RU2608195C2 - Способ и система рекуперации энергии в летательном аппарате - Google Patents

Способ и система рекуперации энергии в летательном аппарате Download PDF

Info

Publication number
RU2608195C2
RU2608195C2 RU2014124142A RU2014124142A RU2608195C2 RU 2608195 C2 RU2608195 C2 RU 2608195C2 RU 2014124142 A RU2014124142 A RU 2014124142A RU 2014124142 A RU2014124142 A RU 2014124142A RU 2608195 C2 RU2608195 C2 RU 2608195C2
Authority
RU
Russia
Prior art keywords
air
aircraft
compressor
ecs
cabin
Prior art date
Application number
RU2014124142A
Other languages
English (en)
Other versions
RU2014124142A (ru
Inventor
Лоран УССЕЙ
Original Assignee
Турбомека
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Турбомека filed Critical Турбомека
Publication of RU2014124142A publication Critical patent/RU2014124142A/ru
Application granted granted Critical
Publication of RU2608195C2 publication Critical patent/RU2608195C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D41/00Power installations for auxiliary purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0611Environmental Control Systems combined with auxiliary power units (APU's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0648Environmental Control Systems with energy recovery means, e.g. using turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Supercharger (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Изобретение относится к рекуперации энергии в летательном аппарате. Способ рекуперации энергии в летательном аппарате заключается в том, что когда летательный аппарат находится на земле, тепловую энергию, рассеиваемую вспомогательной генерацией мощности (20), рекуперируют теплообменником (1) на уровне ее выпуска (14) для обеспечения цикла рекуперативного турбокомпрессора (10) для создания дополнительной механической энергии к вспомогательной генерации мощности (20). Когда летательный аппарат находится на высоте, турбокомпрессор (10), приводимый в движение воздухом, рекуперированным на выходе из салона (40), затем нагретым посредством теплообмена (1) на уровне выпуска (14), производит дополнение к сжатию компрессора нагрузки (22) для обеспечения степени сжатия, требуемой для снабжения системы кондиционирования (30). Изобретение обеспечивает оптимальную рекуперацию энергии летательного аппарата как на высоте, так и на земле. 2 н. и 8 з.п. ф-лы, 4 ил.

