RU2660652C1 - Способ получения гликолида из модифицированных олигомеров гликолевой кислоты - Google Patents

Способ получения гликолида из модифицированных олигомеров гликолевой кислоты Download PDF

Info

Publication number
RU2660652C1
RU2660652C1 RU2017146975A RU2017146975A RU2660652C1 RU 2660652 C1 RU2660652 C1 RU 2660652C1 RU 2017146975 A RU2017146975 A RU 2017146975A RU 2017146975 A RU2017146975 A RU 2017146975A RU 2660652 C1 RU2660652 C1 RU 2660652C1
Authority
RU
Russia
Prior art keywords
glycolide
glycolic acid
producing
oligomers
modified
Prior art date
Application number
RU2017146975A
Other languages
English (en)
Inventor
Владимир Викторович Ботвин
Александр Данисович Латыпов
Анатолий Георгиевич Филимошкин
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ)
Priority to RU2017146975A priority Critical patent/RU2660652C1/ru
Application granted granted Critical
Publication of RU2660652C1 publication Critical patent/RU2660652C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/101,4-Dioxanes; Hydrogenated 1,4-dioxanes
    • C07D319/121,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)

Abstract

Изобретение относится к способу получения гликолида, который является одним из исходных мономеров в реакциях с раскрытием цикла при получении ценных биодеградируемых полимеров, которые находят широкое применение в медицине, фармацевтике, пищевой промышленности и в современных аддитивных технологиях. Способ получения гликолида из олигомеров, модифицированных многоатомными спиртами, включает в себя процесс получения олигомеров в условиях реакции поликонденсации 70 % водного раствора гликолевой кислоты и многоатомного спирта, взятых в соотношении 17 к 1 по молям с последующим добавлением 1 мас.% оксидного катализатора и деполимеризацией модифицированного олигомера в гликолид при температуре 250–255°С и давлении 10-15 мбар. Очистку гликолида-сырца проводят путем трехкратной перекристаллизации из этилацетата. Технический результат - получение гликолида высокой степени чистоты без использования дорогостоящих высококипящих полярных растворителей. 3 пр.

Description

Изобретение относится к химической промышленности, а именно к способу получения гликолида, который является одним из исходных мономеров в реакциях с раскрытием цикла при получении ценных биодеградируемых полимеров. Он может быть использован в медицине, фармацевтике, пищевой промышленности и в современных аддитивных технологиях.
При получении полимеров с высокой молекулярной массой крайне важна чистота исходных мономеров. Стадия очистки мономеров, в частности гликолида, является трудоемким, дорогостоящим и не всегда экологичным процессом. Основным способом получения гликолида является термическая деполимеризация олигомеров гликолевой кислоты с молекулярной массой 500-5000 г/моль в присутствии подобранных катализаторов различной природы.
Известен способ получения гликолида деполимеризацией олигомеров гликолевой кислоты с высококипящим полярным растворителем, содержащим одну или несколько гидроксильных групп, и полиалкиленгликолями с различной величиной молекулярной массы (патент US 7235673, МПК C07C69/675, C07D319/12, опубл. 26.06.2007, прототип).
Известен также способ (патент US 4727163, МПК A61K47/34, A61L17/00, A61L27/00, опубл. 23.02.1988), в котором используются простые алифатические и ароматические полиэфиры для получения блок сополимеров с гликолевой или молочной кислотами.
Главными недостатками известных способов получения гликолида являются высокая стоимость используемых реагентов (высококипящие полярные растворители, полиалкиленгликоли), большие длительность процесса и большие реакционные объемы. Кроме того, основные сложности очистки гликолида заключаются в удалении из него гидроксилсодержащих соединений в форме гликолевой кислоты, низкомолекулярных олигомеров гликолевой кислоты, которые не растворяются в общедоступных органических растворителях, что затрудняет их определение хроматографическими методами.
Задачей изобретения является разработка способа получения гликолида высокой степени чистоты из модифицированных олигомеров гликолевой кислоты методом термической деполимеризации при сравнительно небольших временных и материальных затратах.
Поставленная задача решается тем, что в способе, включающем деполимеризацию модифицированных олигомеров гликолевой кислоты, получаемых из водного раствора 70 %-ной гликолевой кислоты и гидроксилсодержащих алифатических соединений, в отличие от прототипа, модифицирование олигомеров гликолевой кислоты осуществляют с использованием алифатических многоатомных спиртов из расчета 1 моль многоатомного спирта на 17 моль гликолевой кислоты в присутствии 0.1–1 масс.% оксидного катализатора, а синтез гликолида, не содержащего нерастворимых низкомолекулярных олигомеров гликолевой кислоты, проводят методом термической деполимеризации модифицированных олигомеров гликолевой кислоты при температуре 250–255 °С и давлении 10-15 мбар с последующей очисткой трехкратной перекристаллизацией из этилацетата.
На стадии поликонденсации гликолевой кислоты к раствору добавляются многоатомные спирты (МС) (этиленгликоль, пропиленгликоль, глицерин и др.). Диолы и триолы представляют собой высококипящие жидкости (Т кип >190 град.), неограниченно растворимые в воде, но не образующие с ней азеотропов, что позволяет удерживать добавляемые МС в реакционной среде и сохранять их концентрацию постоянной. МС в данном случае связывает кислотные группы олигомерных молекул, что ведет к уменьшению содержания кислотных групп в гликолиде-сырце, которые влияют на процесс полимеризации гликолида. Он также при определенной концентрации играет роль регулятора роста цепи, что позволяет вести процесс до максимальной конверсии гликолевой кислоты при поддержании постоянной молекулярной массы, чего невозможно добиться при конденсации без МС. Также МС увеличивают молекулярную массу фрагментов олигомерных молекул гликолевой кислоты, которые образуются к концу реакции деполимеризации, что снижает содержание низкомолекулярных олигомерных молекул (линейные димеры, тримеры и т.д.) в конечном продукте.
Техническим результатом является то, что с помощью способа по изобретению можно получить гликолид высокой степени чистоты без использования дорогостоящих реагентов и при сравнительно небольших временных и материальных затратах.
Преимущество перед прототипом достигается за счет получения олигомеров гликолевой кислоты, модифицированных многоатомными спиртами, и их деполимеризацией в гликолид в присутствии оксидных катализаторов.
Примеры осуществления:
Синтез гликолида протекает в несколько стадий, которые можно представить следующими схемами:
Стадия 1. Получение модифицированных олигомеров гликолевой кислоты.
Figure 00000001
Рассчитанные количества 70 % раствора гликолевой кислоты и МС, взятые в соотношении 17 к 1 по молям, помещают в реакционную колбу ротационного испарителя. Синтез проводят при поэтапном повышении температуры в интервале 130–180°С и понижении давления в интервале 500–100 мбар в течение 3 часов. Затем в реакционную смесь вносят оксидный катализатор в количестве 0,1-1 % от массы олигомера и ведут синтез в течение 1 часа.
Стадия 2. Синтез гликолида путем термической деполимеризации модифицированных олигомеров гликолевой кислоты.
Figure 00000002
Полученный олигомер подвергают деполимеризации при температуре 250–255 °С и давлении 10-15 мбар. Образующийся гликолид собирают в приемной колбе, которую охлаждают до -50°С. Полученный сырец очищают путем трехкратной перекристаллизации из этилацетата. Чистоту очищенного продукта определяют методом газовой хроматографии. В качестве растворителя могут быть использованы ацетонитрил или гексафторизопропанол. Сравнительный анализ растворителей показал, что в случае определения хроматографической чистоты гликолида наилучшие результаты дает гексафторизопропанол, поскольку с его помощью можно определить содержание низкомолекулярных олигомеров гликолевой кислоты, которые не растворяются в ацетонитриле и, тем самым, завышают содержание гликолида.
Ниже представлены примеры выполнения изобретения.
Пример 1. Синтез гликолида из немодифицированных олигомеров гликолевой кислоты.
Олигомеры гликолевой кислоты получали из 70 % водного раствора гликолевой кислоты в ротационном испарителе в условиях реакции поликонденсации. Синтез проводили при поэтапном повышение температуры в интервале 130-180°С и понижении давления в интервале 500–100 мбар в течение 4 часов. Полученный олигомер деполимеризовали при температуре 250°С и давлении 10-15 мбар в присутствии 1 мас.% оксида цинка в качестве катализатора. Выход гликолида-сырца составил 78 %. Гликолид-сырец очищали методом трехкратной перекристаллизации из этилацетата. При перекристаллизации в растворе наблюдали взвесь мелких частиц, которые представляют собой нерастворимые в этилацетате остаточные низкомолекулярные олигомеры гликолевой кислоты. При проведении третьей перекристаллизации мелкие частицы концентрировались в белый осадок. Наличие нерастворимых олигомеров гликолевой кислоты вносит погрешность в точное определение содержания гликолида в очищенном продукте. Чистоту подтверждали методом ГХ/МС в гексафторизопропаноле. Хроматографическая чистота составила 94,3 %.
Пример 2. Синтез гликолида из олигомеров гликолевой кислоты, модифицированных пропиленгликолем.
Раствор гликолевой кислоты 70% поместили в ротационный испаритель в количестве 200 г (в пересчете на раствор), к нему добавили 10 мл пропиленгликоля. Далее синтез вели по следующей схеме: смесь нагревали при перемешивании (160 об/мин) до 130°С, давлении 500 мбар, с продувкой азотом со скоростью потока 0,2 л/мин в течение 80 минут. Затем температуру поэтапно повышали до 180°С через каждые 20 минут. По достижении температуры 180°С также поэтапно через каждые 20 минут понижали давление до 100 мбар, после чего в смесь внесли катализатор ZnO в количестве 1 % от массы олигомера, и процесс продолжали в течение 60 минут. Общее время процесса составило 4 часа.
Полученный олигомер деполимеризовали в присутствии уже внесенного ранее катализатора ZnO при температуре 250°С и давлении 10-15 мбар. Выход гликолида-сырца составил 88 %. Гликолид-сырец очищали методом трехкратной перекристаллизации из этилацетата. Хроматографическая чистота составила 97,1 % (метод ГХ в ацетонитриле).
Пример 3. Синтез гликолида из олигомеров гликолевой кислоты, модифицированных глицерином.
Раствор гликолевой кислоты 70% поместили в ротационный испаритель в количестве 200 г (в пересчете на раствор), к нему добавили 8 мл глицерина. Далее вели синтез по следующей схеме: смесь нагревали при перемешивании (160 об/мин) до 130°С, при давлении 500 мбар, с продувкой азотом со скоростью потока 0,2 л/мин в течение 80 минут. Затем температуру поэтапно повышали до 180°С через каждые 20 минут. По достижении температуры 180°С также поэтапно через каждые 20 минут понижали давление до 100 мбар, после чего в смесь вносили катализатор SnO2 в количестве 1 % от массы олигомера, и процесс продолжали в течение 60 минут. Общее время процесса составило 4 часа.
Полученный олигомер деполимеризовали в присутствии уже внесенного ранее катализатора SnO2, как в примере 2. Выход гликолида-сырца составил 83 %. Гликолид-сырец очищали методом трехкратной перекристаллизации из этилацетата. Хроматографическая чистота составила 99,8 % (метод ГХ в ацетонитриле).
Пример 4. Синтез гликолида из олигомеров гликолевой кислоты, модифицированных этиленгликолем.
Раствор гликолевой кислоты 70% поместили в ротационный испаритель в количестве 200 г (в пересчете на раствор), к нему добавили 8,5 мл этиленгликоля. Далее синтез вели по следующей схеме: смесь нагревали при перемешивании (160 об/мин) до 130°С, давлении 500 мбар, с продувкой азотом со скоростью потока 0,2 л/мин в течение 80 минут. Затем температуру поэтапно повышали до 180°С через каждые 20 минут. По достижении температуры 180°С также поэтапно через каждые 20 минут понижали давление до 100 мбар, после чего в смесь вносили катализатор Sb2O3 в количестве 1% от массы олигомера, и процесс продолжали в течение 60 минут. Общее время процесса составило 4 часа.
Полученный олигомер деполимеризовали в присутствии уже внесенного ранее катализатора Sb2O3 как в примере 2. Выход гликолида-сырца составил 81 %. Гликолид-сырец очищали методом трехкратной перекристаллизации из этилацетата. Хроматографическая чистота составила 97,6 % (метод ГХ в ацетонитриле).

