RU2607372C1 - Способ диагностики растительного материала на трансгенность - Google Patents

Способ диагностики растительного материала на трансгенность Download PDF

Info

Publication number
RU2607372C1
RU2607372C1 RU2015153854A RU2015153854A RU2607372C1 RU 2607372 C1 RU2607372 C1 RU 2607372C1 RU 2015153854 A RU2015153854 A RU 2015153854A RU 2015153854 A RU2015153854 A RU 2015153854A RU 2607372 C1 RU2607372 C1 RU 2607372C1
Authority
RU
Russia
Prior art keywords
transgenicity
reaction
dna
primers
probes
Prior art date
Application number
RU2015153854A
Other languages
English (en)
Inventor
Татьяна Валерьевна Матвеева
Людмила Алексеевна Лутова
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ)
Priority to RU2015153854A priority Critical patent/RU2607372C1/ru
Application granted granted Critical
Publication of RU2607372C1 publication Critical patent/RU2607372C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2561/00Nucleic acid detection characterised by assay method
    • C12Q2561/113Real time assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/107Nucleic acid detection characterized by the use of physical, structural and functional properties fluorescence

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Изобретение относится к области биохимии, в частности к способу диагностики растительного материала на трансгенность. Способ включает выделение из биоматериала ДНК и проведение полимеразной цепной реакции в режиме реального времени с зондами, меченными флуоресцентными красителями и гасителями флуоресценции. При этом составляют реакционную смесь, содержащую праймеры aacacatgagcgaaacccta, caagctcgagtttctccata, ccggtcttgcgatgattat, tatattttgttttctatcgcgtatt, tatattttgttttctatcgcgtatt, agatggattgcacgcaggttc, gcatcagagcagccgattgt и зонды FAM-cccttatctgggaactactcacacatta-BHQ1, FAM-tgcgggactctaatcataaaaacccatct-BHQ1, FAM-ccagtcatagccgaatagcctctccacc-BHQ1. Полимеразную цепную реакцию проводят в режиме реального времени, при этом осуществляют непрерывный контроль флуоресценции и по экспоненциальному ее нарастанию диагностируют трансгенность растений. Изобретение позволяет эффективно диагностировать растительный материал на трансгенность. 2 ил., 1 табл.

