RU2666763C1 - Способ обзора пространства - Google Patents

Способ обзора пространства Download PDF

Info

Publication number
RU2666763C1
RU2666763C1 RU2017131811A RU2017131811A RU2666763C1 RU 2666763 C1 RU2666763 C1 RU 2666763C1 RU 2017131811 A RU2017131811 A RU 2017131811A RU 2017131811 A RU2017131811 A RU 2017131811A RU 2666763 C1 RU2666763 C1 RU 2666763C1
Authority
RU
Russia
Prior art keywords
receiving
rays
beams
elevation
radiation pattern
Prior art date
Application number
RU2017131811A
Other languages
English (en)
Inventor
Владимир Владимирович Задорожный
Александр Юрьевич Ларин
Алексей Вадимович Литвинов
Иван Степанович Омельчук
Андрей Сергеевич Помысов
Original Assignee
Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") filed Critical Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС")
Priority to RU2017131811A priority Critical patent/RU2666763C1/ru
Application granted granted Critical
Publication of RU2666763C1 publication Critical patent/RU2666763C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • G01S1/14Systems for determining direction or position line using amplitude comparison of signals transmitted simultaneously from antennas or antenna systems having differently oriented overlapping directivity-characteristics
    • G01S1/16Azimuthal guidance systems, e.g. system for defining aircraft approach path, localiser system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • G01S13/48Indirect determination of position data using multiple beams at emission or reception
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/56Discriminating between fixed and moving objects or between objects moving at different speeds for presence detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Abstract

Изобретение относится к радиолокации и предназначено для построения обзорных радиолокационных станций с цифровыми антенными решетками. Технический результат - увеличение точности измерения азимутальной координаты объекта за счет использования моноимпульсного метода измерения вместо метода максимума. Указанный результат достигается за счет того, что в каждом азимутальном положении диаграммы направленности (ДН) в режиме передачи цифровая антенная решетка формирует веерную передающую ДН в угломестной плоскости, в режиме приема в случае размещения приемных лучей в узлах квадратной сетки формируют две приемных многолучевых в угломестной плоскости ДН с лучами игольчатой формы, при этом соседние лучи в ДН перекрываются по уровню L, равному половине мощности от максимума, размещают первую и вторую ДН параллельно друг другу таким образом, чтобы лучи с одинаковыми угломестными координатами перекрывались по уровню L, а азимутальная координата передающего луча соответствовала линии пересечения лучей первой и второй ДН. В случае размещения приемных лучей в узлах треугольной сетки формируют три приемных многолучевых в угломестной плоскости ДН с лучами игольчатой формы, при этом соседние лучи в ДН перекрываются по уровню L, размещают вторую и третью ДН параллельно друг другу таким образом, чтобы лучи с одинаковыми угломестными координатами перекрывались по уровню L, а азимутальная координата передающего луча соответствовала линии пересечения лучей второй и третьей ДН, совмещают линию расположения максимумов лучей первой ДН с линией пересечения лучей второй и третьей ДН, совмещают угломестные координаты максимумов лучей второй и третьей приемных ДН с линией пересечения лучей первой приемной ДН, при обнаружении объектов, измерении их дальности и угловых координат используется моноимпульсный метод обработки сигналов каждой из соседних пар приемных лучей. 8 ил.

Description

Изобретение относится к радиолокационной технике, а именно, к способам обзора пространства и предназначено для использования в радиолокационных системах (РЛС) с цифровыми антенными решетками (ЦАР).
Известен способ обзора пространства [1 - стр. 39 - Обработка сигналов в многоканальных РЛС / Под ред. А.П. Лукошкина. М.; Радио и связь. 1983 - 328 с.] путем параллельного обзора по всем измеряемым координатам с помощью многолучевой РЛС, при этом формируются перекрывающиеся лучи диаграммы направленности (ДН), охватывающие всю зону обзора.
Недостатками известного способа являются избыточные ресурсы, которые требуются для формирования параллельных лучей по всем измеряемым координатам.
Известен способ обзора пространства [2 - стр. 233 - Белоцерковский Г.Б. Основы радиолокации и радиолокационные устройства. М.; Сов. радио. 1975 - 336 с], в котором формируется многолучевая ДН в угломестной плоскости за счет облучения зеркальной антенны несколькими излучателями (рупорами), при этом линейка излучателей расположена в угломестной плоскости и зафиксирована относительно оси зеркала, каждый излучатель соединен со своим приемо-передатчиком отдельным фидером и формирует парциальный луч на своей несущей частоте. Прием отраженных сигналов каждым излучателем также осуществляется на своей частоте. Сканирование по азимуту осуществляется механическим вращением антенны.
Недостатками известного способа обзора пространства являются: - низкий КПД передающей части устройства за счет больших потерь излучаемого и принимаемого сигнала в фидерах, соединяющих излучатели (рупоры) и приемо-передающие каналы, поскольку они значительно разнесены в пространстве;
- недостаточно высокая надежность, поскольку при выходе из строя одного приемо-передатчика обзор пространства становится невозможен в том секторе угломестного обзора, который обеспечивал этот приемо-передатчик.
Известен способ обзора пространства [3 - Способ обзора пространства и сопровождения объектов поверхности при маловысотном полете - Патент РФ 2211459, опубл. 27.08.2003], заключающийся в том, что обнаружение объектов включает последовательную обработку данных в дискретном времени с привязкой к каждому текущему такту tn обработки, полученных при обзоре пространства с использованием веерной диаграммы направленности и занимающей М положений по горизонтали и диаграммы направленности с игольчатой формой, зондирующей отдельные выбранные участки зоны обзора с малым периодом обзора, при этом обе диаграммы направленности формируются одной антенной системой с электронным управлением лучом.
Недостатками известного способа обзора пространства являются:
- большое время обзора, так как измерение координат объекта выполняется в два этапа: вначале используется веерная ДН в режиме приема и передачи, при этом производится грубое измерение координат объекта, а для уточнения координат дополнительно используется ДН с игольчатой формой, что значительно удлиняет время обзора при увеличении числа объектов;
- недостаточную точность измерения координат объекта, поскольку для измерения используется единственная ДН с игольчатой формой, и метод максимума [2 - стр. 87].
Наиболее близким по технической сущности к изобретению является способ обзора пространства [4 - Способ обзора пространства - Патент РФ 2610833, опубл.16.02.2017 г.], взятый за прототип, заключающийся в том, что для формирования передающей и приемной диаграмм направленности используют многоэлементную цифровую антенную решетку, при этом в каждом азимутальном положении диаграммы направленности в режиме передачи формируют передающую диаграмму направленности веерной формы в угломестной плоскости, в режиме приема принимаемые отраженные сигналы представляются в виде цифровых отсчетов, из которых путем взвешенного суммирования формируют приемную многолучевую в угломестной плоскости диаграмму направленности, каждый луч которой имеет игольчатую форму, а соседние лучи перекрываются по уровню половинной мощности, при этом ширина приемной и передающей диаграмм направленности соответствует угловому размеру зоны обнаружения в угломестной плоскости, выполняют обнаружение объектов, измерение их дальности и угломестной координаты моноимпульсным методом обработки сигналов каждой из соседних пар приемных лучей, имеющих одинаковую азимутальную координату.
Недостатком прототипа является недостаточная точность измерения азимутальных координат объекта, поскольку для измерения координат в азимутальной плоскости используется ДН с игольчатой формой и метод максимума [2 - стр. 87].
Задачей, на решение которой направлено предлагаемое изобретение, является увеличение точности измерения азимутальных координат объекта.
Для решения указанной задачи предлагается способ обзора пространства, при котором для формирования передающей и приемной диаграмм направленности используют многоэлементную цифровую антенную решетку, при этом в каждом азимутальном положении диаграммы направленности в режиме передачи формируют передающую диаграмму направленности веерной формы в угломестной плоскости, в режиме приема принимаемые отраженные сигналы представляют в виде цифровых отсчетов, из которых путем взвешенного суммирования формируют первую приемную многолучевую в угломестной плоскости диаграмму направленности, каждый луч которой имеет игольчатую форму, а соседние лучи перекрываются по уровню, при этом ширина приемной и передающей диаграмм направленности соответствует угловому размеру зоны обнаружения в угломестной плоскости, выполняют обнаружение объектов, измерение их дальности и угломестной координаты моноимпульсным методом обработки сигналов каждой из соседних пар приемных лучей, имеющих одинаковую азимутальную координату.
Согласно изобретению, соседние лучи первой диаграммы направленности перекрываются по уровню L от максимума, в случае размещения приемных лучей в узлах квадратной сетки, формируют вторую приемную многолучевую в угломестной плоскости диаграмму направленности, каждый луч которой имеет игольчатую форму а соседние лучи перекрываются по уровню L от максимума, при этом количество лучей в первой и второй приемной диаграмме направленности одинаковы, располагают первую и вторую приемные диаграммы направленности параллельно друг другу таким образом, чтобы их лучи, имеющие одинаковые угломестные координаты, перекрывались по уровню L от максимума, направляют азимутальную координату вертикальной линии пересечения лучей первой и второй приемных диаграмм направленности в направлении максимума передающей диаграммы направленности, в случае размещения приемных лучей в узлах треугольной сетки, формируют вторую и третью приемные многолучевые в угломестной плоскости диаграммы направленности, каждый луч которых имеет игольчатую форму, соседние лучи в диаграмме направленности перекрываются по уровню L от максимума, при этом количество лучей во второй и третьей приемных диаграммах направленности одинаково и на один меньше, чем в первой приемной диаграмме направленности, располагают вторую и третью приемные диаграммы направленности параллельно друг другу таким образом, чтобы их лучи, имеющие одинаковые угломестные координаты, перекрывались по уровню L от максимума, совмещают азимутальную координату вертикальной линии пересечения лучей второй и третьей приемных диаграмм направленности с линией расположения максимумов лучей первой приемной диаграммы направленности и направлением максимума передающей диаграммы направленности, совмещают угломестные координаты максимумов лучей второй и третьей приемных диаграмм направленности с линиями пересечения лучей первой приемной диаграммы направленности, выполняют измерение азимутальной координаты обнаруживаемых объектов моноимпульсным методом обработки сигналов каждой из соседних пар лучей, имеющих одинаковые угломестные координаты, устанавливают следующее азимутальное положение диаграммы направленности и выполняют перечисленные операции для этого положения.
Техническим результатом является увеличение точности измерения азимутальной координаты объекта за счет использования моноимпульсного метода измерения вместо метода максимума.
Проведенный сравнительный анализ заявленного способа и прототипа показывает, что их отличие заключается в следующем:
- в прототипе измерение угломестной координаты объекта производится моноимпульсным методом обработки сигналов каждой из соседних пар приемных лучей, однако измерение азимутальной координаты осуществляется методом максимума. В предлагаемом способе для измерения азимутальной координаты используется моноимпульсная обработка сигналов каждой из соседних пар лучей, один луч из пары из первой, а второй луч - из второй приемной диаграмм направленности с одинаковыми угломестными координатами, что обеспечивает значительное снижение ошибки измерения азимутальной координаты [2 - стр. 91] по сравнению с методом максимума, применяемом в прототипе.
Сочетание отличительных признаков и свойства предлагаемого способа обзора пространства из литературы не известно, поэтому он соответствует критериям новизны и изобретательского уровня.
На фиг. 1 приведена структурная схема устройства, обеспечивающего реализацию предложенного способа.
На фиг. 2 приведена структурная схема системы управления и цифрового диаграммообразования.
На фиг. 3 приведена структурная схема преобразователя частоты.
На фиг. 4 приведена структурная схема модуля управления и цифровой обработки сигналов.
На фиг. 5 приведена схема расположения лучей приемных и передающей ДН в случае размещения приемных лучей в узлах квадратной сетки и использования по два луча в первой и второй приемных ДН.
На фиг. 6 приведена схема расположения лучей приемных и передающей ДН в случае размещения приемных лучей в узлах квадратной сетки и использования по три луча в первой и второй приемных ДН.
На фиг. 7 приведена схема расположения лучей приемных и передающей ДН в случае размещения приемных лучей в узлах треугольной сетки и использования двух лучей в первой приемной ДН и по одному лучу во второй и третьей приемных ДН.
На фиг. 8 приведена схема расположения лучей приемных и передающей ДН в случае размещения приемных лучей в узлах треугольной сетки и использования трех лучей в первой приемной ДН и по два луча во второй и третьей приемных ДН.
При реализации предложенного способа выполняется следующая последовательность действий:
- в каждом азимутальном положении диаграммы направленности в режиме передачи формируют веерную передающую диаграмму направленности в угломестной плоскости с помощью многоэлементной цифровой антенной решетки - 1;
- в случае размещения приемных лучей в узлах квадратной сетки в режиме приема принимаемые отраженные сигналы представляют в виде цифровых отсчетов, из которых путем взвешенного суммирования формируют первую и вторую приемные многолучевые в угломестной плоскости диаграммы направленности, каждый луч которых имеет игольчатую форму, а соседние лучи в диаграмме направленности перекрываются по уровню L от максимума, при этом количество лучей в первой и второй приемной диаграмме направленности одинаковы, а ширина приемных и передающей диаграмм направленности соответствует угловому размеру зоны обнаружения в угломестной плоскости - 2;
- располагают первую и вторую приемные диаграммы направленности параллельно друг другу таким образом, чтобы их лучи, имеющие одинаковые угломестные координаты, перекрывались по уровню L от максимума - 3;
- направляют азимутальную координату вертикальной линии пересечения лучей первой и второй приемных диаграмм направленности в направлении максимума передающей диаграммы направленности - 4;
- в случае размещения приемных лучей в узлах треугольной сетки, формируют первую, вторую и третью приемные многолучевую в угломестной плоскости диаграммы направленности, каждый луч которых имеет игольчатую форму, а соседние лучи в диаграмме направленности перекрываются по уровню L от максимума, при этом количество лучей во второй и третьей приемных диаграммах направленности одинаково и на один меньше, чем в первой приемной диаграмме направленности - 5;
- располагают вторую и третью приемные диаграммы направленности параллельно друг другу таким образом, чтобы их лучи, имеющие одинаковые угломестные координаты, перекрывались по уровню L от максимума - 6,
- совмещают азимутальную координату вертикальной линии пересечения лучей второй и третьей приемных диаграмм направленности с линией расположения максимумов лучей первой приемной диаграммы направленности и направлением максимума передающей диаграммы направленности, совмещают угломестные координаты максимумов лучей второй и третьей приемных диаграмм направленности с линиями пересечения лучей первой приемной диаграммы направленности - 7;
- выполняют обнаружение объектов, измерение их дальности и угломестной координаты с использованием моноимпульсного метода обработки сигналов каждой из соседних пар приемных лучей, имеющих одинаковую азимутальную координату - 8;
- выполняют измерение азимутальной координаты объектов с использованием моноимпульсного метода обработки сигналов каждой из соседних пар приемных лучей, имеющих одинаковую угломестную координату - 9;
- устанавливают следующее азимутальное положение диаграммы направленности и выполняют перечисленные операции для этого положения - 10.
Предложенный способ может работать как при электронном сканировании диаграммы направленности (ДН) по азимуту при неподвижной цифровой антенной решетке (ЦАР), так и при сканировании ДН по азимуту за счет механического перемещения (вращения) ЦАР.
Реализация предложенного способа обзора пространства возможна, например, с помощью устройства, включающего в себя (фиг. 1) ЦАР 1, блок управления (БУ) 2, первый управляющий выход которого подключен к управляющему входу ЦАР 1, второй управляющий выход - ко входу управления опорно-поворотного устройства (ОПУ) 3, третий управляющий выход - к управляющему входу блока обнаружения и измерения координат объектов (БОИКО) 4, а вход - к выходу БОЙКО 4.
ЦАР 1 включает в себя N приемопередающих модулей (ППМ) 5, систему формирования и распределения сигналов (СФРС) 6 и систему управления и цифрового диаграммообразования (СУЦДО) 7.
СФРС 6 имеет N выходов зондирующего сигнала (ЗС), соединенных со входами ЗС ППМ 5, N выходов дискретизации Fд, соединенных со входами дискретизации ППМ 5, N выходов гетеродина Fгeт, соединенных с гетеродинными входами ППМ 5.
ППМ 5 содержат последовательно соединенные фазовращатель (ФВ) 8, твердотельный усилитель мощности (УМ) 9, циркулятор 10 и антенный элемент (АЭ) 11. К выходу циркулятора 10 подключены последовательно соединенные малошумящий усилитель (МШУ) 12, преобразователь частоты (ПРЧ) 13, гетеродинный вход которого является гетеродинным входом ППМ 5 и модуль управления и цифровой обработки сигналов (МУЦОС) 14, вход дискретизации которого является входом дискретизации ППМ 5.
Выход данных МУЦОС 14 является выходом данных ППМ 5 и соединен с одним из N входов данных СУЦДО 7, управляющий вход МУЦОС 14 является управляющим входом ППМ 5 и соединен с одним из N управляющих выходов СУЦДО 7. Первый, второй и третий управляющие выходы МУЦОС 14 соединены соответственно с управляющими входами ПРЧ 13, УМ 9 и фазовращателя 8. Выход данных СУЦДО 7 соединен со входом данных БОЙКО 4.
СУЦДО 7 (фиг. 2) имеет К формирователей 15 по числу формируемых лучей, каждый из которых содержит N каналов, при этом входы i-тых каналов в формирователях 15 объединены. Каждый канал формирователя 15 содержит перемножитель 16, первый вход которого является входом канала, ко второму входу подключен выход постоянного запоминающего устройства (ПЗУ) 17, а выход перемножителя 16 является выходом канала и подключен к одному из N входов цифрового сумматора 18, выход которого подключен к одному из К входов интерфейса (И) 19. Выход интерфейса 19 является выходом СУЦДО 7. Устройство управления (УУ) 20, вход которого является управляющим входом СУЦДО 7, имеет N+1 управляющих выходов, которые являются управляющими выходами СУЦДО 7. Все блоки СУЦДО 7 могут быть выполнены, в зависимости от числа ППМ 5 и числа лучей К, в виде одной или нескольких программируемых логических интегральных схем (ПЛИС).
ПРЧ 13 (фиг. 3) представляет собой последовательно соединенные смеситель (СМ) 21, вход которого является входом ПРЧ 13, а гетеродинный вход - гетеродинным входом ПРЧ 13 и усилитель промежуточной частоты (УПЧ) 22, выход которого является выходом промежуточной частоты (ПЧ) ПРЧ 13, а управляющий вход - управляющим входом ПРЧ 13.
МУЦОС 14 (фиг. 4) представляет собой последовательно соединенные аналого-цифровой преобразователь (АЦП) 23, вход которого является входом ПЧ МУЦОС 14, а тактовый вход является входом дискретизации МУЦОС 14 и блок управления и обработки (БУО) 24. Первый, второй и третий управляющие выходы БУО 24 являются соответственно первым, вторым и третьим управляющим выходами МУЦОС 14. Выход данных и управляющий вход БУО 24 являются соответственно выходом данных и управляющим входом МУЦОС 14.
СФРС 6 представляет собой три синтезатора частоты, обеспечивающих формирование зондирующего сигнала ЗС, сигнала тактовой частоты дискретизации Fд, и сигнала гетеродина Fгет. При этом могут быть использованы, например, синтезаторы из [4 - стр. 142-143. Mini-Circuits. RF & Microwave components guide. 2010]. Сформированные в синтезаторах сигналы разветвляются на N выходов с помощью делителей мощности [4 - стр. 136 - 140].
БОИКО 4 представляет собой ЭВМ, обеспечивающую обработку отсчетов сигнала по заданному алгоритму.
БУ 2 представляет собой ЭВМ, обеспечивающую управление работой устройств ЦАР 1, ОПУ 3 и БОИКО 4, а также отображение координат обнаруженных объектов.
ОПУ 3 представляет собой устройство, обеспечивающее вращение ЦАР 1 в азимутальной плоскости, и может быть выполнено на основе опорно-поворотного круга с подшипником и червячного вала с электромотором.
Устройство может работать как при электронном сканировании ДН по азимуту при неподвижной ЦАР 1, так и при сканировании ДН по азимуту за счет механического вращения ЦАР 1 с помощью ОПУ 3. Сектор сканирования по азимуту в первом случае ограничивается характеристиками ЦАР 1, а во втором случае равен 360°.
В каждом азимутальном положении ДН в режиме передачи формируют веерную передающую диаграмму направленности в угломестной плоскости с помощью ЦАР 1. Формирование передающей ДН производится путем установки в ППМ 5 из состава ЦАР 1 требуемых фазовых и амплитудных соотношений регулировкой сдвига фазы зондирующего сигнала ЗС в фазовращателях 8 и коэффициента усиления усилителей мощности УМ 9.
Для случая плоской прямоугольной ЦАР, апертура которой содержит Nx АЭ 11, установленных вдоль координаты X на расстоянии dx, и Ny АЭ 11, установленных вдоль координаты Y, на расстоянии dy, диаграмма направленности F(ϕ,θ) определяется как [5 - стр. 27-28, Кузьмин С.З Цифровая радиолокация. Введение в теорию. - КВИЦ. 2000]:
Figure 00000001
где
Figure 00000002
Figure 00000003
где Axi, Ayi - коэффициенты амплитудного распределения в УМ 9, соединенных с АЭ 11, которые расположены вдоль координат X и Y соответственно;
ψxi, ψyi - коэффициенты фазового распределения, представленные в виде фазовых сдвигов в фазовращателях 8, соединенных через УМ 9 и циркулятор 10 с АЭ 11, которые расположены вдоль координат X и Y соответственно.
Для наземных обзорных РЛС веерная ДН может иметь косекансную форму [6 - рис. 5.1 б - Бакулев П.А. Радиолокационные системы. М.: Радиотехника. 2007. - 376 с]. Такая форма ДН формируется путем установки соответствующих амплитудных и фазовых коэффициентов в усилителях мощности 9 и фазовращателях 8, например, как описано в [7 - Лопатенко Э.В., Марусич А.А. Диаграмма направленности антенны cosec с низким уровнем боковых лепестков. //Радиотехника, 2006, №12, с. 49-53.].
После усиления зондирующего сигнала ЗС в УМ 9 он поступает на подключенный к этому каналу антенный элемент (АЭ) 11 по соединительной цепи минимальной длины.
После излучения зондирующего сигнала ЗС ЦАР 1 переходит в режим приема.
В режиме приема принимаемые отраженные сигналы с выхода каждого АЭ 11 в каждом ППМ 5 проходят через циркулятор 10, усиливаются в МШУ 12, преобразуются по частоте в ПРЧ 13 и представляются в виде цифровых отсчетов Smn(t) с помощью АЦП 23.
Из полученных цифровых отсчетов формируют приемные многолучевые в угломестной плоскости ДН с лучами игольчатой формы путем взвешенного суммирования в СУЦДО 7. В случае размещения приемных лучей в узлах квадратной сетки в режиме приема формируют две приемных ДН, а в случае размещения приемных лучей в узлах треугольной сетки, формируют три приемных ДН.
Отсчеты i-го луча с направлением максимума ϕi, θi вычисляются путем умножения цифрового потока с каждого АЦП 23 в перемножителях 16 на весовой множитель Wmnii) из ПЗУ 17 и суммирования в цифровом сумматоре 18. Диаграмма направленности для i-го луча имеет вид
Figure 00000004
,
где
Figure 00000005
,
Число лучей К в каждой ДН определяется требуемой зоной обзора в угломестной плоскости и шириной одного луча. Лучи приемной многолучевой ДН имеют игольчатую форму, расположены в угломестной плоскости, при этом направления их максимумов обеспечивает перекрытие соседних лучей по уровню L от максимума. Величина L может быть принята половине от максимума (половинной мощности) или другому значению, в зависимости от алгоритма работы аппаратуры. Ширина приемной диаграммы направленности соответствует угловому размеру зоны обнаружения в угломестной плоскости.
Сформированные отсчеты К приемных лучей с выходов формирователей 15 поступают в интерфейс 19, где преобразуются в последовательную форму и в виде последовательных кодов передаются в БОИКО 4, где в каждой из соседних пар сформированных приемных лучей выполняется обнаружение объектов, например, движущихся, измерение их дальности и угломестных координат, соответствующих угломестному и азимутальному положению тех приемных лучей, в которых они были обнаружены [8, стр. 185-189 - Справочник по радиолокации/ Под ред. М.И. Сколника. М: Техносерв. 2014. т. 1].
Ширина ДН в угломестной плоскости соответствует угловому размеру угломестной зоны обнаружения, на фиг. 5-8 приведены примеры конфигураций лучей ЦАР 1 для разных угловых размеров зоны обнаружения.
На фиг. 5 приведен пример схемы расположения приемных и передающей ДН в случае размещения приемных лучей в узлах прямоугольной сетки при использовании двух лучей 25 и 26 в первой приемной ДН и двух лучей 27 и 28 во второй приемной ДН. Направление азимутальной координаты вертикальной линии 30 пересечения лучей первой и второй приемных ДН или линии равносигнального направления (РСН) по азимуту совпадает с максимумом передающей ДН 29. Линия РСН по углу места 31 совпадает для обеих ДН. Схемы на фиг. 5-8 приведены для плоскости сечения, параллельной плоскости раскрыва ЦАР.
На фиг. 6 приведен пример схемы расположения приемных и передающей ДН в случае размещения приемных лучей в узлах прямоугольной сетки при использовании трех лучей 25, 26 и 32 в первой приемной ДН и трех лучей 27, 28 и 33 во второй приемной ДН. Линии РСН по углу места 31 совпадают для обеих ДН. Направление вертикальной линии 30 РСН по азимуту совпадает с максимумом передающей ДН 29.
На фиг. 7 приведена схема расположения лучей приемных и передающей ДН в случае размещения приемных лучей в узлах треугольной сетки при использовании двух лучей 25 и 26 в первой приемной ДН и по одному лучу во второй 27 и третьей 34 приемных ДН. Направление вертикальной линии 30 РСН по азимуту лучей второй 27 и третьей 34 ДН совпадает с максимумом передающей ДН 29 и максимумами лучей 25 и 26 первой ДН. Угломестные координаты максимумов лучей второй 27 и третьей 34 приемных ДН совпадают с линией РСН по углу места 31 лучей 25 и 26 первой приемной ДН.
На фиг. 8 приведена схема расположения лучей приемных и передающей ДН при размещении приемных лучей в узлах треугольной сетки в случае использования трех лучей 25, 26 и 32 в первой приемной ДН и по два луча: 27, 33 во второй и 34, 35 в третьей приемных ДН. Направление вертикальной линии 30 РСН по азимуту лучей второй 27, 33 и третьей 34, 35 ДН совпадает с максимумом передающей ДН 29 и максимумами лучей 25, 26 и 32 первой ДН. Угломестные координаты максимумов лучей второй 27, 33 и третьей 34, 35 приемных ДН совпадают с линиями РСН по углу места 31 лучей 25, 26 и 32 первой приемной ДН.
Выбор вида размещения лучей по прямоугольной или треугольной сетке может осуществляться, например, из условия снижения числа приемных лучей с учетом того, что для обзора того же угломестного сектора при использовании прямоугольной сетки и общем числе приемных лучей более шести требуется на один луч меньше.
В предлагаемом способе измерение осуществляется моноимпульсным способом как угломестной, так и азимутальной координаты, в то время как в прототипе таким способом осуществляется измерение только угломестной координаты, а измерение азимутальной координаты осуществляется методом максимума. Применение в предлагаемом способе моноимпульсной обработки для измерения азимутальной координаты объекта снижает ошибку измерения до 10 раз [2 - стр. 91] по сравнению с методом максимума, используемым в прототипе.
Применение ЦАР с N приемопередающими модулями, содержащими твердотельные усилители мощности, расположенными в непосредственной близости от антенных элементов, обеспечивает снижение потерь передаваемого и принимаемого сигнала за счет уменьшения длины соединений с антенным элементом. Повышение надежности многоэлементной ЦАР обеспечивается за счет медленного снижения характеристик ЦАР при выходе из строя части приемо-передающих модулей.
Работоспособность предлагаемого способа была проверена на макете устройства (фиг. 1). Испытания показали совпадение полученных характеристик с расчетными.

Claims (1)

  1. Способ обзора пространства, при котором для формирования передающей и приемной диаграмм направленности используют многоэлементную цифровую антенную решетку, при этом в каждом азимутальном положении диаграммы направленности в режиме передачи формируют передающую диаграмму направленности веерной формы в угломестной плоскости, в режиме приема принимаемые отраженные сигналы представляют в виде цифровых отсчетов, из которых путем взвешенного суммирования формируют первую приемную многолучевую в угломестной плоскости диаграмму направленности, каждый луч которой имеет игольчатую форму, а соседние лучи перекрываются по уровню половинной мощности от максимума диаграммы направленности, при этом ширина приемной и передающей диаграмм направленности соответствует угловому размеру зоны обнаружения в угломестной плоскости, выполняют обнаружение объектов, измерение их дальности и угломестной координаты моноимпульсным методом обработки сигналов каждой из соседних пар приемных лучей, имеющих одинаковую азимутальную координату, отличающийся тем, что соседние лучи первой диаграммы направленности перекрываются по уровню L, равному половине мощности от максимума, в случае размещения приемных лучей в узлах квадратной сетки, формируют вторую приемную многолучевую в угломестной плоскости диаграмму направленности, каждый луч которой имеет игольчатую форму, а соседние лучи перекрываются по уровню L, при этом количество лучей в первой и второй приемной диаграмме направленности одинаково, располагают первую и вторую приемные диаграммы направленности параллельно друг другу таким образом, чтобы их лучи, имеющие одинаковые угломестные координаты, перекрывались по уровню L, направляют азимутальную координату вертикальной линии пересечения лучей первой и второй приемных диаграмм направленности в направлении максимума передающей диаграммы направленности, в случае размещения приемных лучей в узлах треугольной сетки, формируют вторую и третью приемные многолучевые в угломестной плоскости диаграммы направленности, каждый луч которых имеет игольчатую форму, соседние лучи в диаграмме направленности перекрываются по уровню L, при этом количество лучей во второй и третьей приемных диаграммах направленности одинаково и на один меньше, чем в первой приемной диаграмме направленности, располагают вторую и третью приемные диаграммы направленности параллельно друг другу таким образом, чтобы их лучи, имеющие одинаковые угломестные координаты, перекрывались по уровню L, совмещают азимутальную координату вертикальной линии пересечения лучей второй и третьей приемных диаграмм направленности с линией расположения максимумов лучей первой приемной диаграммы направленности и направлением максимума передающей диаграммы направленности, совмещают угломестные координаты максимумов лучей второй и третьей приемных диаграмм направленности с линиями пересечения лучей первой приемной диаграммы направленности, выполняют измерение азимутальной координаты обнаруживаемых объектов моноимпульсным методом обработки сигналов каждой из соседних пар лучей, имеющих одинаковые угломестные координаты, устанавливают следующее азимутальное положение диаграммы направленности и выполняют перечисленные операции для этого положения.
RU2017131811A 2017-09-11 2017-09-11 Способ обзора пространства RU2666763C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017131811A RU2666763C1 (ru) 2017-09-11 2017-09-11 Способ обзора пространства

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017131811A RU2666763C1 (ru) 2017-09-11 2017-09-11 Способ обзора пространства

Publications (1)

Publication Number Publication Date
RU2666763C1 true RU2666763C1 (ru) 2018-09-12

Family

ID=63580460

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017131811A RU2666763C1 (ru) 2017-09-11 2017-09-11 Способ обзора пространства

Country Status (1)

Country Link
RU (1) RU2666763C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2723299C1 (ru) * 2019-11-12 2020-06-09 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ построения радиолокационной станции

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5138322A (en) * 1991-08-20 1992-08-11 Matrix Engineering, Inc. Method and apparatus for radar measurement of ball in play
JP2008197034A (ja) * 2007-02-15 2008-08-28 Nec Corp 電子走査式精測レーダ装置および目標追尾方法
RU2474841C2 (ru) * 2009-02-17 2013-02-10 Георгий Михайлович Межлумов Способ радиолокационного обзора пространства и устройство для осуществления этого способа
EP1904870B1 (en) * 2005-07-19 2016-04-20 Raytheon Company A method of generating accurate estimates of azimuth and elevation angles of a target for a phased-phased array rotating radar
RU2610833C1 (ru) * 2015-10-27 2017-02-16 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ обзора пространства
RU2621680C1 (ru) * 2016-03-09 2017-06-07 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ обзора пространства
RU2627958C1 (ru) * 2016-11-07 2017-08-14 Акционерное общество "Научно-исследовательский институт Приборостроения имени В.В. Тихомирова" Способ формирования диаграммы направленности цифровой антенной решеткой

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5138322A (en) * 1991-08-20 1992-08-11 Matrix Engineering, Inc. Method and apparatus for radar measurement of ball in play
EP1904870B1 (en) * 2005-07-19 2016-04-20 Raytheon Company A method of generating accurate estimates of azimuth and elevation angles of a target for a phased-phased array rotating radar
JP2008197034A (ja) * 2007-02-15 2008-08-28 Nec Corp 電子走査式精測レーダ装置および目標追尾方法
RU2474841C2 (ru) * 2009-02-17 2013-02-10 Георгий Михайлович Межлумов Способ радиолокационного обзора пространства и устройство для осуществления этого способа
RU2610833C1 (ru) * 2015-10-27 2017-02-16 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ обзора пространства
RU2621680C1 (ru) * 2016-03-09 2017-06-07 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ обзора пространства
RU2627958C1 (ru) * 2016-11-07 2017-08-14 Акционерное общество "Научно-исследовательский институт Приборостроения имени В.В. Тихомирова" Способ формирования диаграммы направленности цифровой антенной решеткой

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2723299C1 (ru) * 2019-11-12 2020-06-09 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ построения радиолокационной станции

Similar Documents

Publication Publication Date Title
US9397766B2 (en) Calibration system and technique for a scalable, analog monopulse network
US20180106895A1 (en) Imaging Radar Sensor with Narrow Antenna Lobe and Wide Angle-Detection Range
JP6290792B2 (ja) 単一パッケージに集積されたハイブリッドレーダ
US20160077195A1 (en) Radar imaging via spatial spectrum measurement and MIMO waveforms
Malanowski et al. Analysis of detection range of FM-based passive radar
US8344943B2 (en) Low-profile omnidirectional retrodirective antennas
CA2411615C (en) Surface wave radar
US9897695B2 (en) Digital active array radar
KR101108749B1 (ko) 다수의 송신기들을 구비한 무선 시스템에서의 모바일 무선수신기 위치 찾기 시스템 및 방법
CN100590449C (zh) 雷达装置
US9972917B2 (en) Digital active array radar
JP4737165B2 (ja) レーダの物標検知方法、およびこの物標検知方法を用いたレーダ装置
Fukao et al. The MU radar with an active phased array system: 1. Antenna and power amplifiers
CN107024621B (zh) Massive-MIMO天线测量装置及其指向性测量方法
US8723719B1 (en) Three dimensional radar method and apparatus
US7423578B1 (en) Split aperture array for increased short range target coverage
US3448450A (en) Pulse radar for determining angles of elevation
US7038633B2 (en) Antenna system and net drift verification
US8854255B1 (en) Ground moving target indicating radar
US2411518A (en) Electromagnetic wave transmission system
US10281571B2 (en) Phased array antenna using stacked beams in elevation and azimuth
EP1629301B1 (en) Method and system for unambiguous angle resolution of a sparse wide-band antenna array
ES2414379T3 (es) Radar de gran precisión angular, particularmente para la función de detección y de evitación de obstáculos
US7812759B2 (en) Radar apparatus for detection position information of a target by receiving reflection signals reflected by the target with a plurality of reception antennas
US4305074A (en) Electromagnetic detection apparatus