RU2639500C1 - Геропротектор для модельных животных - Google Patents

Геропротектор для модельных животных Download PDF

Info

Publication number
RU2639500C1
RU2639500C1 RU2016135655A RU2016135655A RU2639500C1 RU 2639500 C1 RU2639500 C1 RU 2639500C1 RU 2016135655 A RU2016135655 A RU 2016135655A RU 2016135655 A RU2016135655 A RU 2016135655A RU 2639500 C1 RU2639500 C1 RU 2639500C1
Authority
RU
Russia
Prior art keywords
aicar
grown
flies
lss
nematodes
Prior art date
Application number
RU2016135655A
Other languages
English (en)
Inventor
Светлана Юрьевна Еремина
Наталия Григорьевна Шостак
Елена Сергеевна Зеленцова
Ольга Александровна Каткова-Жукоцкая
Константин Владимирович Лобанов
Рустэм Саидович Шакулов
Сергей Юрьевич Фуников
Александр Сергеевич Миронов
Михаил Борисович Евгеньев
Вадим Львович Карпов
Евгений Александрович Нудлер
Original Assignee
Федеральное Государственное Бюджетное Учреждение Науки Институт Молекулярной Биологии Им. В.А. Энгельгардта Российской Академии Наук (Имб Ран)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Бюджетное Учреждение Науки Институт Молекулярной Биологии Им. В.А. Энгельгардта Российской Академии Наук (Имб Ран) filed Critical Федеральное Государственное Бюджетное Учреждение Науки Институт Молекулярной Биологии Им. В.А. Энгельгардта Российской Академии Наук (Имб Ран)
Priority to RU2016135655A priority Critical patent/RU2639500C1/ru
Application granted granted Critical
Publication of RU2639500C1 publication Critical patent/RU2639500C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/7056Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing five-membered rings with nitrogen as a ring hetero atom

Abstract

Изобретение относится к биотехнологии и фармакологии и касается применения 5-аминоимидазол-4-карбоксамидрибофуранозида (АИКАР) в качестве геропротектора в питательной среде для модельных животных. В случае нематод геропротекторный эффект АИКАР достигается в концентрациях 0,05 мМ и 0,1 мМ. В случае мух-дрозофил геропротекторный эффект АИКАР достигается в концентрациях 0,5 мМ и 1,0 мМ. Изобретение обеспечивает увеличение продолжительности жизни модельных животных. 2 з.п. ф-лы, 5 ил., 3 пр.

