомендациями Министерства транспортного строительства и научно-исследовательского института СОЮЗДОРНИИ в соответствии с Руководством по подбору и приготовлению нерудных материалов и грунтов обработанных неорганическим вяжущим для дорожного и аэродромного строительства изд. М., 1991.
Первоначально при проектировании состава было установлено оптимальное количество воды в смеси с заданным количеством стабилизатора, для получения максимальной плотности.
Выявлено оптимальное количество стабилизирующей добавки, обеспечивающие заданные параметры прочности и морозостойкости в соответствии с требованиями ГОСТ 23558-94 и СП78.13330-2012 и СП 34.13330-2012 предел прочности при сжатии для устройства основания должен быть не менее 2,0 МПа, предел прочности при изгибе не менее 0,4 МПа, морозостойкость не менее 5 циклов замораживания-оттаивания. В лабораторных условиях определяли оптимальную влажность максимальную плотность грунта, и подбирали процент ввода стабилизатора для каждого конкретного грунта. Для этого делали пробные замесы: грунт и стабилизатор перемешивали и формовали образцы для испытаний, количество образцов изготавливали в соответствии с требованиями нормативно-технической документации.
Оценку физико-механических свойств обработанных материалов из подобранных смесей производили после твердения образцов в нормальных условиях в течение 28 суток, в соответствии с требованиями ГОСТ 10180-2012; 23558-94 (для устройства основания предел прочности на сжатие должен быть не менее 2,0 МПа, предел прочности при изгибе не менее 0,4 МПа, морозостойкость не менее 5 циклов замораживания-оттаивания.) По результатам испытания определяли лабораторный состав смеси, обеспечивающий требуемые характеристики обработанного материала. По результатам подбора устанавливали расход материалов для приготовления 1 м3 плотной смеси, предназначенной для укладки в естественных условиях.
При назначении окончательного производственного состава смеси на основе подобранного лабораторного состава учитывали неоднородность приготовлений и укладки материалов различными грунтосмесительными машинами и механизмами и увеличивать расход стабилизатора, чтобы прочность материала в 1,05-1,5 раза превышала прочность лабораторных образцов.
Для определения физико-механических показателей из укрепленного грунта были изготовлены образцы из песка, супеси, суглинка, техногенного грунта в виде цилиндров с диаметром и высотой 101 мм, методом прессования под нагрузкой 15 Мпа в течении 3 минут. После этого образцы хранились в нормальных условиях хранения при естественной влажности 28 суток, перед испытанием образцы подвергались капиллярному водонасыщению полученные результаты физико-механических свойств, приведены в таблице 2.
Таблица 1.
Figure 00000001
Физико-механические показатели укрепленного грунта
Figure 00000002
Анализ полученных результатов таблицы 2, позволяет сделать следующие выводы:
1. Введение состава для стабилизации грунта позволяет повысить его качество путем ускорения набора его прочности, за счет снижения возможности образования усадочных трещин и изменения структуры цементного камня, вводимые в цемент добавки активирующие процесс гидратации. Использование заявляемого состава для укрепления грунтов повышает прочностные характеристики укрепленной смеси его расчетный модуль упругости, что важно при проектировании дорог.
2. Положительная динамика всех физико-механических свойств после стабилизации грунта определяет возможность широкого применения этого состава для устройства капитальных слоев; дополнительных оснований и покрытий со слоем износа всех типов дорожных одежд для районов со среднемесячной температурой воздуха наиболее холодного месяца до -30°С, а также для устройства оснований для переходного типа дорожных одежд при температуре воздуха ниже -30°С.
3. В связи с тем, что уже за короткий период времени (1 сутки) за счет введения в грунт состава повышается прочность укрепленной смеси на 50-60% и снижаются сроки (до 3 суток) нормативного периода выдержки до открытия движения транспорта (против 5 суток по СП 78.13330.2012).
По результатам проведенных лабораторных исследований грунтов, укрепленных стабилизирующей добавкой «СЦ» полученные в ходе испытаний результаты позволяют, в соответствии с ГОСТ23558-94, отнести укрепленные грунты к более высоким маркам по прочности. В качестве примера было выполнено производственное внедрение стабилизирующей добавки «СЦ» на объекте строительства опытного участка: автомобильная дорога, г. Сухой Лог (Свердловская область), ул. Маяковского, акт на выполненные работы представлен в приложении 1.

