RU2637845C1 - METHOD FOR PRODUCING SPUTTERING COMPOSITE TARGET CONTAINING HEUSLER ALLOY PHASE OF CO2FeSi - Google Patents

METHOD FOR PRODUCING SPUTTERING COMPOSITE TARGET CONTAINING HEUSLER ALLOY PHASE OF CO2FeSi Download PDF

Info

Publication number
RU2637845C1
RU2637845C1 RU2016150967A RU2016150967A RU2637845C1 RU 2637845 C1 RU2637845 C1 RU 2637845C1 RU 2016150967 A RU2016150967 A RU 2016150967A RU 2016150967 A RU2016150967 A RU 2016150967A RU 2637845 C1 RU2637845 C1 RU 2637845C1
Authority
RU
Russia
Prior art keywords
sintering
fesi
pressing
carried out
grinding
Prior art date
Application number
RU2016150967A
Other languages
Russian (ru)
Inventor
Евгений Сергеевич Демидов
Виктор Владимирович Сдобняков
Владимир Николаевич Чувильдеев
Юрий Исаакович Чигиринский
Валерий Павлович Лесников
Владимир Николаевич Трушин
Максим Сергеевич Болдин
Олег Анатольевич Белкин
Александр Андреевич Бобров
Никита Владимирович Сахаров
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского"
Priority to RU2016150967A priority Critical patent/RU2637845C1/en
Application granted granted Critical
Publication of RU2637845C1 publication Critical patent/RU2637845C1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B4/00Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
    • C22B4/06Alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof

Landscapes

  • Powder Metallurgy (AREA)

Abstract

FIELD: metallurgy.
SUBSTANCE: method involves mechanical mixing of powders of Co2FeSi Heusler alloy components, sintering-pressing of produced mixture by means of electro-impulse plasma at 600°c and minimum pressure of 2.5 kN. Sintering is carried out by passing series of direct current pulses up to 5 kA with pulse duration 3.3 ms by filling powder mixture to produce a compact. After this, the produced compact is melted in quartz crucible of induction furnace at 1300°C for 3 hours till complete melting to produce a homogenised ingot. The produced ingot is crushed and ground to produce particles of 1-200 mcm size, and sintering-pressing of composite target is carried out by electro-impulse plasma sintering method with dilatometric shrinkage curve control.
EFFECT: production of homogenised mechanically strong composite target of specified geometry containing Heusler alloy phase of stoichiometric composition.
7 cl, 4 dwg

Description

Изобретение относится к металлургии, а именно к производству изделий из металлической порошковой смеси электроимпульсным спеканием, касается способа изготовления распыляемой композитной мишени, содержащей фазу сплава Гейслера Co2FeSi, которая может быть использована при производстве микроэлектроники.The invention relates to metallurgy, in particular to the production of products from a metal powder mixture by electropulse sintering, relates to a method for manufacturing a sprayable composite target containing a phase of a Geisler alloy Co 2 FeSi, which can be used in the production of microelectronics.

Распыление гомогенизированной мишени обеспечивает получение однородных по составу слоев, значение однородности возрастает по мере уменьшения толщины слоя. Пористость мишени оказывает значительное влияние на скорость распыления мишени и, как следствие, на скорость напыления пленки. Чем больше пористость мишени, тем сильнее распыляется мишень, т.е. за меньшее время получится напылить слой большей толщины, и наоборот. Скорость распыления мишени с низкой пористостью меньше, использование таких мишеней позволяет лучше контролировать толщину слоев, что важно для тонких слоев.Spraying a homogenized target provides layers of uniform composition; the value of uniformity increases with decreasing layer thickness. The porosity of the target has a significant effect on the sputtering speed of the target and, as a consequence, on the deposition rate of the film. The greater the porosity of the target, the more the target is sprayed, i.e. in less time it will be possible to spray a layer of a greater thickness, and vice versa. The sputtering speed of the target with low porosity is lower, the use of such targets allows better control of the thickness of the layers, which is important for thin layers.

Из патента US 7973351 В2, кл. H01L 21/02, опубл. 05.07.2011 г., известна распыляемая мишень Co2MnSi, используемая для формирования кристаллического стехиометрического слоя Гейслера Co2MnSi с целью создания элемента магниторезистивной оперативной памяти (MRAM) и спинового транзистора (spin MOSFET). Однако в указанном источнике информации отсутствуют сведения о способе изготовления этой мишени.From patent US 7973351 B2, cl. H01L 21/02, publ. 05.07.2011, at known sputtering target Co 2 MnSi, used to form stoichiometric crystalline layer Heusler Co 2 MnSi to create element magnetoresistive RAM (MRAM) and spin transistor (spin MOSFET). However, in the specified source of information there is no information about the method of manufacturing this target.

Из патента US 8070919 В2, кл. В32В 17/06, С23С 14/35, опубл. 06.12.11 г., известна распыляемая мишень, изготовленная из слитка Co2MnSi, полученного методом электродугового спекания стехиометрической смеси порошков Со, Mn и Si. Распыляемая мишень имела состав Со (99,5%, Sigma-Aldrich): Mn (99,98% Sigma-Aldrich): Si (99,95%, Sigma-Aldrich) в соотношении 2:1:1, скорость повышения температуры составляла 50°С/мин. После приготовления слитка Co2MnSi его измельчают в порошок с помощью мокрого размола в шаровой мельнице и затем прессуют с получением распыляемой мишени с размером 2 дюйма.From patent US 8070919 B2, cl. B32B 17/06, C23C 14/35, publ. 12/06/11, a known spray target made of a Co 2 MnSi ingot obtained by electric arc sintering of a stoichiometric mixture of Co, Mn and Si powders. The sprayed target had the composition Co (99.5%, Sigma-Aldrich): Mn (99.98% Sigma-Aldrich): Si (99.95%, Sigma-Aldrich) in the ratio 2: 1: 1, the rate of temperature increase was 50 ° C / min. After preparation of the Co 2 MnSi ingot, it is pulverized by wet grinding in a ball mill and then pressed into a 2-inch spray target.

Недостатком указанного способа получения распыляемой мишени состава Co2MnSi является пористость, обусловленная электродуговым спеканием, приводящая к большой эффективной поверхности, ее окислению и адсорбции влаги и летучих загрязнений из воздуха, вероятно, по этой причине авторы патента и не смогли подтвердить отсутствие примесей в мишени. Степень гомогенизации, которую может обеспечить метод электродугового спекания ниже по сравнению с единовременным расплавлением всех порошковых компонент.The disadvantage of this method of obtaining a spray target of composition Co 2 MnSi is porosity due to electric arc sintering, leading to a large effective surface, its oxidation and adsorption of moisture and volatile contaminants from the air, probably for this reason, the authors of the patent could not confirm the absence of impurities in the target. The degree of homogenization that the electric arc sintering method can provide is lower compared to the simultaneous melting of all powder components.