Description

Область техники, к которой относится изобретение
Изобретение относится к способу оптимальной рекуперации энергии, рассеянной в летательном аппарате, и к системе, выполненной с возможностью осуществления данного способа.
Изобретение применяется к летательным аппаратам, имеющим герметичный салон, в частности к самолетам коммерческой авиации.
Как правило, источники энергии в летательном аппарате, которую следует рекуперировать для контроля ее расходования, относятся к двум типам: давление воздуха в герметизированном пассажирском салоне на высоте и тепло, рассеянное в тепловых линиях (кондиционирование воздуха, воздух в салоне, выхлопные газы).
Рекуперация этих видов энергии позволяет минимизировать размеры, вес и расход, необходимый, в конечном счете, для обеспечения одной и той же поставки потребителю недвижущей энергии, т.е. пневматической и электрической энергии.
Описание известного уровня техники
Наличие в салоне воздуха под давлением наддува, возможно только во время полета, и рекуперация данной энергии, таким образом, ограничена высотой, где степень наддува салона, составляющая порядка 3, является, таким образом, достаточной. Согласно существующим решениям задействуются турбокомпрессор или рекуперативная турбина, электрический или пневматический источник приведения в движение, компрессор нагрузки и теплообменник.
Например, из патента US 4419926 известно использование компрессора турбокомпрессора для обеспечения создания дополнительной ступени сжатого воздуха для компрессора нагрузки, обеспечивающего подачу в комплекты кондиционирования воздуха ECS (ECS - сокращение используемого английского термина Environmental Control System - система кондиционирования воздуха). Таким образом, уменьшены мощность или потребление приводного электродвигателя компрессора нагрузки. Кроме того, рекуперативная турбина турбокомпрессора, снабжаемая воздухом под давлением наддува, на выходе из салона, позволяет охлаждать сжатый воздух, что уменьшает общее сжимающее усилие и, таким образом, потребление или размеры электродвигателя.
В качестве варианта известно применение только рекуперативной турбины для приведения в движение компрессора нагрузки посредством генератора переменного тока или другой системы электрической генерации. Таким образом, может быть предусмотрен теплообмен между воздухом на выходе из салона и воздухом, сжатым компрессором нагрузки, для уменьшения температуры потока на выходе из компрессора. Такое уменьшение температуры позволяет, таким образом, обеспечить наименьшую степень сжатия без оказания негативного влияния на технические характеристики ECS и, таким образом, уменьшение потребления.
Однако данные системы ограничены рекуперацией энергии на высоте, поскольку на малой высоте или на земле, когда степень наддува является недостаточной или равной нулю, не представляется возможным иметь воздух под давлением наддува, на выходе из салона. На земле воздушная вентиляция салона на практике обеспечивается небольшим газотурбинным двигателем, содержащим газогенератор, соединенный с соплом истечения этих газов, образующим вспомогательную силовую установку или APU (сокращение используемого английского термина Auxiliary Power Unit). Установка APU также применяется при запуске основных двигателей и обеспечении снабжения электрической или пневматической энергией различных потребителей (насосы, компрессор нагрузки, двигатели и т.д.). Такая установка APU может быть установлена в летательном аппарате или подключена на земле к различному обеспечиваемому оборудованию. В некоторых случаях вспомогательные силовые установки (APU) являются достаточно надежными для задействования во время полета и, в случае необходимости, замены, полностью или частично, основных двигателей в вопросе обеспечения потребителей не движущей мощностью.
Сущность изобретения
Изобретение направлено на обеспечение возможности оптимальной рекуперации энергии как на высоте, так и на земле посредством одной и той же системы. С этой целью изобретением предусматривается рекуперация, при нахождении самолета на земле, тепловой энергии на выпуске для того, чтобы способствовать сжатию вентилируемого воздуха в салоне при кондиционировании воздуха, а также на высоте – сжатию кондиционируемого воздуха под давлением наддува.
Если быть более точным, то задачей настоящего изобретения является способ рекуперации энергии в летательном аппарате, оборудованном пассажирским салоном (40) с воздушным потоком, регулируемым по давлению и температуре посредством системы кондиционирования воздуха ECS, снабжаемой компрессором нагрузки, и вспомогательной генерацией мощности. Способ заключается в том, чтобы предусмотреть, что:
