RU2643362C1 - Способ обращения с радиоактивными растворами после дезактивации поверхностей защитного оборудования - Google Patents
Способ обращения с радиоактивными растворами после дезактивации поверхностей защитного оборудования Download PDFInfo
- Publication number
- RU2643362C1 RU2643362C1 RU2017101380A RU2017101380A RU2643362C1 RU 2643362 C1 RU2643362 C1 RU 2643362C1 RU 2017101380 A RU2017101380 A RU 2017101380A RU 2017101380 A RU2017101380 A RU 2017101380A RU 2643362 C1 RU2643362 C1 RU 2643362C1
- Authority
- RU
- Russia
- Prior art keywords
- solutions
- components
- oxides
- deactivation
- zirconium
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/04—Treating liquids
- G21F9/06—Processing
- G21F9/14—Processing by incineration; by calcination, e.g. desiccation
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/04—Treating liquids
- G21F9/06—Processing
- G21F9/16—Processing by fixation in stable solid media
- G21F9/162—Processing by fixation in stable solid media in an inorganic matrix, e.g. clays, zeolites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
- C04B35/465—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/49—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/62675—Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/653—Processes involving a melting step
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/04—Treating liquids
- G21F9/06—Processing
- G21F9/08—Processing by evaporation; by distillation
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/04—Treating liquids
- G21F9/06—Processing
- G21F9/16—Processing by fixation in stable solid media
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/28—Treating solids
- G21F9/30—Processing
- G21F9/301—Processing by fixation in stable solid media
- G21F9/302—Processing by fixation in stable solid media in an inorganic matrix
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/28—Treating solids
- G21F9/30—Processing
- G21F9/301—Processing by fixation in stable solid media
- G21F9/302—Processing by fixation in stable solid media in an inorganic matrix
- G21F9/305—Glass or glass like matrix
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
- C04B2235/3267—MnO2
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
- C04B2235/3268—Manganates, manganites, rhenates or rhenites, e.g. lithium manganite, barium manganate, rhenium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3272—Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/442—Carbonates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/443—Nitrates or nitrites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
Abstract
Изобретение относится к области охраны окружающей среды, а точнее к области переработки радиоактивных отходов, и может быть использовано для целей безопасного и эффективного обращения с большим количеством жидких радиоактивных отходов различного уровня активности. Для этого радиоактивные растворы после дезактивации поверхностей защитного оборудования упаривают щелочные и кислотные растворы, содержащих гидроксид натрия, перманганат калия, щавелевую кислоту и азотную кислоту, до твердого остатка, кальцинируют, смешивают кальцинат с компонентами шихты, содержащей оксиды титана, кальция, железа(III), циркония и марганца(IV) и алюминия в определенном соотношении и сплавляют. Изобретение позволяет понизить температуру плавления получаемой керамики. 2 з.п. ф-лы, 1 табл.
Description
Изобретение относится к области охраны окружающей среды, а точнее к области переработки радиоактивных отходов, и может быть использовано для целей безопасного и эффективного обращения с большим количеством жидких радиоактивных отходов различного уровня активности, образующихся в результате дезактивации защитного оборудования боксов и камер, и позволяет снизить объем хранимых отходов путем их отверждения и включения в керамическую матрицу.
Известен способ включения радиоактивных отходов в керамику (Патент РФ №2153717, G21F 9/16) заключающийся в том, что радиоактивные отходы, содержащие радионуклиды U, Th, Am, Cm, Pu, Np, а также радиоактивные редкоземельные элементы, Zr, Mo, Ru, Cs, Pd, Sr, Ba, Rb, подвергают термическому концентрированию, концентрат смешивают с оксидами при следующем соотношении компонентов, масс. %: концентрат радиоактивных отходов (в пересчете на оксиды) - 15-30; TiO2 - 50-60; СаО - 5-10; ZrO2 - 5-20; Al2O3 - 3-5; ВаО - 3-10, после чего полученную шихту смешивают с углеродсодержащим материалом, взятым в количестве 3-10 масс. % от общей массы шихты, и доводят влажность полученной углеродсодержащей шихты до 5-20 масс. %. Затем углеродсодержащую шихту с влажностью 5-20 масс. % подают на поверхность расплава керамического материала, имеющего рабочую температуру 1400-1500°С, смесь углеродсодержащей шихты и расплава керамического материала выдерживают до образования гомогенизированного расплава, причем рабочую температуру расплава керамического материала поддерживают за счет его постоянного в процессе подачи углеродсодержащей шихты и ее выдержки нагрева, после чего гомогенизированный расплав охлаждают до образования монолитной керамики Synroc с включенными в нее радиоактивными отходами (конечный продукт), пригодной для долгосрочного хранения, а весь процесс включения радиоактивных отходов в керамику проводят при давлении ниже атмосферного. Термическое концентрирование осуществляют путем неполного обезвоживания (упаривания или сушки) радиоактивных отходов, в составе которых всегда присутствует вода, причем использование вместо кальцината не полностью обезвоженных радиоактивных отходов предотвращает пылеобразование на стадии приготовления шихты, что повышает безопасность реализации способа. Термически сконцентрированные радиоактивные отходы не только включаются в образующуюся керамику Synroc, но и являются одними из исходных компонентов для синтеза входящих в ее состав перовскита, цирконолита и голландита.
