RU2615196C2 - Элементы протирающей цементировочной пробки и способы обработки окружающей скважину среды для интенсификации притока - Google Patents

Элементы протирающей цементировочной пробки и способы обработки окружающей скважину среды для интенсификации притока Download PDF

Info

Publication number
RU2615196C2
RU2615196C2 RU2014132555A RU2014132555A RU2615196C2 RU 2615196 C2 RU2615196 C2 RU 2615196C2 RU 2014132555 A RU2014132555 A RU 2014132555A RU 2014132555 A RU2014132555 A RU 2014132555A RU 2615196 C2 RU2615196 C2 RU 2615196C2
Authority
RU
Russia
Prior art keywords
wellbore
valve
casing
plug
seat
Prior art date
Application number
RU2014132555A
Other languages
English (en)
Other versions
RU2014132555A (ru
Inventor
Джастин С. КЕЛЛНЕР
Пол МАДЕРО
Чарльз С. ДЖОНСОН
Original Assignee
Бэйкер Хьюз Инкорпорейтед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Бэйкер Хьюз Инкорпорейтед filed Critical Бэйкер Хьюз Инкорпорейтед
Publication of RU2014132555A publication Critical patent/RU2014132555A/ru
Application granted granted Critical
Publication of RU2615196C2 publication Critical patent/RU2615196C2/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/162Injecting fluid from longitudinally spaced locations in injection well
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/10Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • E21B33/14Methods or devices for cementing, for plugging holes, crevices or the like for cementing casings into boreholes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • E21B33/14Methods or devices for cementing, for plugging holes, crevices or the like for cementing casings into boreholes
    • E21B33/16Methods or devices for cementing, for plugging holes, crevices or the like for cementing casings into boreholes using plugs for isolating cement charge; Plugs therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/063Valve or closure with destructible element, e.g. frangible disc
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/10Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole
    • E21B34/102Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole with means for locking the closing element in open or closed position
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/10Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole
    • E21B34/108Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole with time delay systems, e.g. hydraulic impedance mechanisms
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/14Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools
    • E21B34/142Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools unsupported or free-falling elements, e.g. balls, plugs, darts or pistons
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/02Surface sealing or packing
    • E21B33/08Wipers; Oil savers

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Details Of Valves (AREA)
  • Lift Valve (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

Группа изобретений относится к обработке окружающей скважину среды для интенсификации притока. Технический результат – повышение эффективности обработки. По способу осуществляют цементирование обсадной колонны в стволе скважины. Обсадная колонна ствола скважины содержит клапан, расположенный ниже устройства дросселирования текучей среды. Устройство дросселирования текучей среды содержит трубный элемент с седлом, расположенным в канале трубного элемента, и пробку для установки на седло. Осуществляют открытие клапана для установления гидравлического сообщения обсадной колонны ствола скважины с окружающей скважину средой. Устанавливают пробку на седло для дросселирования гидравлического сообщения между обсадной колонной ствола скважины и окружающей скважину средой. Выполняют опрессовку обсадной колонны ствола скважины. Без дополнительного геотехнического мероприятия в стволе скважины удаляют часть пробки, чем обеспечивают увеличение гидравлического сообщения между обсадной колонной ствола скважины и окружающей скважину средой. Выполняют обработку для интенсификации притока в окружающей скважину среде. 3 н. и 12 з.п. ф-лы, 6 ил.