Description

Область техники, к которой относится изобретение
Изобретение относится к биотехнологии, биоинженерии и молекулярной биофармакологии, так как предлагаемое соединение может быть использовано как средство, обладающее геропротекторной активностью.
Уровень техники
Пожилой и старческий возраст характеризуется значительным увеличением вероятности наступления смерти. Кроме того, резко увеличивается количество проявлений различных патологий, совместимых с жизнью, но понижающих ее качество. В последние десятилетия в мире наблюдается значительный интерес к изучению механизмов старения и поиску новых препаратов и средств, направленных на продление жизни и увеличение активного творческого периода.
Понятие «геропротекторная активность» подразумевает биологически активное действие, замедляющее старение и продлевающее жизнь.
АИКАР - природное соединение, аналог и предшественник аденозина. Структурная формула АИКАР представлена на Фиг. 1. Будучи активатором протеинкиназы, активируемой АМФ, (АМФК), АИКАР имеет широкий терапевтический потенциал, поскольку он нормализует углеводный и липидный обмен и ограничивает пролиферацию опухолевых клеток.
При всем разнообразии структурной организации генов, кодирующих ферменты биосинтеза пуриновых нуклеотидов, у различных организмов биохимия этого процесса консервативна: формирование пуринового цикла осуществляется на платформе рибозо-5-фосфата (все интермедиаты - нуклеотиды) с использованием одноуглеродного компонента (формиата и/или n10-формилтетрагидрофолата) [1]. Одноуглеродные соединения востребованы на двух этапах биосинтеза пуринов и соответственно при их недостатке могут накапливаться предшественники - фосфорибозилглицинамидрибонуклеотид и 5-аминоимидазол-4-карбоксамидрибонуклеотид (АИКАР-Ф). Среди них АИКАР-Ф занимает особое положение, так как его формилирование и последующая циклизация завершают формирование пуринового гетероцикла с образованием инозин-монофосфата (ИМФ).
Процесс превращения АИКАР-Ф в ИМФ в клетках прокариот контролируется геном purH, который кодирует два домена с активностями АИКАР-Ф-формилтрансферазы и ИМФ-циклогидролазы [2, 3]. Дальнейшие модификации ИМФ приводят к образованию АМФ и ГМФ.
Несмотря на незавершенность структуры пуринового гетероцикла, АИКАР-Ф является природным аналогом АМФ, замещающим его в некоторых ферментативных реакциях in vivo. Наибольшее внимание за последнее десятилетие привлекает возможность замещения АМФ в реакциях активации АМФК (АМФ-активируемая протеинкиназа) млекопитающих. АМФК - глобальный регулятор метаболических процессов, обеспечивающих энергетический статус организма эукариот [4, 5]. Для активации АМФК in vivo удобно использовать нуклеозид АИКАР, который в клетках быстро фосфорилируется с образованием АИКАР-Ф, аналога АМФ. Появление АИКАР имитирует накопление АМФ и провоцирует перестройку энергетических процессов, направленную на преодоление мнимого энергетического стресса. Благодаря способности активировать АМФК препараты АИКАР обладают широким терапевтическим потенциалом, поскольку они нормализуют углеводный [6] и липидный обмен [7]. Имитируя состояние энергетического стресса, АИКАР подавляет рост опухолевых клеток [8]. Показана эффективность АИКАР в предупреждении сахарного диабета 2 типа [9]. АИКАР индуцирует апоптоз, он эффективен при хронических [10] и острых лейкозах [11].
В настоящее время считается общепринятым представление о том, что продолжительность жизни различных организмов увеличивается при некотором ограничении потребления высококалорийной пищи, т.е. при умеренном энергетическом стрессе [12]. На биохимическом уровне энергетический стресс проявляется в уменьшении количества основного носителя энергии - АТФ и, соответственно, возрастании АМФ. В ответ на увеличение соотношения АМФ/АТФ клетки усиливают энергообразующие процессы и ограничивают потребление энергии. Известно, что АИКАР в результате фосфорилирования становится природным аналогом АМФ и способен имитировать энергетический стресс [13].
