RU2567850C1 - Способ пеленгования воздушного объекта - Google Patents

Способ пеленгования воздушного объекта Download PDF

Info

Publication number
RU2567850C1
RU2567850C1 RU2014125677/07A RU2014125677A RU2567850C1 RU 2567850 C1 RU2567850 C1 RU 2567850C1 RU 2014125677/07 A RU2014125677/07 A RU 2014125677/07A RU 2014125677 A RU2014125677 A RU 2014125677A RU 2567850 C1 RU2567850 C1 RU 2567850C1
Authority
RU
Russia
Prior art keywords
antennas
earth
signals
azimuth
array
Prior art date
Application number
RU2014125677/07A
Other languages
English (en)
Inventor
Владимир Анатольевич Уфаев
Original Assignee
Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации
Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации, Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации filed Critical Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации
Priority to RU2014125677/07A priority Critical patent/RU2567850C1/ru
Application granted granted Critical
Publication of RU2567850C1 publication Critical patent/RU2567850C1/ru

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к радиотехнике и может быть использовано для определения местоположения воздушных судов (объектов) по их радиоизлучениям. Достигаемый технический результат - повышение точности измерения угла места примерно на порядок с расширением области надежного определения дальности с 30 км до 70-80 км, что упрощает, делает более надежным и безопасным привод воздушного судна на необорудованные аэродромы, буровые площадки. Указанный результат достигается за счет того, что способ включает прием сигналов бортового передатчика с помощью антенн, образующих кольцевую решетку, располагаемую вблизи и параллельно земной поверхности, определение по принятым антеннами решетки сигналам азимута объекта, измерение комплексных амплитуд принятых сигналов и преобразование измерений в угловой спектр путем умножения на комплексно-сопряженные диаграммы направленности антенн, суммирования результатов умножения по совокупности антенн и определения квадрата модуля суммы. Одновременно сигналы принимают с помощью дополнительных антенн, располагаемых на нормали к плоскости решетки из ее центра, угловой спектр нормируют на сумму квадратов модулей диаграмм направленности антенн (ДНА) и определяют угол места объекта, как положение его максимума. При этом ДНА определяют в направлении полученного азимута и с учетом коэффициента отражения радиоволн от земной поверхности. 6 ил.

Description

Изобретение относится к радиотехнике, в частности к радиопеленгации, и может быть использовано для определения местоположения воздушных судов (объектов) по их радиоизлучениям.
Для двухмерного пеленгования воздушных объектов по излучению бортовых УКВ передатчиков применяют инвариантные к направлению прихода сигнала кольцевые решетки, которые располагают параллельно и вблизи земной поверхности, на высоте 5-6 м от нее. По принятым сигналам определяют азимут и угол места объекта.
Известен фазовый способ радиопеленгования, включающий прием сигналов бортового передатчика воздушного объекта с помощью антенн, образующих кольцевую решетку, измерение фаз принятых сигналов, их реконструкцию с устранением цикличности фазовых измерений и расчет азимута и угла места по реконструированным фазам (Саидов А.С., Тагилаев А.Р., Алиев Н.М., Асланов Г.К. Проектирование фазовых автоматических пеленгаторов. М.: «Радио и связь», 1997, с.10, 51-52)
Основным недостатком способа является низкая точность измерения угла места вблизи нулевого значения, так как погрешности измерения обратно пропорциональны его синусу. При интерференции прямой и отраженной от земной поверхности волны пеленгуется энергетический центр лучей со значительными флуктуациями. Другой недостаток состоит в сложности выполнения операции реконструкции фаз.
Известен способ пеленгования, включающий прием сигнала с помощью ненаправленных антенн, образующих кольцевую решетку, измерение разности фаз между сигналами в двух группах, векторы, соединяющие пары антенн в которых коллинеарны, а по совокупности разностей фаз в группах методом многошкальных измерений оценивают однозначные на расстоянии диаметра решетки набеги фаз, по которым рассчитывают азимут и угол места (Патент РФ №2251707, 2005 г., МПК7 G01S 3/00)
В данном способе исключается операция реконструкции фаз, но основной недостаток предыдущего аналога (низкая точность измерения угла места) не устраняется.
Из известных способов наиболее близким к предлагаемому по технической сущности является способ двухмерного пеленгования, включающий прием сигналов бортового передатчика воздушного объекта с помощью антенн, образующих кольцевую решетку, располагаемую вблизи и параллельно земной поверхности, и определение по принятым сигналам азимута и угла места объекта. При этом измеряют комплексные амплитуды принятых сигналов с преобразованием в двухмерный угловой спектр, а азимут и угол места определяют как положение его максимума. Причем преобразование в двухмерный угловой спектр включает: умножение измеренных комплексных амплитуд на комплексно-сопряженные двухмерные диаграммы направленности, суммирование результатов умножения по совокупности антенн решетки и определение квадрата модуля суммы. Диаграммы направленности определяют применительно к условиям распространения радиоволн в свободном пространстве по формуле: g ˙ n ( θ , β ) = i k ρ cos β cos ( θ α n )
Figure 00000001
, где n=0, …, N-1 - номер антенны при общем количестве N≥3, θ, β - азимут и угол места, k=2·π/λ - волновое число, λ - длина волны излучения, ρ - радиус решетки, α=2π/N - квант углового положения ее антенн, π=3, 14 …, i - мнимая единица (Саидов А.С., Тагилаев А.Р., Алиев Н.М., Асланов Г.К. Проектирование фазовых автоматических пеленгаторов. М.: «Радио и связь», 1997, с. 47-48).
В данном способе достигается потенциальная точность и предельная чувствительность измерения азимута, но сохраняется основной недостаток способов-аналогов: низкая точность измерения угла места, особенно вблизи его нулевого значения. Определенную сложность вызывает выполнение операции двухмерного преобразования сигналов в угловой спектр.
Технической задачей данного изобретения является повышение точности измерения угла места.
Поставленная задача решается за счет того, что в известном способе пеленгования воздушного объекта, включающем прием сигналов бортового передатчика с помощью антенн, образующих кольцевую решетку, располагаемую вблизи и параллельно земной поверхности, определение по принятым антеннами решетки сигналам азимута объекта, измерение комплексных амплитуд принятых сигналов и преобразование измерений в угловой спектр путем умножения на комплексно-сопряженные диаграммы направленности антенн, суммирования результатов умножения по совокупности антенн и определения квадрата модуля суммы, новым является то, что сигналы принимают одновременно с помощью дополнительных антенн, располагаемых на нормали к плоскости решетки из ее центра, угловой спектр нормируют на сумму квадратов модулей диаграмм направленности антенн и определяют угол места объекта, как положение максимума нормированного углового спектра, при этом диаграммы направленности антенн определяют в направлении полученного азимута и с учетом отражения радиоволн от земной поверхности по формуле: G ˙ n ( θ , β ) = g ˙ 1, n ( θ , β ) + g ˙ 2, n ( θ , β ) Q ˙ ( θ , β ) i 2 k h sin β
Figure 00000002
, где θ
Figure 00000003
- полученный азимут объекта, β - угол места, g ˙ 1, n ( θ , β ) = i k ρ cos β cos ( θ α n )
Figure 00000004
, g ˙ 2, n ( θ , β ) = g ˙ 1, n ( θ , β )
Figure 00000005
- диаграммы направленности в направлении прямого и отраженного луча антенн кольцевой решетки с номерами n=0, …, N-1 при числе антенн в ней N, g ˙ 1, n ( θ , β ) = i k Δ h n sin β
Figure 00000006
, g ˙ 2, n ( θ , β ) = i k Δ h n sin β
Figure 00000007
- диаграммы направленности в направлении прямого и отраженного луча дополнительных антенн с номерами n=N, …, N′-1 при общем числе антенн N′, Q ˙ ( θ , β )
Figure 00000008
- коэффициент отражения от земной поверхности, k=2·π/λ - волновое число, λ - длина волны излучения, h - высота поднятия решетки над земной поверхностью, ρ - радиус решетки, Δhn - высота поднятия над ней дополнительных антенн, π-=3,14 …, i - мнимая единица.
Решение поставленной технической задачи основывается на учете в диаграммах направленности антенн как прямого, так и отраженного от земной поверхности луча, различий набегов фаз сигналов в антеннах решетки и поднятых над ней антеннах, пропорциональных соответственно косинусу и синуса угла места прихода радиоволн. При определении углового спектра компенсируют набеги фаз совокупности прямой и отраженной волны, что позволяет выполнять когерентное суммирование по совокупности антенн, а возникающие вследствие сложения лучей направленные свойства по углу места учитывают нормировкой на сумму квадратов модулей диаграмм направленности. Тем самым достигается формирование максимума нормированного углового спектра в точке истинного угла места объекта со снижением погрешности его измерения. Существенным является также осевая симметрия антенной системы. Это позволяет определять азимут одним из известных способом по сигналам кольцевой решетки, а угол места путем однопараметрической максимизации нормированного углового спектра в направлении измеренного азимута. Последним исключается процедура определения и максимизации двухмерного углового спектра способа-прототипа с сокращением числа выполняемых операций по обработке сигналов.
Учет указанных закономерностей в соответствии с предложенными новыми действиями, условиями и порядком их выполнения позволяет решить поставленную техническую задачу: повысить точность измерения угла места.
Указанные преимущества, а также особенности настоящего изобретения поясняются вариантом его выполнения со ссылками на прилагаемые чертежи.
На фиг. 1 представлена структурная схема радиопеленгатора для реализации заявленного способа;
на фиг. 2 показана схема распространения радиоволн;
на фиг. 3 - диаграмма направленности антенны с учетом отражения радиоволн от земной поверхности;
на фиг. 4 - нормированный угловой спектр;
на фиг. 5 - зависимости погрешности измерения угла места от дальности до объекта;
на фиг. 6 - зависимости погрешности определения дальности от ее истинного значения.
Радиопеленгатор для реализации заявленного способа (фиг. 1) содержит антенны 1.0-1.N′-1 подключенные к входам 0-N′-1 радиоприемного устройства 2, выходами 0-N-1 соединенного с одноименными входами блока 3 определения азимута и анализатора углового спектра 4, входы N-N′-1 которого подключены к одноименным выходам радиоприемного устройства 2, а вход N′ - к первому выходу блока 5 определения диаграмм направленности, устройство определения максимума 6, блок определения коэффициента отражения 7 и индикатор 8. Выход блока определения азимута 3 подключен к первым входам блока определения диаграмм направленности 5 и индикатора 8 и второму входу блока определения коэффициента отражения 7, соединенного с первым входом со вторым выходом блока определения диаграмм направленности 5, а выходом - со вторым входом этого блока. Анализатор углового спектра 4, устройство определения максимума 6 последовательно подключены ко второму входу индикатора 8.
Радиоприемное устройство 2 многоканальное с числом каналов, равным общему числу антенн N′, выполняет фильтрацию и синхронное преобразование принятых сигналов с цифровым измерением и представлением в виде комплексных амплитуд (квадратурных составляющих), например, по варианту, приведенному в (Побережский К.С. Цифровые радиоприемные устройства. М., Радио и связь, 1987, с. 67-68, рис. 3.140)
Антенны 1.0-1.N-1 образуют кольцевую эквидистантную решетку с числом антенн N≥3. Радиус решетки ρ устанавливают из условия не превышения расстояния между ближайшими антеннами половины длины волны излучения. Решетку ориентируют опорной 1.0 антенной на Север. Фазовые центры антенн решетки располагают в одной горизонтальной плоскости на высоте h над земной поверхностью, порядка 5-6 м. Дополнительные антенны 1.N-1.N′-1 устанавливают на нормали к плоскости решетки из ее центра, например, с постоянным шагом δh. Тогда высота поднятия дополнительных антенн над плоскостью решетки будет Δhn=δh·(n+1-N), где n=N, …, N′-1 - номер дополнительной антенны, N′ - общее число антенн. А высота поднятия антенн решетки с номерами n=0, …, N-1 и дополнительных антенн с номерами n=N, …, N′-1 над Землей определяются соотношениями: hn-h при n=0, …, N-1 и hn=h+Δhn при n=N, …, N′-1.
