Группа изобретений относится к обработке металлов давлением, в частности к трубогибочному производству, и может быть использована для гибки труб многоколенной пространственной формы.
Известен станок для гибки труб, содержащий станину, установленный на ней гибочный механизм, элементы фиксации заготовки, дорн, соединенный с приводом его возвратно-поступательного перемещения, выполненным в виде гидроцилиндра со штоком, элементы фиксации заготовки оснащены губками, одна пара которых служит для зажима заготовки-трубы и жестко закреплена на станине, другая пара - для растяжения заготовки, гибочная оправка выполнена из связанных тросом шарообразных элементов с промежуточными втулками между ними, на переднем конце которой имеется упругий элемент, а противоположный конец оправки прикреплен к штоку гидроцилиндра, являющегося ее приводом, при этом станок оснащен механизмом поворота плоскости гиба, выполненным в виде червячной передачи с электроприводом, и механизмом линейного перемещения заготовки, выполненным в виде винтовой передачи, соединенной с механизмом поворота плоскости гиба (см. Свидетельство на полезную модель РФ №17459, кл. B21D 9/03, 2001 г.).
Недостатком конструкции данного станка и реализуемого им способа гибки является существенное утонение наружной стенки и овальность поперечного сечения трубы в месте гиба в результате наличия в процессе гибки, составляющей напряженно-деформированное состояния растяжения, что приводит к ограничению технологических возможностей применения данного способа и устройства его реализующего для производства широкой номенклатуры деталей, имеющих требования по утонению стенки трубы и овальности поперечного сечения.
Данный способ и станок применимы для гибки профильных труб больших радиусов и не применим для гибки труб на малый радиус.
Известен трубогибочный станок для гибки труб намоткой с осевым сжатием зоны изгиба трубы и реализующий его способ, заключающийся в создании разности скоростей подачи трубы и поворота гибочного суппорта, замедляющего скорость перемещения переднего торца трубы, относительно скорости перемещения заднего торца трубы. Данный способ и станок разработаны для горячей гибки труб на малый радиус (А.И. Гальперин «Машины и оборудование для гнутья труб», Москва: Машиностроение, стр. 135, рис. 76, схема станка для гнутья труб с подсадкой) - наиболее близкий аналог.
Недостатком данного решения является наличие овальности поперечного сечения изготовленной трубы, заметное смещение дуги изгиба трубы, когда угол изгиба превышает 45°, а недостатком устройства, реализующего данный способ, является дефект в виде потери устойчивости и, как следствие, образования гофров.
Приведенный анализ показал, что общим недостатком приведенных аналогов является получаемая в процессе гибки большая разнотолщинность стенки и овальность поперечного сечения изогнутого участка трубы вследствие разности поверхностных напряжений с наружной и внутренней поверхности трубы и кольцевых напряжений в поперечном сечении трубы.
Техническим результатом группы изобретений является повышение качества труб за счет уменьшения разнотолщинности их стенок и овальности поперечного сечения труб в процессе их гибки.
Указанный технический результат обеспечивается тем, что в способе гибки труб, включающем установку подлежащей гибке трубы в станок, фиксацию трубы по одному из ее концов и осуществление ее гибки гибочной головкой станка, новым является то, что в процессе гибки зону гибки трубы дополнительно подвергают скручиванию, которое осуществляют прикладыванием скручивающего момента к трубе, причем значение скручивающего момента составляет от 0,1 до 0,75 предельной деформации кручения для материала трубы.
В станке для гибки труб, содержащем станину, на которой установлены гибочная головка и каретка продольной подачи трубы, включающая цанговый патрон для зажима трубы, новым является то, что станок оснащен размещенным на каретке поводковым устройством, предназначенным для прикладывания к зоне гиба трубы скручивающего момента и выполненным в виде установленного на каретке продольной подачи корпуса, в котором размещена червячная передача, червячное колесо которой скреплено с цанговым патроном, а червяк кинематически связан с мотор-редуктором.
Улучшение качества структуры за счет развития осевой деформации, сопутствующей пластическому кручению трубной заготовки. Осевая деформация при пластическом скручивании перераспределяет кольцевые напряжения в трубе между зоной утонения и зоной утолщения, приводит к набору металла в зоне внешнего радиуса изгиба трубы перемещением металла заготовки от внутреннего радиуса изгиба трубы через боковые зоны трубы.
Подтверждением этого является эффект перераспределения остаточных кольцевых деформаций при изгибе тонкостенных труб в условиях, близких к чистому изгибу, при котором материал стенки трубы под действием напряжений свободно перемещается в кольцевом направлении: растянутые волокна укорачиваются, а сжатые удлиняются.
Сущность заявленной группы изобретений поясняется графическими материалами, на которых:
- на фиг. 1 - станок для гибки труб, вид спереди;
- на фиг. 2 - станок для гибки труб, вид сверху;
- на фиг. 3 - разрез A-A по фиг. 1 (поперечный разрез поводкового устройства);
- на фиг. 4 - разрез Б-Б по фиг. 3 (продольный разрез поводкового устройства).
Станок для гибки труб содержит станину 1, на боковом торце которой установлены гибочная головка 2, бустер 3 и выглаживатель 4. Гибочная головка 2 смонтирована на станине 1 с возможностью рабочих перемещений для осуществления гибки трубы 5 и включает узел поворота, на оси которого расположен гибочный шаблон 6, зажимная матрица 7, поворотный кронштейн 8. Бустер 3 имеет возможность перемещения как вдоль, так и перпендикулярно относительно зажимной матрицы и включает направляющую матрицу 9 в виде роликов или фильеры. Выглаживатель 4 расположен со стороны гибочной головки 2.