К недостаткам предлагаемого способа следует отнести:
- энергозатратность;
- необходимость постоянного смешивания шихты с углеродным материалом для поддержания постоянной температуры плавления материала в диапазоне 1400-1500°С, что требует использования дополнительных дозаторов;
- проведение процесса при давлении ниже атмосферного, что требует использования дополнительного оборудования, создающего разрежение;
- для проведения процесса в индукционном правителе требуется наличие оборудования для индукционной плавки (генераторов высоких частот излучения, высокие токи питания, в отдельных случаях - систем водоохлаждения).
Наиболее близким аналогом, совпадающим с заявляемым изобретением по наибольшему количеству существенных признаков, является способ иммобилизации высокоактивных отходов в керамическую матрицу (Патент РФ №2315381 от 22.05.2006 «Способ иммобилизации высокоактивных отходов в керамическую матрицу», G21F 9/16).
Указанный способ включает кальцинацию (денитрирование) высокоактивных отходов и их смешение с оксидами (в следующих соотношениях: кальцинат высокоактивных отходов от 10 до 20 масс. %; TiO2 от 50 до 60 масс. %; СаО от 7,5 до 12,5 масс. %; MnO от 7,5 до 12,5 масс. %; Fe2O3 от 2,5 до 7,5 масс. %; Al2O3 от 2,5 до 7,5 масс. %), нагрев полученной смеси при давлении не ниже атмосферного до максимальной рабочей температуры 2000°С, выдержку при рабочей температуре и охлаждение до образования монолитного материала.
Указанный способ предназначен для включения высокоактивных отходов с высоким содержанием актинидов и редкоземельных элементов и направлен на иммобилизацию и длительное геологическое хранение актинид-редкоземельной фракции радиоактивных отходов, образующихся в процессе переработки отработавшего ядерного топлива. В предложенном способе не описана возможность включения высокосолевых отходов, содержащих значительное количество катионов щелочных металлов, в том числе содержащих компоненты составов кислотных и щелочных растворов, использующихся для дезактивации защитного оборудования.
Процесс энергозатратен.
Задачей данного технического решения является создание надежного простого способа иммобилизации нетехнологических отходов до получения монолитного материала, пригодного для долговременного геологического хранения.
Для решения этой задачи предлагается способ обращения с радиоактивными растворами после дезактивации поверхностей защитного оборудования, включающий совместное упаривание щелочных и кислотных растворов с последующей кальцинацией, смешивание кальцината с компонентами шихты, содержащей оксиды титана, кальция, железа (III) и алюминия в определенном соотношении, термообработкой и совместным плавлением всех компонентов для получения керамической матрицы и отличающийся тем, что к смеси кальцината с окисидами титана, кальция, железа (III) и алюминия дополнительно вводят оксиды циркония и марганца при следующем соотношении компонентов, масс. %:
Кальцинат высокоактивных отходов | 10,0-20,0 |
TiO2 | 53,0-57,0 |
СаО | 9,0-11,0 |
Fe2O3 | 4,5-5,5 |
Al2O3 | 4,5-5,5 |
ZrO2 | 4,5-5,5, |
а суммарное содержание MnO2 в смеси не больше 10 масс. %.
Кальцинацию твердого остатка от упаривания дезактивационных растворов проводят при температуре от 750 до 800°С для полного разложения нитратов и карбонатов.
Сплавление кальцината с шихтой производят при температуре не ниже 1350°С течение 1 часа для получения монолитной плавленой керамики.