Description

[0001] Данная заявка испрашивает приоритет по заявке США № 13/366076, зарегистрированной 3 февраля 2012 г., полностью включенной в данном документе в виде ссылки.
Область техники изобретения
[0002] Настоящее изобретение направлено на создание способов подготовки обсаженного ствола скважины к обработке окружающей скважину среды для интенсификации притока и, в частности, способов подготовки обсаженного ствола скважины к обработке окружающей скважину среды для интенсификации притока без геотехнических мероприятий и с использованием приводимых в действие давлением муфт и устройств для временного дросселирования потока текучей среды, проходящего через обсадную колонну ствола скважины, для подготовки обсадной колонны ствола скважины к обработке для интенсификации притока, в противоположность использованию дополнительных способов с геотехническими мероприятиями в стволе скважины, таких как перфорирование на колонне насосно-компрессорных труб.
Описание уровня техники
[0003] Шаровые седла являются общеизвестными в технике. Например, типичные шаровые седла имеют канал или проход, дросселируемый седлом. Шар или пробка устанавливается на седле, предотвращая проход или дросселируя поток текучей среды через канал шарового седла и, таким образом, изолируя насосно-компрессорную трубу или секцию трубы, в которой шаровое седло устанавливается. С приложением силы к шару или пробке в трубе можно нагнетать давление для опрессовки насосно-компрессорной трубы, приведения в действие инструмента или выполнения манипуляций, например, для установки пакера. Шаровые седла используют в заканчивании с обсаженным стволом скважины, подвесках хвостовика, устройствах отвода потока, системах гидроразрыва пласта, системах кислотной обработки для интенсификации притока, оборудовании регулирования расхода и других системах.
[0004] Хотя термины "шаровое седло" и "шар" используются в данном документе, следует понимать, что сбрасываемую пробку, закупоривающее устройство или элемент другой формы можно использовать с "шаровыми седлами", описанными и рассмотренными в данном документе. Для упрощения следует понимать, что термины "шар" и "пробка" включают в себя и охватывают пробки, шары, дротики или сбрасываемые пробки всех форм и размеров, если конкретная форма или конструктивное исполнение "шара" специально не рассматривается.
[0005] Обработка для интенсификации притока в данном документе включает в себя гидроразрыв пласта или "гидроразрыв" в стволе скважины с использованием систем или инструментов обработки для интенсификации притока, также известных в технике. В общем, системы или инструменты обработки для интенсификации притока используются в нефтяных и газовых скважинах для заканчивания и увеличения дебита скважины. В наклонно-направленных стволах скважин, в частности имеющих большую длину, текучую среду, например кислоту или жидкости гидроразрыва пласта, стараются вводить в линейном или горизонтальном концевом участке скважины для обработки для интенсификации притока продуктивной зоны для открытия продуктивных трещин и пор, проходящих в породе. Например, гидравлический разрыв пласта является способом, в котором используют скорость нагнетания и гидравлическое давление, создаваемое жидкостью гидроразрыва пласта для расширения или создания трещин в подземном пласте или окружающей скважину среде.
[0006] Перед проведением обработки для интенсификации притока в стволе скважины инструмент обработки для интенсификации притока цементируют в стволе скважины. Затем выполняют опрессовку обсадной колонны ствола скважины, содержащей инструмент обработки для интенсификации притока. Для выполнения данного этапа путь через инструмент обработки для интенсификации притока должен быть закрыт. После подтверждения опрессовкой герметичности обсадной колонны ствола скважины путь гидравлического сообщения, проходящий через инструмент обработки для интенсификации притока, повторно открывают для подачи насосом текучей среды обработки для интенсификации через инструмент обработки для интенсификации притока и в пласт. В настоящее время на этапах работ повторного открытия потока текучей среды через инструмент обработки для интенсификации притока требуется проведение дополнительных геотехнических мероприятий в стволе скважины, таких как перфорирование на колонне насосно-компрессорных труб.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0007] В широком смысле способы подготовки ствола скважины к обработке для интенсификации притока, раскрытые в данном документе, содержат этапы цементирования в обсадной колонне ствола скважины скважинного инструмента, содержащего клапан с устройством для дросселирования потока текучей среды, проходящей через клапан, такого как шаровое седло, расположенное над клапаном. Клапан приводится в открытое положение для установления потока текучей среды между каналом обсадной колонны и пластом или окружающей скважину средой. Затем пробка устанавливается на седло шарового гнезда и выполняется опрессовка обсадной колонны. Пробка затем растворяется или разрушается со временем, при этом увеличивается гидравлическое сообщение между пластом и обсадной колонной ствола скважины через клапан, при этом в обсадной колонне ствола скважины создаются условия для обработки для интенсификации притока без проведения дополнительного геотехнического мероприятия в стволе скважины после опрессовки обсадной колонны.
[0008] В одном конкретном варианте осуществления пробка также функционирует как протирающий элемент для осуществления дополнительной очистки канала клапана после выполнения опрессовки. Пробка растворяется, принимая заданную форму, в которой при продавливании через седло и канал клапана пробка стирает отходы в канале клапана.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0009] На фиг. 1 в сечении одного конкретного варианта осуществления скважинного инструмента, раскрытого в данном документе, показан пример клапана в закрытом положении.
[0010] На фиг. 2 в сечении скважинного инструмента фиг. 1 показан клапан в одном из своих открытых положений.
[0011] На фиг. 3 в сечении скважинного инструмента фиг. 1 показана пробка, установленная на седло над клапаном так, что можно выполнять опрессовку обсадной колонны.
[0012] На фиг. 4 в сечении скважинного инструмента фиг. 1 показан скважинный инструмент в положении для проведения обработки для интенсификации притока после выполнения опрессовки и растворения пробки, показанной на фиг. 3.
[0013] На фиг. 5 показано сечение конкретного варианта осуществления пробки, раскрытой в данном документе.
[0014] На фиг. 6 показан вид сбоку протирающего цементировочного элемента, показанного на фиг. 5.
[0015] Изобретение описано ниже для предпочтительных вариантов осуществления; следует понимать, что описание не ограничивает изобретение данными вариантами осуществления. Напротив, изобретение охватывает все альтернативы, модификации и эквиваленты, которые соответствуют сущности и объему изобретения, определенному в прилагаемой формуле изобретения.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
[0016] В показанном на фиг. 1-4 одном конкретном варианте осуществления скважинный инструмент 30 содержит клапан 40 и устройство 70 дросселирования канала, показанное в виде шарового седла на фиг. 1-4. На фиг. 1 показан клапан 40 в закрытом положении, и фиг. 2-4 показывают клапан 40, приведенный в открытое положение.
[0017] Клапан 40 включает в себя нижний, снабженный окнами кожух 44 с окнами 46 гидравлического сообщения и верхний корпус 48. Герметичность клапана 40 поддерживается с помощью корпусных уплотнений 41. Корпусные установочные винты 47 удерживают корпусные соединительные резьбы 43 от развинчивания во время установки. Между нижним, снабженным окнами кожухом 44 и верхним корпусом 48 вставлена внутренняя сдвигающаяся муфта 50. Внутренняя сдвигающаяся муфта 50 имеет несколько диаметров, которые создают площади поршня для создания сдвигающих сил, открывающих клапан 40. Изолирующие окна уплотнения 45, расположенные на нижнем конце внутренней сдвигающейся муфты 50, и нижние внутренние поршневые уплотнения 65 канала над окнами 46 гидравлического сообщения действуют вместе, изолируя внутреннее пространство клапана 40 во время и после цементирования. Изолирующие окна уплотнения 45 и нижние поршневые уплотнения 65 внутреннего канала работают в своих соответствующих полированных каналах 55, 57 в нижнем, снабженном окнами кожухе 44. Увеличенные промежуточные поршневые уплотнения 52 внутреннего канала используются при продвижении вверх внутренней сдвигающейся муфты 50 вдоль верхнего внутреннего полированного канала 53 в нижнем, снабженном окнами кожухе 44 после разрушения разрывной мембраны 42.
[0018] Верхние наружные поршневые штоковые уплотнения 59, расположенные в верхнем корпусе 48, действуют, предотвращая вход цемента в верхнюю атмосферную камеру 62, и протирают диаметр за пределами верхнего полированного канала 61 верхней муфты во время открытия клапана 40. Внутренняя сдвигающаяся муфта 50 также имеет уступ 54, который срезает срезной болт 56 во время сдвига, открывающего внутреннюю сдвигающуюся муфту 50. Наружный паз 63 удержания блокирующего кольца муфты расположен между внутренними уплотнениями 52 канала и диаметром верхнего полированного канала 61 муфты. Паз 63 удержания блокирующего кольца принимает блокирующее кольцо 69 муфты, которое удерживается захватом 67 блокирующего кольца после полного открытия клапана 40. Таким образом, блокирующее кольцо 69 муфты предотвращает закрытие внутренней сдвигающейся муфты 50 после открытия клапана 40 (фиг. 2-4).
[0019] Между нижними внутренними поршневыми уплотнениями 65 канала и промежуточными поршневыми уплотнениями 52 канала расположена нижняя атмосферная камера 58, содержащая воздух, которую можно независимо опрессовывать через нижний опрессовочный штуцер 60. Между промежуточными внутренними поршневыми уплотнениями 52 канала и верхними наружными поршневыми штоковыми уплотнениями 59 расположена верхняя атмосферная камера 62, также содержащая воздух, которую можно независимо опрессовывать через верхнее опрессовочное окно 64. Разрушающаяся или разрывная мембрана 42 удерживается на месте в окне, расположенном с наружной стороны внутренней сдвигающейся муфты 50 нагруженным кольцом 66 и нагруженной гайкой 68. Нагруженная гайка 68 разрывной мембраны подобрана обеспечивающей передачу значительного крутящего момента и нагрузки в разрывную мембрану 42 перед установкой внутренней сдвигающейся муфты 50 в клапан 40.
[0020] Специалисту в данной области техники понятно, что использование разрывной мембраны для освобождения поршня является просто предпочтительным способом и в общем более точным, чем исключительное применение среза срезного штифта. Клапан регулирования давления можно использовать для такого селективного подключения, так же как вступающий в химическую реакцию барьер, устраняющийся в присутствии заданного вещества или энергетического поля, температуры в скважине или другого скважинного условия, например, для перемещения муфты. Разрушающиеся или разрывные мембраны 42 также можно заменить любой другой регулирующей давление пробкой, известной в технике, например такой, как раскрыта и предложена в патентной заявке США, серийный № 13/286775, зарегистрированной 1 ноября 2011 г., под названием "Frangible Pressure Control Plug, Actuatable Tool, Including Plug, and Method Thereof", полностью включенной в данном документе в виде ссылки.
[0021] После разрушения разрывной мембраны 42 давление в нижней камере 58 сравнивается со скважинным давлением так, что прогиб стенки в данном месте минимизирован. Перед разрывом разрывной мембраны 42 размер нижней камеры 58 достаточно мал, что исключает прогиб стенки муфты в данной зоне. Использование большого контактного участка для опирания промежуточных внутренних поршневых уплотнений 52 канала также упрочняет внутреннюю сдвигающуюся муфту 50 непосредственно под верхней камерой 62, таким образом по меньшей мере уменьшая прогиб или искривление, которые могут защемлять внутреннюю сдвигающуюся муфту 50 до завершения ее сдвига. Несколько больший размер наружных поршневых штоковых уплотнений 59 в сравнении с изолирующими окна уплотнениями 45, которые удерживают внутреннюю сдвигающуюся муфту 50 закрытой вначале, также обеспечивают увеличенную толщину стенки для внутренней сдвигающейся муфты 50 вблизи верхней камеры 62 для дополнительного по меньшей мере уменьшения изгиба или искривления, обеспечивающего внутренней сдвигающейся муфте 50 полный сдвиг без заклинивания.