Известен способ получения заготовки катодной мишени с заданным химическим составом и требуемых геометрических размеров (RU 2405062, С23С 14/34, B22F 3/15, B22F 9/10, B22D 7/00, опубл. 27.11.2010 г.). При этом для получения заготовки мишени расплавленный металл заливают в керамическую форму с получением слитка-электрода цилиндрической формы. Затем слиток расплавляют плазмой при вращении с получением сферических гранул диаметром 50-400 мкм. Расчетное количество сферических гранул засыпают в вакууме в капсулу кольцевой формы для образования мишени с полостью. Капсулу заваривают и подвергают горячему изостатическому прессованию, после чего производят разгерметизацию капсулы и осуществляют механическую очистку заготовки путем снятия с нее составных частей капсулы. Катодную мишень выполняют из сплава на основе никеля или на основе кобальта. В результате получают заготовки мишени стабильных геометрических размеров.A known method of producing a blank of a cathode target with a given chemical composition and the required geometric dimensions (RU 2405062, C23C 14/34, B22F 3/15, B22F 9/10, B22D 7/00, published on November 27, 2010). At the same time, in order to obtain a target blank, molten metal is poured into a ceramic mold to obtain a cylindrical ingot electrode. Then the ingot is melted by plasma during rotation to obtain spherical granules with a diameter of 50-400 microns. The estimated number of spherical granules is poured in a vacuum into a ring-shaped capsule to form a target with a cavity. The capsule is brewed and subjected to hot isostatic pressing, after which the capsule is depressurized and the workpiece is mechanically cleaned by removing the capsule components from it. The cathode target is made of an alloy based on nickel or on the basis of cobalt. As a result, target blanks of stable geometric dimensions are obtained.

Недостатком указанного способа является загрязнение мишени материалом керамической формы, капсулы. Кроме этого, изостатическое прессование также приводит к получению пористой мишени с недостатками, указанными выше.The disadvantage of this method is the contamination of the target with a ceramic material, capsule. In addition, isostatic pressing also results in a porous target with the drawbacks mentioned above.

Известен способ получения высокоплотных изделий спеканием заготовок из уплотненных нанодисперсных порошков карбида вольфрама методом электроимпульсного плазменного спекания (SPS), который может быть использован, в том числе, для изготовления мишеней для напыления износостойких покрытий экстремально нагружаемых ответственных деталей машин, например коленчатых валов тяжелых бронированных транспортных средств, а также материалов специального назначения с эффектом динамической сверхпрочности (RU 2548252 С2, кл. С04В 35/56, B82Y 40/00, опубл. 20.04.15 г.). Исходный порошок карбида вольфрама с размером частиц не более 110 нм с объемной долей WC не менее 99% подвергают электроимпульсному плазменному спеканию на установке Dr.Sinter Model-625 производства SPS SYNTEX INC. Ltd. (Япония) в условиях его прессования в графитовых пресс-формах при давлении прессования 60-70 МПа в вакууме 4 Па с оптимальной скоростью, выбранной из интервала 25-2400°С/мин при температуре, которую выбирают в зависимости от размера частиц исходного порошка WC. При увеличении скорости нагрева в указанном интервале повышается твердость спекаемой заготовки, при уменьшении ее величины повышается трещиностойкость этой заготовки. Температура спекания может составлять 1550-1800°С.A known method for producing high-density products by sintering billets from compacted nanosized tungsten carbide powders by the method of electric pulse plasma sintering (SPS), which can be used, inter alia, for the manufacture of targets for spraying wear-resistant coatings of extremely loaded critical machine parts, for example crankshafts of heavy armored vehicles , as well as special materials with the effect of dynamic super-strength (RU 2548252 С2, class С04В 35/56, B82Y 40/00, publ. 04.20.15). The initial tungsten carbide powder with a particle size of not more than 110 nm with a volume fraction of WC of at least 99% is subjected to electropulse plasma sintering using a Dr.Sinter Model-625 apparatus manufactured by SPS SYNTEX INC. Ltd. (Japan) under conditions of its pressing in graphite molds at a pressing pressure of 60-70 MPa in a vacuum of 4 Pa with an optimal speed selected from the range of 25-2400 ° C / min at a temperature that is selected depending on the particle size of the initial WC powder . With an increase in the heating rate in the indicated interval, the hardness of the sintered preform increases, while a decrease in its value increases the crack resistance of this preform. The sintering temperature may be 1550-1800 ° C.

Указанный способ не предусматривает изготовление распыляемых мишеней, содержащих фазу сплава Гейслера состава Co2FeSi.The specified method does not provide for the manufacture of sputtering targets containing the phase of the Geisler alloy composition Co 2 FeSi.

Метод электроимпульсного спекания (SPS) - сложный физико-механический процесс, проходящий при высоких температурах в порошковых материалах (фиг. 2). При спекании происходит уплотнение порошкового материала, внешне проявляющееся в изменении объема, увеличении плотности и уменьшении пористости. Спекание порошковых материалов происходит путем диффузионного массопереноса вещества под действием внешнего давления и внутренних сил, связанных, в первую очередь, с силами поверхностного натяжения. Диффузия осуществляется по определенным путям, которые определяют механизмы спекания.Electropulse sintering (SPS) is a complex physical and mechanical process that takes place at high temperatures in powder materials (Fig. 2). During sintering, the compaction of the powder material occurs, which externally manifests itself in a change in volume, an increase in density and a decrease in porosity. Sintering of powder materials occurs by diffusion mass transfer of a substance under the action of external pressure and internal forces associated primarily with surface tension forces. Diffusion is carried out in certain ways that determine the sintering mechanisms.

Существует, по крайней мере, шесть различных механизмов спекания в порошковых материалах: поверхностная диффузия, объемная диффузия с поверхности частиц к перемычке, перенос через газовую фазу, зернограничная диффузия, объемная диффузия от границы зерна к поре и пластическая деформация (Roberto Orru, Roberta Licheri, Antonio Mario Locci, Alberto Cincotti, Giacomo Cao. Consolidation/synthesis of materials by electric current activated/assisted sintering. Materials Science and Engineering R 63, pp. 127-287, 2009 г.).There are at least six different sintering mechanisms in powder materials: surface diffusion, bulk diffusion from the particle surface to the bulkhead, gas phase transfer, grain boundary diffusion, bulk diffusion from the grain boundary to the pore, and plastic deformation (Roberto Orru, Roberta Licheri, Antonio Mario Locci, Alberto Cincotti, Giacomo Cao. Consolidation / synthesis of materials by electric current activated / assisted sintering. Materials Science and Engineering R 63, pp. 127-287, 2009).