Наличие двуокиси циркония и марганца в шихте понижает температуру плавления керамики, что делает процесс менее энергозатратным.
Содержание оксида марганца в шихте изменяется в зависимости от реального содержания перманганата калия в технологических растворах после дезактивации в пересчете на марганец.
Содержание двуокиси марганца в шихте более 10% нецелесообразно, т.к. это повышает температуру ее плавления.
Если содержание двуокиси циркония меньше нижнего предела, то возможно изменение фазового состава керамики.
Увеличение двуокиси циркония в шихте больше 5,5% нецелесообразно.
При реализации указанных технологических операций растворы после дезактивации могут быть упарены до солей, а после их термообработки до оксидов они могут быть смешаны с компонентами шихты для изготовления керамики, которая в свою очередь может быть получена сплавлением всех компонентов до получения монолитного материала, пригодного для долговременного геологического хранения радиоактивных отходов.
Дезактивационные растворы двух составов: кислотный (содержащий 5% HNO3, 0,5% H2C2O4 и 0,5% ЭДТА) и щелочной (содержащий 0,5% KMnO4 и 5% NaOH) в равных объемных соотношениях смешивали друг с другом. Полученный раствор упаривали при температуре 95°С с последующим подъемом температуры до 350°С после испарения воды. Полученный остаток смешивали с компонентами шихты керамики, содержащей оксиды титана, марганца (IV), алюминия, железа (III), кальция, циркония таким образом, чтобы состав получаемой керамики соответствовал соотношению компонентов, приведенных в таблице 1. Благодаря наличию гигроскопичного гидроксида натрия в составе остатка от упаривания дезактивационных растворов (температура плавления 323°С) продукт после упаривания и термообработки при 350°С не становится идеально сухим и не требует дополнительного введения обогащенных влагой продуктов для предотвращения пылеобразования, что снижает выброс аэрозолей на стадии смешивания с шихтой и упрощает технологические режимы плавления целевой керамики.
Содержание оксида марганца может корректироваться в зависимости от реального содержания перманганата калия в технологических растворах после дезактивации в пересчете на марганец. В случае неравномерного смешивания кислотных и щелочных растворов, а также увеличения или уменьшения доли перманганата калия в технологических радиоактивных растворах состав, приведенный в таблице 1, может быть скорректирован путем уменьшения или увеличения содержания в исходной шихте MnO2.
После смешивания отвержденных растворов с компонентами шихты весь состав предварительно термообрабатывается при 800°С для разложения нитратов и карбонатов, а полученная композиция плавится при 1350°С в течение 1 часа. Полученный после охлаждения до комнатной температуры плавленый материал по данным рентгенофазового анализа образован основной фазой со структурой муратаита (с параметром кристаллической кубической решетки а=14,63±0,01 ) и дополнительной фазой со структурой перовскита. Значения скоростей выщелачивания основных компонентов (катионов) матрицы находятся в диапазоне 10-6-10-7 г/см2⋅сут при выщелачивании материала в горячей бидистиллированной воде при 90°С (отбор проб на 3, 7 и 14 сутки).
Claims (5)
1. Способ обращения с радиоактивными растворами после дезактивации поверхностей защитного оборудования, включающий совместное упаривание щелочных и кислотных растворов, содержащих гидроксид натрия, перманганат калия, щавелевую кислоту и азотную кислоту до твердого остатка с последующей кальцинацией и смешением кальцината с компонентами шихты, содержащей оксиды титана, кальция, железа(III) и алюминия в определенном соотношении, совместным плавлением всех компонентов для получения керамической матрицы, отличающийся тем, что к смеси кальцината с оксидами титана, кальция, железа(III) и алюминия дополнительно вводят оксиды циркония и марганца(IV) при следующем соотношении компонентов, масс. %:
а суммарное содержание MnO2 в смеси не больше 10 масс. %.
2. Способ по п. 1, отличающийся тем, что кальцинацию твердого остатка от упаривания дезактивационных растворов проводят при температуре от 750 до 800°C для полного разложения нитратов и карбонатов.