[0022] Промежуточные внутренние поршневые уплотнения 52 канала могут являться интегральными с внутренней сдвигающейся муфтой 50 или представлять собой отдельную конструкцию. Верхняя камера 62 имеет начальное давление, равное атмосферному или заданной величине меньше расчетного гидростатического давления во внутренней сдвигающейся муфте 50. Объем верхней камеры 62 уменьшается, и внутреннее давление в ней поднимается, когда внутренняя сдвигающаяся муфта 50 перемещается для открытия окон 46.
[0023] Шаровое гнездо 70 крепится к верхнему концу клапана 40 с помощью любого устройства или способа известной техники, например резьбовым соединением. Шаровое гнездо 70 содержит верхний конец 71, нижний конец 72, который крепится к клапану 40, и внутреннюю поверхность 73 стенки, образующую канал 74. Седло 75 расположено на внутренней поверхности 73 стенки для приема пробки, такой как шар 80, показанный на фиг. 3.
[0024] В работе скважинный инструмент 30 соединяется с обсадной колонной верхним и нижним концами и спускается в открытый ствол для заканчивания с цементированием непосредственно над башмаком с обратным клапаном. После установки в стволе скважины на нужном месте скважинный инструмент 30 цементируется в скважине.
[0025] После цементирования проводится промывка для удаления отходов из пути потока через клапан 40. Промывку можно выполнять, прокачивая текучую среду через скважинный инструмент 30, вымывая любые отходы, оставшиеся от цементирования. В дополнение или альтернативно верхнюю цементировочную пробку можно спускать вниз по каналу обсадной колонны, мимо седла 75 и через канал клапана 40 для снятия с них отходов, включающих в себя оставшийся цемент.
[0026] После затвердевания цемента снаружи клапана 40 клапан готов к открытию с помощью комбинации высокого гидростатического и нагнетаемого давления. По достижении критического давления разрывная мембрана 42 разрушается и открывает нижнюю атмосферную камеру 58 абсолютному давлению в скважине. Данное давление действует на площадь поршня, созданную нижними внутренними поршневыми уплотнениями 65 канала и более крупными внутренними поршневыми уплотнениями 52 канала, и перемещает внутреннюю сдвигающуюся муфту 50 вверх, сжимая воздух в верхней атмосферной камере 62 и открывая окна 46 гидравлического сообщения на снабженном окнами кожухе 44. Таким образом, объем верхней камеры 62 уменьшается и внутреннее давление в ней возрастает, когда внутренняя сдвигающаяся муфта 50 перемещается для открытия окон 46.
[0027] Когда внутренняя сдвигающаяся муфта 50 полностью сдвигается и входит в контакт с обращенным вниз уступом на захвате 67 блокирующего кольца, блокирующее кольцо 69 муфты входит в паз 63 удержания блокирующего кольца муфты на внутренней сдвигающейся муфте 50, предотвращая последующее закрытие клапана 40.
[0028] После разрушения разрывной мембраны 42 абсолютное давление в скважине действует на поршневые уплотнения 52 и поршневые уплотнения 65, непрерывно толкая муфту 50 вверх и действуя как резервный блокирующий элемент, предотвращающий последующее закрытие клапана 40.
[0029] С открытием клапана 40 устанавливается гидравлическое сообщение между каналом скважинного инструмента 30 и обсадной колонной ствола скважины и, следовательно, пластом ствола скважины или окружающей скважину средой. Затем можно выполнять опрессовку обсадной колонны. Для опрессовки пробка 80 спускается в обсадную колонну и встает на седло 75 шарового гнезда 70 (фиг. 3). Затем выполняется опрессовка. При условии успешной опрессовки в стволе скважины принимают решение проводить обработку для интенсификации притока. Вместе с тем пробка 80 остается на седле 75. Пробка 80 удаляется из седла 75 через некоторое время вследствие растворения по меньшей мере части пробки 80. После достаточного растворения пробки 80, при котором давление текучей среды, действующее вниз на пробку 80, может протолкнуть пробку 80 через седло 75 и через канал клапана 40, гидравлическое сообщение между обсадной колонной и пластом увеличивается так, что можно выполнять обработку для интенсификации притока. Таким образом, после установки пробки 80 на седло 75 и выполнения опрессовки не требуется дополнительного геотехнического мероприятия в стволе скважины для создания в обсадной колонне условий для обработки для интенсификации притока.
[0030] В некоторых вариантах осуществления пробка 80 полностью растворяется. В других вариантах осуществления пробка 80 частично растворяется перед проходом через седло 75 и через канал клапана 40. В других вариантах осуществления часть пробки 80 выполняется из нерастворимого материала. Растворение части или всей пробки 80 может выполняться для пробки 80, выполненной по меньшей мере частично из растворимого материала. "Растворимый" означает, что материал способен растворяться в текучей среде или растворителе, размещенном в обсадной колонне ствола скважины. "Растворимый" следует понимать охватывающим термины "разрушающийся" и "разлагающийся". Аналогично термины "растворенный" и "растворение" также интерпретируются включающими в себя "разрушенный" и "разложившийся" и "разрушение" и "разложение" соответственно. Растворимый материал может являться любым материалом, известным специалистам в данной области техники, который может растворяться, разрушаться или разлагаться с течением некоторого времени под действием температуры или текучей среды, такой как буровые растворы на водной основе, буровые растворы на углеводородной основе или природный газ, и который можно калибровать так, что величина времени, требуемого для растворения растворимого материала, является известной или легко определяется без лишнего экспериментирования. Подходящие растворимые материалы включают в себя контролируемые электролитические металлические наноструктурные материалы, примеры которых раскрыты в заявках U.S. Patent Application Serial No. 12/633682, зарегистрирована 8 декабря 2009 г. (U.S. Patent Publication No. 2011/0132143), U.S. Patent Application Serial No. 12/633,686, зарегистрирована 8 декабря 2009 г. (U.S. Patent Publication No. 2011/0135953), U.S. Patent Application Serial No. 12/633,678, зарегистрирована 8 декабря 2009 г. (U.S. Patent Publication No. 2011/0136707), U.S. Patent Application Serial No. 12/633,683, зарегистрирована 8 декабря 2009 г. (U.S. Patent Publication No. 2011/0132612), U.S. Patent Application Serial No. 12/633,668, зарегистрирована 8 декабря 2009 г. (U.S. Patent Publication No. 2011/0132620), U.S. Patent Application Serial No. 12/633,677, зарегистрирована 8 декабря 2009 г. (U.S. Patent Publication No. 2011/0132621), и U.S. Patent Application Serial No. 12/633,662, зарегистрирована 8 декабря 2009 г. (U.S. Patent Publication No. 2011/0132619), все полностью включены в данном документе в виде ссылки.
[0031] Дополнительные подходящие растворимые материалы включают в себя полимеры и биологически разрушаемые полимеры, например полимеры на основе поливинилового спирта, такие как полимер HYDROCENEТМ, серийно производимый и поставляемый Idroplax, S.r.l., Altopascia, Italy, полилактид ("PLA") полимер 4060D, поставляемый Nature-WorksТМ, division, Cargill Dow LLC; TLF-6267 полигликолевая кислота ("PGA"), поставляемая DuPont Specialty Chemicals; поликапролактамы и смеси PLA и PGA; твердые кислоты, такие как сульфаминовая кислота, трихлоруксусная кислота и лимонная кислота, удерживаемые вместе парафином или другим подходящим связующим материалом; полиэтилен гомополимеры и твердые парафины; полиалкилен оксиды, такие как полиэтилен оксиды, и полиалкилен гликоли, такие как полиэтилен гликоли. Данные полимеры могут являться предпочтительными в буровых растворах на водной основе, поскольку медленно растворяются в воде.
[0032] В калибровании скорости растворения растворимого материала 40 в общем скорость зависит от молекулярной массы полимеров. Приемлемые скорости растворения можно получить при молекулярной массе в диапазоне 100000-7000000. Таким образом, скорости растворения для температур в диапазоне 50°C-250°C могут разрабатываться на основе приемлемой молекулярной массы или смеси с приемлемыми молекулярными массами.
[0033] В показанном на фиг. 5-6 альтернативном варианте осуществления пробка 180 имеет начальную форму (фиг. 5), выполненную с возможностью установки на седло 75 для дросселирования потока текучей среды, проходящего через седло 75, и новую или вторую форму (фиг. 6), удовлетворяющую требованиям работы верхнего цементировочного элемента при его проходе через седло 75, и/или через канал клапана 40, и/или канал внутренней сдвигающейся муфты 50 после частичного или полного растворения растворимого материала 181 пробки 180. В данном варианте осуществления пробка 180 включает в себя протирающий цементировочный элемент 190, заключенный в капсулу из растворимого материала 181. Протирающий цементировочный элемент 190 можно выполнять из нерастворимого материала 191 или второго материала, растворяющегося медленнее растворимого материала 181. После достаточного растворения растворимого материала 181 протирающий цементировочный элемент 190 может проталкиваться через седло 75 и/или через канал клапана 40 и/или канал внутренней сдвигающейся муфты 50. При этом протирающий цементировочный элемент 190 стирает или счищает отходы, отложившиеся на данных поверхностях. Таким образом, механическую очистку клапана можно выполнять после опрессовки без дополнительного геотехнического мероприятия в стволе скважины.
[0034] Как рассмотрено выше, пробки 80, 180 можно выполнять полностью из одного или нескольких растворимых материалов, или пробки 80, 180 можно выполнять частично из одного или нескольких растворимых материалов. В первом варианте осуществления пробки 80, 180 должны полностью растворяться и поток текучей среды, проходящий через клапан 40 в окружающей скважину среде, должен увеличиваться. В последнем варианте осуществления после растворения пробки 80, 180 могут иметь новую или вторую форму, отличающуюся от начальной формы пробки 80, дросселировавшей поток текучей среды, проходящий через седло 75. Пробка 80 новой формы может либо проваливаться через клапан 40 как отходы или может осуществлять протирку или очистку канала клапана 40 оставшейся частью (частями) пробок 80, 180. Таким образом, пробки 80, 180 могут удалять отходы, отложившиеся в канале клапана при увеличении гидравлического сообщения между обсадной колонной ствола скважины и окружающей скважину средой. В данных вариантах осуществления как увеличение гидравлического сообщения между обсадной колонной ствола скважины и окружающей скважину средой после удаления пробок 80, 180, так и механическая очистка канала клапана проходят без дополнительного геотехнического мероприятия в стволе скважины.
[0035] Следует понимать, что изобретение не ограничено конкретными деталями конструкции и работы, конкретными материалами или показанными и описанными вариантами осуществления; модификации и эквиваленты должны быть ясны специалисту в данной области техники. Например, протирающий цементировочный элемент может иметь любую требуемую форму для прохода через клапан для удаления отходов, отложившихся в канале клапана и/или внутри сдвигающейся муфты. В дополнение протирающий цементировочный элемент можно выполнять из нерастворимого материала или другого растворимого материала. Кроме того, от клапана не требуется иметь конструкции, раскрытые в данном документе, также от клапана не требуется работа, раскрытая в данном документе. Дополнительно шаровые седла, раскрытые в данном документе, можно модифицировать, как требуется или необходимо для дросселирования потока текучей среды, проходящего через обсадную колонну ствола скважины.
Кроме того, растворимые материалы, не раскрытые в данном документе, можно использовать вместо раскрытых в данном документе. Соответственно изобретение ограничено только объемом прилагаемой формулы изобретения.