- когда летательный аппарат находится на земле, в так называемом «наземном режиме», тепловую энергию, рассеиваемую вспомогательной генерацией мощности (20), рекуперируют теплообменником на уровне ее выпуска для обеспечения цикла рекуперативного турбокомпрессора для создания дополнительной механической энергии к вспомогательной генерации мощности;
- когда летательный аппарат находится на высоте, в так называемом «высотном» режиме, в котором воздух в салоне имеет достаточную степень давления наддува, тот же турбокомпрессор, приводимый в движение, по меньшей мере, частично воздухом, рекуперированным на выходе из салона, затем нагретым посредством теплообмена на уровне выпуска, производит дополнение к сжатию компрессора нагрузки для обеспечения степени сжатия, требуемой для снабжения ECS.
Согласно отдельным вариантам осуществления:
- второй тепловой обмен может быть осуществляют между воздухом на выходе из салона и сжатым воздухом на входе системы ECS;
- турбокомпрессор образует в «высотном» режиме вторую ступень сжатия воздуха на входе системы ECS;
- при нахождении летательного аппарата в «высотном» режиме воздух, сжатый турбокомпрессором, и воздух, сжатый на выходе из салона, объединяют перед теплообменом при выпуске для увеличения мощности вспомогательной генерации;
- при нахождении летательного аппарата в «высотном» режиме сжатие воздуха, осуществленное турбокомпрессией, является переключаемым для объединения или на входе системы ECS для образования второй ступени сжатия, или на выходе воздуха из салона, перед теплообменом на уровне выпуска газогенератора для увеличения мощности вспомогательной генерации.
Изобретение также относится к системе рекуперации энергии, выполненной с возможностью осуществления данного способа. Такая система содержит вспомогательную силовую установку, имеющую выпускное сопло (14) и включающую в себя газогенератор (2а), оборудованный валом передачи мощности на компрессор нагрузки для подачи, через питающий тракт, сжатого воздуха в систему кондиционирования воздуха ECS пассажирского салона. Кроме того, данная система содержит рекуперативный турбокомпрессор, соединенный напрямую или посредством трансмиссионного блока или любого другого средства сцепления, с валом установки APU. Данный турбокомпрессор содержит рекуперативную турбину, снабжаемую воздухом через расположенную ниже по потоку ветвь трубопровода, установленного на теплообменнике, оборудующем выпускное сопло. Данный трубопровод содержит ветвь выше по потоку относительно теплообменника, соединенную с каналами, соединяющими выходы воздуха из салона и компрессора рекуперативного турбокомпрессора с этой расположенной выше по потоку ветвью.
Согласно предпочтительным вариантам практического осуществления:
- второй теплообменник установлен между питающим трактом и выходным каналом салона таким образом, что воздух на выходе из салона и сжатый воздух на входе системы ECS могли бы осуществлять теплопередачу;
- средства переключения циркуляции воздуха расположены, соответственно, между питающим трактом системы ECS и входным каналом компрессора рекуперативного турбокомпрессора и между выходным каналом упомянутого компрессора и расположенной выше по потоку ветвью трубопровода, установленного на теплообменнике выпускного сопла, таким образом, что турбокомпрессор выполнен с возможностью образования второй ступени сжатия воздуха на входе системы ECS;
- воздух выходного канала компрессора и воздух выходного канала салона имеет степени сжатия, по существу сбалансированные путем регулирования пропускного сечения регулируемого соплового аппарата, которым оборудована рекуперативная турбина;
- средствами переключения циркуляции воздуха являются клапаны, снабженные приводом и управляемые посредством центрального блока управления;
- предпочтительно в каналах также могут быть предусмотрены обратные клапаны, в частности, в каналах входа воздуха и соединения с выходом из салона, для воспрепятствования его обратное течение в эти каналы, когда они становятся незадействованными в некоторых режимах функционирования.
Краткое описание фигур
Другие объекты, отличительные особенности и преимущества изобретения станут видны в ходе изучения нижеследующего описания, не имеющего ограничительного характера, применительно к отдельным примерам практического осуществления со ссылкой на прилагаемые фигуры чертежа, на которых изображены, соответственно:
- фиг. 1 - функциональная схема первого примера системы рекуперации энергии согласно изобретению при нахождении летательного аппарата на земле;
- фиг. 2 - функциональная схема данного примера системы при нахождении летательного аппарата на высоте, достаточной для того, чтобы салон был герметичным, причем только воздух, поступающий из салона, приводит, таким образом, в движение рекуперативную турбину;