Все указанные механизмы приводят к образованию и росту перемычки между частицами, однако только часть из них приводит к усадке и уплотнению порошкового материала. Поверхностная диффузия, объемная диффузия с поверхности частицы к перемычке, перенос через газовую фазу (механизмы 1, 2 и 3, см. фиг. 2) приводят к росту перемычки без уплотнения и называются безуплотнительными механизмами. Зернограничная диффузия и объемная диффузия от границы зерна к поре (механизмы 4 и 5, см. фиг. 2) являются наиболее важными механизмами уплотнения поликристаллических керамик.All these mechanisms lead to the formation and growth of a jumper between the particles, however, only part of them leads to shrinkage and compaction of the powder material. Surface diffusion, volume diffusion from the particle surface to the jumper, transport through the gas phase (mechanisms 1, 2 and 3, see Fig. 2) lead to the growth of the jumper without compaction and are called sealing mechanisms. Grain-boundary diffusion and bulk diffusion from the grain boundary to the pore (mechanisms 4 and 5, see Fig. 2) are the most important mechanisms of compaction of polycrystalline ceramics.

Пластическая деформация, вызванная движением дислокаций (механизм 6, см. фиг. 2), также приводит к уплотнению (Хрустов В.Р. Разработка и исследование керамик на основе нанопорошков оксидов алюминия, циркония и церия. Автореферат диссертации на соискание ученой степени кандидата технических наук. Екатеринбург, 2010 г.). На начальном этапе спекания уплотнение вызвано макроскопическими процессами перераспределения частиц порошка в более «плотную упаковку», затем начинается рост перемычек. После появления перемычек между частицами и достижения некоторой плотности включается диффузия по границам зерен и по объему. Если диффузия по границам зерен идет достаточно интенсивно, то может наблюдаться быстрое уплотнение, однако при интенсивной зернограничной диффузии может включится процесс, оказывающий отрицательное влияние на спекание - рост зерен и аномальный рост. Основные методы изменения свободного объема границ зерен связаны с микролегированием границ атомами примеси и организацией потоков дислокаций на границы (S.W. Wang, L.D. Chen, Т. Hirai, Jingkun Guo. Formation of Al2O3 grains with different sizes and morphologies during the pulse electric current sintering process. J. Mater. Res., Vol. 16, No. 12, December 2001).Plastic deformation caused by the movement of dislocations (mechanism 6, see Fig. 2) also leads to compaction (Khrustov VR Development and study of ceramics based on nanopowders of aluminum, zirconium and cerium oxides. Abstract of dissertation for the degree of candidate of technical sciences Ekaterinburg, 2010). At the initial stage of sintering, compaction is caused by macroscopic processes of redistribution of powder particles into a more “dense packing”, then the growth of the jumpers begins. After the appearance of jumpers between the particles and reaching a certain density, diffusion along grain boundaries and volume is turned on. If the diffusion along the grain boundaries is quite intense, then rapid compaction can be observed, but with intensive grain-boundary diffusion, a process that has a negative effect on sintering — grain growth and anomalous growth — can be activated. The main methods for changing the free volume of grain boundaries are related to the microalloying of the boundaries by impurity atoms and the organization of dislocation flows to the boundaries (SW Wang, LD Chen, T. Hirai, Jingkun Guo. Formation of Al 2 O 3 grains with different sizes and morphologies during the pulse electric current sintering process. J. Mater. Res., Vol. 16, No. 12, December 2001).

При традиционных способах спекания порошковых материалов (свободное спекание, горячее прессование) скорости нагрева не превышают десятков градусов и не способны обеспечить образования высоких градиентов температур внутри порошка. Следовательно, для управления диффузионной проницаемостью границ зерен необходимо использование новых, высокоскоростных технологий спекания порошковых материалов. Одной из наиболее перспективных технологий высокоскоростного спекания является технология электроимпульсного спекания.With traditional methods of sintering powder materials (free sintering, hot pressing), heating rates do not exceed tens of degrees and are not able to ensure the formation of high temperature gradients inside the powder. Therefore, to control the diffusion permeability of grain boundaries, it is necessary to use new, high-speed sintering technologies for powder materials. One of the most promising technologies for high-speed sintering is the technology of electropulse sintering.

Метод электроимпульсного спекания относится к ряду высокоэффективных способов спекания порошков, интенсивно развиваемых в настоящее время во многих научных центрах. Широкий диапазон возможностей при электрофизическом воздействии на порошковый материал обуславливает многообразие этих способов, развиваемых в странах СНГ. К ним относятся: электроразрядное спекание (ЭРС) (I.P. Shapiro, R.I. Todd, J.M. Titchmarsh, S.G. Roberts. Effects of Y2O3 additives and powder purity on the densification and grain boundary composition of Al2O3/SiC nanocomposites. Journal of the European Ceramic Society, 29, pp. 1613-1624, 2009); электроимпульсное спекание под давлением (ЭИСД) (А.В. Номоев. Сверхмикротвердость керамики на основе нанодисперсных порошков оксида алюминия с добавками нанопорошков оксида магния и кремния. Письма в ЖТФ, том 36, вып. 21, с. 46-53. 2010 г.); электроимпульсное спекание (J. Wang, S.Y. Lim, S.C. Ng, C.H. Chew, L.M. Gan. Dramatic effect of small amount of MgO addition on the sintering of Al2O3 - 5 vol % SiC nanocomposite. Materials Letters, 33, pp. 273-277, 1998 г.); электроимпульсное прессование (Sheng Guo, Apichart Limpichaipanit, R.I. Todd. High resolution optical microprobe investigation of surface grinding stress in Al2O3 and Al2O3/SiC nanocomposites. Journal of the European Ceramic Society, 31, pp. 97-109, 2011).The method of electropulse sintering is one of a number of highly effective methods for sintering powders, which are currently being intensively developed in many scientific centers. A wide range of possibilities with electrophysical effects on the powder material determines the variety of these methods developed in the CIS countries. These include: electric discharge sintering (EDS) (IP Shapiro, RI Todd, JM Titchmarsh, SG Roberts. Effects of Y2O3 additives and powder purity on the densification and grain boundary composition of Al 2 O 3 / SiC nanocomposites. Journal of the European Ceramic Society, 29, pp. 1613-1624, 2009); Electropulse sintering under pressure (EISD) (A.V. Nomoev. Superhardness of ceramics based on nanosized alumina powders with the addition of nanopowders of magnesium oxide and silicon. Journal of Physics and Technology, Volume 36, Issue 21, pp. 46-53. 2010 ); electropulse sintering (J. Wang, SY Lim, SC Ng, CH Chew, LM Gan Dramatic effect of small amount of MgO addition on the sintering of Al 2 O 3 -.. 5 vol% SiC nanocomposite Materials Letters, 33, pp 273. -277, 1998); Electropulse pressing (Sheng Guo, Apichart Limpichaipanit, RI Todd. High resolution optical microprobe investigation of surface grinding stress in Al 2 O 3 and Al 2 O 3 / SiC nanocomposites. Journal of the European Ceramic Society, 31, pp. 97-109, 2011).