Claims (30)

1. Способ обработки окружающей скважину среды для интенсификации притока, содержащий следующие этапы, на которых осуществляют:
(a) цементирование обсадной колонны ствола скважины в стволе скважины, причем обсадная колонна ствола скважины содержит клапан, расположенный ниже устройства дросселирования текучей среды, причем устройство дросселирования текучей среды содержит трубный элемент с седлом, расположенным в канале трубного элемента, и пробку для установки на седло;
(b) открытие клапана для установления гидравлического сообщения обсадной колонны ствола скважины с окружающей скважину средой;
(c) установку пробки на седло для дросселирования гидравлического сообщения между обсадной колонной ствола скважины и окружающей скважину средой;
(d) выполнение опрессовки обсадной колонны ствола скважины;
(e) без дополнительного геотехнического мероприятия в стволе скважины удаление части пробки, обеспечивая увеличение гидравлического сообщения между обсадной колонной ствола скважины и окружающей скважину средой; и
(f) выполнение обработки для интенсификации притока в окружающей скважину среде.
2. Способ по п. 1, в котором во время этапа (e) пробку продавливают вниз через седло и через канал клапана, обеспечивая удаление отходов из канала клапана.
3. Способ по п. 2, в котором во время этапа (e) пробка растворяется, меняя первую форму на вторую форму, причем вторую форму образует нерастворимый материал.
4. Способ по п. 3, в котором вторая форма содержит протирающий элемент.
5. Способ по п. 1, в котором клапан открывается во время этапа (b) давлением текучей среды, приводящим в действие клапан.
6. Способ обработки окружающей скважину среды для интенсификации притока, содержащий следующие этапы, на которых осуществляют:
(a) цементирование обсадной колонны ствола скважины в стволе скважины, причем обсадная колонна ствола скважины содержит скважинный инструмент с клапаном, расположенным ниже устройства дросселирования текучей среды, причем устройство дросселирования текучей среды содержит трубный элемент с седлом, расположенным в канале трубного элемента, и пробку для установки на седло, причем пробка содержит растворимый материал;
(b) открытие клапана для установления гидравлического сообщения обсадной колонны ствола скважины с окружающей скважину средой;
(c) установку пробки на седло для дросселирования гидравлического сообщения между обсадной колонной ствола скважины и окружающей скважину средой;
(d) выполнение опрессовки обсадной колонны ствола скважины;
(e) растворение части пробки, обеспечивая увеличение гидравлического сообщения между обсадной колонной ствола скважины и окружающей скважину средой; и
(f) выполнение обработки для интенсификации притока в окружающей скважину среде.
7. Способ по п. 6, в котором во время этапа (f) пробку продавливают вниз через седло и через канал клапана, обеспечивая удаление отходов из канала клапана.
8. Способ по п. 7, в котором во время этапа (f) пробка растворяется, меняя первую форму на вторую форму, причем вторую форму образует нерастворимый материал.
9. Способ по п. 8, в котором вторая форма содержит протирающий элемент.
10. Способ по п. 6, в котором клапан открывается во время этапа (b) давлением текучей среды, приводящим в действие клапан.
11. Пробка для устройства дросселирования потока текучей среды через клапан, расположенный в обсадной колонне ствола скважины, содержащая:
первый растворимый материал;
первую форму, в которой поток текучей среды дросселируется, проходя через канал клапана, расположенный в обсадной колонне ствола скважины, когда пробка встает на седло, причем седло расположено над клапаном; и
вторую форму, в которой пробка спускается через седло и канал клапана для удаления отходов, отложившихся в канале клапана, причем вторая форма получается в результате растворения части из первого растворимого материала.
12. Пробка по п. 11, в которой вторая форма образует протирающий элемент.
13. Пробка по п. 12, в которой вторая форма содержит второй растворимый материал, причем второй растворимый материал растворяют медленнее, чем первый растворимый материал.
14. Пробка по п. 11, в которой вторую форму образует нерастворимый материал.
15. Пробка по п. 14, в которой вторая форма образует протирающий элемент.
RU2014132555A 2012-02-03 2013-01-10 Элементы протирающей цементировочной пробки и способы обработки окружающей скважину среды для интенсификации притока RU2615196C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/366,076 US9016388B2 (en) 2012-02-03 2012-02-03 Wiper plug elements and methods of stimulating a wellbore environment
US13/366,076 2012-02-03
PCT/US2013/020946 WO2013115948A1 (en) 2012-02-03 2013-01-10 Wiper plug elements and methods of stimulating a wellbore environment

Publications (2)

Publication Number Publication Date
RU2014132555A RU2014132555A (ru) 2016-03-27
RU2615196C2 true RU2615196C2 (ru) 2017-04-04

Family

ID=48901897

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014132555A RU2615196C2 (ru) 2012-02-03 2013-01-10 Элементы протирающей цементировочной пробки и способы обработки окружающей скважину среды для интенсификации притока

Country Status (5)

Country Link
US (2) US9016388B2 (ru)
CN (1) CN104204401B (ru)
CA (1) CA2862986C (ru)
RU (1) RU2615196C2 (ru)
WO (1) WO2013115948A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2717466C1 (ru) * 2017-04-28 2020-03-24 Куреха Корпорейшн Устройство для закупоривания скважины и способ временной закупорки скважины
RU2757383C1 (ru) * 2020-12-10 2021-10-14 Общество с ограниченной ответственностью "ЛУКОЙЛ - Западная Сибирь" Способ заканчивания скважин