Claims (3)

1. Состав для стабилизации природных и техногенных грунтов, содержащий цемент, известь и золу-унос, отличающийся тем, что в него дополнительно введены меланин, формиат кальция, стекло натриевое, олеат натрия, лигносульфонат технический ЛСТ, активный микрокремнезем, доломитовая мука, этилсиликонат натрия, метилсиликонат натрия, сульфаты натрия, аммония и железа, при следующем соотношении компонентов, мас.%:
меланин 0,01-0,5 формиат кальция 0,5-3,0 зола-унос 1,0-8,0 стекло натриевое 0,01-1,0 олеат натрия 0,01-0,5 лигносульфонат технический ЛСТ 0,1-1,0 доломитовая мука 0,5-3,0 известь гашеная 1,0-3,0 этилсиликонат натрия 0,01-0,5 активный микрокремнезем 0,01-0,1 метилсиликонат натрия 0,2-1,0 сульфаты натрия, аммония, железа 0,02-0,5 цемент 78-96,63
2. Состав по п.1, отличающийся тем, что в качестве цемента используют цемент марки ПЦ 500 Д0 или ЦЕМ I 42,5Н.
RU2017109938A 2017-03-27 2017-03-27 Состав для стабилизации природных и техногенных грунтов RU2670468C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017109938A RU2670468C2 (ru) 2017-03-27 2017-03-27 Состав для стабилизации природных и техногенных грунтов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017109938A RU2670468C2 (ru) 2017-03-27 2017-03-27 Состав для стабилизации природных и техногенных грунтов

Publications (3)

Publication Number Publication Date
RU2017109938A RU2017109938A (ru) 2018-09-27
RU2017109938A3 RU2017109938A3 (ru) 2018-09-27
RU2670468C2 true RU2670468C2 (ru) 2018-10-23

Family

ID=63668800

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017109938A RU2670468C2 (ru) 2017-03-27 2017-03-27 Состав для стабилизации природных и техногенных грунтов

Country Status (1)

Country Link
RU (1) RU2670468C2 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2734749C2 (ru) * 2018-12-24 2020-10-23 Общество с ограниченной ответственностью "НАЦИОНАЛЬНЫЕ РЕСУРСЫ" Сухая строительная смесь для укрепления и стабилизации грунта
RU2750461C1 (ru) * 2020-07-02 2021-06-28 Анастасия Константиновна Нефедьева Сухая смесь для приготовления композиции для управляемого компенсационного нагнетания в грунты оснований зданий и сооружений
RU2759620C1 (ru) * 2020-08-11 2021-11-16 ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "Экорециклинг" Геокомпозиты на основе техногенных грунтов антропогенного генезиса и способ их получения
RU2771688C1 (ru) * 2021-10-27 2022-05-11 Публичное акционерное общество «Северсталь» (ПАО «Северсталь») Состав для укрепления грунта

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880468A (en) * 1988-09-29 1989-11-14 Halliburton Services Waste solidification composition and methods
RU2281356C1 (ru) * 2005-02-03 2006-08-10 Открытое общество с ограниченной ответственностью (ООО) "Белтекс" Состав для стабилизации грунта и способ его использования в дорожном строительстве
RU2296831C1 (ru) * 2005-09-08 2007-04-10 Общество с ограниченной ответственностью "Уралэкоресурс" Грунтовая смесь для дорожного строительства
RU2537448C1 (ru) * 2013-06-17 2015-01-10 Олег Иванович Лобов Способ укрепления оснований зданий на структурно-неустойчивых грунтах и грунтах с карстовыми образованиями
RU2541009C2 (ru) * 2013-06-24 2015-02-10 Общество с ограниченной ответственностью "Сибпромстрой" Грунт укрепленный дорожно-строительный
RU2592588C1 (ru) * 2015-06-15 2016-07-27 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела и механохимии Сибирского отделения Российской академии наук (ИХТТМ СО РАН) Состав для стабилизации глинистого грунта и способ создания грунтовых дорог с его использованием