- фиг. 3 - функциональная схема варианта предшествующего примера системы, содержащей теплообменник между выходом салона и трактом соединения с системой кондиционирования ECS, причем летательный аппарат находится на земле, и
- фиг. 4 - функциональная схема примера, представленного на фиг. 3, при нахождении летательного аппарата на достаточной высоте, причем воздух на выходе из салона и воздух на выходе из компрессора вместе приводят в движение рекуперативную турбину.
Подробное описание вариантов практического осуществления
В настоящем тексте термины «выше по потоку» и «ниже по потоку» относятся к местам расположения в зависимости от направления циркуляции воздуха.
Как показано на схеме (фиг. 1), система рекуперации энергии летательного аппарата включает в себя рекуперативный турбокомпрессор 10, состоящий, как правило, из рекуперативной турбины 11, компрессора 12, ведущего вала 13 и теплообменника 1, размещенного в сопле 14 истечения отработанных газов вспомогательной силовой установки 20 (сокр. - APU). Установка APU содержит турбомашину 2a с передаточным валом 21. Данная турбомашина состоит, как правило, из компрессора, камеры сгорания и приводной турбины.
Данный вал 21 соединен, с одной стороны, с ведущим валом 13 турбокомпрессора 10 (напрямую или с использованием средства сцепления, такого как трансмиссионный блок (не показан), или аналогичных средств), а с другой стороны, с компрессором нагрузки 22 подачи наружного воздуха E1. Данный компрессор 22 снабжает систему 30 кондиционирования воздуха ECS пассажирского салона 40 по тракту подачи сжатого воздуха C1. Такая система ECS 30 содержит комплект кондиционирования 31, который обновляет воздух, содержащийся в отсеках салона 40, по трубопроводу рециркуляционного цикла C2 через смеситель 32. Система контроля давления в пассажирском салоне 33 (англ. сокр. CPCS - Cabin Pressure Control System - система автоматического регулирования давления в кабине) осуществляет регулирование давления в пассажирском салоне путем дозирования расхода выходящего воздуха.
В этой системе воздух может циркулировать в трубопроводе C3, установленном на теплообменнике 1, расположенном в сопле 14 установки APU 20. Расположенная выше по потоку ветвь C3a трубопровода C3 соединена с каналами 41 и 42, которые, соответственно, соединены с выходами салона 40 и компрессора 12 рекуперативного турбокомпрессора 10. Трехходовой клапан V1 установлен на пересечении канала 42 и ветви C3a. Расположенная ниже по потоку ветвь C3b трубопровода C3 соединена с рекуперативной турбиной 11.
Кроме того, канал 42 соединяет выход компрессора 12 с питающим трактом C1, в то время как канал 43 соединяет тракт C1 с входом упомянутого компрессора 12 через клапан V2, расположенный на пересечении тракта и канала. Входной канал наружного воздуха E2 для данного компрессора 12 присоединен на канале 43. Каналы 42 и 43 соединения с компрессором 12 турбокомпрессора 10, таким образом, установлены на тракте C1 ниже по потоку от компрессора нагрузки 22.
Во время нахождения летательного аппарата на земле воздух в салоне 40 не находится под давлением наддува. Установка APU 20 запускается для создания возможности вентиляции салона 40, для запуска двигателей и снабжения потребителей пневматической и электрической энергией через соответствующие редукторы.
Таким образом, рекуперация энергии в «наземном» режиме осуществляется путем циркуляции воздуха в теплообменнике 1 сопла 14 установки APU 20 для приведения в движение рекуперативного турбокомпрессора 10. Клапаны V2 и V1 регулируются при вращении для того, чтобы, соответственно, прерывать снабжение канала 43 таким образом, чтобы компрессор 12 снабжался исключительно за счет подачи наружного воздуха E2, и для того, чтобы на выходе из данного компрессора 12 сжатый воздух циркулировал из канала 42 в ветвь C3a трубопровода C3. Сжатый воздух, нагретый в теплообменнике 1, затем направляется к рекуперативной турбине 11 турбокомпрессора 10 через расположенную ниже по потоку ветвь C3b.
В этих условиях рекуперативная турбина 11 своим валом 13 способствует приведению в движение установки APU 20, которая сможет расходовать меньше топлива для получения такой же мощности, в частности для приведения в движение компрессора нагрузки 22. Предпочтительно в канале 41 предусмотрен обратный клапан K1 для препятствования воздуху под давлением, циркулирующему в расположенной выше по потоку ветви C3a, течь обратно в канал 41 соединения с салоном 40.