Description

Изобретение относится к биотехнологии сельскохозяйственных растений и может найти применение для нужд сельского хозяйства и растениеводства при диагностике трангенного растительного материала. Изобретение может быть использовано в пищевой промышленности при выявлении генноинженерно модифицированных организмов (ГМО).
Известен способ определения трансгенных растений [1, 2], сущность которого состоит в анализе нуклеотидных последовательностей методом полимеразной цепной реакции (ПЦР) с последующей гибридизацией ее продуктов на микрочипах. Основным недостатком этого способа является необходимость переноса амплификата после проведения ПЦР в ячейки биочипов, что создает предпосылку для загрязнения реактивов и лабораторного оборудования продуктами ПЦР и может привести к получению ложных результатов анализа.
Известен способ определения трансгенных растений [3], основанный на амплификации методом ПЦР в реальном времени последовательностей некоторых разновидностей промотора 35S и терминатора nos. Однако этот способ не позволяет выявить значительное количество трансгенных линий, содержащих отличающиеся последовательности данных маркеров.
ПЦР в режиме реального времени позволяет контролировать увеличение количества синтезируемого продукта в ходе реакции и не требует проведения электрофореза на последующих стадиях. Это стало возможным благодаря добавлению в реакционную среду красителей, обеспечивающих флуоресценцию, прямо пропорциональную количеству синтезированного ПЦР-продукта, - репортерную флуоресценцию.
ПЦР в режиме реального времени существует в двух основных модификациях, различающихся по способам генерации репортерной флуоресценции. Первая из них связана с применением интеркалирующих флуоресцентных агентов, свечение которых значительно возрастает при связывании с двуцепочечной ДНК, вторая связана с использованием меченных флуоресцентными агентами олигонуклеотидных проб, комплементарных участку ПЦР-продукта. Вторая модификация ПЦР является более предпочтительной для диагностических целей, поскольку дает дополнительную возможность контроля специфичности реакции.
Использование ПЦР в реальном времени позволяет свести к минимуму проблему контаминации продуктом реакции, ускорить процедуру анализа за счет отсутствия необходимости проведения электрофореза, позволяет получать количественные характеристики присутствия интересующей ДНК в пробе.
На настоящий момент на основе ПЦР технологии разработано огромное количество диагностических систем различного назначения, в том числе для нужд сельского хозяйства и растениеводства.
Известны аналогичные изобретения «Патент РФ 2386698, Кузнецов В.В., Абрамов Д.Д., Митрохин И.А., Цыдендамбаев В.Д. Способ идентификации трансгенных последовательностей днк в растительном материале и продуктах на его основе» [3].
Однако аналогичные наборы не позволяют выявить все разнообразие коммерческих трансгенных линий растений. Это связано с тем, что в генно-инженерных конструкциях использовано несколько разновидностей последовательностей терминатора nos и большое разнообразие последовательностей промоторов 35S.
По данным базы NCBI (ncbi.nlm.nih.gov) последовательности 35S варьируют по длине от 47 до 485 нуклеотидов, а также по нуклеотидному составу. Данные о последовательностях 35S приведены в приложениях 1 и 2.
Сущность изобретения поясняется фиг. 1 и 2.
Фиг. 1 иллюстрирует нецелесообразность применения праймеров к промотору 35S для диагностики трансгенности в виду большой молекулярной дивергенции ДНК мишеней.
Древо, отражающее сходство последовательностей, построенное в программе Vector NTI, представлено на фиг. 1.
Как видно из фиг. 1, последовательности 35S существенно отличаются друг от друга и формируют не менее 6 групп сходства. При этом варьирование в пределах каждой группы может быть существенным. Эти обстоятельства делают невозможным применение данной последовательности в качестве универсальной мишени для подбора праймеров, детектирующих ГМО. Анализ последовательностей терминатора nos, напротив, показал, что существует 2 его основные вариации.
То есть данная мишень является пригодной для разработки тест-системы, но необходимо учитывать две разновидности последовательности терминатора nos. Анализ распространения селективного маркера nptII (таблица 1) показал, что он присутствует в более сотни линий ГМО и может быть использован как вспомогательный [4].
Заявителю известно, что работа над созданием праймеров, которые используются в подобных наборах, строится обычно следующим образом.
1) С помощью открытых и коммерческих баз данных нуклеотидных последовательностей генно-инженерных конструкций выбирается их консервативный участок, специфичный для как можно большего количества генно-инженерно модифицированных организмов.
2) На основании выбранного участка генома с помощью специального программного обеспечения подбирается последовательность олигонуклеотидов, используемых для проведения ПЦР-реакции (часто 2 праймера и зонд). На данном этапе работа заключается в создании выравнивания многих нуклеотидных последовательностей и выборе участка последовательности рекомбинантной ДНК с наименьшим полиморфизмом.
3) Изготовление праймеров.
4) С помощью практических экспериментов доказывается пригодность подобранных последовательностей для конкретных целей (например, для определения наличия/отсутствия генно-инженерно модифицированных растений в биоматериале).
Наиболее близким способом по достигаемому техническому результату является способ Диагностики ГМО [3], принятый в качестве прототипа. Сущность его состоит в проведении ПЦР с использованием специфических праймеров и флуоресцентномеченых зондов, комплиментарных трансгенным последовательностям ДНК (таблица 1), с последующей детекцией продуктов амплификации в закрытых амплификационных пробирках с помощью флуоресцентного ПЦР-детектора. Ключевым элементом заявляемого способа является использование флуоресцентномеченых зондов, представляющих собой олигонуклеотиды, меченные молекулами флуорофора и гасителя флуоресценции. Зонды добавляют в реакционную смесь наряду с праймерами и другими компонентами реакции. В ходе ПЦР флуоресцентномеченый зонд гибридизуется на специфических ампликонах и разрушается Taq-полимеразой, в результате чего флуорофор оказывается свободным от гасителя. Таким образом, уровень флуоресценции в амплификационных пробирках возрастает пропорционально количеству образовавшихся специфических продуктов ПЦР.
Недостатком известного способа, принятого в качестве прототипа, является невозможность выявить некоторые трансгенные линии с его помощью. Например, некоторые линии сои, устойчивой к раундапу (см. последовательности NCBI ##AJ783418.1, АВ209952.1, AF465641.1), кукурузы с геном Bt (см. последовательности NCBI ##EU363768.1 EU363766.1). Изобретение свободно от этих недостатков.
Технический результат изобретения состоит в расширении диапазона генотипов диагностируемых ГМО.
Указанный технический результат достигается тем, что в способе диагностики биоматериалов на наличие в них трансгенных растений, заключающемся в выделении из биоматериала ДНК и проведении на ней полимеразной цепной реакции в режиме реального времени зондами, меченными флуоресцентными красителями и гасителями флуоресценции, в соответствии с изобретением после выделения из образцов ДНК в концентрации 0,1-100 нг/мкл на ее основе составляют реакционную смесь, содержащую праймеры
Figure 00000001
,
Figure 00000002
,
Figure 00000003
,
Figure 00000004
,
Figure 00000005
,
Figure 00000006
,
Figure 00000007
и зонды
Figure 00000008
,
Figure 00000009
,
Figure 00000010
. Полимеразную цепную реакцию проводят в режиме реального времени с температурой отжига праймеров 60°C при 40 циклах, при этом осуществляют непрерывный контроль флуоресценции и по экспоненциальному ее нарастанию диагностируют трансгенность растений. Кроме этого, указанный технический результат достигается тем, что в качестве термостабильной полимеразы с активностью 0,1-0,3 ед. на 1 мкл смеси берут Taq. Вместе с тем указанный технический результат достигается тем, что в качестве термостабильной полимеразы с активностью 0,1-0,3 ед. на 1 мкл смеси берут Tth.
Сущность изобретения состоит в том, что для диагностики наличия в образце трансгенных растений или продуктов их переработки проводят ПЦР в реальном времени с праймерами и зондами к регуляторным последовательностям ДНК (терминатор nos) нескольких разновидностей и селективному маркеру nptII, используемым в большинстве линий трансгенных растений. Например, при сравнении уровня техники:
По патенту РФ 2386698 (RU):
Способ идентификации трансгенных последовательностей ДНК в растительном материале и продуктах на его основе (RU).
При схожей технологии детекции в известном патенте описывается детекция более узкого набора линий, содержащих трансгены.
Существенными признаками изобретения являются:
из анализируемого образца выделяют ДНК чистоты, достаточной для проведения ферментативных реакций, после этого составляют реакционную смесь, содержащую, по меньшей мере: праймеры
Figure 00000011
,
Figure 00000012
,
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
и зонды
Figure 00000018
,
Figure 00000019
,
Figure 00000020
, зонд может содержать и другие флуоресцентные красители или гасители флуоресценции;
Полимеразную цепную реакцию проводят в амплификаторе (термоциклире) при температуре отжига праймеров 60°C при 40 циклах, при этом осуществляют непрерывный контроль флуоресценции и по экспоненциальному ее нарастанию диагностируют трансгенность растений. Реакцию можно проводить в амплификаторе, обладающем возможностью детектировать изменение флуоресценции в режиме реального времени или в обычном амплификаторе без детектора (в этом случае о прохождении реакции судят по изменению уровня флуоресценции, измеренной перед началом реакции и после ее прохождения).
В случае, если прохождение реакции в виде увеличения уровня флуоресценции образца будет детектировано, делается вывод о наличии трансгенных растений в анализируемом образце.
Реализация заявленного способа.
Для обнаружения заявленным способом трансгенных растений или продуктов их переработки в образце требуется:
1. Выделить ДНК из образца СТАБ-методом. Для этого нужно гомогенезировать образец в СТАВ-буфере (NaCl 1,4М, Трис HCl (pH 8) 0,1М, ЭДТА (pH 8) 20 мМ, СТАВ 2% m/v), инкубировать полученную смесь 1 ч при 56°C, 40-60 мин экстрагировать хлороформом, разделить фракции центрифугированием, верхнюю (водную), содержащую ДНК фракцию переосадить этанолом, ДНК растворить в воде.
2. Приготовить реакционную смесь для ПЦР, которая должна содержать 1х буфер для полимеразы, катионы Mg 2+ в концентрации 0,1-0,3 мM, нуклеотиды в концентрации 2-10 мкМ, Taq полимеразу (или другую термостабильную полимеразу, обладающую 5' экзонуклеазной активностью), 0,1-0,3 ед. активности на 1 мкл смеси, ДНК матрицу исследуемого образца 0,1-100 нг/мкл, праймеры, следующего состава:
Figure 00000021
,
Figure 00000022
,
Figure 00000023
,
Figure 00000024
,
Figure 00000025
,
Figure 00000026
,
Figure 00000027
и зонды
Figure 00000028
,
Figure 00000029
,
Figure 00000030
, зонд может содержать и другие флуоресцентные красители или гасители флуоресценции.
3. Провести полимеразную цепную реакцию в режиме реального времени с температурой отжига праймеров 60°C при 40 циклах. Пример программы: 95°C - 5 мин, 40 циклов (95°C - 18 с, 60°C - 30 с, 72°C - 30 с). Прохождение реакции контролируют посредством прибора для измерения уровня флуоресценции в ходе реакции, при прохождении реакции хотя бы в одной из реакционных смесей, наблюдается повышение уровня флуоресценции, делается вывод о наличии трансгенных растений в исследуемом образце.
Заявленный способ апробирован в реальном времени на лабораторной базе Санкт-Петербургского государственного университета и поясняется конкретными примерами.
Пример конкретной реализации.
Для обнаружения описываемым методом трансгенных растений и продуктов их переработки в образце требуется:
1. Выделить ДНК из образца СТАБ-методом (подготовительный этап).
2. Провести ПЦР в реальном времени (собственно анализ).
Выделение ДНК из образцов трансгенных корней каланхоэ (трансформированных штаммом А4 Agrobacterium rhizogenes), клубней картофеля семян сои и мясного фарша с добавлением сои.
Гомогенезировать образец в СТАВ-буфере (NaCl 1,4М, Трис HCl (pH 8) 0,1М, ЭДТА (pH 8) 20 мМ, СТАВ 2% m/v), инкубировать полученную смесь 1 ч при 56°C, 40-60 мин экстрагировать хлороформом, разделить фракции центрифугированием, верхнюю (водную), содержащую ДНК фракцию переосадить этанолом, ДНК растворить в воде.
ПОСТАНОВКА ПЦР
В ходе апробации заявленного способа были приготовлены 2 реакционные смеси для ПЦР. Первая смесь содержала 1х буфер для полимеразы, катионы Mg 2+ в концентрации 0,2 мМ, нуклеотиды в концентрации 2 мкМ, Taq полимеразу, 0,2 ед. активности на 1 мкл смеси, ДНК матрицу исследуемого образца 10-100 нг/мкл, праймеры, следующего состава:
Figure 00000031
,
Figure 00000032
,
Figure 00000033
,
Figure 00000034
,
Figure 00000035
,
Figure 00000036
,
Figure 00000037
в концентрации 2 mM и зонды
Figure 00000038
,
Figure 00000039
,
Figure 00000040
Полимеразную цепную реакцию в режиме реального времени проводили по программе:
95°C - 5 мин, 40 циклов (95°C - 18 с, 60°C - 30 с, 72°C - 30 с).
Прохождение реакции контролировали посредством прибора для измерения уровня флуоресценции в ходе реакции, например амплификатор АНК32 (испытания проводились на лабораторной базе Института Аналитического приборостроения РАН), или CFX96 (Biorad, США). Результаты реакции представлены в качестве примера на фиг. 2.
Фиг. 2 иллюстрирует прохождение реакции с разработанными авторами праймерами на трансгенном и контрольном растительном материале. ПЦР с разработанными авторами праймерами и зондами для детекции ГМО (графики 1-8) и праймерами к гену лектина сои (графики 9-11) на контрольных ДНК плазмиды pART27 (график 1), штаммов агробактерии Т37, С58 (графики 2-3), опытных ДНК трансгенной сои (графики 4, 9), трансгенного картофеля (графики 5-7), трансгенного каланхоэ (график 8), нетрансгенной сои (график 10), мясного фарша (график 11).
Как видно из фиг. 2, амплификация фрагмента гена лектина проходит только на ДНК сои, амплификация терминатора nos - только на трансгенных растениях. Значения пороговых циклов для лектина и nos отличаются на 1 у трансгенной сои, что может быть объяснено большей дозой генов с терминатором nos по сравнению с референсом. Аналогичные результаты получены на трансгенных линиях картофеля с референсным геном соланина и терминатором nos.
Таким образом, наблюдается прохождение реакции, свидетельствующей о работе апробированной диагностической системы. Можно сделать вывод об успешной работе диагностической системы при использовании ДНК заявленных концентраций.
Технико-экономическая эффективность изобретения состоит в том, что предлагаемый новый способ диагностики растительного материала на предмет трансгенности направлен на решение проблемы быстрой диагностики биологического материала растительного происхождения (растения и продукты их переработки), т.е. на эффективное и оперативное выявление наличия в исследуемых биоматериалах трансгенных растений. Заявленный способ по достигаемому техническому результату отличается от известных в данной области аналогов: позволяет расширить список детектируемых трансгенных линий растений.
Источники информации
1. Патент РФ №2453605, Грановский И.Э., Белецкий И.П., Шляпникова Е.А., Шляпников Ю.М., Гаврюшкин А.В., Бирюков С.В. Дифференцирующий и специфический олигонуклеотиды для идентификации последовательностей днк трансгенных растений в пищевых продуктах, способ идентификации трансгенных продуктов, биочип, комбинация олигонуклеотидов (варианты) и набор для осуществления этого способа.
2. Патент РФ 2270254, Мирзабеков А.Д., Грядунов Д.А., Михайлович В.М., Заседателев А.С., Романов Г.А., Кузнецов В.В., Цыденедамбаев В.Д., Митрохин И.А., Крылова Е.М. Способ идентификации трансгенных последовательностей днк в растительном материале и продуктах на его основе, набор олигонуклеотидов и биочип для осуществления этого способа.
3. Патент РФ 2386698, Кузнецов В.В., Абрамов Д.Д., Митрохин И.А., Цыдендамбаев В.Д. Способ идентификации трансгенных последовательностей ДНК в растительном материале и продуктах на его основе (RU 2386698) – прототип.
4. Navarro M.J., Natividad-Tome K.G. Gimutao K.A / From Monologue to Stakeholder Engagement: The Evolution of Biotech Communication ISAAA Briefs N48, 2012, 137. P.
Figure 00000041

Claims (1)

  1. Способ диагностики растительного материала на трансгенность, заключающийся в выделении из биоматериала ДНК и проведении на ней полимеразной цепной реакции в режиме реального времени с зондами, меченными флуоресцентными красителями и гасителями флуоресценции, отличающийся тем, что после выделения из образцов ДНК в концентрации 0,1-100 нг/мкл на основе ее составляют реакционную смесь, которая содержит праймеры aacacatgagcgaaacccta, caagctcgagtttctccata, ccggtcttgcgatgattat, tatattttgttttctatcgcgtatt, tatattttgttttctatcgcgtatt, agatggattgcacgcaggttc, gcatcagagcagccgattgt и зонды FAM-cccttatctgggaactactcacacatta-BHQ1, FAM-tgcgggactctaatcataaaaacccatct-BHQ1, FAM-ccagtcatagccgaatagcctctccacc-BHQ1, праймеры в составе реакционных смесей имеют концентрацию 0,2-2 мM, а зонды 0,1-1 мM, реакционные смеси содержат буфер для полимеразы, катионы Mg 2+ в концентрации 0,1-0,3 мM, нуклеотиды в концентрации 2-10 мкМ, Taq полимеразу 0,1-0,3 ед. активности на 1 мкл смеси, полимеразную цепную реакцию проводят в режиме реального времени с температурой отжига праймеров 60°С при 40 циклах, при этом осуществляют непрерывный контроль флуоресценции и по экспоненциальному ее нарастанию диагностируют трансгенность растений.
RU2015153854A 2015-12-15 2015-12-15 Способ диагностики растительного материала на трансгенность RU2607372C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015153854A RU2607372C1 (ru) 2015-12-15 2015-12-15 Способ диагностики растительного материала на трансгенность

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015153854A RU2607372C1 (ru) 2015-12-15 2015-12-15 Способ диагностики растительного материала на трансгенность

Publications (1)

Publication Number Publication Date
RU2607372C1 true RU2607372C1 (ru) 2017-01-10

Family

ID=58452586

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015153854A RU2607372C1 (ru) 2015-12-15 2015-12-15 Способ диагностики растительного материала на трансгенность

Country Status (1)