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880468A (en) * 1988-09-29 1989-11-14 Halliburton Services Waste solidification composition and methods
RU2281356C1 (ru) * 2005-02-03 2006-08-10 Открытое общество с ограниченной ответственностью (ООО) "Белтекс" Состав для стабилизации грунта и способ его использования в дорожном строительстве
RU2296831C1 (ru) * 2005-09-08 2007-04-10 Общество с ограниченной ответственностью "Уралэкоресурс" Грунтовая смесь для дорожного строительства
RU2537448C1 (ru) * 2013-06-17 2015-01-10 Олег Иванович Лобов Способ укрепления оснований зданий на структурно-неустойчивых грунтах и грунтах с карстовыми образованиями
RU2541009C2 (ru) * 2013-06-24 2015-02-10 Общество с ограниченной ответственностью "Сибпромстрой" Грунт укрепленный дорожно-строительный
RU2592588C1 (ru) * 2015-06-15 2016-07-27 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела и механохимии Сибирского отделения Российской академии наук (ИХТТМ СО РАН) Состав для стабилизации глинистого грунта и способ создания грунтовых дорог с его использованием

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2734749C2 (ru) * 2018-12-24 2020-10-23 Общество с ограниченной ответственностью "НАЦИОНАЛЬНЫЕ РЕСУРСЫ" Сухая строительная смесь для укрепления и стабилизации грунта
RU2750461C1 (ru) * 2020-07-02 2021-06-28 Анастасия Константиновна Нефедьева Сухая смесь для приготовления композиции для управляемого компенсационного нагнетания в грунты оснований зданий и сооружений
RU2759620C1 (ru) * 2020-08-11 2021-11-16 ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "Экорециклинг" Геокомпозиты на основе техногенных грунтов антропогенного генезиса и способ их получения
RU2771688C1 (ru) * 2021-10-27 2022-05-11 Публичное акционерное общество «Северсталь» (ПАО «Северсталь») Состав для укрепления грунта

Also Published As

Publication number Publication date
RU2017109938A (ru) 2018-09-27
RU2017109938A3 (ru) 2018-09-27

Similar Documents

Publication Publication Date Title
Ortega-López et al. Durability studies on fiber-reinforced EAF slag concrete for pavements
Lawrence Physicochemical and mechanical Properties
Hall et al. Soil stabilisation and earth construction: materials, properties and techniques
Fang et al. Overview on cold cement bitumen emulsion asphalt
Yu et al. Water and chloride permeability research on ordinary cement mortar and concrete with compound admixture and fly ash
CN102153313A (zh) 混凝土复合外加剂
RU2670468C2 (ru) Состав для стабилизации природных и техногенных грунтов
Martinez-Echevarria et al. Crushing treatment on recycled aggregates to improve their mechanical behaviour for use in unbound road layers
Zhang et al. Study on workability and durability of calcined ginger nuts-based grouts used in anchoring conservation of earthen sites
Adamu et al. Effect of crumb rubber and nano silica on the creep and drying shrinkage of roller compacted concrete pavement
RU2603682C1 (ru) Состав для дорожного строительства
Zhang et al. Modification of lime-fly ash-crushed stone with phosphogypsum for road base
Dineshkumar et al. Behavior of high-strength concrete with sugarcane bagasse ash as replacement for cement
Antunes et al. A soil-cement formulation for road pavement base and sub base layers: A case study
Mathew et al. Soil stabilization using Bitumen emulsion and cement combination as additive
Wu et al. Cement-bound road base materials
Wen-yu et al. Study on reactive powder concrete used in the sidewalk system of the Qinghai-Tibet railway bridge
Désiré et al. Impact of clay particles on concrete compressive strength
Al-Sarrag et al. Use of recycling building demolition waste as coarse aggregate in hot mix asphalt
Roohbakhshan et al. Stabilization of clayey soil with lime and waste stone powder
Daheur et al. Valorisation of dune sand-tuff for Saharan pavement design
RU2734749C2 (ru) Сухая строительная смесь для укрепления и стабилизации грунта
Krayushkina et al. Stabilized soil-new material for road construction
RU2792506C1 (ru) Регенерируемая грунтовая смесь
RU2785742C1 (ru) Фиброцементогрунтовая смесь