Когда летательный аппарат находится на достаточной высоте, например от 3 или 4000 м, салон 40 находится достаточно герметичным для того, чтобы система перешла в «высотный» режим, который показан на фиг. 2. Для перехода из одного режима в другой клапаны V1 и V2 предпочтительно снабжены приводом, а центральный блок управления (не показан) запрограммирован таким образом, чтобы обеспечить переключение режимов: этот блок передает электрические сигналы, соответствующие техническим заданным конфигурациям регулировки клапанов на пересечениях каналов, для удовлетворения функционирования в двух режимах и при переходах из одного режима в другой.
В «высотном» режиме воздух под давлением перемещается на выходе из салона 40 в канал 41 доступа к расположенной выше по потоку ветви C3a теплообменника 1. В этом режиме рекуперация энергии, таким образом, осуществляется из наддува салона. Как и в «наземном» режиме, рекуперативная турбина 11 затем приводится в движение путем циркуляции нагретого и под давлением воздуха, поступившего из теплообменника 1 через расположенный ниже по потоку канал C3b. Турбина способствует, таким образом, своим валом 13 приведению в движение агрегата APU 20, который сможет расходовать, таким образом, меньше топлива для получения такой же мощности, в частности, для приведения в движение компрессора нагрузки 22.
Одновременно клапаны V1 и V2 отрегулированы для того, чтобы компрессор 12 действовал как вторая ступень сжатия на тракт C1 подачи сжатого воздуха ниже по потоку от компрессора нагрузки 22, выполняющего функцию первой ступени сжатия. Для этого клапаны V2 и V1 управляются при вращении блоком для того, чтобы, соответственно, тракт C1 сообщался с каналом 43, соединенным с входом компрессора 12, а канал 42 сообщался с трактом C1. Предпочтительно во входном канале воздуха E2 предусмотрен обратный клапан K2 для воспрепятствования воздуху под давлением, циркулирующему в канале 43, течь обратно в канал E2.
Согласно варианту системы, представленному в виде функциональных схем на фиг. 3 и 4, двойная рекуперация энергии осуществлена в «высотном» режиме с использованием одновременно воздуха под давлением наддува на выходе из салона 40 и воздуха на выходе сжатия из турбокомпрессора 10.
Со ссылкой на фиг. 3, в варианте системы вновь используются те же механизмы, что и в предшествующей системе, которые имеют такие же цифровые позиции. Входной/выходной каналы 42 и 43 компрессора 12 рекуперативного турбокомпрессора 10 больше не соединены с питающим трактом C1: канал 43 снабжается через вход наружного воздуха E2, а канал 42 продолжается расположенной выше по потоку ветвью C3a теплообменника 1.
Кроме того, другой теплообменник 2 предусмотрен между питающим трактом C1 - на выходе из компрессора нагрузки 12 - и каналом 41 на выходе из салона 40. Данный теплообменник 2 будет использован в «высотном» режиме (фиг. 4).
В «наземном» режиме (фиг. 3) рекуперация энергии похожа на рекуперацию, осуществленную при помощи первой системы (см. фиг. 1) путем циркуляции воздуха в теплообменнике 1 сопла 14 установки APU 20 для приведения в движение рекуперативной турбины 11, затем частично установки APU и компрессора нагрузки 22. Преимуществом данной системы является отсутствие необходимости в наличии клапана.
В «высотном» режиме, как это показано на фиг. 4, воздух, находящийся под давлением в канале 41, на выходе из салона 40 нагревается в первый раз путем прохождения в теплообменнике 2. Этот теплообменник также позволяет уменьшить температуру воздуха тракта C1 для компенсации на уровне функционирования ECS малейшего сжатия, осуществляемого данной системой в питающем тракте C1 по сравнению с предшествующей версией, которыми обладали две ступени сжатия. Действительно, компрессор 12 в данном случае больше не обеспечивает функцию второй ступени сжатия для воздуха тракта C1.
Изобретение не ограничивается описанными и изображенными примерами.
Например, представляется возможным в «высотном» режиме перейти от первой системы к варианту системы. Другими словами, перейти - автоматически посредством блока управления или вручную пилотом - от простой рекуперации на основе выхода из салона (фиг. 2) к двойной рекуперации, объединяя выходные каналы 41 салона и выходные каналы 42 компрессора 12 (фиг. 4).
Для этого клапаны V1 и V2 первой версии (фиг. 1 и 2) управляются для того, чтобы иметь возможность переключаться реверсивным образом и при нахождении летательного аппарата на высоте из определенных положений в «наземном» режиме в определенные положения в «высотном» режиме и наоборот. Наличие теплообменника 2 может быть предпочтительно сохранено для того, чтобы быть совместимым с самой малой степенью давления в тракте C1, когда клапаны находятся в определенных положениях в «наземном» режиме.