В дальнем зарубежье к подобным методам относятся: Field assisted sintering technique (FAST), Plasma Assisted Sintering (PAS), Spark Plasma Sintering (SPS), and Electroconsolidation, High Energy High Rate Processing (HEHR), Electric Dis-charge Compaction (EDC) [C.C. Anya, S.G. Roberts. Pressureless sintering and elastic constants of Al2O3 - SiC nanocomposites. Journal of the European Ceramic Society 17, pp. 565-573, 1997] и ряд других.In foreign countries, similar methods include: Field assisted sintering technique (FAST), Plasma Assisted Sintering (PAS), Spark Plasma Sintering (SPS), and Electroconsolidation, High Energy High Rate Processing (HEHR), Electric Dis-charge Compaction (EDC) [CC Anya, SG Roberts. Pressureless sintering and elastic constants of Al 2 O 3 - SiC nanocomposites. Journal of the European Ceramic Society 17, pp. 565-573, 1997] and a number of others.

Задачей изобретения является разработка способа изготовления распыляемой гомогенизированной мишени сплава Гейслера Co2FeSi, обеспечивающего возможность управления ее пористостью.The objective of the invention is to develop a method of manufacturing a sprayable homogenized target of a Geisler alloy Co 2 FeSi, providing the ability to control its porosity.

Техническим результатом от использования предлагаемого изобретения является получение гомогенизированной, т.е. однородной по составу, механически прочной композитной мишени заданной геометрии (диск толщиной 0,7-1 мм, диаметром 40 мм) и требуемой пористости в диапазоне 2-40%, содержащей исключительно фазу сплава Гейслера стехиометрического состава Co2FeSi.The technical result from the use of the invention is to obtain homogenized, i.e. homogeneous in composition, mechanically strong composite target of a given geometry (a disk 0.7-1 mm thick, 40 mm in diameter) and the required porosity in the range of 2-40%, containing exclusively the phase of the Geisler alloy of stoichiometric composition Co 2 FeSi.

На фиг. 1 представлена технологическая схема способа изготовления распыляемой мишени, содержащей фазу сплава Гейслера Co2FeSi.In FIG. 1 is a flow chart of a method for manufacturing a spray target containing a phase of a Geisler alloy Co 2 FeSi.

На фиг. 2 схематично представлен механизм спекания-прессования порошковой смеси на примере Co2FeSi.In FIG. 2 schematically illustrates the sintering-pressing mechanism of a powder mixture using Co 2 FeSi as an example.

На фиг. 3 представлена рентгенограмма слитка, показывающая наличие исключительно искомой фазы, на примере Co2FeSi.In FIG. Figure 3 presents an x-ray of an ingot showing the presence of the exclusively sought phase, using Co 2 FeSi as an example.

На фиг. 4 представлена рентгенограмма мишени, показывающая наличие исключительно искомой фазы, на примере Co2FeSi.In FIG. Figure 4 presents the X-ray diffraction pattern of the target, showing the presence of the exclusively sought phase, using Co 2 FeSi as an example.

Поставленная задача достигается тем, что в способе изготовления распыляемой композитной мишени, содержащей фазу сплава Гейслера Co2FeSi, включающем механическое смешивание порошков компонентов сплава Гейслера Co2FeSi с получением однородной порошковой смеси и ее спекание-прессование, порошковую смесь готовят из высокочистых порошков кобальта, железа и кремния, при этом спекание-прессование порошковой смеси ведут методом электроимпульсного плазменного спекания при температуре 600°С и минимальном давлении 2,5 кН, путем пропускания последовательностей импульсов постоянного тока до 5 кА с длительностью импульса 3,3 мс через засыпку порошковой смеси с поучением компакта, после чего ведут плавление полученного компакта в кварцевом тигле индукционной печи при 1300°С в течение 3 часов до полного расплавления с получением гомогенизированного слитка сплава Гейслера Co2FeSi, затем полученный слиток дробят и измельчают с получением частиц размером 1-200 мкм и проводят спекание-прессование композитной мишени из полученных частиц методом электроимпульсного плазменного спекания с контролем дилатометрической кривой усадки; спекание-прессование порошковой смеси и спекание-прессование частиц сплава Гейслера Co2FeSi осуществляют в установке электроимпульсного плазменного спекания DR. Sinter Model SPS-625 в графитовой пресс-форме; плавление полученного компакта осуществляют в индукционной печи VTC 200 Indutherm; дробление и измельчение слитка сплава Гейслера Co2FeSi осуществляют в аналитическом просеивающем грохоте Analysette 3 Spartan FRITSCH со следующими параметрами размола: сухой помол, отношение массы размалываемого вещества к массе мелющих тел 1:2-1:4, длительность помола от 30 минут до 2 часов, амплитуда колебаний грохота 1,5 мм; проводят селекцию полученных частиц сплава Гейслера Co2FeSi размером 1-200 мкм в узком или широком диапазоне размеров; полученные частицы сплава Гейслера Co2FeSi размером 1-200 мкм перемешивают в планетарной мельнице Pulverisette 6 FRITSCH; после спекания-прессования композитной мишени осуществляют шлифовку.The objective is achieved in that in the method of manufacturing sputtering a composite target comprising a phase Heusler alloy Co 2 FeSi, comprising mechanically mixing powders Heusler alloy Co 2 FeSi components to give a uniform powder mixture and sintering-pressing, the powder mixture is prepared from high-purity cobalt powder, iron and silicon, while the sintering and pressing of the powder mixture are carried out by the method of electric pulse plasma sintering at a temperature of 600 ° C and a minimum pressure of 2.5 kN, by passing of pulses of direct current up to 5 kA with a pulse duration of 3.3 ms through filling the powder mixture with the formation of a compact, then the resulting compact is melted in a quartz crucible of an induction furnace at 1300 ° C for 3 hours until completely melted to obtain a homogenized ingot of a Heisler alloy Co 2 FeSi, then the obtained ingot is crushed and ground to obtain particles with a size of 1-200 μm and sintering and pressing of the composite target from the obtained particles are carried out by electropulse plasma sintering with control m dilatometric curve of shrinkage; sintering-pressing of the powder mixture and sintering-pressing of particles of the Geisler alloy Co 2 FeSi is carried out in the installation of electric pulse plasma sintering DR. Sinter Model SPS-625 in a graphite mold; melting the resulting compact is carried out in an induction furnace VTC 200 Indutherm; crushing and grinding of the ingot of the Geisler alloy Co 2 FeSi is carried out in the Analysette 3 Spartan FRITSCH analytical sieving screen with the following grinding parameters: dry grinding, the ratio of the mass of the milled material to the mass of grinding media 1: 2-1: 4, the grinding duration from 30 minutes to 2 hours the amplitude of the vibrations of the screen 1.5 mm; the selection of the obtained particles of the Geisler alloy Co 2 FeSi size of 1-200 μm in a narrow or wide range of sizes; the obtained particles of a Geisler alloy Co 2 FeSi with a size of 1-200 μm are mixed in a planetary mill Pulverisette 6 FRITSCH; after sintering and pressing the composite target, grinding is carried out.