Country Link
RU (1) RU2607372C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090239234A1 (en) * 2005-05-17 2009-09-24 Eppendorf Array Technologies S.A. Identification and/or quantification method of nucleotide sequence(s) elements specific of genetically modified plants on arrays
EP2118312A1 (en) * 2007-01-29 2009-11-18 Scientific Institute of Public Health (IPH) Transgenic plant event detection
RU2386698C1 (ru) * 2008-11-24 2010-04-20 Учреждение Российской академии наук Институт физиологии растений им. К.А. Тимирязева РАН Способ идентификации трансгенных последовательностей днк в растительном материале и продуктах на его основе
RU2009123913A (ru) * 2009-06-24 2010-12-27 Закрытое акционерное общество "НПФ ДНК-Технология" (RU) Способ выявления генно-инженерно-модифицированных организмов и источников растительного происхождения, не зарегистрированных в "государственном реестре пищевых продуктов, материалов и изделий, разрешенных для изготовления на территории российской федерации или ввоза на территорию российской федерации и оборота", геном которых содержит промотор 35 s и/или терминатор nos

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090239234A1 (en) * 2005-05-17 2009-09-24 Eppendorf Array Technologies S.A. Identification and/or quantification method of nucleotide sequence(s) elements specific of genetically modified plants on arrays
EP2118312A1 (en) * 2007-01-29 2009-11-18 Scientific Institute of Public Health (IPH) Transgenic plant event detection
RU2386698C1 (ru) * 2008-11-24 2010-04-20 Учреждение Российской академии наук Институт физиологии растений им. К.А. Тимирязева РАН Способ идентификации трансгенных последовательностей днк в растительном материале и продуктах на его основе
RU2009123913A (ru) * 2009-06-24 2010-12-27 Закрытое акционерное общество "НПФ ДНК-Технология" (RU) Способ выявления генно-инженерно-модифицированных организмов и источников растительного происхождения, не зарегистрированных в "государственном реестре пищевых продуктов, материалов и изделий, разрешенных для изготовления на территории российской федерации или ввоза на территорию российской федерации и оборота", геном которых содержит промотор 35 s и/или терминатор nos

Similar Documents

Publication Publication Date Title
Sawyer et al. Real-time PCR for quantitative meat species testing
KR20090078341A (ko) Dnaj 유전자를 사용한 박테리아의 검출, 및 그의 용도
Alemu Real-time PCR and its application in plant disease diagnostics
RU2607372C1 (ru) Способ диагностики растительного материала на трансгенность
JP2007174973A (ja) Ssrプライマーを用いるマルチプレックスpcrによる品種識別法。
WO2016203246A1 (en) Method
CN103509875B (zh) 应用RPA技术检测CaMV35S启动子和nos终止子
Akiyama et al. A screening method for the detection of the 35S promoter and the nopaline synthase terminator in genetically modified organisms in a real-time multiplex polymerase chain reaction using high-resolution melting-curve analysis
Chandra et al. Detection of Puccinia kuehnii causing sugarcane orange rust with a loop-mediated isothermal amplification-based assay
CN104830857B (zh) 转基因玉米mon88017品系特异定量pcr精准检测的引物和探针及方法
CN110564822B (zh) 基于LAMP技术的转基因玉米Bt176相关基因检测方法及试剂盒
Aslan et al. Nucleic Acid–Based Methods in the Detection of Foodborne Pathogens
KR101288419B1 (ko) 특정 프라이머 세트를 포함하는 배추무름병균을 검출하기 위한 등온증폭반응용 프라이머 조성물 및 상기 프라이머 세트를 이용하여 배추무름병균을 검출하는 방법
JP7091237B2 (ja) 遺伝子組換え作物の検出方法
Waeyenberge et al. Molecular identification of cereal cyst nematodes: status, prospects and recommendations
Ijaz et al. Molecular phytopathometry
CN103757110A (zh) 一种霍乱弧菌分析分型试剂盒
RU2763933C1 (ru) Тест-система для выявления мутации в гене btpkd собаки домашней (canis lupus familiaris), вызывающей поликистоз почек
RU2386698C1 (ru) Способ идентификации трансгенных последовательностей днк в растительном материале и продуктах на его основе
Bhattacharya Application of genomics tools in meat quality evaluation
Zhang et al. Development of a rapid event-specific loop-mediated isothermal amplification detection method for genetically modified maize NK603
CN106244713A (zh) 一种检测北京油鸡五趾性状的方法及应用
CN102482697B (zh) 用于定量生物样品中dna的改良方法
EP3245297A1 (en) Method and kit for identification of nematodes, forest plant pests, by real-time pcr
Oblap Determination of genetically modified rape and monitoring of its spread