3. Способ по п. 1, отличающийся тем, что сплавление кальцината производят при температуре не ниже 1350°C в течение 1 часа для получения монолитной плавленой керамики.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017101380A RU2643362C1 (ru) | 2017-01-16 | 2017-01-16 | Способ обращения с радиоактивными растворами после дезактивации поверхностей защитного оборудования |
US16/478,291 US10614926B2 (en) | 2017-01-16 | 2018-01-16 | Method of handling radioactive solutions |
JP2019538194A JP6636680B1 (ja) | 2017-01-16 | 2018-01-16 | 放射性溶液取り扱いの方法 |
CN201880007102.2A CN110447077B (zh) | 2017-01-16 | 2018-01-16 | 处理放射性溶液的方法 |
PCT/RU2018/000010 WO2018132041A1 (ru) | 2017-01-16 | 2018-01-16 | Способ обращения с радиоактивными растворами |
KR1020197020642A KR102067563B1 (ko) | 2017-01-16 | 2018-01-16 | 방사성 용액의 취급 방법 |
EP18738961.4A EP3570293B1 (en) | 2017-01-16 | 2018-01-16 | Method of handling radioactive solutions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017101380A RU2643362C1 (ru) | 2017-01-16 | 2017-01-16 | Способ обращения с радиоактивными растворами после дезактивации поверхностей защитного оборудования |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2643362C1 true RU2643362C1 (ru) | 2018-02-01 |
Family
ID=61173598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017101380A RU2643362C1 (ru) | 2017-01-16 | 2017-01-16 | Способ обращения с радиоактивными растворами после дезактивации поверхностей защитного оборудования |
Country Status (7)
Country | Link |
---|---|
US (1) | US10614926B2 (ru) |
EP (1) | EP3570293B1 (ru) |
JP (1) | JP6636680B1 (ru) |
KR (1) | KR102067563B1 (ru) |
CN (1) | CN110447077B (ru) |
RU (1) | RU2643362C1 (ru) |
WO (1) | WO2018132041A1 (ru) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111004032A (zh) * | 2019-11-29 | 2020-04-14 | 广东工业大学 | 一种钙钛锆石型陶瓷固化体及其制备方法和应用 |
CN111138190A (zh) * | 2020-01-10 | 2020-05-12 | 广东工业大学 | 一种钙钛锆石型陶瓷固化体及其制备方法和应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2153717C1 (ru) * | 1998-12-23 | 2000-07-27 | Московское государственное предприятие - объединенный эколого-технологический и научно-исследовательский центр по обезвреживанию РАО и охране окружающей среды (МосНПО "Радон") | Способ включения радиоактивных отходов в керамическую матрицу |
RU2197027C2 (ru) * | 2000-07-04 | 2003-01-20 | Производственное объединение "МАЯК" | Способ переработки сточных вод, содержащих перманганаты щелочных металлов |
RU2291504C2 (ru) * | 2005-01-31 | 2007-01-10 | Федеральное агентство по атомной энергии | Способ отверждения жидких радиоактивных отходов |
RU2315381C1 (ru) * | 2006-05-22 | 2008-01-20 | Государственное унитарное предприятие города Москвы - объединенный эколого-технологический и научно-исследовательский центр по обезвреживанию РАО и охране окружающей среды (ГУП МосНПО "Радон") | Способ иммобилизации высокоактивных отходов в керамическую матрицу |
CN103723915A (zh) * | 2013-10-26 | 2014-04-16 | 溧阳市浙大产学研服务中心有限公司 | 包括MnO2的铍硅酸盐玻璃及处理放射性废液的方法 |
CN104810072A (zh) * | 2015-03-09 | 2015-07-29 | 西南科技大学 | 一种含硫高放废液玻璃陶瓷固化基材的制备方法 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2611954C3 (de) * | 1976-03-20 | 1978-09-07 | Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe | Verfahren zur Verfestigung wäßriger, radioaktiver Abfälle in einer Glas-, Glaskeramik- oder glaskeramikähnlichen Matrix |
FR2394155B1 (fr) * | 1977-06-10 | 1985-12-27 | Kernforschungsz Karlsruhe | Procede pour la solidification de dechets aqueux radioactifs |
DE3214242C2 (ru) * | 1982-04-17 | 1989-02-02 | Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe, De | |
CA1199043A (en) * | 1982-11-05 | 1986-01-07 | Majesty (Her) In Right Of Canada As Represented By Atomic Energy Of Canada Limited/L'energie Atomique Du Canada Limitee | Radioactive waste immobilization using ion-exchange materials which form glass-ceramics |
PH22647A (en) * | 1984-01-16 | 1988-10-28 | Westinghouse Electric Corp | Immobilization of sodium sulfate radwaste |
JPH0395500A (en) * | 1989-09-08 | 1991-04-19 | Toshiba Corp | Decontamination of equipment/member for fast breeder reactor |
JPH08502819A (ja) * | 1992-08-18 | 1996-03-26 | テクノロジカル・リソーシス・ピーティーワイ・リミテッド | 放射性核種の廃棄物中への安定化 |
RU2131627C1 (ru) * | 1997-06-10 | 1999-06-10 | Производственное объединение "МАЯК" | Способ переработки сточных вод, содержащих перманганаты щелочных металлов |
CN1275967A (zh) * | 1997-09-29 | 2000-12-06 | 沃特克有限公司 | 用工业废物生产陶瓷砖瓦 |
RU2140106C1 (ru) * | 1998-05-20 | 1999-10-20 | Московское государственное предприятие - объединенный эколого-технологический и научно-исследовательский центр по обезвреживанию РАО и охране окружающей среды (Мос. НПО. "Радон") | Способ иммобилизации высокоактивных отходов в керамическую матрицу |
GB9926674D0 (en) * | 1999-11-12 | 2000-01-12 | British Nuclear Fuels Plc | Encapsulation of waste |
RU2231839C2 (ru) * | 2001-10-25 | 2004-06-27 | Федеральное государственное унитарное дочернее предприятие Электрогорский научно-исследовательский центр по безопасности атомных электростанций Всероссийского научно-исследовательского института по эксплуатации атомных электростанций | Способ отверждения жидких радиоактивных отходов |
RU2197763C1 (ru) * | 2001-11-08 | 2003-01-27 | Институт геохимии и аналитической химии им. В.И. Вернадского РАН | Способ отверждения жидких радиоактивных отходов и керамический материал для его осуществления |
FR2833257B1 (fr) * | 2001-12-11 | 2004-01-30 | Commissariat Energie Atomique | Ceramique de structure hollandite incorporant du cesium utilisable pour un eventuel conditionnement de cesium radioactif et ses procedes de synthese |
US7550645B2 (en) * | 2004-02-23 | 2009-06-23 | Geomatrix Solutions, Inc. | Process and composition for the immobilization of radioactive and hazardous wastes in borosilicate glass |
RU2321909C1 (ru) * | 2006-12-06 | 2008-04-10 | Общество С Ограниченной Ответственностью "Наука-Технологии-Производство" | Способ переработки жидких радиоактивных отходов (варианты) |
JP2013167570A (ja) * | 2012-02-16 | 2013-08-29 | Kensuke Tanaka | 放射能低減処理剤の製造方法及び放射能汚染物の放射能低減処理方法 |
JP6151084B2 (ja) * | 2013-05-13 | 2017-06-21 | 株式会社東芝 | 放射性廃棄物の固化処理方法 |
RU2545098C1 (ru) * | 2014-01-31 | 2015-03-27 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" | Реакторная установка с реактором на быстрых нейтронах и свинцовым теплоносителем |
CN103831090B (zh) * | 2014-03-07 | 2016-05-18 | 中国人民解放军海军工程大学 | 一种铯选择性吸附剂及其制备方法 |
CN104310467B (zh) * | 2014-10-15 | 2017-02-01 | 陆世强 | 一种高钛型炉渣的综合利用方法 |
CN105810279A (zh) * | 2016-03-30 | 2016-07-27 | 中国科学院上海应用物理研究所 | 一种含氟和/或氯放射性废物玻璃陶瓷固化体及其制备方法 |
-
2017
- 2017-01-16 RU RU2017101380A patent/RU2643362C1/ru active
-
2018
- 2018-01-16 CN CN201880007102.2A patent/CN110447077B/zh active Active
- 2018-01-16 KR KR1020197020642A patent/KR102067563B1/ko active IP Right Grant
- 2018-01-16 JP JP2019538194A patent/JP6636680B1/ja not_active Expired - Fee Related
- 2018-01-16 US US16/478,291 patent/US10614926B2/en active Active
- 2018-01-16 WO PCT/RU2018/000010 patent/WO2018132041A1/ru active Application Filing
- 2018-01-16 EP EP18738961.4A patent/EP3570293B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2153717C1 (ru) * | 1998-12-23 | 2000-07-27 | Московское государственное предприятие - объединенный эколого-технологический и научно-исследовательский центр по обезвреживанию РАО и охране окружающей среды (МосНПО "Радон") | Способ включения радиоактивных отходов в керамическую матрицу |