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9500061B2 (en) 2008-12-23 2016-11-22 Frazier Technologies, L.L.C. Downhole tools having non-toxic degradable elements and methods of using the same
US8342094B2 (en) * 2009-10-22 2013-01-01 Schlumberger Technology Corporation Dissolvable material application in perforating
US10337279B2 (en) 2014-04-02 2019-07-02 Magnum Oil Tools International, Ltd. Dissolvable downhole tools comprising both degradable polymer acid and degradable metal alloy elements
US10119359B2 (en) 2013-05-13 2018-11-06 Magnum Oil Tools International, Ltd. Dissolvable aluminum downhole plug
US10138725B2 (en) 2013-03-07 2018-11-27 Geodynamics, Inc. Hydraulic delay toe valve system and method
US10138709B2 (en) 2013-03-07 2018-11-27 Geodynamics, Inc. Hydraulic delay toe valve system and method
US10066461B2 (en) 2013-03-07 2018-09-04 Geodynamics, Inc. Hydraulic delay toe valve system and method
US20150369009A1 (en) * 2013-03-07 2015-12-24 Geodynamics, Inc. Hydraulic Delay Toe Valve System and Method
CN105705728A (zh) * 2013-11-22 2016-06-22 塔吉特科普利森公司 改进的无芯轴的发射杆趾启动套筒
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
US10758974B2 (en) 2014-02-21 2020-09-01 Terves, Llc Self-actuating device for centralizing an object
WO2015127177A1 (en) 2014-02-21 2015-08-27 Terves, Inc. Manufacture of controlled rate dissolving materials
CA2936851A1 (en) 2014-02-21 2015-08-27 Terves, Inc. Fluid activated disintegrating metal system
US10689740B2 (en) 2014-04-18 2020-06-23 Terves, LLCq Galvanically-active in situ formed particles for controlled rate dissolving tools
US20170268088A1 (en) 2014-02-21 2017-09-21 Terves Inc. High Conductivity Magnesium Alloy
WO2015161171A1 (en) 2014-04-18 2015-10-22 Terves Inc. Galvanically-active in situ formed particles for controlled rate dissolving tools
WO2016041091A1 (en) * 2014-09-18 2016-03-24 Steelhaus Technologies Inc. Flow control valve
US9835010B2 (en) 2014-12-15 2017-12-05 Team Oil Tools, Lp Toe valve
US10066467B2 (en) 2015-03-12 2018-09-04 Ncs Multistage Inc. Electrically actuated downhole flow control apparatus
CA2992712C (en) 2015-07-21 2020-02-18 Thru Tubing Solutions, Inc. Plugging device deployment
US11761295B2 (en) * 2015-07-21 2023-09-19 Thru Tubing Solutions, Inc. Plugging device deployment
WO2017066264A1 (en) 2015-10-12 2017-04-20 Cajun Services Unlimited, Llc D/B/A Spoken Manufactring Emergency disconnect isolation valve
US10267099B2 (en) * 2016-03-07 2019-04-23 Tejas Research & Engineering, Llc Isolation sleeve for downhole equipment
US10641061B2 (en) 2016-09-23 2020-05-05 Tam International, Inc. Hydraulic port collar
CA3012511A1 (en) 2017-07-27 2019-01-27 Terves Inc. Degradable metal matrix composite
US10132139B1 (en) 2017-10-13 2018-11-20 Gryphon Oilfield Solutions, Llc Mid-string wiper plug and carrier
US11066900B2 (en) 2017-10-17 2021-07-20 Halliburton Energy Services, Inc. Removable core wiper plug
US10260306B1 (en) 2017-12-01 2019-04-16 Gryphon Oilfield Solutions, Llc Casing wiper plug system and method for operating the same
US10704354B2 (en) 2018-03-27 2020-07-07 Saudi Arabian Oil Company Zonal isolation of a subterranean wellbore
GB2597016A (en) * 2019-04-24 2022-01-12 Westfield Engineering & Tech Ltd Wellbore plug
US11149523B2 (en) * 2019-07-31 2021-10-19 Vertice Oil Tools Methods and systems for creating an interventionless conduit to formation in wells with cased hole
US10961815B2 (en) 2019-08-13 2021-03-30 Weatherford Technology Holdings, Llc Apparatus and method for wet shoe applications
CN110479129B (zh) * 2019-08-27 2021-08-06 西南石油大学 一种可让清管球自动通过的l形静态掺混装置及方法
US11098557B2 (en) * 2019-09-06 2021-08-24 Baker Hughes Oilfield Operations Llc Liner wiper plug with rupture disk for wet shoe
CN111075394A (zh) * 2019-11-22 2020-04-28 中国石油天然气股份有限公司 一种井下工具可控溶解机构及其使用方法
CN110905437B (zh) * 2019-12-16 2020-07-07 中国石油天然气股份有限公司西南油气田分公司工程技术研究院 一种可溶堵头
US20220381114A1 (en) * 2021-05-26 2022-12-01 Saudi Arabian Oil Company Degradable downhole disk
US11867019B2 (en) 2022-02-24 2024-01-09 Weatherford Technology Holdings, Llc Apparatus and method for pressure testing in wet shoe applications

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1745896A1 (ru) * 1990-07-16 1992-07-07 Азербайджанский государственный научно-исследовательский и проектный институт нефтяной промышленности Устройство дл цементировани скважин
RU2083806C1 (ru) * 1994-12-28 1997-07-10 Татарский Государственный Научно-Исследовательский И Проектный Институт Нефтяной Промышленности Способ заканчивания скважины
US6966368B2 (en) * 2003-06-24 2005-11-22 Baker Hughes Incorporated Plug and expel flow control device
US7096949B2 (en) * 2003-09-04 2006-08-29 Msi Machineering Solutions Inc. Wiper plug with packer
US7350582B2 (en) * 2004-12-21 2008-04-01 Weatherford/Lamb, Inc. Wellbore tool with disintegratable components and method of controlling flow

