RU2576414C2 - Охлаждающее устройство - Google Patents

Охлаждающее устройство Download PDF

Info

Publication number
RU2576414C2
RU2576414C2 RU2014120600/06A RU2014120600A RU2576414C2 RU 2576414 C2 RU2576414 C2 RU 2576414C2 RU 2014120600/06 A RU2014120600/06 A RU 2014120600/06A RU 2014120600 A RU2014120600 A RU 2014120600A RU 2576414 C2 RU2576414 C2 RU 2576414C2
Authority
RU
Russia
Prior art keywords
branch
alloy
antimony
thermocouple
temperature
Prior art date
Application number
RU2014120600/06A
Other languages
English (en)
Other versions
RU2014120600A (ru
Inventor
Василий Иванович Бочегов
Александр Сергеевич Парахин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Курганский государственный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Курганский государственный университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Курганский государственный университет"
Priority to RU2014120600/06A priority Critical patent/RU2576414C2/ru
Publication of RU2014120600A publication Critical patent/RU2014120600A/ru
Application granted granted Critical
Publication of RU2576414C2 publication Critical patent/RU2576414C2/ru

Links

Images

Abstract

Изобретение относится к твердотельной криогенике, а именно к холодильникам на эффекте Пельтье с применением магнитного поля (продольный гальвано-термомагнитный эффект), и может быть использовано при охлаждении малых объектов. В охлаждающем устройстве, содержащем термоэлемент с n-ветвью 10 из сплава Bi-Sb и пассивной p-ветвью 9 из металла, размещенный в магнитном поле, n-ветвь выполнена с монотонно увеличивающейся по ее длине от горячего спая к холодному концентрацией сурьмы в сплаве, которая вычисляется по формуле
∇C=∇T·(Eg/Tг· δ
Figure 00000017
),
где ∇C - градиент концентрации сурьмы в сплаве, ат%·см-1, Eg - среднее значение ширины зазора между валентной зоной и зоной проводимости n-ветви, мэВ, Тг - температура горячего спая термоэлемента, К, ∇Т - градиент температуры по n-ветви, К/см, δ - быстрота нарастания ширины зазора между валентной зоной и зоной проводимости в сплаве с увеличением содержания сурьмы, мэВ/ат%. Повышение термоэлектрической эффективности достигается компенсацией продольного изменения (градиента) напряженности электрического поля поперечных гальвано- и термомагнитных эффектов, вызванного перепадом температуры по длине ветви, изменением концентрации сурьмы в сплаве вдоль ветви. 1 ил.