Claims (12)

1. Способ рекуперации энергии в летательном аппарате, оборудованном пассажирским салоном (40) с воздушным потоком, регулируемым по давлению и температуре посредством системы кондиционирования воздуха ECS (30), снабжаемой компрессором нагрузки (22), и вспомогательной генерацией мощности (20), отличающийся тем, что он заключается в том, чтобы предусмотреть, что:
- когда летательный аппарат находится на земле, в так называемом "наземном режиме", тепловую энергию, рассеиваемую вспомогательной генерацией мощности (20), рекуперируют теплообменником (1) на уровне ее выпуска (14) для обеспечения цикла рекуперативного турбокомпрессора (10) для создания дополнительной механической энергии к вспомогательной генерации мощности (20);
- когда летательный аппарат находится на высоте, в так называемом "высотном" режиме, в котором воздух в салоне имеет достаточную степень давления наддува, тот же турбокомпрессор (10), приводимый в движение, по меньшей мере, частично воздухом, рекуперированным на выходе из салона (40), затем нагретым посредством теплообмена (1) на уровне выпуска (14), производит дополнение к сжатию компрессора нагрузки (22) для обеспечения степени сжатия, требуемой для снабжения системы ECS (30).
2. Способ рекуперации по п. 1, в котором второй теплообмен (2) осуществляют между воздухом относительно более холодным на выходе из салона (40) и сжатым воздухом относительно более горячим на входе системы ECS (30).
3. Способ рекуперации по любому из пп. 1 или 2, в котором турбокомпрессор (10) образует в "высотном" режиме вторую ступень сжатия воздуха на входе системы ECS (30).
4. Способ рекуперации по любому из пп. 1 или 2, в котором при нахождении летательного аппарата в "высотном" режиме воздух, сжатый турбокомпрессором (10), и сжатый воздух на выходе из салона (40) объединяют перед теплообменом (1), осуществляемым при выпуске (14), для увеличения мощности вспомогательной генерации (20).
5. Способ рекуперации по любому из пп. 1 или 2, в котором при нахождении летательного аппарата в "высотном" режиме сжатие воздуха, произведенное турбокомпрессором (10), является переключаемым для объединения или на входе системы ECS для образования второй ступени сжатия, или на выходе воздуха из салона, перед теплообменом на уровне выпуска из газогенератора, для увеличения мощности вспомогательной генерации.
6. Система рекуперации энергии, выполненная с возможностью осуществления способа по любому из предшествующих пунктов, содержащая вспомогательную силовую установку APU (20), имеющую выпускное сопло (14) и включающую в себя газогенератор (2а), оборудованный валом (21) передачи мощности на компрессор нагрузки (22) для подачи, через питающий тракт (С1), сжатого воздуха в систему кондиционирования воздуха ECS (30) пассажирского салона (40); причем данная система содержит также рекуперативный турбокомпрессор (10), соединенный с валом (21) установки APU (20); причем данный турбокомпрессор (10) содержит рекуперативную турбину (11), снабжаемую воздухом, циркулирующим в расположенной ниже по потоку ветви (С3b) трубопровода (С3), установленного на теплообменнике (1), оборудующем выпускное сопло (14); причем данный трубопровод (С3) содержит ветвь (С3а) выше по потоку относительно теплообменника (1), соединенную с каналами (41, 42), соединяющими выходы воздуха из салона (40) и из компрессора (12) рекуперативного турбокомпрессора (10) с этой расположенной выше по потоку ветвью (С3а).
7. Система рекуперации энергии по п. 6, в которой второй теплообменник (2) установлен между питающим трактом (C1) и выходным каналом салона (41) таким образом, что воздух на выходе из салона (40) и сжатый воздух на входе в систему ECS (30) могут осуществлять теплопередачу.
8. Система рекуперации энергии по любому из пп. 6 или 7, в которой средства переключения циркуляции воздуха (V2, V1) расположены, соответственно, между питающим трактом (C1) системы ECS (30) и входным каналом компрессора (12) рекуперативного турбокомпрессора (10) и между выходным каналом (42) упомянутого компрессора (12) и расположенной выше по потоку ветвью (C3a) трубопровода (C3), установленного на теплообменнике (1) выпускного сопла (14), таким образом, что турбокомпрессор (10) выполнен с возможностью образования второй ступени сжатия воздуха на входе системы ECS (40).
9. Система рекуперации энергии по любому из пп. 6 или 7, в которой воздух выходного канала (42) компрессора (12) и выходного канала салона (41) имеет степени сжатия, по существу сбалансированные путем регулирования пропускного сечения регулируемого соплового аппарата, которым оборудована рекуперативная турбина (11).
10. Система рекуперации энергии по любому из пп. 6 или 7, в которой средствами переключения циркуляции воздуха являются клапаны (V1, V2), снабженные приводами и управляемые посредством центрального блока управления.
RU2014124142A 2011-11-17 2012-11-09 Способ и система рекуперации энергии в летательном аппарате RU2608195C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1160471A FR2982846B1 (fr) 2011-11-17 2011-11-17 Procede et architecture de recuperation d'energie dans un aeronef
FR1160471 2011-11-17
PCT/FR2012/052585 WO2013072603A1 (fr) 2011-11-17 2012-11-09 Procédé et architecture de récupération d'énergie dans un aéronef