Family Cites Families (185)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1883071A (en) 1928-12-14 1932-10-18 Doheny Stone Drill Co Lockable safety joint
US2117539A (en) 1936-07-06 1938-05-17 Samuel J Bienstock Mailing device
US2117534A (en) 1936-10-10 1938-05-17 Baker Oil Tools Inc Well cementing device
US2769454A (en) 1954-01-13 1956-11-06 Modern Faucet Mfg Co Pressure control fittings
US2829719A (en) 1954-04-02 1958-04-08 Baker Oil Tools Inc Variable orifice casing filling apparatus
US2822757A (en) 1955-03-07 1958-02-11 Kobe Inc Two-zone pumping system and method
US2857972A (en) 1955-08-12 1958-10-28 Baker Oil Tools Inc Well bore packer
US3013612A (en) 1957-09-13 1961-12-19 Phillips Petroleum Co Casing bottom fill device
US2973006A (en) 1957-09-30 1961-02-28 Koehring Co Flow control device
US3007527A (en) 1958-01-27 1961-11-07 Koehring Co Flow control device
US3043903A (en) 1958-05-08 1962-07-10 Gen Electric Hydrostatic lead seal and method of making same
US3090442A (en) 1958-10-24 1963-05-21 Cicero C Brown Device for supporting a closure within a well pipe
US3211232A (en) * 1961-03-31 1965-10-12 Otis Eng Co Pressure operated sleeve valve and operator
US3220481A (en) 1962-01-12 1965-11-30 Baker Oil Tools Inc Apparatus for automatically filling conduit strings
US3220491A (en) 1963-12-17 1965-11-30 Schlumberger Well Surv Corp Core taker devices
US3566964A (en) 1967-11-09 1971-03-02 James B Ringgold Mud saver for drilling rigs
US3510103A (en) 1968-02-28 1970-05-05 Anthony J Carsello Valve and seal therefor
US3503445A (en) 1968-04-16 1970-03-31 Exxon Production Research Co Well control during drilling operations
US3667505A (en) 1971-01-27 1972-06-06 Cook Testing Co Rotary ball valve for wells
US3727635A (en) 1971-07-12 1973-04-17 T Todd Pressure compensating trickle rate fluid outlet
US3776258A (en) 1972-03-20 1973-12-04 B & W Inc Well pipe valve
US3901315A (en) 1974-04-11 1975-08-26 Del Norte Technology Downhole valve
CA1087519A (en) 1977-04-25 1980-10-14 Michael B. Calhoun Well tools
US4114694A (en) 1977-05-16 1978-09-19 Brown Oil Tools, Inc. No-shock pressure plug apparatus
US4194566A (en) 1978-10-26 1980-03-25 Union Oil Company Of California Method of increasing the permeability of subterranean reservoirs
FR2448092A1 (fr) 1979-02-02 1980-08-29 Commissariat Energie Atomique Dispositif demontable de raccordement de canalisations et application au montage d'une vanne entre deux canalisations
US4292988A (en) 1979-06-06 1981-10-06 Brown Oil Tools, Inc. Soft shock pressure plug
US4291722A (en) 1979-11-02 1981-09-29 Otis Engineering Corporation Drill string safety and kill valve
US4314608A (en) 1980-06-12 1982-02-09 Tri-State Oil Tool Industries, Inc. Method and apparatus for well treating
US4374543A (en) 1980-08-19 1983-02-22 Tri-State Oil Tool Industries, Inc. Apparatus for well treating
US4390065A (en) 1980-08-19 1983-06-28 Tri-State Oil Tool Industries, Inc. Apparatus for well treating
US4448216A (en) 1982-03-15 1984-05-15 Otis Engineering Corporation Subsurface safety valve
US4576234A (en) 1982-09-17 1986-03-18 Schlumberger Technology Corporation Full bore sampler valve
US4478279A (en) 1982-10-12 1984-10-23 Hydril Company Retrievable inside blowout preventer valve apparatus
US4537255A (en) 1983-06-22 1985-08-27 Jet Research Center, Inc. Back-off tool
US4520870A (en) 1983-12-27 1985-06-04 Camco, Incorporated Well flow control device
US4510994A (en) 1984-04-06 1985-04-16 Camco, Incorporated Pump out sub
US4537383A (en) 1984-10-02 1985-08-27 Otis Engineering Corporation Valve
US4583593A (en) * 1985-02-20 1986-04-22 Halliburton Company Hydraulically activated liner setting device
US4669538A (en) 1986-01-16 1987-06-02 Halliburton Company Double-grip thermal expansion screen hanger and running tool
JPS63162434A (ja) 1986-12-25 1988-07-06 株式会社 東京自働機械製作所 包装材繰出し装置における包装材の交換装置
SE456597B (sv) 1987-02-12 1988-10-17 Scandot System Ab Anordning vid ett ventilarrangemang for utmatning av vetska hos en vetskestralskrivare
US4729432A (en) 1987-04-29 1988-03-08 Halliburton Company Activation mechanism for differential fill floating equipment
US4915172A (en) 1988-03-23 1990-04-10 Baker Hughes Incorporated Method for completing a non-vertical portion of a subterranean well bore
US4828037A (en) 1988-05-09 1989-05-09 Lindsey Completion Systems, Inc. Liner hanger with retrievable ball valve seat
US4862966A (en) 1988-05-16 1989-09-05 Lindsey Completion Systems, Inc. Liner hanger with collapsible ball valve seat
US4823882A (en) 1988-06-08 1989-04-25 Tam International, Inc. Multiple-set packer and method
US4893678A (en) * 1988-06-08 1990-01-16 Tam International Multiple-set downhole tool and method
US5056599A (en) 1989-04-24 1991-10-15 Walter B. Comeaux, III Method for treatment of wells
US4991654A (en) 1989-11-08 1991-02-12 Halliburton Company Casing valve
US4949788A (en) 1989-11-08 1990-08-21 Halliburton Company Well completions using casing valves
US5156220A (en) * 1990-08-27 1992-10-20 Baker Hughes Incorporated Well tool with sealing means
DE4206331A1 (de) 1991-03-05 1992-09-10 Exxon Production Research Co Kugelabdichtungen und verwendung derselben zur bohrlochbehandlung
NO305810B1 (no) 1991-06-14 1999-07-26 Baker Hughes Inc Trekk-utl°seranordning for anvendelse i et br°nnhull, samt fremgangsmÕte for plassering av et fluiddrevet br°nnhull - i et br°nnhull
US5146992A (en) 1991-08-08 1992-09-15 Baker Hughes Incorporated Pump-through pressure seat for use in a wellbore
US5413180A (en) 1991-08-12 1995-05-09 Halliburton Company One trip backwash/sand control system with extendable washpipe isolation
US5244044A (en) 1992-06-08 1993-09-14 Otis Engineering Corporation Catcher sub
US5246203A (en) 1992-06-29 1993-09-21 M&M Supply Co. Oilfield valve
US5623993A (en) 1992-08-07 1997-04-29 Baker Hughes Incorporated Method and apparatus for sealing and transfering force in a wellbore
US5335727A (en) 1992-11-04 1994-08-09 Atlantic Richfield Company Fluid loss control system for gravel pack assembly
US5297580A (en) 1993-02-03 1994-03-29 Bobbie Thurman High pressure ball and seat valve with soft seal
US5333689A (en) 1993-02-26 1994-08-02 Mobil Oil Corporation Gravel packing of wells with fluid-loss control
US6026903A (en) 1994-05-02 2000-02-22 Halliburton Energy Services, Inc. Bidirectional disappearing plug
US5479986A (en) 1994-05-02 1996-01-02 Halliburton Company Temporary plug system
US5765641A (en) 1994-05-02 1998-06-16 Halliburton Energy Services, Inc. Bidirectional disappearing plug
US5501276A (en) 1994-09-15 1996-03-26 Halliburton Company Drilling fluid and filter cake removal methods and compositions
US5558153A (en) 1994-10-20 1996-09-24 Baker Hughes Incorporated Method & apparatus for actuating a downhole tool
GB9425240D0 (en) 1994-12-14 1995-02-08 Head Philip Dissoluable metal to metal seal
US5845711A (en) 1995-06-02 1998-12-08 Halliburton Company Coiled tubing apparatus
US5607017A (en) 1995-07-03 1997-03-04 Pes, Inc. Dissolvable well plug
US5649597A (en) * 1995-07-14 1997-07-22 Halliburton Company Differential pressure test/bypass valve and method for using the same
GB9603677D0 (en) 1996-02-21 1996-04-17 Ocre Scotland Ltd Downhole apparatus
US5810084A (en) 1996-02-22 1998-09-22 Halliburton Energy Services, Inc. Gravel pack apparatus
US5954133A (en) 1996-09-12 1999-09-21 Halliburton Energy Services, Inc. Methods of completing wells utilizing wellbore equipment positioning apparatus
US6003607A (en) 1996-09-12 1999-12-21 Halliburton Energy Services, Inc. Wellbore equipment positioning apparatus and associated methods of completing wells
US6382234B1 (en) 1996-10-08 2002-05-07 Weatherford/Lamb, Inc. One shot valve for operating down-hole well working and sub-sea devices and tools
US5813483A (en) 1996-12-16 1998-09-29 Latham; James A. Safety device for use on drilling rigs and process of running large diameter pipe into a well
GB9702266D0 (en) 1997-02-04 1997-03-26 Specialised Petroleum Serv Ltd A valve device
US6062310A (en) 1997-03-10 2000-05-16 Owen Oil Tools, Inc. Full bore gun system
US5960881A (en) 1997-04-22 1999-10-05 Jerry P. Allamon Downhole surge pressure reduction system and method of use
US6397950B1 (en) 1997-11-21 2002-06-04 Halliburton Energy Services, Inc. Apparatus and method for removing a frangible rupture disc or other frangible device from a wellbore casing
US6079496A (en) 1997-12-04 2000-06-27 Baker Hughes Incorporated Reduced-shock landing collar
US5992289A (en) 1998-02-17 1999-11-30 Halliburton Energy Services, Inc. Firing head with metered delay
US6076600A (en) 1998-02-27 2000-06-20 Halliburton Energy Services, Inc. Plug apparatus having a dispersible plug member and a fluid barrier
US6050340A (en) 1998-03-27 2000-04-18 Weatherford International, Inc. Downhole pump installation/removal system and method
US6189618B1 (en) * 1998-04-20 2001-02-20 Weatherford/Lamb, Inc. Wellbore wash nozzle system
GB9819965D0 (en) 1998-09-15 1998-11-04 Expro North Sea Ltd Improved ball valve
US6161622A (en) 1998-11-02 2000-12-19 Halliburton Energy Services, Inc. Remote actuated plug method
US6220350B1 (en) 1998-12-01 2001-04-24 Halliburton Energy Services, Inc. High strength water soluble plug
US6155350A (en) 1999-05-03 2000-12-05 Baker Hughes Incorporated Ball seat with controlled releasing pressure and method setting a downhole tool ball seat with controlled releasing pressure and method setting a downholed tool
US6279656B1 (en) 1999-11-03 2001-08-28 Santrol, Inc. Downhole chemical delivery system for oil and gas wells
US6390200B1 (en) 2000-02-04 2002-05-21 Allamon Interest Drop ball sub and system of use
US6293517B1 (en) 2000-02-28 2001-09-25 John D. McKnight Ball valve having convex seat
NO20001801L (no) 2000-04-07 2001-10-08 Total Catcher Offshore As Anordning ved testplugg
GB0016595D0 (en) 2000-07-07 2000-08-23 Moyes Peter B Deformable member
US6530574B1 (en) 2000-10-06 2003-03-11 Gary L. Bailey Method and apparatus for expansion sealing concentric tubular structures
US6668933B2 (en) 2000-10-23 2003-12-30 Abb Vetco Gray Inc. Ball valve seat and support
US6457517B1 (en) 2001-01-29 2002-10-01 Baker Hughes Incorporated Composite landing collar for cementing operation
GB0104380D0 (en) 2001-02-22 2001-04-11 Lee Paul B Ball activated tool for use in downhole drilling
US6684950B2 (en) * 2001-03-01 2004-02-03 Schlumberger Technology Corporation System for pressure testing tubing
US6547007B2 (en) 2001-04-17 2003-04-15 Halliburton Energy Services, Inc. PDF valve
US6634428B2 (en) 2001-05-03 2003-10-21 Baker Hughes Incorporated Delayed opening ball seat
GB0116645D0 (en) 2001-07-07 2001-08-29 Rastegar Gholam H Liner brushing and conditioning tool
US6779600B2 (en) 2001-07-27 2004-08-24 Baker Hughes Incorporated Labyrinth lock seal for hydrostatically set packer
US6681849B2 (en) 2001-08-22 2004-01-27 Baker Hughes Incorporated Downhole packer system utilizing electroactive polymers
US6763892B2 (en) * 2001-09-24 2004-07-20 Frank Kaszuba Sliding sleeve valve and method for assembly
US20030141064A1 (en) 2002-01-31 2003-07-31 Roberson James David Method and apparatus for fracing earth formations surrounding a wellbore
US6666273B2 (en) 2002-05-10 2003-12-23 Weatherford/Lamb, Inc. Valve assembly for use in a wellbore
US6834726B2 (en) 2002-05-29 2004-12-28 Weatherford/Lamb, Inc. Method and apparatus to reduce downhole surge pressure using hydrostatic valve
US6866100B2 (en) 2002-08-23 2005-03-15 Weatherford/Lamb, Inc. Mechanically opened ball seat and expandable ball seat
US6848511B1 (en) 2002-12-06 2005-02-01 Weatherford/Lamb, Inc. Plug and ball seat assembly
US9682425B2 (en) 2009-12-08 2017-06-20 Baker Hughes Incorporated Coated metallic powder and method of making the same
US8327931B2 (en) 2009-12-08 2012-12-11 Baker Hughes Incorporated Multi-component disappearing tripping ball and method for making the same
US8297364B2 (en) 2009-12-08 2012-10-30 Baker Hughes Incorporated Telescopic unit with dissolvable barrier
US9101978B2 (en) 2002-12-08 2015-08-11 Baker Hughes Incorporated Nanomatrix powder metal compact
US9109429B2 (en) 2002-12-08 2015-08-18 Baker Hughes Incorporated Engineered powder compact composite material
US9079246B2 (en) 2009-12-08 2015-07-14 Baker Hughes Incorporated Method of making a nanomatrix powder metal compact
US8403037B2 (en) 2009-12-08 2013-03-26 Baker Hughes Incorporated Dissolvable tool and method
US6920930B2 (en) 2002-12-10 2005-07-26 Allamon Interests Drop ball catcher apparatus
US7021389B2 (en) 2003-02-24 2006-04-04 Bj Services Company Bi-directional ball seat system and method
GB2415725B (en) 2003-04-01 2007-09-05 Specialised Petroleum Serv Ltd Downhole tool
US6926086B2 (en) 2003-05-09 2005-08-09 Halliburton Energy Services, Inc. Method for removing a tool from a well
US20090107684A1 (en) 2007-10-31 2009-04-30 Cooke Jr Claude E Applications of degradable polymers for delayed mechanical changes in wells
US20040231845A1 (en) 2003-05-15 2004-11-25 Cooke Claude E. Applications of degradable polymers in wells
DE10332347B3 (de) 2003-07-16 2005-05-19 Brueninghaus Hydromatik Gmbh Einschraubbares Rückschlagventil
US20050061372A1 (en) 2003-09-23 2005-03-24 Mcgrath Dennis P. Pressure regulator assembly
US7051813B2 (en) 2003-10-15 2006-05-30 Kirby Hayes Incorporated Pass through valve and stab tool
US7461699B2 (en) 2003-10-22 2008-12-09 Baker Hughes Incorporated Method for providing a temporary barrier in a flow pathway
US7290604B2 (en) 2003-11-04 2007-11-06 Evans Robert W Downhole tool with pressure balancing
US7316274B2 (en) * 2004-03-05 2008-01-08 Baker Hughes Incorporated One trip perforating, cementing, and sand management apparatus and method
US20050126638A1 (en) 2003-12-12 2005-06-16 Halliburton Energy Services, Inc. Check valve sealing arrangement
US7044230B2 (en) 2004-01-27 2006-05-16 Halliburton Energy Services, Inc. Method for removing a tool from a well
US7168494B2 (en) 2004-03-18 2007-01-30 Halliburton Energy Services, Inc. Dissolvable downhole tools
US7353879B2 (en) 2004-03-18 2008-04-08 Halliburton Energy Services, Inc. Biodegradable downhole tools
US7093664B2 (en) 2004-03-18 2006-08-22 Halliburton Energy Services, Inc. One-time use composite tool formed of fibers and a biodegradable resin
US7311118B2 (en) 2004-03-30 2007-12-25 Parker-Hannifin Corporation Floating ball check valve
GB0409619D0 (en) 2004-04-30 2004-06-02 Specialised Petroleum Serv Ltd Valve seat
US8211247B2 (en) * 2006-02-09 2012-07-03 Schlumberger Technology Corporation Degradable compositions, apparatus comprising same, and method of use
US20050281968A1 (en) 2004-06-16 2005-12-22 Alliant Techsystems Inc. Energetic structural material
US7380600B2 (en) * 2004-09-01 2008-06-03 Schlumberger Technology Corporation Degradable material assisted diversion or isolation
GB0425098D0 (en) 2004-11-13 2004-12-15 Caledus Ltd Apparatus for use in a well bore
US7322417B2 (en) * 2004-12-14 2008-01-29 Schlumberger Technology Corporation Technique and apparatus for completing multiple zones
US7644760B2 (en) 2005-02-07 2010-01-12 Precision Energy Services, Ltd Self contained temperature sensor for borehole systems
US7604063B2 (en) 2005-02-10 2009-10-20 Benny Donald Mashburn Flow valve and method
GB0513645D0 (en) 2005-07-02 2005-08-10 Specialised Petroleum Serv Ltd Wellbore cleaning method and apparatus
US7640991B2 (en) 2005-09-20 2010-01-05 Schlumberger Technology Corporation Downhole tool actuation apparatus and method
US7647964B2 (en) 2005-12-19 2010-01-19 Fairmount Minerals, Ltd. Degradable ball sealers and methods for use in well treatment
US7325617B2 (en) 2006-03-24 2008-02-05 Baker Hughes Incorporated Frac system without intervention
US7513311B2 (en) * 2006-04-28 2009-04-07 Weatherford/Lamb, Inc. Temporary well zone isolation
US7726406B2 (en) 2006-09-18 2010-06-01 Yang Xu Dissolvable downhole trigger device
US7464764B2 (en) 2006-09-18 2008-12-16 Baker Hughes Incorporated Retractable ball seat having a time delay material
US7832473B2 (en) * 2007-01-15 2010-11-16 Schlumberger Technology Corporation Method for controlling the flow of fluid between a downhole formation and a base pipe
US7469744B2 (en) 2007-03-09 2008-12-30 Baker Hughes Incorporated Deformable ball seat and method
GB0706350D0 (en) 2007-03-31 2007-05-09 Specialised Petroleum Serv Ltd Ball seat assembly and method of controlling fluid flow through a hollow body
US7628210B2 (en) 2007-08-13 2009-12-08 Baker Hughes Incorporated Ball seat having ball support member
US7644772B2 (en) * 2007-08-13 2010-01-12 Baker Hughes Incorporated Ball seat having segmented arcuate ball support member
US7673677B2 (en) 2007-08-13 2010-03-09 Baker Hughes Incorporated Reusable ball seat having ball support member
US7503392B2 (en) 2007-08-13 2009-03-17 Baker Hughes Incorporated Deformable ball seat
US7637323B2 (en) 2007-08-13 2009-12-29 Baker Hughes Incorporated Ball seat having fluid activated ball support
US7866402B2 (en) * 2007-10-11 2011-01-11 Halliburton Energy Services, Inc. Circulation control valve and associated method
CN101538990A (zh) * 2008-03-18 2009-09-23 普拉德研究及开发股份有限公司 在布置和井眼调节期间保护井下部件的系统和方法
US7775286B2 (en) 2008-08-06 2010-08-17 Baker Hughes Incorporated Convertible downhole devices and method of performing downhole operations using convertible downhole devices
US8439116B2 (en) * 2009-07-24 2013-05-14 Halliburton Energy Services, Inc. Method for inducing fracture complexity in hydraulically fractured horizontal well completions
US7909108B2 (en) 2009-04-03 2011-03-22 Halliburton Energy Services Inc. System and method for servicing a wellbore
US8276675B2 (en) 2009-08-11 2012-10-02 Halliburton Energy Services Inc. System and method for servicing a wellbore
US8528633B2 (en) 2009-12-08 2013-09-10 Baker Hughes Incorporated Dissolvable tool and method
US20110187062A1 (en) 2010-01-29 2011-08-04 Baker Hughes Incorporated Collet system
US8479822B2 (en) 2010-02-08 2013-07-09 Summit Downhole Dynamics, Ltd Downhole tool with expandable seat
US8430173B2 (en) * 2010-04-12 2013-04-30 Halliburton Energy Services, Inc. High strength dissolvable structures for use in a subterranean well
US8657015B2 (en) * 2010-05-26 2014-02-25 Schlumberger Technology Corporation Intelligent completion system for extended reach drilling wells
US8356671B2 (en) 2010-06-29 2013-01-22 Baker Hughes Incorporated Tool with multi-size ball seat having segmented arcuate ball support member
US20120012771A1 (en) 2010-07-16 2012-01-19 Lale Korkmaz Ball seat having collapsible helical seat
US8789600B2 (en) 2010-08-24 2014-07-29 Baker Hughes Incorporated Fracing system and method
WO2012097235A1 (en) * 2011-01-14 2012-07-19 Utex Industries, Inc. Disintegrating ball for sealing frac plug seat
US8662162B2 (en) * 2011-02-03 2014-03-04 Baker Hughes Incorporated Segmented collapsible ball seat allowing ball recovery
US8668018B2 (en) 2011-03-10 2014-03-11 Baker Hughes Incorporated Selective dart system for actuating downhole tools and methods of using same
US8668006B2 (en) 2011-04-13 2014-03-11 Baker Hughes Incorporated Ball seat having ball support member
US20120261140A1 (en) 2011-04-14 2012-10-18 Ying Qing Xu Devices for reducing ball impact into ball seats and methods of reducing ball impact into ball seats
US8479808B2 (en) 2011-06-01 2013-07-09 Baker Hughes Incorporated Downhole tools having radially expandable seat member
US9145758B2 (en) 2011-06-09 2015-09-29 Baker Hughes Incorporated Sleeved ball seat
US8555960B2 (en) * 2011-07-29 2013-10-15 Baker Hughes Incorporated Pressure actuated ported sub for subterranean cement completions
US8910717B2 (en) * 2011-11-01 2014-12-16 Baker Hughes Incorporated Frangible pressure control plug, actuatable tool including the plug, and method thereof
US20130140479A1 (en) 2011-12-06 2013-06-06 Matthew D. Solfronk Ball seats having seal interface element for prolonging the seal between ball and seat in corrosive environments and methods of using same
US9004091B2 (en) 2011-12-08 2015-04-14 Baker Hughes Incorporated Shape-memory apparatuses for restricting fluid flow through a conduit and methods of using same
US9279306B2 (en) * 2012-01-11 2016-03-08 Schlumberger Technology Corporation Performing multi-stage well operations

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1745896A1 (ru) * 1990-07-16 1992-07-07 Азербайджанский государственный научно-исследовательский и проектный институт нефтяной промышленности Устройство дл цементировани скважин
RU2083806C1 (ru) * 1994-12-28 1997-07-10 Татарский Государственный Научно-Исследовательский И Проектный Институт Нефтяной Промышленности Способ заканчивания скважины
US6966368B2 (en) * 2003-06-24 2005-11-22 Baker Hughes Incorporated Plug and expel flow control device
US7096949B2 (en) * 2003-09-04 2006-08-29 Msi Machineering Solutions Inc. Wiper plug with packer
US7350582B2 (en) * 2004-12-21 2008-04-01 Weatherford/Lamb, Inc. Wellbore tool with disintegratable components and method of controlling flow

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2717466C1 (ru) * 2017-04-28 2020-03-24 Куреха Корпорейшн Устройство для закупоривания скважины и способ временной закупорки скважины
RU2757383C1 (ru) * 2020-12-10 2021-10-14 Общество с ограниченной ответственностью "ЛУКОЙЛ - Западная Сибирь" Способ заканчивания скважин

Also Published As

Publication number Publication date
CA2862986C (en) 2018-10-30
US9016388B2 (en) 2015-04-28
CA2862986A1 (en) 2013-08-08
CN104204401A (zh) 2014-12-10
WO2013115948A1 (en) 2013-08-08
CN104204401B (zh) 2018-04-24
RU2014132555A (ru) 2016-03-27
USRE46793E1 (en) 2018-04-17
US20130199800A1 (en) 2013-08-08

Similar Documents

Publication Publication Date Title
RU2615196C2 (ru) Элементы протирающей цементировочной пробки и способы обработки окружающей скважину среды для интенсификации притока
EP3492692B1 (en) Wellbore plug isolation system and method
AU2010317706B2 (en) Downhole progressive pressurization actuated tool and method of using the same
US7681654B1 (en) Isolating well bore portions for fracturing and the like
US20170218722A1 (en) Valve Apparatus Having Dissolvable or Frangible Flapper and Method of Using Same
US20080251253A1 (en) Method of cementing an off bottom liner
US20140110112A1 (en) Erodable Bridge Plug in Fracturing Applications
US20140318780A1 (en) Degradable component system and methodology
RU2599748C2 (ru) Забойная система клапанов с гильзовым затвором и способ ее применения
EA034040B1 (ru) Выравнивающий давление клапан для инструмента обработки
WO2014039632A2 (en) Method and apparatus for treating a well
US20150041133A1 (en) Methods of Operating Well Bore Stimulation Valves
US9206678B2 (en) Zonal contact with cementing and fracture treatment in one trip
US8443891B2 (en) Methods of fracturing a well using Venturi section
EP3354842B1 (en) Ball valve safety plug
US9598931B2 (en) Multi-acting downhole tool arrangement
US8695695B2 (en) Downhole tool with pumpable section
RU2730146C1 (ru) Чашечный пакер осевого действия
US9404350B2 (en) Flow-activated flow control device and method of using same in wellbores
US12084932B2 (en) Packer setting mechanism with setting load booster

Legal Events

Date Code Title Description
FA93 Acknowledgement of application withdrawn (no request for examination)

Effective date: 20160111

FZ9A Application not withdrawn (correction of the notice of withdrawal)

Effective date: 20160411