Description

Изобретение относится к твердотельной криогенике, а именно к холодильникам на эффекте Пельтье с применением магнитного поля (продольный гальвано-термомагнитный эффект), и может быть использовано при охлаждении малых объектов.
Целью изобретения является повышение термоэлектрической эффективности (добротности) устройства (термопары) Z0. При этом [6]:
Figure 00000001
где α - коэффициент термоэдс термопары, κ1, κ2 и ρ1, ρ2 - коэффициент теплопроводности и удельное сопротивление первого и второго элемента термопары соответственно. Известно, что материал, используемый в работающих термоэлектрических устройствах (термоэлектрических генераторах или холодильниках) всегда должен иметь градиент температуры. В связи с этим, если материал однороден по составу в направлении градиента температуры, не все части (слои) материала имеют оптимальные параметры для данной температуры слоя. В работах [1, 2] показано, что для оптимизации функционирования термоэлектрического преобразователя параметры α, κ и ρ используемого в нем термоэлектрического материала должны быть переменны в направлении температурного градиента. За счет этого эффективность работы преобразователя повышается (повышается добротность материала). Кроме этого, добротность материала дополнительно можно увеличить за счет воздействия на него магнитного поля [3]. Однако при наличии температурного градиента магнитное поле создает стационарный гальваномагнитный вихрь плотности тока, так как в однородном по составу материале коэффициент Холла различен при разных температурах. Это так же ухудшает некоторые параметры материала (удельное сопротивление) [4], определяющее, наряду с другими параметрами, его добротность. При этом удельное сопротивление материала с градиентом температуры <ρ> в магнитном поле возрастает по сравнению с сопротивлением ρ0 того же материала при той же средней температуре в таком же магнитном поле, но без градиента температуры в соответствии с выражением
Figure 00000002
где α - размер термоэлемента в направлении поля Холла, β - тангенс угла Холла, К - параметр неоднородности материала, вызванной изменением температуры или состава в его объеме и определяемой как
Figure 00000003
здесь n - концентрация носителей заряда в материале термоэлемента, х - продольная координата в объеме термоэлемента. В соответствии с выражением (2) величины <ρ> и ρ0 будут равны друг другу в единственном случае, когда (K·α·β)=0, а во всех остальных случаях 〈ρ〉>ρ0 в (К·α·β/2)·coth (K·α·β/2) раз, появляется дополнительный прирост сопротивления (магнитосопротивления), вызванный стационарным вихревым током. В соответствии с выражением (1) термоэлектрическая эффективность (добротность) в этом случае уменьшается. Ухудшения эффективности можно избежать путем приближения величины (К·α·β) к нулю за счет минимизации производной в выражении (3). Для полупроводниковых термоэлектрических материалов, каковым является и сплав Bi-Sb при составе 12÷15 ат% сурьмы, соответствующем наибольшей термоэлектрической эффективности, справедливо
Figure 00000004
где n0 - некая константа, Eg - ширина запрещенной зоны полупроводника (ширина зазора между валентной зоной и зоной проводимости), k - постоянная Больцмана, Т - абсолютная температура. При работе термопары в режиме Пельтье можно считать
Figure 00000005
Тг - температура горячего спая ветвей термопары, К, ∇T=∂Т/∂х - градиент температуры по ветвям термопары, в том числе по n-ветви К/см, x - продольная координата, отсчитанная от горячего спая термопары, см. Если выполнить элемент (n ветвь) термопары из сплава Bi-Sb переменного состава вдоль координаты х, то можно предположить, что ширина запрещенной зоны Eg (ширина зазора между валентной зоной и зоной проводимости) в этой ветви будет также функцией координаты х, так как известно, что ширина запрещенной зоны этого сплава зависит от концентрации сурьмы С в нем. То есть
Figure 00000006
Учитывая это обстоятельство, можно утверждать, что
Figure 00000007
С учетом выражений (4)-(7) и на основании (3) получим
Figure 00000008
здесь ∇C=∂С/∂х - градиент концентрации сурьмы в сплаве, из которого выполнена n-ветвь, δ=∂Eg/∂C- δ - скорость изменения (нарастания) ширины зазора между валентной зоной и зоной проводимости в сплаве с увеличением содержания сурьмы, мэВ/ат%, Т - температура материала n-ветви, которую можно считать равной температуре горячего спая термопары (Т=Тг), Eg - усредненная ширина зазора между валентной зоной и зоной проводимости (ширина запрещенной зоны) в материале n-ветви. Из этого последнего выражения (8) следует, что величина К может стать нулевой даже при наличии температурной неоднородности (при ∇T≠0), если значение числителя справа от знака равенства будет равно нулю, то есть если выполнится условие (Eg·∇T)/Тг-δ·∇C=0 или, что все равно
Figure 00000009
где ∇C - градиент концентрации сурьмы в сплаве, из которого выполнена n-ветвь, ат%·см-1, Eg - среднее значение ширины зазора между валентной зоной и зоной проводимости n-ветви, мэВ, ∇T - градиент температуры по n-ветви, К/см, δ - скорость нарастания ширины зазора между валентной зоной и зоной проводимости в сплаве с увеличением содержания сурьмы, мэВ/ат%, Тг - температура горячего спая термоэлемента, К.
Обнуление параметра неоднородности К означает устранение гальваномагнитного вихря плотности тока за счет взаимной компенсации температурной неоднородности и неоднородности состава сплава и, как следствие, устранение дополнительного прироста магнитосопротивления и повышение магнитотермоэлектрической добротности материала n-ветви и устройства Пельтье охладителя с использованием такого материала. Если считать, что градиент температуры в ветви термопары постоянен (изменение температуры линейно вдоль нее), то очевидно, что для выполнения условия (9) по всему объему материала величина δ также должна быть постоянной. Известно что изменение ширины запрещенной зоны в сплавах Bi-Sb происходит практически линейно с изменением концентрации сурьмы при низких температурах 100К от максимального значения E g max 24  мэВ
Figure 00000010
при С≈12 ат% до нуля при С≈22 ат% значит для выполнения условия δ=konst, нужно чтобы и ∇C=konst, то есть чтобы концентрация сурьмы в материале менялась линейно по длине ветви термопары или близко к этому, то есть монотонно убывала или монотонно возрастала. Таким образом при обеспечении условия монотонного (в частности, линейного) изменения концентрации сурьмы в сплаве, из которого выполнена n-ветвь (элемент) термопары, зависимость ширины запрещенной зоны (ширины зазора между валентной зоной и зоной проводимости в электронном спектре) сплава от продольной координаты х,отсчитанной от горячего спая, можно представить подобно температуре в формуле (5) таким образом
Figure 00000011
где E g г
Figure 00000012
- энергетический зазор в материале n-ветви термопары в непосредственной близости от горячего спая.
В материалах со слабым или нулевым эффектом Холла тангенс угла Холла β→0 (стремится к нулю),поэтому в них не возникает гальваномагнитного вихря и дополнительного прироста сопротивления, так как в этом случае величина (К·α·β/2)·coth (K·α·β/2) в формуле (2) стремится к единице. К таким материалам относится большинство металлов с большой концентрацией носителей заряда (электронов), поэтому их можно использовать в термоэлектрических устройствах в качестве второй пассивной ветви термопары,работающей в магнитном поле.
Таким образом, для повышения холодопроизводительности, КПД и т.д. у термоэлектрических устройств с n-ветвью на основе полупроводниковых бинарных сплавов, таких как сплав Bi-Sb, а другой ветвью пассивной, выполненной, например, из металла и работающей в магнитном поле, при наличии градиента температуры по направлению длины термоэлектрического элемента, необходимо увеличить термоэлектрическую добротность этих сплавов путем создания монотонного, в частности близкого к линейному распределения компонентов сплава по длине n-ветви в соответствии с формулой (9).
Наиболее близким по сути к заявляемому является изобретение RU 2315250 (20.01.2008), в котором предлагаются способы получения многокомпонентных термоэлектрических материалов на основе теллуридов висмута кристаллизацией расплава исходного материала на поверхность вращающегося барабана с последующим брикетированием полученных таким образом лент путем прессования, пластической деформации сдвига и термической обработкой в макрооднородные по составу элементы n и ρ типа (в зависимости от исходного состава). В этом же изобретении предлагаются конструкции термоэлектрических устройств на основе полученных таким способом материалов. По п. 17 формулы этого изобретения в предлагаемых конструкциях возможно использование магнитного поля. В отличие от предлагаемого устройства, изобретение RU 2315250 не обеспечивает компенсации с помощью заданной неоднородностьи состава ухудшения термоэлектрических параметров материала, вызываемых неизбежным в процессе их функционирования в магнитном поле наличием градиента температуры.
Пример:
На чертеже представлен общий вид предлагаемого устройства.
Устройство имеет два полосовых постоянных магнита 1, магнитопроводы 2, полюсы магнитной системы 3 с плоскими внутренними поверхностями для обеспечения однородного магнитного поля, теплоотвод от горячего спая термоэлемента (радиатор) 4, электроизоляционный теплопереход 5, подводящие электрические контакты для n-ветви 6 и ρ-ветви 7, коммутационная шина холодного спая 8 и сам термоэлемент, состоящий из ρ-ветви 9 и n-ветви 10.
Для уменьшения магнитного сопротивления в магнитном контуре в качестве ρ-ветви использовано армкожелезо (ферромагнетик). В качестве n-ветви использован монокристалл сплава Bi-Sb со средним содержанием сурьмы С=13 ат% [1, 2]. Плоскость спайности кристалла ориентирована вдоль магнитного поля и длины ветви. Конструкция устройства позволяет горизонтальным перемещением полюсов изменять ширину зазора между ними и тем самым величину индукции магнитного поля, пронизывающего термоэлемент, при заданной поляризации постоянного магнита. В данном случае величина магнитного поля 0,1 Тл (оптимальная для данного состава n-ветви и ее кристаллографической ориентации [1, 2]).