Publications (2)

Publication Number Publication Date
RU2014124142A RU2014124142A (ru) 2015-12-27
RU2608195C2 true RU2608195C2 (ru) 2017-01-17

Family

ID=47291105

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014124142A RU2608195C2 (ru) 2011-11-17 2012-11-09 Способ и система рекуперации энергии в летательном аппарате

Country Status (11)

Country Link
US (1) US9302775B2 (ru)
EP (1) EP2780230B1 (ru)
JP (1) JP6134326B2 (ru)
KR (1) KR101975994B1 (ru)
CN (1) CN103946111B (ru)
CA (1) CA2853190C (ru)
ES (1) ES2551615T3 (ru)
FR (1) FR2982846B1 (ru)
PL (1) PL2780230T3 (ru)
RU (1) RU2608195C2 (ru)
WO (1) WO2013072603A1 (ru)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2986780B1 (fr) * 2012-02-13 2014-11-14 Motorisations Aeronautiques Dispositif d’alimentation en air d’un groupe auxiliaire de puissance d’un aeronef, aeronef
FR3001441B1 (fr) * 2013-01-29 2016-05-13 Microturbo Architecture d'alimentation en air d'un groupe auxiliaire de puissance dans un aeronef
US10745136B2 (en) 2013-08-29 2020-08-18 Hamilton Sunstrand Corporation Environmental control system including a compressing device
US11466904B2 (en) 2014-11-25 2022-10-11 Hamilton Sundstrand Corporation Environmental control system utilizing cabin air to drive a power turbine of an air cycle machine and utilizing multiple mix points for recirculation air in accordance with pressure mode
US10549860B2 (en) 2014-11-25 2020-02-04 Hamilton Sundstrand Corporation Environmental control system utilizing cabin air to drive a power turbine of an air cycle machine
CN105711853B (zh) * 2014-12-03 2017-09-29 中国飞机强度研究所 一种用于座舱充气试验的三阀联动卸载装置及方法
US11459110B2 (en) * 2016-04-22 2022-10-04 Hamilton Sunstrand Corporation Environmental control system utilizing two pass secondary heat exchanger and cabin pressure assist
US10919638B2 (en) * 2016-05-31 2021-02-16 The Boeing Company Aircraft cabin pressurization energy harvesting
US10239624B2 (en) * 2017-02-15 2019-03-26 The Boeing Company Reverse air cycle machine (RACM) thermal management systems and methods
ES2927636T3 (es) * 2017-06-06 2022-11-08 Airbus Operations Sl Aeronave que incorpora una unidad de potencia para generar potencia eléctrica, neumática y/o hidráulica
FR3067560B1 (fr) * 2017-06-12 2021-09-03 Safran Electronics & Defense Dispositif de refroidissement de baies avioniques a liquide caloporteur
FR3068005B1 (fr) * 2017-06-23 2019-07-26 Liebherr-Aerospace Toulouse Systeme et procede de controle environnemental d'une cabine d'un aeronef et aeronef equipe d'un tel systeme de controle
US10843804B2 (en) 2017-08-01 2020-11-24 Honeywell International Inc. Cabin outflow air energy optimized cabin pressurizing system
US11192655B2 (en) 2017-11-03 2021-12-07 Hamilton Sundstrand Corporation Regenerative system ECOECS
US10988262B2 (en) 2018-03-14 2021-04-27 Honeywell International Inc. Cabin pressure control system architecture using cabin pressure air for inlet to APU core compressor
CN109596302B (zh) * 2018-11-02 2021-08-03 中国航空工业集团公司西安飞机设计研究所 一种飞行器模型低速风洞实验的流量控制引射系统
FR3097529B1 (fr) * 2019-06-21 2021-06-18 Liebherr Aerospace Toulouse Sas Système de conditionnement d’air électrique d’une cabine d’aéronef comprenant un motocompresseur et une turbomachine à cycle à air
US11982239B2 (en) 2021-12-17 2024-05-14 Rolls-Royce North American Technologies Inc. Gas turbine engine system with mixed flow auxiliary power unit
CN117341655B (zh) * 2023-12-06 2024-02-06 临工重机股份有限公司 打气系统控制方法、装置、车辆及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU298501A1 (ru) * Система кондиционирования воздуха для летательного аппарата
US2777301A (en) * 1952-06-30 1957-01-15 Garrett Corp All-purpose power and air conditioning system
US20030051492A1 (en) * 2001-09-10 2003-03-20 Laurent Hartenstein Method and a device for a conditioning for an aircraft cabin
RU2405720C2 (ru) * 2004-12-03 2010-12-10 Эйрбас Дойчланд Гмбх Система и способ энергообеспечения летательного аппарата