Исходя из вышесказанного, нам представилось логичным исследовать свойства АИКАР как геропротектора широкого действия.
Рассматривая возможный молекулярный механизм геропротекторного действия АИКАР, прежде всего, следует принять во внимание способность АИКАР активировать фермент АМФК, который является глобальным регулятором энергетического метаболизма в клетках эукариот [14]. Известно, что повышенный уровень активности АМФК является причиной увеличения продолжительности жизни у ряда мутантов С. elegans [15].
Геропротекторную активность АИКАР исследовали при его экспериментальном изучении на двух филогенетически весьма отдаленных организмах. В качестве модельных организмов использовали почвенных нематод Caenorhabditis elegans и плодовых мушек Drosophila melanogaster, исследуя показатели продолжительности жизни.
Нематоды являются удобным модельным объектом для поиска новых веществ с геронтологической активностью из-за легкости культивирования, возможности добавления препаратов непосредственно в среду роста и быстрого анализа изменения продолжительности жизни червяков. Так, было показано, что резвератрол в присутствии деацетилазы Sir-2.1 увеличивает продолжительность жизни нематод [16]. К увеличению продолжительности жизни нематод приводит и добавление в питательную среду этозуксимида, триметадиона и 3,3-диэтил-2-пиролидинона, регулирующих нейромышечную активность и являющихся антиконвульсионными препаратами [17].
Мухи-дрозофилы с коротким жизненным циклом и хорошо изученной биологией и генетикой также служат весьма популярным объектом для исследования молекулярных механизмов старения [18].
5-аминоимидазол-4-карбоксамидрибофуранозид (АИКАР) проявляет биологическую активность, а именно - геропротекторную активность, за счет активации АМФК.
Изобретательской задачей данной заявки на патент является расширение арсенала веществ, которые могут быть использованы в качестве новых эффективных геропротекторов - средств, продлевающих жизнь человека и улучшающих ее качество.
Задача решается путем применения АИКАР в опытах, демонстрирующих его геропротекторные свойства при добавлении в корм модельных животных и подтверждающих возможность его использования в качестве универсального геропротектора.
Краткое описание фигур
Фигура 1. Структурная формула АИКАР
Фигура 2. Графики выживаемости (построение графиков и их обработка методом сигмоидальной аппроксимации экспериментальных данных проводились с использованием программы SciDAVis 0.2.1.). В скобках приведены значения СПЖ. Приведенные на рисунке цифровые значения в процентах отражают увеличение средней продолжительности жизни относительно нематод, выращенных на штамме Е. coli ОР50 на NGM-среде без добавления раствора АИКАР.
Фигура 3. Графики выживаемости (построение графиков и их обработка методом сигмоидальной аппроксимации экспериментальных данных проводились с использованием программы SciDAVis 0.2.1.). В скобках приведены значения СПЖ. Приведенные на рисунке цифровые значения в процентах отражают увеличение средней продолжительности жизни относительно нематод, выращенных на штамме В. subtilis Mu8purH на NGM-среде без добавления раствора АИКАР.
Фигура 4. Графики выживаемости самок линии 1118 D. melanogaster (построение графиков и их обработка методом сигмоидальной аппроксимации экспериментальных данных проводились с использованием программы SciDAVis 0.2.1.). В скобках приведены значения СПЖ. Приведенные на рисунке цифровые значения в процентах отражают увеличение средней продолжительности жизни самок w1118 относительно особей, выращенных на корме без добавления раствора АИКАР.
Фигура 5. Графики выживаемости самцов линии 1118 D. melanogaster (построение графиков и их обработка методом сигмоидальной аппроксимации экспериментальных данных проводились с использованием программы SciDAVis 0.2.1.). В скобках приведены значения СПЖ. Приведенные на рисунке цифровые значения в процентах отражают увеличение средней продолжительности жизни самцов w1118 относительно особей, выращенных на корме без добавления раствора АИКАР.
Осуществление изобретения
Пример 1. Влияние экзогенного АИКАР (0,05 мМ и 0,1 мМ) на продолжительность жизни С. elegans N2 Bristol («дикий» тип) при выращивании на Е. coli ОР50
Нематод С. elegans N2 Bristol («дикий» тип) выращивали из отмытых от посторонней микрофлоры яиц в течение 2-х генераций, затем инкубировали до возраста L4 на чашках Петри со средой NGM при температуре 20°С. Далее пересаживали на чашки для опыта с NGM-средой и NGM-средой с добавлением раствора АИКАР в концентрации 0,05 мМ и 0,1 мМ. В качестве корма использовался штамм кишечной палочки Е. coli ОР50. Нематоды были пересажены в количестве не менее 100 особей на точку (одну из используемых концентраций). Пересадку осуществляли через день на аналогичные среды в течение всего эксперимента.
Продолжительность жизни нематод оценивалась путем определения временного интервала, который соответствует выживаемости 50% популяции (СПЖ).
Среда NGM: пептон - 2,5 г/л, NaCl - 3 г/л, агар - 17 г/л, холестерин - 5 мг/л, 1 мМ MgSO4, 1 мМ CaCl2, 25 мМ КРО4 буфер рН6.
Штамм Е. coli ОР50 выращивали в среде LB в течение 16 часов при температуре 37°С на качалке (n=220 оборотов/мин). Затем засевали по 40 мкл ночной культуры чашки с NGM и NGMc раствором АИКАР и выращивали в термостате при температуре 30°С в течение 16 часов.
При выращивании С. elegans N2 на NGM-среде без добавления АИКАР СПЖ находится в пределах 17 дней (см. Фиг. 2).
При выращивании С. elegans N2 на NGM-среде с добавлением раствора АИКАР в концентрации 0,05 мМ и 0,1 мМ СПЖ находится в пределах 19,6-19.7 дней, что отражает увеличение СПЖ на 14% и 14.5% соответственно относительно нематод, выращенных NGM-среде без добавления раствора АИКАР (см. Фиг. 2).
Пример 2. Влияние экзогенного АИКАР (0,05 мМ и 0,1 мМ) на продолжительность жизни С. elegans N2 Bristol («дикий» тип) при выращивании на В. subtilis Mu8purH
С. elegans N2 Bristol («дикий» тип) выращивали из отмытых от посторонней микрофлоры яиц в течение 2-х генераций, затем инкубировали до возраста L4 на чашках Петри со средой NGM при температуре 20°С и пересаживали на чашки для опыта с NGM-средой и NGM-средой с добавлением раствора АИКАР в концентрации 0,05 мМ и 0,1 мМ. В качестве корма использовался штамм В. subtilis Mu8purH (штамм с делецией по гену purH - пуриновый ауксотроф). Нематоды были пересажены в количестве не менее 100 особей на точку (используемые концентрации АИКАР). Пересадку осуществляли через день на аналогичные среды в течение всего эксперимента.
Продолжительность жизни нематод оценивалась путем определения временного интервала, который соответствует выживаемости 50% популяции (СПЖ).
Штамм В. subtilis Mu8purH выращивали в среде LB в течение 18 часов при температуре 37°С на качалке n=220 оборотов/мин. Затем засевали по 20 мкл ночной культуры чашки с NGM и NGM с раствором АИКАР и выращивали в термостате при температуре 37°С в течение 16 часов.
При выращивании С. elegans N2 на NGM-среде без добавления АИКАР СПЖ находится в пределах 15,8 дней (см. Фиг. 3).
При выращивании С. elegans N2 на NGM-среде с добавлением раствора АИКАР в концентрации 0,05 мМ и 0,1 мМ СПЖ находится в пределах 18.0-18.1 дней, что отражает увеличение СПЖ на 13.9% и 14.6% соответственно относительно нематод, выращенных NGM-среде без добавления раствора АИКАР (см. Фиг. 3).
Таким образом, полученные данные показывают, что на модели С. elegans при выращивании нематод на Е. coli и В. subtilis АИКАР проявляет достоверную геропротекторную активность.
Пример 3. Влияние экзогенного АИКАР (0,1 мМ, 0,5 мМ, 1 мМ, 5 мМ и 10 мМ) на продолжительность жизни самок и самцов Drosophila melanogaster линии w1118
Простота содержания, возможность использовать в одном эксперименте большое количество одновозрастных особей, относительно короткая продолжительность жизни - эти характеристики позволяют использовать дрозофилу как модель в исследовании различных аспектов процесса старения и, в частности, тестировать вещества, влияющие на продолжительность жизни мухи [19].
В опытах по анализу влияния АИКАР на продолжительность жизни D. melanogaster использовали линию мух w1118, полученную из сток центра Блумингтон (Indiana University, Bloomington, Indianam USA). Мух содержали в стандартных условиях на корме следующего состава: дрожжи - 66 г/л, изюм - 30 г/л, манная крупа - 30 г/л, агар - 6 г/л, сахар - 60 г/л, пропионовая кислота - 5 мл/л.
Молодых мух в возрасте 4-5 дней, вылетевших из синхронных кладок, рассаживали в 50 мл стеклянные стаканчики с 2 мл корма, содержавшего раствор АИКАР в концентрациях: 1) 0,1 мМ; 2) 0,5 мМ; 3) 1 мМ; 4) 5 мМ и 5) 10 мМ. В каждую пробирку помещали по 10 самок и 4 самца.
Через 2 дня мух-родителей из каждой пробирки пересаживали в новую пробирку со свежим кормом, содержащим АИКАР соответствующей концентрации. По прошествии еще 2 дней мух-родителей удаляли и следили за развитием потомства. Имаго, вылетающих из пробирок с АИКАР указанных концентраций, собирали и рассаживали по 10-12 мух в пробирки с обычным кормом, отдельно самок и самцов, по 100 особей на каждую точку. Пересадку дрозофил на свежий корм проводили каждые 2-3 дня в течение всего эксперимента.
Продолжительность жизни D. melanogaster оценивали путем определения временного интервала, который соответствует выживаемости 50% популяции (СПЖ).
При выращивании мух без добавления АИКАР в корм СПЖ находится в пределах 67 дней (см. Фиг. 4). При выращивании от эмбриона до имаго на корме с добавлением раствора АИКАР в концентрации 0,5 мМ СПЖ самок находится в пределах 76 дней, что отражает увеличение СПЖ на 13% относительно мух, выращенных на корме без добавления раствора АИКАР (см. Фиг. 4).
При развитии личинок на корме с добавлением АИКАР в концентрации 1 мМ - СПЖ самок находится в пределах 73 дней, что отражает увеличение СПЖ на 9% относительно мух, выращенных на корме без добавления раствора АИКАР (см. Фиг. 4).
Проведенные опыты показали, что самцы и самки мух по-разному реагировали на присутствие тестируемого соединения (АИКАР) в среде.
Так при выращивании самцов на корме без АИКАР СПЖ изучаемой линии мух находится в пределах 72 дней (см. Фиг. 5).
При развитии на корме с добавлением раствора АИКАР в концентрации 0,5 мМ СПЖ самцов находится в пределах 88 дней, что отражает увеличение СПЖ на 22% относительно мух, выращенных на корме без добавления раствора АИКАР (см. Фиг. 5).
При развитии на корме с добавлением раствора АИКАР в концентрации 1 мМ - СПЖ самцов находится в пределах 83 дней, что отражает увеличение СПЖ на 15% относительно мух, выращенных на корме без добавления АИКАР (см. Фиг. 5).
Данные эксперимента по анализу влияния АИКАР на продолжительность жизни самок и самцов линии w1118 D. melanogaster свидетельствуют о том, что и на данной модели АИКАР, в представленных концентрациях, проявляет достоверную геропротекторную активность.
Источники информации
1. Buchanan J.M., Hartman S.C. Enzymic reactions in the synthesis of the purines // Adv. Enzymol. Relat. Areas Mol. Biol. 1959. V. 21. P. 199-261.
2. Zalkin H., Nygaard P. Biosynthesis of purine nucleotides. InEscherichia coli and Salmonella. Washington, Dc.: ASM Press. 1996. P. 561-579.
3. Switzer R.L., Zalkin H., Saxild H.H. Purine, pyrimidine, and pyridine nucleotide metabolism. In Bacillus subtilis and its closest relatives: from genes to cells. Washington, Dc.: ASM Press, 2002. P. 255-269.
4. Hardie D.G., Carling D., Carlson M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cells? // Ann. Rev. Biochem. 1998. V. 67. P. 821-855.
5. Hardie D.G., Salt I.P., Hawley S.A., Davies S.P. AMP-activated protein kinase: an ultrasensitive system for monitoring cellular energy charge // Biochem. J. 1999. V. 338. P. 717-722.
6. Rutter G.A., Xavier G.S., Leclerc I. Roles of 5'-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis // Biochemical Journal. 2003. V. 375 (2), P. 1-16.
7. Gaidhu M.P., Fediuc S., Anthony N.M., So M., Mirpourian M., Perry R.L. and Ceddia R.B. Prolonged AICAR-induced AMP-kinase activation promotes energy dissipation in white adipocytes: novel mechanisms integrating HSL and ATGL. // J. Lipid Res. 2009. V. 50. P. 704-715.
8. Swinnen J.V., Beckers A., Brusselmans K., Organe S., Segers J., Timmermans L., Vanderhoydonc F., Deboel L., Derua R., Waelkens E. et al. Mimicry of a cellular low energy status blocks tumor cell anabolism and suppresses the malignant phenotype // Cancer res. 2005. V. 65. P. 2441-2448.
9. Pold R., Jensen L.S., Jessen N., Buhl E.S., Schmitz O., Flyvbjerg A., Fujii N., Goodyear L.J., Gotfredsen C.F., Brand C.L. et al. Long-term AICAR administration and exercise prevents diabetes in ZDF rats// Diabetes. 2005. V. 54. P. 928-934.
10. Campas C., Lopez J.M., Santidrian A.F., Barragan M., Bellosillo В., Colomer D., Gil J. Acadesine activates AMPK and induces apoptosis in B-cell chronic lymphocytic leukemia cells but not in T-lymphocytes // Blood. 2003. V. 101. P. 3674-3680.
11. Sengupta T.K., Leclerc G.M., Hsieh-Kinzer T.T. Cytotoxic effect of 5-aminoimidazole-4-carboxamide-1-(β-4-ribofuranoside (AICAR) on childhood acute lymphoblastic leukemia (ALL) cells: implication for targeted therapy // Mol. cancer. 2007. V. 6. №46. P. 1-12.
12. Bordone L., Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevity //Nat. Rev. Mol Cell Biol. 2005. V.6. P. 298-305.
13. Hardie D.G. The AMP-activated protein kinase pathway - new players upstream and downstream // J. Cell Sci. 2004. V. 117. P. 5479-5487.
14. Curtis R., O'Connor G., DiStefano P.S. Aging networks in Caenorhabditis elegans: AMP-activated protein kinase (aak-2) links multiple aging and metabolism pathways // Aging Cell 2006. V. 5. P. 119-126.
15. Carling D., Mayer F.V., Sanders M.J., Gamblin S.J. AMP-activated protein kinase: nature's energy sensor // Nat. Chem. Biol. 2011. V. 7. P. 512-518.
16. Kaeberlein M., McDonagh Т., Heltweg В., Hixon J., Westman E.A., Caldwell S.D., Napper A., Curtis R., DiStefano P.S., Fields S., Bedalov A., Kennedy В. K.Substrate-specific activation of sirtuins by resveratrol// J. Biol. Chem. 2005b. Vol. 280, N 17. P. 17038-17045.
11. Evason K., Huang C, Yamben I., Covey D.F., Kornfeld K.Anticonvulsant medications extend worm life-span // Science. 2005. Vol. 307. P. 258-262.
18. Proshkina E.N., Shaposhnikov M.V., Sadritdinova A.F., Kudryavtseva A.V., Moskalev A.A. Basic mechanisms of longevity: A case study of Drosophila pro-longevity genes. Ageing Res Rev. 2015 Nov; 24 (Pt B): 218-31.
19. Jafari M. Drosophila melanogaster as a model system for the evaluation of anti-aging compounds. Fly (Austin) 2010; 4 (3): 253-7. Doi:10.4161/fly.4.3.11997.)