Устройство подключается с помощью контактов 6 и 7 к внешнему источнику электрического питания с направлением тока от n-ветви к ρ-ветви. При протекании тока по термоэлементу (ветви 9 и 10) в контакте 8 происходит поглощение тепла Пельтье (понижение температуры), а на контактах 6 и 7 - выделение тепла Пельтье (повышение температуры). Если магнитное поле и состав однородны по всему объему n-ветви, то перепад температуры в термоэлементе приводит к неоднородности концентрации носителей тока вдоль n-ветви, выполненной из полупроводникового сплава Bi-Sb, а значит, к появлению неоднородности поперечного электрического поля, например поля Холла. Это вызывает вихревые токи, приводящие, в свою очередь, к дополнительному приросту магнетосопротивления и выделению дополнительной тепловой мощности в ветви устройства, что ухудшает термоэлектрическую эффективность охлаждающего устройства. Если пренебречь поперечными термомагнитными эффектами (эффект Нернста-Эттинсгаузена), а это вполне обоснованно, так как при токах в единицы и десятки ампер и градиентах температуры в единицы К/см, что соответствует работе термоэлемента в режиме холодильника, поперечные термомагнитные эффекты (ЭДС эффекта Нернста-Эттинскгаузена) на два порядка меньше, чем эффект Холла (его ЭДС), тогда мощность вихревых токов РВихр, отнесенная к потребляемой мощности без учета вихря, может быть определена следующим образом
Figure 00000013
где А - коэффициент, зависящий от угла Холла, а - поперечный размер n-ветви (в направлении поля Холла), ∇Т - градиент температуры вдоль термопары, в том числе и вдоль n-ветви.
При наличии неоднородности состава n-ветви, от вихревых токов, а значит, и от дополнительного тепла, выделяемого за счет этих токов, можно избавиться. Расчет этой неоднородности состава n-ветви проводится следующим образом. Рассчитывается возможный перепад температуры на термопаре без учета неоднородности для данного магнитного поля, температуры горячего спая, среднего значения состава сплава n-ветви при оптимальном токе питания. В нашем случае при индукции магнитного поля 0,1 Тл, среднем количестве сурьмы 13 ат%, температуре горячего спая 100 К, перепад температуры будет ≈5 К. При высоте термопары 1 см, как в нашем случае, градиент температуры ∇T будет равен 5 К/см. При среднем количестве (концентрации) сурьмы 13 ат% ширина энергетического зазора между валентной зоной и зоной проводимости E g г 20  мэВ
Figure 00000014
, скорость нарастания ширины зазора между валентной зоной и зоной проводимости с увеличением концентрации сурьмы δ≈2 мэВ/ат%.
В соответствии с формулой (9) значение градиента концентрации сурьмы по длине n-ветви, которое обеспечивает устранение вихревых токов будет равно -0,5 ат%·см-1. Знак «-» означает, что увеличению температуры должно соответствовать уменьшение содержания сурьмы в материале n-ветви. Экспериментально отсутствие вихревых токов можно проверить по равенству Холловских ЭДС на различной высоте n-ветви или по равенству падений напряжения на противоположных боковых гранях этой ветви, параллельных магнитному полю. Вихревые токи в ρ-ветви отсутствуют при любых условиях, так как в металле практически отсутствуют поперечные эффекты.
Примечание: поскольку состав сплава (концентрация сурьмы) вблизи горячего спая ветви термопары отличается от среднего по всей длине всего на 0,25 ат% (примерно на 0,01 долю), то в расчетную формулу (9) вместо величины усредненного энергетического зазора можно подставить значение энергетического зазора соответствующего составу сплава ветви термопары вблизи горячего спая и ошибка в расчете не будет превышать 2,5%
Обозначения:
1 - два полосовых постоянных магнита;
2 - магнитопроводы;
3 - полюсы магнитной системы с плоскими внутренними поверхностями для обеспечения однородного магнитного поля;
4 - теплоотвод от горячего спая термоэлемента (радиатор);
5 - электроизоляционный теплопереход;
6 - шина электрического контакта n-ветви;
7 - шина электрического контакта ρ-ветви;
8 - коммутационная шина холодного спая;
9 - ρ-ветвь;
10 - n-ветви.
Список близких по сути публикаций и изобретений
1. Марков О.И. Зависимость эффективности ветви термоэлемента от распределения концентрации носителей / О.И. Марков // ЖТФ. 2005. Т. 75. В. 2. С. 62-66.
2. Марков О.И. Об оптимизации концентрации носителей заряда ветви охлаждающего термоэлемента / О.И. Марков // ЖТФ. 2005. Т. 75. - В. 6. С. 132-133.
3. Земсков B.C., Белая А.Д., Бородин П.Г. Термоэлектрическая и магнитотермоэлектрическая добротности висмута и твердых растворов системы висмут - сурьма // Неорганические материалы. - 1982. - Т. 18. - №7. - С.1154-1157.
4. Иванов Г.А., Бочегов В.И., Парахин А.С. Влияние неоднородных внешних условий на кинетические свойства полупроводников. - В сб. Физика твердого тела. - Барнаул, БГПИ, 1982.
5. RU 2315250 (20.01.2008).
6. Анатычук Л.И. Термоэлементы и термоэлектрические устройства. Справочник. - Киев. Наук. Думка, 1979.
7. Переход полуметалл-полупроводник в сплавах висмут-сурьма. / В.М. Грабов, Г.А. Иванов, В.Л. Налетов, В.С. Понарядов, Т.А. Яковлева // ФТТ. - 1969. - Т. 11, №12. - С. 3653-3655.
Источники [1-4], [6,7] используются в разъяснительной части сути изобретения в описании.
Наиболее близким по сути к заявляемому является изобретение [5], в котором предлагаются способы получения многокомпонентных термоэлектрических материалов на основе теллуридов висмута кристаллизацией расплава исходного материала на поверхность вращающегося барабана с последующим брикетированием полученных таким образом лент путем прессования, пластической деформации сдвига и термической обработкой в макрооднородные по составу элементы n и ρ типа (в зависимости от исходного состава). В этом же изобретении [5] предлагаются конструкции термоэлектрических устройств на основе полученных таким способом материалов. По п. 17 формулы изобретения [5] в предлагаемых конструкциях возможно использование магнитного поля.

Claims (1)

  1. Охлаждающее устройство, содержащее термоэлемент с n-ветвью из сплава Bi-Sb и пассивной p-ветвью из металла, размещенный в магнитном поле, отличающееся тем, что n-ветвь выполнена с монотонно увеличивающейся по ее длине от горячего спая к холодному концентрацией сурьмы в сплаве, увеличение концентрации сурьмы определяется по формуле
    C = T ( E g / T Г δ ) ,
    Figure 00000015

    где ∇C - градиент концентрации сурьмы в сплаве, ат%·см-1, Eg - среднее значение ширины зазора между валентной зоной и зоной проводимости n-ветви, мэВ, Тг - температура горячего спая термоэлемента, К, ∇T - градиент температуры по n-ветви, К/см, δ
    Figure 00000016
    - быстрота нарастания ширины зазора между валентной зоной и зоной проводимости в сплаве с увеличением содержания сурьмы, мэВ/ат%.
RU2014120600/06A 2014-05-21 2014-05-21 Охлаждающее устройство RU2576414C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014120600/06A RU2576414C2 (ru) 2014-05-21 2014-05-21 Охлаждающее устройство

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014120600/06A RU2576414C2 (ru) 2014-05-21 2014-05-21 Охлаждающее устройство

Publications (2)

Publication Number Publication Date
RU2014120600A RU2014120600A (ru) 2015-11-27
RU2576414C2 true RU2576414C2 (ru) 2016-03-10

Family

ID=54753388

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014120600/06A RU2576414C2 (ru) 2014-05-21 2014-05-21 Охлаждающее устройство

Country Status (1)

Country Link
RU (1) RU2576414C2 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030042497A1 (en) * 2000-05-02 2003-03-06 Gerhard Span Thermoelectric element
RU2315250C2 (ru) * 2001-02-09 2008-01-20 БССТ, ЛЛСи Термоэлектрическое устройство повышенной эффективности с использованием тепловой изоляции
RU131238U1 (ru) * 2013-01-31 2013-08-10 Общество с ограниченной ответственностью "СмС тензотерм Рус" Охлаждающая многослойная структура
US20130269739A1 (en) * 2012-01-16 2013-10-17 Samsung Electronics Co., Ltd. Nano-complex thermoelectric material, and thermoelectric module and thermoelectric apparatus including the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030042497A1 (en) * 2000-05-02 2003-03-06 Gerhard Span Thermoelectric element
RU2315250C2 (ru) * 2001-02-09 2008-01-20 БССТ, ЛЛСи Термоэлектрическое устройство повышенной эффективности с использованием тепловой изоляции
US20130269739A1 (en) * 2012-01-16 2013-10-17 Samsung Electronics Co., Ltd. Nano-complex thermoelectric material, and thermoelectric module and thermoelectric apparatus including the same
RU131238U1 (ru) * 2013-01-31 2013-08-10 Общество с ограниченной ответственностью "СмС тензотерм Рус" Охлаждающая многослойная структура

Also Published As

Publication number Publication date
RU2014120600A (ru) 2015-11-27

Similar Documents

Publication Publication Date Title
Jaworski et al. Spin-Seebeck effect: A phonon driven spin distribution
Liu et al. Metal-insulator transition in SrTiO 3− x thin films induced by frozen-out carriers
JP2009130070A (ja) スピン流熱変換素子及び熱電変換素子
JP7252692B2 (ja) 熱電デバイス、デバイスを冷却するための方法、および電気的エネルギーを発生させるための方法
Hadano et al. Thermoelectric and magnetic properties of a narrow-gap semiconductor FeGa3
Chen et al. Leveraging bipolar effect to enhance transverse thermoelectricity in semimetal Mg2Pb for cryogenic heat pumping
Pan et al. Ultrahigh transverse thermoelectric power factor in flexible Weyl semimetal WTe2
Goldsmid et al. The seebeck and peltier effects
Goldsmid et al. The thermoelectric and related effects
Rouleau et al. Measurement system of the Seebeck coefficient or of the electrical resistivity at high temperature
Yamashita Effect of temperature dependence of electrical resistivity on the cooling performance of a single thermoelectric element
RU2576414C2 (ru) Охлаждающее устройство
Yamashita et al. Effect of geometrical shape on magneto–Peltier and Ettingshausen cooling in Bi and Bi 0.88 Sb 0.12 polycrystals
Levin et al. Stability and normal zone propagation speed in YBCO coated conductors with increased interfacial resistance
Tomita et al. Large Nernst effect and thermodynamics properties in Weyl antiferromagnet
Mahan Parallel thermoelectrics
Alasli et al. High-throughput imaging measurements of thermoelectric figure of merit
Taylor et al. A model for the non-steady-state temperature behaviour of thermoelectric cooling semiconductor devices
Wang et al. Study of voltage-controlled characteristics for thermoelectric coolers
Fujiki et al. Development on measurement method for Thomson coefficient of thin film
Uchida et al. Hybrid Transverse Magneto‐Thermoelectric Cooling in Artificially Tilted Multilayers
Furubayashi et al. Transient Observation of Peltier Effect for PtSix-Coated n-Type Silicon: Cooler for 4H-SiC-Based Power Devices
Garrido et al. Thomson Power in the Model of Constant Transport Coefficients for Thermoelectric Elements
Fukuda et al. Performance Estimation of Silicon-Based Self-Cooling Device
Nikiforov et al. Ferromagnetism and transport properties of the Kondo system Ce4Sb1. 5Ge1. 5

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160522