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4419926A (en) * 1980-09-02 1983-12-13 Lockheed Corporation ESC energy recovery system for fuel-efficient aircraft
US4503666A (en) * 1983-05-16 1985-03-12 Rockwell International Corporation Aircraft environmental control system with auxiliary power output
US6283410B1 (en) * 1999-11-04 2001-09-04 Hamilton Sundstrand Corporation Secondary power integrated cabin energy system for a pressurized aircraft
JP4300682B2 (ja) * 2000-05-30 2009-07-22 株式会社島津製作所 走行体
JP4174606B2 (ja) * 2001-07-05 2008-11-05 株式会社島津製作所 航空機用空気調和装置
GB0122672D0 (en) * 2001-09-20 2001-11-14 Honeywell Normalair Garrett Environmental control systems
US6776002B1 (en) * 2003-04-25 2004-08-17 Northrop Grumman Corporation Magnetically coupled integrated power and cooling unit
US7380749B2 (en) * 2005-04-21 2008-06-03 The Boeing Company Combined fuel cell aircraft auxiliary power unit and environmental control system
US20070220900A1 (en) * 2006-03-27 2007-09-27 General Electric Company Auxiliary gas turbine engine assembly, aircraft component and controller
DE102006042584B4 (de) * 2006-09-11 2008-11-20 Airbus Deutschland Gmbh Luftzufuhrsystem eines Flugzeuges sowie Verfahren zum Vermischen zweier Luftströme in einem Luftzufuhrsystem
DE102007032306A1 (de) * 2007-07-11 2009-01-22 Airbus Deutschland Gmbh Klimatisierungssystem für Flugzeugkabinen
DE102008035123B4 (de) * 2008-07-28 2015-01-15 Airbus Operations Gmbh System und Verfahren zur Klimatisierung einer Flugzeugkabine
US8196395B2 (en) * 2009-06-29 2012-06-12 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8973393B2 (en) * 2009-11-08 2015-03-10 The Boeing Company System and method for improved cooling efficiency of an aircraft during both ground and flight operation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU298501A1 (ru) * Система кондиционирования воздуха для летательного аппарата
US2777301A (en) * 1952-06-30 1957-01-15 Garrett Corp All-purpose power and air conditioning system
US20030051492A1 (en) * 2001-09-10 2003-03-20 Laurent Hartenstein Method and a device for a conditioning for an aircraft cabin
RU2405720C2 (ru) * 2004-12-03 2010-12-10 Эйрбас Дойчланд Гмбх Система и способ энергообеспечения летательного аппарата

Also Published As

Publication number Publication date
PL2780230T3 (pl) 2015-12-31
EP2780230A1 (fr) 2014-09-24
FR2982846A1 (fr) 2013-05-24
ES2551615T3 (es) 2015-11-20
CA2853190A1 (fr) 2013-05-23
JP2014533624A (ja) 2014-12-15
US20140290287A1 (en) 2014-10-02
CN103946111A (zh) 2014-07-23
CA2853190C (fr) 2019-09-10
RU2014124142A (ru) 2015-12-27
CN103946111B (zh) 2016-11-09
WO2013072603A1 (fr) 2013-05-23
US9302775B2 (en) 2016-04-05
EP2780230B1 (fr) 2015-09-30
KR20140097359A (ko) 2014-08-06
FR2982846B1 (fr) 2014-02-07
JP6134326B2 (ja) 2017-05-24
KR101975994B1 (ko) 2019-05-08

Similar Documents

Publication Publication Date Title
RU2608195C2 (ru) Способ и система рекуперации энергии в летательном аппарате
US10669032B2 (en) Blended flow air cycle system for environmental control
CN102596719B (zh) 用于改良冷却效率的飞行器系统和方法
EP1979232B1 (en) Air conditioning arrangement for an aircraft with a plurality of climate zones that may be individually temperature-controlled
CN108688816B (zh) 混合第三空气调节组件
US8839641B1 (en) Flow control system for an aircraft
CN102917950A (zh) 用于飞行器的使用混合操作的空气调节系统
US10260371B2 (en) Method and assembly for providing an anti-icing airflow
US9580179B2 (en) Air conditioning system for an aircraft passenger compartment
CN106240827B (zh) 用于平行冲压热交换器的再循环系统
CN104890878A (zh) 低压放气飞机环境控制系统
CN104276287A (zh) 飞机空调系统和操作飞机空调系统的方法
CN107303953B (zh) 利用多个混合点以便根据压力模式使空气再循环以及电机辅助的环境控制系统
CN113734447B (zh) 利用双通道式次级热交换器和机舱压力辅助的环境控制系统
CN108146638B (zh) 飞机空调系统和用于运行飞机空调系统的方法
US20180362166A1 (en) High efficiency electrically driven environmental control system
US11577842B2 (en) Autonomous aircraft cabin energy recovery module and corresponding method
US10472073B2 (en) Air conditioning system
CN118056755A (zh) 航空器的环境控制装置和操作环境控制装置的方法
US11884404B2 (en) Environmental control system trim air heat exchanger
US20230002063A1 (en) Air conditioning system for a cabin of an air or rail transport vehicle using a pneumatic and thermal air source which is separate from the air conditioning source

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner