RU2583574C1 - Способ получения галлия высокой чистоты - Google Patents

Способ получения галлия высокой чистоты Download PDF

Info

Publication number
RU2583574C1
RU2583574C1 RU2014150172/02A RU2014150172A RU2583574C1 RU 2583574 C1 RU2583574 C1 RU 2583574C1 RU 2014150172/02 A RU2014150172/02 A RU 2014150172/02A RU 2014150172 A RU2014150172 A RU 2014150172A RU 2583574 C1 RU2583574 C1 RU 2583574C1
Authority
RU
Russia
Prior art keywords
gallium
vacuum
crucibles
crucible
temperature
Prior art date
Application number
RU2014150172/02A
Other languages
English (en)
Inventor
Ахмедали Амиралы оглы Гасанов
Надежда Семёновна Горбачёва
Виктор Саввич Калимулин
Георгий Георгиевич Кознов
Александр Николаевич Почтарёв
Владимир Викторович Рыцарев
Андрей Борисович Синицын
Original Assignee
Открытое акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности ОАО "Гиредмет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности ОАО "Гиредмет" filed Critical Открытое акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности ОАО "Гиредмет"
Priority to RU2014150172/02A priority Critical patent/RU2583574C1/ru
Application granted granted Critical
Publication of RU2583574C1 publication Critical patent/RU2583574C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B58/00Obtaining gallium or indium

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к технологии редких и рассеянных элементов и может быть использовано при получении галлия высокой чистоты. Технический галлий подвергают вакуум-термической обработке в вакуумной камере с размещенными в ней графитовыми тиглями, соосно расположенными один над другим. В центре дна тиглей, расположенных над нижним тиглем, выполнен цилиндрический выступ, на боковой поверхности которого по периметру выполнены отверстия. Технический галлий загружают в нижний тигель, камеру вакуумируют до 1·10-3-1·10-5 мм рт.ст., нагревают до температуры 1400-1500°С в области нижнего тигля и поддерживают данную температуру в течение 2-6 часов. Галлий после вакуум-термической обработки подвергают трехкратной кристаллизационной очистке методом направленной кристаллизации при скорости роста кристалла 1 см/час. Техническим результатом является получение металлического галлия с содержанием галлия не менее 99,99999% по массе. 1 з.п. ф-лы, 2 ил., 2 пр.

Description

Изобретение относится к технологии редких и рассеянных элементов и может быть использовано при получении галлия высокой чистоты.
При использовании галлия для синтеза соединений, применяемых в электронной промышленности, предъявляются высокие требования к чистоте материала. Чистота металлического галлия определяется по содержанию галлия. Для электронной промышленности требуется галлий с содержанием галлия не менее 99,9999% по массе. Чистота галлия напрямую влияет на свойства синтезируемых соединений.
Известны различные способы получения галлия высокой чистоты, включающие химические, электрохимические, кристаллофизические и вакуум-термические методы очистки.
Так, например, известен способ получения галлия высокой чистоты, включающий промывку металла чистой кислотой (марка ХЧ) и дважды перегнанной водой, электролитическое рафинирование в растворе галлата, зонную плавку металла, образование пленки окислов с последующей фильтрацией и, наконец, длительное вакуумирование при температуре 900°С и вакууме 10-5 мм рт.ст (см. «Химия и технология редких и рассеянных элементов», ч. 1. Под ред. К.А. Большакова. Учеб. Пособие для вузов. Изд. 2-е, перераб. и доп. - М.: Высшая школа, 1976 г.).
Недостатком способа является его многостадийность, использование агрессивных сред.
Известен способ получения индия и галлия высокой чистоты методом электропереноса в магнитном поле. Метод основан на электропереносе в жидких металлах, помещенных в поперечное постоянное магнитное поле, получены индий и галлий высокой чистоты (7N). Определены значения относительного остаточного сопротивления (интегральной характеристики чистоты материалов) полученных индия (25000 отн. ед.) и галлия (85000 отн. ед.) и проведено их сравнение с другими марками этих металлов. Разработан способ эффективной финишной очистки высокочистых материалов для микро- и наноэлектроники с помощью поперечного электропереноса в магнитном поле (Preparation of high-purity indium and gallium via electrotransfer in a magnetic field. Trunin E.B., Trunina O.E. Inorganic Materials. 2003. T. 39. №8. C. 798-801).
Недостатками способа являются невозможность использования в качестве исходного металла галлия марки чистотой 99,99% по массе и более грязного, низкая производительность.
Известен способ получения индия высокой чистоты, включающий вакуум-термическую обработку индия. При этом вакуум-термическую обработку проводят в две стадии. На первой стадии ее проводят при температуре 1000-1350°С, получают три конденсированные фракции, одна из которых обогащена труднолетучими примесями, другая содержит сконденсированные возгоны, обогащенные легколетучими примесями, а третья очищена от труднолетучих и легколетучих примесей. Третью фракцию направляют на вторую стадию вакуум-термической обработки, которую осуществляют при температуре 1100-1200°С и на которой металлический индий очищают от примесей со средней степенью летучести. Техническим результатом является получение продукта, содержащего индия не менее 99,9999% мас.
Данный способ не позволяет очистить металлический галлий от трудноудаляемых примесей и получить галлий высокой чистоты.
Известен способ рафинирования цветных металлов, который осуществляют в аппарате для разделения галлия и мышьяка при очистке вторичного сырья. При этом в аппарате нагреватель выполнен цилиндрическим в виде стакана с нижним токовводом, в полости которого размещены на подставке колонка испарительных тарелей, разделенная конфузорной тарелью на две секции, а сверху испарительные тарели накрыты водоохлаждаемым конденсатором. Более летучие примеси (мышьяк) по отношению к галлию возгоняются и конденсируются на водоохлаждаемом конденсаторе. Очищенный металлический галлий остается в кубовом остатке. Технический результат: предлагаемый аппарат позволяет перерабатывать твердые кусковые материалы с высокой селективностью разделения галлия и мышьяка, мышьяк выделяется в компактном металлическом безопасном виде на легкосъемном конденсаторе (Патент РФ №2160788 от 20.12.2000 г.). Способ позволяет очищать галлий от мышьяка, но не обеспечивает получение галлия высокой чистоты.
Известен способ получения высокочистого галлия марки 6N, включающий операции нитрирования, окисления, экстракции примесей металлами и неорганическими растворителями, кристаллизационной очистки, нагревания в вакууме, электролиз. Нагревание в вакууме осуществляют при температуре 600-1050°С для удаления примесей ртути, цинка, магния, кальция, меди, свинца. Для кристаллизационной очистки используют направленную кристаллизацию, зонную плавку и выращивание слитков по методу Чохральского. Технологические операции позволяют получать галлий марки Гл000. При заключительной операции выращивания слитков по методу Чохральского чистота галлия не менее чем на порядок снижается по сравнению с маркой Гл000. («Химия и технология галлия». Иванова Р.В. - М.: Металлургия, 1973 г., стр. 327-368). Недостатком этого процесса является многостадийность, низкая производительность процесса выращивания монокристалла галлия.
Способ принят за прототип.
Техническим результатом заявленного изобретения является получение металлического галлия с содержанием галлия не менее 99,99999% по массе.
Технический результат достигается тем, что в способе получения галлия высокой чистоты, включающем кристаллизационную очистку технического галлия, согласно изобретению перед кристаллизационной очисткой галлий подвергают вакуум-термической обработке в вакуумной камере с размещением в ней графитовых тиглей, соосно расположенных один над другим, причем тигли, расположенные над нижним тиглем, выполнены с цилиндрическим выступом в центре дна тиглей и с отверстиями по периметру на боковой поверхности, а технический галлий загружают в нижний тигель, камеру вакуумируют до 1·10-3÷1·10-5 мм рт.ст., нагревают до температуры 1400-1500°C в области нижнего тигля и поддерживают данную температуру в течение 2-6 часов, при этом галлий после вакуум-термической обработки подвергают трехкратной кристаллизационной очистке методом направленной кристаллизации при скорости роста кристалла 1 см/час, и в вакуумной камере установлены один над другим четыре тигля.
Сущность способа заключается в следующем. Металлический галлий чистотой 99,99% по массе перед кристаллизационной очисткой подвергают вакуум-термической обработке при температуре 1400-1500°C в вакууме 1·(10-3-10-5) мм рт.ст. На стадии вакуум-термической обработки галлий очищается от большинства присутствующих примесей (Pb, Sb, Tl, Bi, Ni, Mg, Zn, Cd, As, Bi, Sb, S, Se, Cu, Sn). Очищенный вакуум-термической обработкой галлий подвергают трехкратной кристаллизационной очистке методом направленной кристаллизации при скорости роста кристалла 1 см/час. Проведение операций вакуумной и кристаллизационной очистки галлия обеспечивает получение высокочистого галлия с содержанием галлия не ниже 99,99999% по весу.
Обоснование заявленных параметров процесса.
Проведение термообработки галлия при температуре ниже 1400°С не позволяет отделить труднолетучие примеси от основной массы очищаемого галлия из-за низкой летучести Cu, Sn, Pb.
Увеличение температуры выше 1500°С приводит к снижению производительности процесса за счет конденсирования части галлия с примесями.
Проведение термообработки галлия при вакууме ниже 1×10-3 и продолжительности процесса менее 2 часов не обеспечивает глубокого удаления примесей.
Проведение термообработки галлия при вакууме выше 1×10-5 и продолжительности процесса более 6 часов не оказывает существенного влияния на глубину очистки.
Использование менее четырех тиглей для термообработки галлия приводит к потерям галлия за счет улетучивания из тиглей.
Использование более четырех тиглей для термообработки галлия необоснованно увеличивает размеры вакуум-термической камеры.
На рисунке 1 схематически изображено устройство для вакуум-термической обработки галлия.
Устройство включает: вакуумную камеру 1, нижний графитовый тигель с загрузкой 2, верхние графитовые тигли 3 и нагреватель 4, установленный под нижним тиглем.
На рисунке 2 схематически изображен верхний тигель, в центре дна которого выполнен цилиндрический выступ, на боковой поверхности выступа по периметру выполнены отверстия (разрез тигля по оси).
Примеры осуществления способа.
Пример №1.
Вакуум-термическую очистку галлия проводили в вакуумной камере в установленных в ней четырех графитовых тиглях, соосно расположенных друг над другом. Пять килограммов галлия с содержанием галлия 99,99% по массе загружали в нижний тигель 2, помещали в вакуумную камеру 1, устанавливали над нижним тиглем соосно ему еще три графитовых тигля 3 и откачивали вакуумную камеру до степени 5×10-3 мм рт. ст. Температуру в зоне нижнего тигля 2 поднимали до 1400°С. Процесс вакуум-термической обработки проводили в течение 2 часов. После охлаждения сконденсированный материал, обогащенный примесями, из верхних тиглей 3 в количестве 67 граммов отделяли, а очищенный металл из нижнего тигля 2 подвергали трехкратной кристаллизационной очистке в кристаллизаторе из титана при скорости роста кристалла 1 см/час. После кристаллизации 90% металлического галлия обогащенную примесями жидкую фазу сливали, а очищенный галлий расплавляли и проводили повторную кристаллизацию. После третьей кристаллизации от очищенного галлия отбирали пробу и анализировали. Содержание галлия в металле после очистки не менее 99,99999% по массе.
Пример №2.
Тринадцать килограммов галлия с содержанием галлия 99,99% по массе загружали в тигель №1 и откачивали вакуум до степени 5×10-5 мм рт. ст. Температуру в зоне тигля №1 поднимали до 1500°С. Процесс вакуум-термической обработки проводили в течение 6 часов. После охлаждения сконденсированный материал, обогащенный примесями из тиглей №2-4, в количестве 213 граммов отделяли, а очищенный металл из нижнего тигля подвергали трехкратной кристаллизационной очистке при скорости роста кристалла 1 см/час. После кристаллизации 90% металлического галлия обогащенную примесями жидкую фазу сливали, а очищенный галлий расплавляли и проводили повторную кристаллизацию. После третьей кристаллизации от очищенного галлия отбирали пробу и анализировали. Содержание галлия в металле после очистки не менее 99,99999% по массе.
Из приведенных данных видно, что использование предлагаемого способа по сравнению с известным позволяет получать металлический галлий с содержанием галлия не менее 99,99999% по массе.

Claims (2)

1. Способ получения галлия высокой чистоты, включающий кристаллизационную очистку технического галлия, отличающийся тем, что перед кристаллизационной очисткой технический галлий подвергают вакуум-термической обработке в вакуумной камере с размещением в ней графитовых тиглей, соосно расположенных один над другим, причем тигли, расположенные над нижним тиглем, выполнены с цилиндрическим выступом в центре дна тиглей и с отверстиями по его периметру на боковой поверхности, технический галлий загружают в нижний тигель, камеру вакуумируют до 1·10-3÷1·10-5 мм рт.ст., нагревают ее до температуры 1400-1500°C в области нижнего тигля и поддерживают данную температуру в течение 2-6 часов, при этом галлий после вакуум-термической обработки подвергают трехкратной кристаллизационной очистке методом направленной кристаллизации при скорости роста кристалла 1 см/час.
2. Способ по п. 1, отличающийся тем, что в вакуумной камере устанавливают четыре тигля.
RU2014150172/02A 2014-12-11 2014-12-11 Способ получения галлия высокой чистоты RU2583574C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014150172/02A RU2583574C1 (ru) 2014-12-11 2014-12-11 Способ получения галлия высокой чистоты

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014150172/02A RU2583574C1 (ru) 2014-12-11 2014-12-11 Способ получения галлия высокой чистоты

Publications (1)

Publication Number Publication Date
RU2583574C1 true RU2583574C1 (ru) 2016-05-10

Family

ID=55960035

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014150172/02A RU2583574C1 (ru) 2014-12-11 2014-12-11 Способ получения галлия высокой чистоты

Country Status (1)

Country Link
RU (1) RU2583574C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110344081A (zh) * 2019-06-24 2019-10-18 北京科技大学 一种湿法化学-电化学组合精炼制备高纯镓的方法
RU2819851C2 (ru) * 2022-07-22 2024-05-27 Федеральное государственное унитарное предприятие "Комбинат "Электрохимприбор" (ФГУП "Комбинат "Электрохимприбор") Способ получения металлического галлия

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1452230A (en) * 1974-06-06 1976-10-13 Gen Electric Co Ltd Methods and apparatus for removing impurities from liquid metals electrolytically
US5458669A (en) * 1992-10-28 1995-10-17 Sumitomo Chemical Company, Limited Process for purification of gallium material
RU2160788C2 (ru) * 1996-08-26 2000-12-20 Зао "Нок-Рем" Вакуумный аппарат
RU2224038C2 (ru) * 2002-01-17 2004-02-20 ОАО Научно-исследовательский институт материалов электронной техники Способ получения галлия высокой чистоты

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1452230A (en) * 1974-06-06 1976-10-13 Gen Electric Co Ltd Methods and apparatus for removing impurities from liquid metals electrolytically
US5458669A (en) * 1992-10-28 1995-10-17 Sumitomo Chemical Company, Limited Process for purification of gallium material
RU2160788C2 (ru) * 1996-08-26 2000-12-20 Зао "Нок-Рем" Вакуумный аппарат
RU2224038C2 (ru) * 2002-01-17 2004-02-20 ОАО Научно-исследовательский институт материалов электронной техники Способ получения галлия высокой чистоты

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ИВАНОВА Р.В. Химия и технология галлия, М., Металлургия, 1973, с.327-337. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110344081A (zh) * 2019-06-24 2019-10-18 北京科技大学 一种湿法化学-电化学组合精炼制备高纯镓的方法
CN110344081B (zh) * 2019-06-24 2020-11-27 北京科技大学 一种湿法化学-电化学组合精炼制备高纯镓的方法
RU2819851C2 (ru) * 2022-07-22 2024-05-27 Федеральное государственное унитарное предприятие "Комбинат "Электрохимприбор" (ФГУП "Комбинат "Электрохимприбор") Способ получения металлического галлия

Similar Documents

Publication Publication Date Title
US4362560A (en) Process for producing high-purity gallium
KR850001739B1 (ko) 편석을 이용한 금속 정제 공정
JP2012508154A (ja) 冶金級シリコンを精錬してソーラー級シリコンを生産するための方法及び装置
JP3838716B2 (ja) ビスマスの精製方法
JP3842851B2 (ja) インジウムの精製方法
JP3838717B2 (ja) マグネシウムの精製方法
US7955414B2 (en) Method and device for metal purification and separation of purified metal from metal mother liquid such as aluminium
JP2006283192A (ja) 高純度インジウム
CN107326199A (zh) 一种脱除镓中杂质锌汞的连续生产方法
KR20140037277A (ko) 고순도 칼슘 및 이의 제조 방법
JP5925384B2 (ja) 高純度マンガンの製造方法及び高純度マンガン
RU2583574C1 (ru) Способ получения галлия высокой чистоты
JPH0273929A (ja) 部分固化によるガリウム精製法
JP5944666B2 (ja) 高純度マンガンの製造方法
RU2748846C1 (ru) Способ получения металлического скандия высокой чистоты
WO2012050410A1 (en) Method of purification of silicon
JP3838712B2 (ja) アンチモンの精製方法
JP7403118B2 (ja) 金属の回収方法及び窒化ガリウムの製造方法
CN101668701B (zh) 金属硅的精制方法和硅块的制造方法
JP3838713B2 (ja) 亜鉛の精製方法
JP3838744B2 (ja) 高純度セレンの製造方法
JP4899034B2 (ja) 化合物半導体作成用のガリウム原料
JP3838743B2 (ja) 高純度カドミウムの製造方法
JPH0213032B2 (ru)
JP2002256355A (ja) ガリウムおよびインジウムの回収方法