Предлагаемое изобретение осуществляют следующим образом.The invention is carried out as follows.

Сначала осуществляют механическое смешивание высокочистых порошков кобальта (Со), железа (Fe) и кремния (Si) для получения смеси Co2FeSi. Пропорции компонентов в смеси рассчитывают с учетом массовых долей компонентов. Смешивание производят механическим способом до получения однородной порошковой смеси. Несмотря на тщательность перемешивания порошков данная технология обеспечивает лишь предварительную, меньшую, чем в случае полного расплавления, гомогенизацию.First, mechanical mixing of high-purity powders of cobalt (Co), iron (Fe) and silicon (Si) is carried out to obtain a mixture of Co 2 FeSi. The proportions of the components in the mixture are calculated taking into account the mass fractions of the components. Mixing is carried out mechanically until a homogeneous powder mixture is obtained. Despite the thorough mixing of powders, this technology provides only preliminary, less than in the case of complete melting, homogenization.

Затем осуществляют спекание-прессование полученной смеси в установке электроимпульсного плазменного спекания DR. Sinter Model SPS-625 при температуре около 600°С с минимальным давлением около 2,5 кН, путем пропускания через порошковую засыпку в графитовой пресс-форме последовательностей импульсов постоянного тока до 5 кА, длительность импульса 3,3 мс. Процесс останавливают при уменьшении объема порошка с целью избегания загрязнения камеры вследствие расплавления компонента с минимальной температурой плавления. Схематически механизмы спекания-прессования порошковой смеси поясняет фиг. 2. При протекании тока через засыпку порошка оксидные пленки на поверхности частиц порошка разрушаются, и порошок спрессовывается в пористую заготовку с достаточной прочностью. Уплотнение порошка осуществляется только силами магнитного поля, а соединение частиц осуществляется в основном из-за оплавления контактов между частицами с образованием межчастичных перешейков. Степень уплотнения порошка зависит от параметров электрической цепи и свойств частиц порошка.Then carry out sintering-pressing of the resulting mixture in the installation of electric pulse plasma sintering DR. Sinter Model SPS-625 at a temperature of about 600 ° C with a minimum pressure of about 2.5 kN, by passing through a powder filling in a graphite mold sequences of direct current pulses up to 5 kA, the pulse duration of 3.3 ms. The process is stopped when the volume of the powder is reduced in order to avoid contamination of the chamber due to the melting of the component with a minimum melting point. Schematically, the sintering and pressing mechanisms of the powder mixture are illustrated in FIG. 2. When current flows through the filling of the powder, the oxide films on the surface of the powder particles are destroyed, and the powder is pressed into a porous preform with sufficient strength. Powder compaction is carried out only by magnetic forces, and the particles are connected mainly due to the fusion of contacts between particles with the formation of interparticle isthmuses. The degree of compaction of the powder depends on the parameters of the electrical circuit and the properties of the powder particles.

В результате получают компакт, который может быть расплавлен в индукционной печи, порошковый материал расплавить бы не удалось. Компакт представляет собой механическую смесь неокисленных порошков, соединенных друг с другом за счет оплавления контактов между частицами с образованием межчастичных перешейков.The result is a compact that can be melted in an induction furnace; powder material could not be melted. A compact is a mechanical mixture of unoxidized powders connected to each other by fusing contacts between particles with the formation of interparticle isthmuses.

Для обеспечения полной гомогенизации осуществляют плавление полученного компакта в кварцевом тигле индукционной печи VTC 200, Indutherm при 1300°С в течение 3 часов. В результате происходит расплавление всех компонентов, обеспечивающее полную гомогенизацию слитка, и получение сплава Гейслера стехиометрического состава. Типичная рентгенограмма полученного слитка, на примере Co2FeSi, приведена на фиг. 3.To ensure complete homogenization, the resulting compact is melted in a quartz crucible of the VTC 200, Indutherm induction furnace at 1300 ° C for 3 hours. As a result, all components melt, ensuring complete homogenization of the ingot, and obtain a stoichiometric Heisler alloy. A typical x-ray of the obtained ingot, using Co 2 FeSi as an example, is shown in FIG. 3.

Для придания сплаву Гейслера требуемой геометрии полученный слиток Co2FeSi (диск толщиной 0,7-1 мм и диаметром 40 мм) дробят и измельчают в аналитической просеивающей машине (вибрационный грохот Analysette 3 Spartan FRITSCH). Размер частиц, распределение частиц по размеру и комбинация частиц с разными размерами в узком или широком диапазоне, наряду с параметрами SPS спекания-прессования, влияет на пористость конечной мишени, которая может меняться в диапазоне 2-40%. Варьируя параметры размола, такие как отношение массы размалываемого вещества к массе мелющих тел, наличие поверхностно-активных жидких сред, длительность и интенсивность помола, получают порошок сплава Гейслера с требуемым/заданным распределением частиц по размерам (1-200 мкм). Для получения требуемой пористости, выбирают и комбинируют порошки определенной дисперсности. В общем случае, чем мельче порошок, тем меньше начальная пористость.To give the Geisler alloy the required geometry, the obtained Co 2 FeSi ingot (a disk with a thickness of 0.7-1 mm and a diameter of 40 mm) is crushed and ground in an analytical sieving machine (Analysette 3 Spartan FRITSCH vibrating screen). Particle size, particle size distribution and a combination of particles with different sizes in a narrow or wide range, along with the SPS sintering-pressing parameters, affect the porosity of the final target, which can vary in the range of 2-40%. By varying the grinding parameters, such as the ratio of the mass of the milled material to the mass of grinding media, the presence of surface-active liquid media, the duration and intensity of grinding, a Geisler alloy powder with the desired / specified particle size distribution (1-200 μm) is obtained. To obtain the required porosity, powders of a certain dispersion are selected and combined. In general, the finer the powder, the lower the initial porosity.

Перемешивают полученные после дробления и селекции порошки, например, в планетарной мельнице Pulverisette 6 FRITSCH.The powders obtained after crushing and selection are mixed, for example, in a Pulverisette 6 FRITSCH planetary mill.

SPS спекание-прессование частиц сплава Гейслера осуществляют в установке электроимпульсного плазменного спекания DR. Sinter Model SPS-625. Используют технологические условия SPS спекания-прессования частиц сплава Гейслера близкие к условиям спекания-прессования исходной порошковой смеси. При этом контролируют дилатометрическую кривую усадки для того, чтобы можно было прервать процесс спекания в нужной точке и получить материал с требуемой пористостью в интервале от 2 до 40%.SPS sintering-pressing of particles of a Geisler alloy is carried out in a DR electropulse plasma sintering plant. Sinter Model SPS-625. Use the SPS technological conditions for sintering and pressing of particles of the Geisler alloy close to the sintering and pressing conditions of the initial powder mixture. In this case, the dilatometric shrinkage curve is controlled in order to interrupt the sintering process at the desired point and obtain a material with the required porosity in the range from 2 to 40%.

В случае если требуется утонить мишень, то производят механическую шлифовку.If you want to thin the target, then produce mechanical grinding.

В ходе серии экспериментов были получены гомогенизированные, механически прочные мишени сплавов Гейслера Co2FeSi стехиометрического состава, что подтверждено рентгенографическими данными (фиг. 4). На фоне шума не видно присутствие каких-либо других фаз.In a series of experiments, homogenized, mechanically strong targets of Heusler alloys of Co 2 FeSi stoichiometric composition were obtained, which is confirmed by x-ray data (Fig. 4). Against the background of noise, the presence of any other phases is not visible.

Кроме этого, полученные мишени были заданной геометрии, выполнены в виде диска толщиной 0,7-1 мм и диаметром 40 мм, а также обладали требуемой пористостью в диапазоне 2-40%.In addition, the obtained targets were of a given geometry, made in the form of a disk with a thickness of 0.7-1 mm and a diameter of 40 mm, and also had the required porosity in the range of 2-40%.

Малая пористость мишени позволяет осуществлять ее распыление с меньшей скоростью, ведет к меньшей скорости напыления слоя, что может быть полезно для тонких слоев. Большая пористость мишени, наоборот, ведет к большей скорости распыления и обеспечивает напыление толстых слоев за меньшее время.The low porosity of the target allows it to be sprayed at a lower speed, leading to a lower deposition rate of the layer, which may be useful for thin layers. The large porosity of the target, on the contrary, leads to a higher sputtering speed and provides the deposition of thick layers in less time.

Образцы, полученные по описанной технологии, интересны и как эталонные для калибровки аналитических методов определения состава слоев сплавов Гейслера методами РФЭС, Оже, ВИМС и др.Samples obtained using the described technology are also interesting as reference ones for calibrating analytical methods for determining the composition of layers of Geisler alloys by XPS, Auger, SIMS, etc.

Ниже приведен пример конкретного осуществления предлагаемого способа.The following is an example of a specific implementation of the proposed method.

Пример 1.Example 1

1. Механически смешивают порошок кобальта (Со) (99,95%, 40 мкм), железа (Fe) (99,999%, 40 мкм) и кремния (Si) (99,999%, 40 мкм) из расчета получения 18 грамм смеси порошков Co2FeSi на 1 мишень диаметром 40 мм и толщиной около 1 мм. Пропорции компонент в смеси рассчитывают с учетом массовых долей компонентов. Смешивание производят до получения однородной порошковой смеси.1. Mechanically mix the powder of cobalt (Co) (99.95%, 40 microns), iron (Fe) (99.999%, 40 microns) and silicon (Si) (99.999%, 40 microns) based on the production of 18 grams of a mixture of powders Co 2 FeSi 1 target 40 mm in diameter and about 1 mm thick. The proportions of the components in the mixture are calculated taking into account the mass fractions of the components. Mixing is carried out until a homogeneous powder mixture is obtained.

2. Спекают полученную смесь порошков в установке электроимпульсного плазменного спекания DR. Sinter Model SPS-625 при температуре около 600°С, минимальном давлении около 2,5 кН, путем пропускания последовательностей импульсов постоянного тока до 5 кА, длительность импульса 3,3 мс через порошковую засыпку в графитовой пресс-форме. Процесс останавливают вручную при уменьшении объема порошка с целью избегания загрязнения камеры вследствие расплавления компонента с минимальной температурой плавления. На выходе получают механически прочный компакт, представляющий собой механическую смесь не окисленных порошков кобальта (Со), железа (Fe) и кремния (Si), соединенных друг с другом за счет оплавления контактов между частицами с образованием межчастичных перешейков.2. The resulting mixture of powders is sintered in an electric pulse plasma sintering apparatus DR. Sinter Model SPS-625 at a temperature of about 600 ° C, a minimum pressure of about 2.5 kN, by passing sequences of direct current pulses up to 5 kA, a pulse duration of 3.3 ms through a powder filling in a graphite mold. The process is stopped manually when the powder volume is reduced in order to avoid contamination of the chamber due to the melting of the component with a minimum melting point. The output is a mechanically strong compact, which is a mechanical mixture of non-oxidized powders of cobalt (Co), iron (Fe) and silicon (Si), connected to each other due to the fusion of contacts between particles with the formation of interparticle isthmuses.

3. Расплавляют компакт в кварцевом тигле индукционной печи VTC 200, Indutherm при 1300°С в течение 3 часов. Расплавление всех компонент гарантирует их химическое взаимодействие и получение гомогенизированного сплава Гейслера стехиометрического состава.3. The compact is melted in a quartz crucible of an induction furnace VTC 200, Indutherm at 1300 ° C for 3 hours. The melting of all components ensures their chemical interaction and the production of a homogenized stoichiometric Heisler alloy.

4. Дробят и измельчают полученный слиток Co2FeSi в аналитической просеивающей машине - вибрационный грохот Analysette 3 Spartan FRITSCH до получения порошка. Выбирают следующие параметры размола: сухой помол, отношение массы размалываемого вещества к массе мелющих тел 1:2, длительность помола 30 мин, амплитуда колебаний грохота 1,5 мм. В результате получают порошок с широкой гистограммой распределения частиц по размерам от 1 до 200 мкм.4. The resulting Co 2 FeSi ingot is crushed and ground in an analytical sieving machine — the Analysette 3 Spartan FRITSCH vibrating screen to obtain a powder. The following grinding parameters are selected: dry grinding, the ratio of the mass of the milled material to the mass of grinding media 1: 2, the grinding time is 30 minutes, the amplitude of the vibrations of the screen is 1.5 mm. The result is a powder with a wide histogram of the distribution of particle sizes from 1 to 200 microns.

5. При помощи аналитических сит отделяют фракцию порошка с размером части 150-200 мкм, а также фракцию порошка с размером части 20-40 мкм.5. Using analytical sieves, a powder fraction with a particle size of 150-200 microns is separated, as well as a powder fraction with a particle size of 20-40 microns.

6. Перемешивают полученные порошки с узким распределение частиц в планетарной мельнице Pulverisette 6 FRITSCH в соотношении 82% частиц с размерами 150-200 мкм и 18% частиц с размерами 20-40 мкм, что обеспечивает начальную пористость на уровне 20%.6. The resulting powders are mixed with a narrow particle distribution in the Pulverisette 6 FRITSCH planetary mill in the ratio of 82% of particles with sizes of 150-200 microns and 18% of particles with sizes of 20-40 microns, which ensures an initial porosity of 20%.

7. Спекают частицы сплава Гейслера в SPS-625 в пресс-форме диаметром 40 мм до получения плотности на уровне 2÷5%.7. Sinter particles of the Geisler alloy in SPS-625 in a mold with a diameter of 40 mm to obtain a density of 2 ÷ 5%.

8. Производят механическую шлифовку, если требуется утонить мишень.8. Perform mechanical grinding, if you want to thin the target.

В результате получают гомогенизированную мишень требуемой механической прочности (достаточной, чтобы не повредить мишень в процессе напыления), геометрии (диаметр - 40 мм, толщина - 0,7 мм), фазового состава Co2FeSi и низкой пористости 2÷5%.The result is a homogenized target of the required mechanical strength (sufficient so as not to damage the target during the deposition process), geometry (diameter - 40 mm, thickness - 0.7 mm), phase composition of Co 2 FeSi and low porosity of 2 ÷ 5%.

Claims (7)

1. Способ изготовления распыляемой композитной мишени, содержащей фазу сплава Гейслера Co2FeSi, включающий механическое смешивание порошков компонентов сплава Гейслера Co2FeSi с получением однородной порошковой смеси и ее спекание-прессование, отличающийся тем, что порошковую смесь готовят из высокочистых порошков кобальта, железа и кремния, при этом спекание-прессование порошковой смеси ведут методом электроимпульсного плазменного спекания при температуре 600°С и минимальном давлении 2,5 кН, путем пропускания последовательностей импульсов постоянного тока до 5 кА с длительностью импульса 3,3 мс через засыпку порошковой смеси с получением компакта, после чего ведут плавление полученного компакта в кварцевом тигле индукционной печи при 1300°С в течение 3 часов до полного расплавления с получением гомогенизированного слитка сплава Гейслера Co2FeSi, затем полученный слиток дробят и измельчают с получением частиц размером 1-200 мкм и проводят спекание-прессование композитной мишени из полученных частиц методом электроимпульсного плазменного спекания с контролем дилатометрической кривой усадки.1. A method of manufacturing a sprayable composite target containing the phase of the Geisler alloy Co 2 FeSi, comprising mechanically mixing the powders of the components of the Geisler alloy Co 2 FeSi to obtain a homogeneous powder mixture and its sintering-pressing, characterized in that the powder mixture is prepared from high-purity powders of cobalt, iron and silicon, while sintering and pressing of the powder mixture are carried out by the method of electric pulse plasma sintering at a temperature of 600 ° C and a minimum pressure of 2.5 kN, by passing pulse sequences in direct current up to 5 kA with a pulse duration of 3.3 ms through filling the powder mixture to obtain a compact, then the resulting compact is melted in a quartz crucible of an induction furnace at 1300 ° C for 3 hours until completely melted to obtain a homogenized ingot of Co 2 FeSi, then the resulting ingot is crushed and milled to obtain particle size of 1-200 microns and pressing-sintering is carried out a composite target of particles obtained by the method of electro-plasma sintering with controlled dilatometric shrinkage curve. 2. Способ по п. 1, отличающийся тем, что спекание-прессование порошковой смеси и спекание-прессование частиц сплава Гейслера Co2FeSi осуществляют в установке электроимпульсного плазменного спекания DR. Sinter Model SPS-625 в графитовой пресс-форме.2. The method according to p. 1, characterized in that the sintering-pressing of the powder mixture and sintering-pressing of particles of the Geisler alloy Co 2 FeSi is carried out in the installation of electric pulse plasma sintering DR. Sinter Model SPS-625 in a graphite mold. 3. Способ по п. 1, отличающийся тем, что плавление полученного компакта осуществляют в индукционной печи VTC 200 Indutherm.3. The method according to p. 1, characterized in that the melting of the obtained compact is carried out in an induction furnace VTC 200 Indutherm. 4. Способ по п. 1, отличающийся тем, что дробление и измельчение слитка сплава Гейслера Co2FeSi осуществляют в аналитическом просеивающем грохоте Analysette 3 Spartan FRITSCH со следующими параметрами размола: сухой помол, отношение массы размалываемого вещества к массе мелющих тел 1:2-1:4, длительность помола от 30 минут до 2 часов, амплитуда колебаний грохота 1,5 мм.4. The method according to p. 1, characterized in that the crushing and grinding of the ingot of the Geisler alloy Co 2 FeSi is carried out in the Analysette 3 Spartan FRITSCH analytical sieving screen with the following grinding parameters: dry grinding, the ratio of the mass of the milled material to the mass of grinding media 1: 2- 1: 4, grinding duration from 30 minutes to 2 hours, the amplitude of the vibrations of the screen 1.5 mm 5. Способ по п. 1, отличающийся тем, что проводят селекцию полученных частиц сплава Гейслера Co2FeSi размером 1-200 мкм в узком или широком диапазоне размеров.5. The method according to p. 1, characterized in that the selection of the obtained particles of the Geisler alloy Co 2 FeSi size of 1-200 microns in a narrow or wide range of sizes. 6. Способ по п. 1, отличающийся тем, что полученные частицы сплава Гейслера Co2FeSi размером 1-200 мкм перемешивают в планетарной мельнице Pulverisette 6 FRITSCH.6. The method according to p. 1, characterized in that the obtained particles of a Geisler alloy Co 2 FeSi with a size of 1-200 μm are mixed in a planetary mill Pulverisette 6 FRITSCH. 7. Способ по п. 1, отличающийся тем, что после спекания-прессования композитной мишени осуществляют шлифовку.7. The method according to p. 1, characterized in that after sintering-pressing a composite target carry out grinding.
RU2016150967A 2016-12-26 2016-12-26 METHOD FOR PRODUCING SPUTTERING COMPOSITE TARGET CONTAINING HEUSLER ALLOY PHASE OF CO2FeSi RU2637845C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016150967A RU2637845C1 (en) 2016-12-26 2016-12-26 METHOD FOR PRODUCING SPUTTERING COMPOSITE TARGET CONTAINING HEUSLER ALLOY PHASE OF CO2FeSi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016150967A RU2637845C1 (en) 2016-12-26 2016-12-26 METHOD FOR PRODUCING SPUTTERING COMPOSITE TARGET CONTAINING HEUSLER ALLOY PHASE OF CO2FeSi

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2017138710A Division RU2678355C1 (en) 2017-11-07 2017-11-07 METHOD FOR PRODUCING SPRAYABLE COMPOSITE TARGET CONTAINING Co2MnSi HEUSLER ALLOY PHASE

Publications (1)

Publication Number Publication Date
RU2637845C1 true RU2637845C1 (en) 2017-12-07

Family

ID=60581511

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016150967A RU2637845C1 (en) 2016-12-26 2016-12-26 METHOD FOR PRODUCING SPUTTERING COMPOSITE TARGET CONTAINING HEUSLER ALLOY PHASE OF CO2FeSi

Country Status (1)

Country Link
RU (1) RU2637845C1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2754540C1 (en) * 2021-02-15 2021-09-03 Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) Electric arc method for producing ti2mnal ingots
RU2776576C1 (en) * 2022-02-24 2022-07-22 Федеральное государственное бюджетное учреждение науки Институт физики твердого тела имени Ю.А. Осипьяна Российской академии наук (ИФТТ РАН) Electric arc method for producing precision alloy ti2mnal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7973351B2 (en) * 2008-09-25 2011-07-05 Kabushiki Kaisha Toshiba Stack having Heusler alloy, magnetoresistive element and spin transistor using the stack, and method of manufacturing the same
US8070919B2 (en) * 2007-07-16 2011-12-06 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Method for preparing one dimensional spin photonic crystal device and one dimensional spin photonic crystal device prepared by the same
UA92108U (en) * 2014-03-26 2014-07-25 Інститут Металофізики Ім. Г.В. Курдюмова Національної Академії Наук України METHOD FOR PRODUCING nanostructured thermoelectric semiconductor alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8070919B2 (en) * 2007-07-16 2011-12-06 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Method for preparing one dimensional spin photonic crystal device and one dimensional spin photonic crystal device prepared by the same
US7973351B2 (en) * 2008-09-25 2011-07-05 Kabushiki Kaisha Toshiba Stack having Heusler alloy, magnetoresistive element and spin transistor using the stack, and method of manufacturing the same
UA92108U (en) * 2014-03-26 2014-07-25 Інститут Металофізики Ім. Г.В. Курдюмова Національної Академії Наук України METHOD FOR PRODUCING nanostructured thermoelectric semiconductor alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2754540C1 (en) * 2021-02-15 2021-09-03 Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) Electric arc method for producing ti2mnal ingots
RU2776576C1 (en) * 2022-02-24 2022-07-22 Федеральное государственное бюджетное учреждение науки Институт физики твердого тела имени Ю.А. Осипьяна Российской академии наук (ИФТТ РАН) Electric arc method for producing precision alloy ti2mnal

Similar Documents

Publication Publication Date Title
KR100689597B1 (en) Iron silicide sputtering target and method for production thereof
RU2333086C2 (en) Refractory metal and its alloy purified with laser treatment and melting
JP2005533182A (en) Method for producing sputtering target doped with boron / carbon / nitrogen / oxygen / silicon
US10644230B2 (en) Magnetic material sputtering target and method for producing same
CN104032270A (en) Large-sized ruthenium-based alloy sputtering target and preparation method thereof
JP5877517B2 (en) Sputtering target for rare earth magnet and manufacturing method thereof
CN108372294A (en) A kind of high-entropy alloy powder and preparation method thereof
JP6943762B2 (en) Sputtering target
TW201726954A (en) Sputtering target material
TW201532710A (en) Magnetic material sputtering target and method for producing same
RU2678355C1 (en) METHOD FOR PRODUCING SPRAYABLE COMPOSITE TARGET CONTAINING Co2MnSi HEUSLER ALLOY PHASE
US20120318669A1 (en) Sputtering target-backing plate assembly
WO1995004167A1 (en) High melting point metallic silicide target and method for producing the same, high melting point metallic silicide film and semiconductor device
WO2013000147A1 (en) Copper-chromium contactor and manufacturing method thereof
TWI387661B (en) Manufacturing method of nickel alloy target
RU2637845C1 (en) METHOD FOR PRODUCING SPUTTERING COMPOSITE TARGET CONTAINING HEUSLER ALLOY PHASE OF CO2FeSi
RU2678354C1 (en) METHOD FOR PRODUCING SPRAYABLE COMPOSITE TARGET FROM Co2MnSi HEUSLER ALLOY
KR20220099107A (en) Spherical powder for manufacturing three-dimensional objects
TW201726955A (en) Sputtering target material
JPWO2018123500A1 (en) Magnetic material sputtering target and method of manufacturing the same
RU2644223C1 (en) METHOD FOR MAKING SPRAY COMPOSITE TARGET FROM HEUSLER ALLOY Co2FeSi
WO2021241522A1 (en) METAL-Si BASED POWDER, METHOD FOR PRODUCING SAME, METAL-Si BASED SINTERED BODY, SPUTTERING TARGET, AND METAL-Si BASED THIN FILM MANUFACTURING METHOD
JP6520523B2 (en) Oxide sintered body, method for producing the same, and sputtering target
KR20160050485A (en) Preparation method of ru or ru alloy target and the ru or ru alloy sputtering target prepared thereby
JP3997527B2 (en) Method for producing Ru-Al intermetallic compound target, Ru-Al intermetallic compound target, and magnetic recording medium

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201227