Claims (2)


  1. Способ получения гликолида из модифицированных олигомеров гликолевой кислоты, включающий получение модифицированных олигомеров гликолевой кислоты из водного раствора 70 %-ной гликолевой кислоты и гидроксилсодержащих алифатических соединений и их последующую деполимеризацию, отличающийся тем, что модифицирование олигомеров гликолевой кислоты осуществляют с использованием алифатических многоатомных спиртов из расчета 1 моль многоатомного спирта на 17 моль гликолевой кислоты в присутствии 0.1–1 мас.% оксидного катализатора, а синтез гликолида, не содержащего нерастворимых низкомолекулярных олигомеров гликолевой кислоты, проводят методом термической деполимеризации модифицированных олигомеров гликолевой кислоты при температуре 250–255°С и давлении 10-15 мбар с последующей очисткой трехкратной перекристаллизацией из этилацетата.
RU2017146975A 2017-12-29 2017-12-29 Способ получения гликолида из модифицированных олигомеров гликолевой кислоты RU2660652C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017146975A RU2660652C1 (ru) 2017-12-29 2017-12-29 Способ получения гликолида из модифицированных олигомеров гликолевой кислоты

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017146975A RU2660652C1 (ru) 2017-12-29 2017-12-29 Способ получения гликолида из модифицированных олигомеров гликолевой кислоты

Publications (1)