На другом боковом торце станины 1 расположен механизм 10 возвратно-поступательного перемещения штанги 11, удерживающей дорн 12 в зоне перехода от прямолинейного участка трубной заготовки 5 к криволинейному. Вдоль станины расположены люнеты 13, предназначенные для бокового поддержания трубной заготовки 5 от потери ее продольной устойчивости.
Между гибочной головкой 2 и механизмом 10 перемещения дорна 12 на станине расположена каретка 14 продольной подачи трубной заготовки 5, оснащенная приводом осевого возвратно-поступательного перемещения и включающая цанговый патрон 15 с механизмом его зажима-разжима для зажима трубы 5, а также мотор-редуктором 16, предназначенным для поворота цангового патрона при смене плоскости гиба трубы.
На каретке 14 продольной подачи размещено поводковое устройство 17, предназначенное для прикладывания усилия скручивания к зоне гиба трубы в процессе ее гибки. Данное устройство включает корпус 18, муфту сцепления 19, храповой механизм 20, мотор-редуктор 21, червячную передачу 22, размещенную в корпусе 18. Червяное колесо данной передачи скреплено (например, посредством шпонки) с цанговым патроном 15, а червяк через муфту 19 и механизм 20 связан с мотор-редуктором 21.
Согласованные перемещения исполнительных органов станка при проведении гибки трубы обеспечиваются системой ЧПУ модели NCT 104/FS (не показана).
Заявленный способ посредством приведенного выше станка осуществляют следующим образом.
Трубную заготовку 5 насаживают на дорн 12 и проталкивают между направляющими элементами люнетов 13 и пропускают через цанговый патрон 15. Зажимают заготовку цанговым патроном 15, а передний ее конец прижимают матрицей 7 к гибочному шаблону 6.
Далее осуществляют операцию гибки трубы, для чего одновременно включают продольную подачу каретки 14 с зажатой в ней трубной заготовкой, вращение гибочного шаблона 6 и движение поворота кронштейна 8, в результате чего осуществляется процесс гибки трубы.
Параллельно с гибкой трубы прикладывают к зоне ее гиба усилие скручивания, значение усилия задается системой управления на мотор-редуктор, который через механизм 20 и муфту 19 приводит во вращение червяк червячной передачи 22. Червяк задает движение поворота червячному колесу, а следовательно, и скрепленному с ним цанговому патрону 15, который также совершает движение поворота и скручивает трубную заготовку 5 вокруг ее продольной оси, передавая усилие скручивания на зону гиба.
По окончании процесса гибки снимают нагрузку с мотор-редуктора 21, отводят матрицу 7 и перемещают заготовку кареткой продольной подачи на следующую позицию для ее гибки.
Повышение качества гиба трубы зависит от наличия в зоне гиба элементов сдвиговой деформации, связанных с величиной эффекта осевой деформации Δεl, возникающей при кручении трубной заготовки, и чем тоньше толщина стенки трубы, тем эффект от осевой деформации выше.
Деформация кручения является частным случаем деформации сдвига. Сдвигом называют такой вид деформации, когда в поперечных сечениях возникают только перерезывающие силы. Наиболее полно деформацию сдвига характеризует угол γi, на который изменяются прямые углы элемента, - относительный сдвиг. В пределах упругих деформаций величина касательных напряжений пропорциональна относительному сдвигу (закон Гука при сдвиге).
Относительный угол скручивания в границах упругих деформаций под действием момента Мкр определяется отношением угла закручивания ϕ к длине l и может быть выражен уравнением:
где J0 - геометрический полярный момент инерции, l - длина скручиваемого участка трубы, G - модуль сдвига.
Величина эффекта осевой деформации Δεl регулируется величиной деформации скручивания γi и, в свою очередь, существенно влияет на величину сдвиговой деформации в зоне гиба трубы.
Величина - угловая деформация закрутки зоны гиба трубной заготовки находится в диапазоне предельной деформации
:
Предельная деформация
при кручении трубной заготовки определяется с помощью стандартных испытаний на кручение.
Как показали исследования, при значении угловой деформации γ
i<0,1 величина деформации скручивания недостаточна для возникновения эффекта осевой деформации Δε
l, а при значении угловой деформации
величина осевой деформации увеличивает риск разрушения материала трубной заготовки при ее изгибе.
Пример осуществления способа
Гибку трубы диаметром d=80 мм, толщиной стенки s=3,0 мм
, длиной L=1000 мм из высокопрочной стали 08Х18Н10Т (σB=510 МПа, σ
0,2=216 МПа, δ
5=35) осуществляли на трубогибочном станке в полуавтоматическом режиме (фиг. 1, 2). Гибку проводили при комнатной температуре. Радиус гибочного шаблона R
гш=240 мм.
Скорость продольной подачи трубы составляла
, линейная скорость
от вращения гибочного шаблона составляла 370 мм/мин. Выполнялись условия, при которых скорость перемещения каретки продольной подачи не превышала линейной скорости вращения гибочного шаблоны
, величина угла поворота цангового патрона поводкового устройства варьировалась от 21 до 35°. Угловая скорость вращения цангового патрона скручивающего трубу составляла ω
z=10 град/мин. Скорость сдвиговой деформации составляла 7⋅10
-4 с
-1. Угловая деформация закрутки γ
i составляла
. Изгибающий момент для гибки трубы составил М
изг = 59531 Н⋅м. Усилие продольной подачи составило P
np = 248047 H.
В полученном изделии гофров в зоне сжатия трубной заготовки складкообразования не было обнаружено, утолщение составляло не более 15÷20%, в зоне растяжения утонение носило допустимый характер и не превышало 9%, овальность в зоне изгиба трубы не превышала 10÷15%.