Claims (3)

1. Применение 5-аминоимидазол-4-карбоксамидрибофуранозида (АИКАР) в качестве геропротектора, состоящее в добавлении данного соединения в питательную среду модельных животных.
2. Применение по п.1, характеризующееся тем, что в случае нематод геропротекторный эффект достигается в концентрациях 0,05 мМ и 0,1 мМ.
3. Применение по п.1, характеризующееся тем, что в случае мух-дрозофил геропротекторный эффект достигается в концентрациях 0,5 мМ и 1,0 мМ.
RU2016135655A 2016-09-02 2016-09-02 Геропротектор для модельных животных RU2639500C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016135655A RU2639500C1 (ru) 2016-09-02 2016-09-02 Геропротектор для модельных животных

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016135655A RU2639500C1 (ru) 2016-09-02 2016-09-02 Геропротектор для модельных животных

Publications (1)

Publication Number Publication Date
RU2639500C1 true RU2639500C1 (ru) 2017-12-21

Family

ID=63857504

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016135655A RU2639500C1 (ru) 2016-09-02 2016-09-02 Геропротектор для модельных животных

Country Status (1)

Country Link
RU (1) RU2639500C1 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093925A1 (en) * 2008-01-23 2009-07-30 United Technologies Ut Ag COSMETIC COMPOSITIONS COMPRISING 5-AMINO-L-β-D- RIBOFURANOSYL-LH-IMIDAZOLE-4-CARBOXAMIDE OR DERIVATIVES, OR SALTS THEREOF
RU2494744C1 (ru) * 2012-10-31 2013-10-10 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов" (ФГУП "ГосНИИгенетика") Лечебное средство с противоопухолевой активностью на основе акадезина

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093925A1 (en) * 2008-01-23 2009-07-30 United Technologies Ut Ag COSMETIC COMPOSITIONS COMPRISING 5-AMINO-L-β-D- RIBOFURANOSYL-LH-IMIDAZOLE-4-CARBOXAMIDE OR DERIVATIVES, OR SALTS THEREOF
RU2494744C1 (ru) * 2012-10-31 2013-10-10 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов" (ФГУП "ГосНИИгенетика") Лечебное средство с противоопухолевой активностью на основе акадезина

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
АНИСИМОВ В.Н., ЗАБЕЖИНСКИЙ М.А., ПОПОВИЧ И.Г. Модели и методы изучения геропротекторной активности фармакологических препаратов. //Успехи герантологии, 2009, т. 22, N 2, с. 237. *

Similar Documents

Publication Publication Date Title
Noma Dynamics of nucleotide metabolism as a supporter of life phenomena
NØRBY A specific nutritional requirement for pyrimidines in rudimentary mutants of Drosophila melanogaster
Kamravamanesh et al. Increased poly-β-hydroxybutyrate production from carbon dioxide in randomly mutated cells of cyanobacterial strain Synechocystis sp. PCC 6714: Mutant generation and characterization
Sauve et al. The biochemistry of sirtuins
Podrabsky et al. The bioenergetics of embryonic diapause in an annual killifish, Austrofundulus limnaeus
Shen et al. Genetic interactions due to constitutive and inducible gene regulation mediated by the unfolded protein response in C. elegans
Fraga et al. Glycogen and glucose metabolism are essential for early embryonic development of the red flour beetle Tribolium castaneum
Sinclair Paradigms and pitfalls of yeast longevity research
Hibshman et al. Maternal diet and insulin-like signaling control intergenerational plasticity of progeny size and starvation resistance
Nikel et al. Accumulation of inorganic polyphosphate enables stress endurance and catalytic vigour in Pseudomonas putida KT2440
Braeckman et al. Apparent uncoupling of energy production and consumption in long-lived Clk mutants of Caenorhabditis elegans
Hayden et al. The extracytoplasmic stress factor, σE, is required to maintain cell envelope integrity in Escherichia coli
Watt Bioenergetics and evolutionary genetics: opportunities for new synthesis
Green et al. Characterization of a feedback-resistant phosphoribosylpyrophosphate synthetase from cultured, mutagenized hepatoma cells that overproduce purines
Frederich et al. AMP-activated protein kinase (AMPK) in the rock crab, Cancer irroratus: an early indicator of temperature stress
Shiba et al. Inorganic polyphosphate and polyphosphate kinase: their novel biological functions and applications
Anand et al. Distinct and separable roles for endogenous CRY1 and CRY2 within the circadian molecular clockwork of the suprachiasmatic nucleus, as revealed by the Fbxl3Afh mutation
Thorat et al. Trehalose as an indicator of desiccation stress in Drosophila melanogaster larvae: a potential marker of anhydrobiosis
Saiardi Cell signalling by inositol pyrophosphates
Camici et al. Pediatric neurological syndromes and inborn errors of purine metabolism
Li et al. Effects of a GTP-insensitive Mutation of Glutamate Dehydrogenase on Insulin Secretion in Transgenic Mice*♦
Morán-Zorzano et al. Escherichia coli AspP activity is enhanced by macromolecular crowding and by both glucose-1, 6-bisphosphate and nucleotide-sugars
Hashimoto et al. Nicotinamide adenine dinucleotide extends the lifespan of Caenorhabditis elegans mediated by sir-2.1 and daf-16
Morley Thermodynamics of miracidial survival and metabolism
Feng et al. Identification of a dTDP-rhamnose biosynthetic pathway that oscillates with the molting cycle in Caenorhabditis elegans