Publication Number Publication Date
RU2660652C1 true RU2660652C1 (ru) 2018-07-09

Family

ID=62815520

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017146975A RU2660652C1 (ru) 2017-12-29 2017-12-29 Способ получения гликолида из модифицированных олигомеров гликолевой кислоты

Country Status (1)

Country Link
RU (1) RU2660652C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112469759A (zh) * 2018-10-29 2021-03-09 上海浦景化工技术股份有限公司 低固体残留物的乙交酯生产
CN114437020A (zh) * 2022-02-23 2022-05-06 中国科学院长春应用化学研究所 一种乙交酯的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4727163A (en) * 1985-07-11 1988-02-23 E. I. Du Pont De Nemours And Company Process for preparing highly pure cyclic esters
US20040122240A1 (en) * 2001-04-12 2004-06-24 Kazuyuki Yamane Glycolide production process, and glycolic acid oligomer for glycolide production
RU2512306C1 (ru) * 2012-11-27 2014-04-10 Федеральное государственное бюджетное образовательно учреждение высшего профессионального образования "Национальный исследовательский Томский государственный университет" Способ получения гликолида

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4727163A (en) * 1985-07-11 1988-02-23 E. I. Du Pont De Nemours And Company Process for preparing highly pure cyclic esters
US20040122240A1 (en) * 2001-04-12 2004-06-24 Kazuyuki Yamane Glycolide production process, and glycolic acid oligomer for glycolide production
RU2512306C1 (ru) * 2012-11-27 2014-04-10 Федеральное государственное бюджетное образовательно учреждение высшего профессионального образования "Национальный исследовательский Томский государственный университет" Способ получения гликолида

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112469759A (zh) * 2018-10-29 2021-03-09 上海浦景化工技术股份有限公司 低固体残留物的乙交酯生产
CN112469759B (zh) * 2018-10-29 2023-07-25 上海浦景化工技术股份有限公司 低固体残留物的乙交酯生产
CN114437020A (zh) * 2022-02-23 2022-05-06 中国科学院长春应用化学研究所 一种乙交酯的制备方法
CN114437020B (zh) * 2022-02-23 2023-03-24 中国科学院长春应用化学研究所 一种乙交酯的制备方法

Similar Documents

Publication Publication Date Title
FI95697C (fi) Laktidin valmistus dehydratoimalla sopivasti vesipitoista maitohapposyötettä
JP5679411B2 (ja) ポリ乳酸の製造方法
JP6505917B2 (ja) 環状オリゴマーを調製する方法、及びそれにより得られる環状オリゴマー
TW201802061A (zh) 丙烯酸及其製造方法
TW575597B (en) Process for producing polytrimethylene terephthalate
KR20210020880A (ko) 폴리(알킬렌 카보네이트) 중합체의 말단 그룹 이성질체화
RU2660652C1 (ru) Способ получения гликолида из модифицированных олигомеров гликолевой кислоты
JP5264483B2 (ja) ポリ乳酸合成のための有機酸系触媒
EP3604290B1 (en) Furan monomer having bifunctional hydroxymethyl group and preparation method therefor
KR101459819B1 (ko) 유산염으로부터 락타이드의 제조방법
US7342050B2 (en) Method for preparing a lactic acid ester composition and use thereof as solvent
JP2010254827A (ja) バイオベース原料を用いた高分子量脂肪族ポリエステルエーテルおよびその製造方法
WO2019066310A1 (ko) 폴리트리메틸렌 에테르 글리콜 및 이의 제조 방법
CN114805283A (zh) 一种连续稳定制备高品质乙交酯的方法
US10662289B2 (en) Polymers from bio-derived dicarboxylic acids
KR101886434B1 (ko) 유산으로부터 락타이드의 제조방법
CN110092899B (zh) 一种苯丙氨酸亚锡配合物的用途
JPH10109983A (ja) 環状エステルの製造方法および精製方法
CN108191815B (zh) 利用l-乳酸生产l-丙交酯的方法
CN114015030A (zh) L-抗坏血酸和/或l-抗坏血酸钠作为催化剂催化内酯或交酯开环聚合反应的应用
CN109280158B (zh) 利用d-丙交酯开环聚合生产聚d-乳酸的方法
JP5589266B2 (ja) ポリ(アルキレンカーボネート)化合物の製造方法
CN105566238A (zh) 一种2,2’-亚甲基双[6-(2h-苯并三氮唑-2-基)-4-(1,1,3,3-四甲基丁基)苯酚]的制备方法
KR101809663B1 (ko) 알킬 프로피오네이트와 물 혼합용매를 이용한 광학순도가 향상된 락타이드의 제조방법
CN109337052B (zh) 利用l-丙交酯开环聚合生产聚l-乳酸的方法