RU2197027C2 (ru) * | 2000-07-04 | 2003-01-20 | Производственное объединение "МАЯК" | Способ переработки сточных вод, содержащих перманганаты щелочных металлов |
RU2291504C2 (ru) * | 2005-01-31 | 2007-01-10 | Федеральное агентство по атомной энергии | Способ отверждения жидких радиоактивных отходов |
RU2315381C1 (ru) * | 2006-05-22 | 2008-01-20 | Государственное унитарное предприятие города Москвы - объединенный эколого-технологический и научно-исследовательский центр по обезвреживанию РАО и охране окружающей среды (ГУП МосНПО "Радон") | Способ иммобилизации высокоактивных отходов в керамическую матрицу |
CN103723915A (zh) * | 2013-10-26 | 2014-04-16 | 溧阳市浙大产学研服务中心有限公司 | 包括MnO2的铍硅酸盐玻璃及处理放射性废液的方法 |
CN104810072A (zh) * | 2015-03-09 | 2015-07-29 | 西南科技大学 | 一种含硫高放废液玻璃陶瓷固化基材的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2020505590A (ja) | 2020-02-20 |
KR102067563B1 (ko) | 2020-01-17 |
EP3570293A1 (en) | 2019-11-20 |
CN110447077A (zh) | 2019-11-12 |
KR20190111925A (ko) | 2019-10-02 |
CN110447077B (zh) | 2023-05-05 |
EP3570293A4 (en) | 2020-10-28 |
WO2018132041A1 (ru) | 2018-07-19 |
EP3570293B1 (en) | 2022-04-13 |
US20190371483A1 (en) | 2019-12-05 |
US10614926B2 (en) | 2020-04-07 |
JP6636680B1 (ja) | 2020-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4514329A (en) | Process for vitrifying liquid radioactive waste | |
RU2643362C1 (ru) | Способ обращения с радиоактивными растворами после дезактивации поверхностей защитного оборудования | |
AU2023206234A1 (en) | Composition and method for the processing of hazardous sludges and ion exchange media | |
Shoup et al. | Novel plutonium titanate compounds and solid solutions Pu2Ti2O7‐Ln2Ti2O7: relevance to nuclear waste disposal | |
Prisco et al. | Near-zero thermal expansion and phase transition in In0. 5 (ZrMg) 0.75 Mo3O12 | |
Pornpatdetaudom et al. | Effect of molten salts on synthesis and upconversion luminescence of ytterbium and thulium-doped alkaline yttrium fluorides | |
Tumurugoti et al. | Melt-processed multiphasic ceramic waste forms | |
Pratheep Kumar et al. | Immobilization of “Mo6+” in monazite lattice: Synthesis and characterization of new phosphomolybdates, La1− xCaxP1− yMoyO4, where x= y= 0.1–0.9 | |
US2868620A (en) | Method of making plutonium dioxide | |
Bohre et al. | Diffusion of lanthanum into single-phase sodium zirconium phosphate matrix for nuclear waste immobilization | |
US3165475A (en) | Strontium composition and-process | |
Chourasia et al. | Crystallographic evaluation of sodium zirconium phosphate as a host structure for immobilization of cesium | |
Merkushkin et al. | Ceramics based on ree zirconates, titanates, and stannates. | |
US3681010A (en) | Preparation of ultrafine mixed metallic-oxide powders | |
Sayenko et al. | Cesium immobilization into potassium magnesium phosphate matrix | |
Lu et al. | Self-propagating high-temperature synthesis of simulated An3+-contained radioactive graphite in N2 atmosphere | |
US2946699A (en) | Process of impregnating graphite with a uranium compound | |
RU2591215C1 (ru) | Способ переработки облученного ядерного топлива | |
Deadmore et al. | Stability of Inorganic Fluorine‐Bearing Compounds: II, Complex Fluorides | |
RU2633817C1 (ru) | Способ синтеза минералоподобных матриц для изоляции радиоактивных веществ | |
JP4426173B2 (ja) | 放射性セシウムをパッケージするのに適したセシウムを内包するホランド構造を有するセラミック及びその製造方法 | |
Muromura et al. | Solubility of simulated high-level radioactive wastes in CaO-stabilized zirconia | |
US20230139928A1 (en) | Method for dehalogenation and vitrification of radioactive metal halide wastes | |
Gilbert | Molten salt synthesis of zirconolite polytypes | |
RU2522274C1 (ru) | Способ отверждения жидких высокоактивных отходов |