В соответствии со схемой распространения радиоволн (фиг. 2) в пункт пеленгования В от бортового передатчика А приходит прямая волна по пути АВ и отраженная от земной поверхности по пути АСВ или эквивалентному ему А′СВ. На рисунке толстой линией показана земная поверхность, точка А′ - фиктивный излучатель под поверхностью, С - точка отражения, β1=β, β2=-β - углы места прихода прямой и отраженной волны. Высота h подъема плоскости решетки над земной поверхностью определяется отрезком ВО. Обозначим: d - удаление излучателя от пеленгатора по земной поверхности (отрезок OO′), D = d 2 + ( H h ) 2
Figure 00000009
- наклонная дальность, Н - высота АО′ подъема излучателя над Землей. Отсчет положительных значений углов места β выполняют от линии, параллельной земной поверхности, к зениту, азимута θ - от направления на опорную антенну с номером n=0 по часовой стрелке.
В соответствии с методом зеркального изображения (Грудинская Г.П. Распространение радиоволн. М., «Высш. школа», 1975, с.45-47) и геометрическими построениями (фиг. 2) мгновенные значения напряженности поля, принимаемого антеннами, определяются соотношением
Figure 00000010
где E ˙ = 60 P D i k D
Figure 00000011
- комплексная амплитуда напряженности поля прямого луча в центре антенной решетки, Р - мощность излучения, k=2π/λ - волновое число, λ - длина волны излучения.
Комплексные диаграммы направленности антенн определяют с учетом отражения радиоволн от земной поверхности по формуле
Figure 00000012
где g ˙ 1, n ( θ , β ) = i k ρ cos β cos ( θ α n )
Figure 00000013
и g ˙ 2, n ( θ , β ) = g ˙ 1, n ( θ , β )
Figure 00000014
- диаграммы направленности в направлении прямого и отраженного луча антенн кольцевой решетки (n=0, …, N-1), g ˙ 1, n ( θ , β ) = i k Δ h n sin β
Figure 00000015
и g ˙ 2, n ( θ , β ) = g ˙ 1, n * ( θ , β )
Figure 00000016
- диаграммы направленности в направлении прямого и отраженного луча дополнительных антенн (n=N, …, N′-1), α=2π/N - квант углового положения антенн решетки, звездочка - операция комплексного сопряжения.
Удаление точки отражения С (фиг. 2) от пеленгатора не превышает дальности прямой видимости и при высоте поднятия решетки h=5 …6 м составляет величину 3,57 h = 8 9 к м
Figure 00000017
. Коэффициент отражения определяется электрическими параметрами земной поверхности в точке (области) отражения, координаты которой зависят от азимута и угла места объекта. Для определения коэффициента отражения может выполняться (Грудинская Г.П. Распространение радиоволн. М., «Высш. школа», 1975, с. 39, 66, 49-50, 34, 25) специальное зондирование, предваряющее эксплуатацию пеленгатора, с регистрацией значений коэффициента отражения в блоке 7 фиг. 1 в виде таблицы, как функции азимута и угла места Q ˙ ( θ , β )
Figure 00000018
, или привлекаться картографическая информация и справочные данные об электрических параметрах различных видов земной поверхности с расчетом по формуле
Figure 00000019
где ε ˙ ' ( θ , β ) = ε ( θ , β ) ( 1 i 60 γ ( θ , β ) λ ε ( θ , β ) )
Figure 00000020
, ε(θ, β), γ(θ, β) - относительная диэлектрическая проницаемость и удельная проводимость земной поверхности в точке отражения.
Для однородной в окрестности пеленгатора земной поверхности зависимость от азимута в формуле (3) исключается. Для волн УКВ-сантиметрового диапазона земная поверхность по своим свойствам близка к диэлектрику и возможно упрощенное определение коэффициента отражения в виде постоянной величины Q ˙ ( θ , β ) = 1
Figure 00000021
.
Непосредственно пеленгование воздушного объекта происходит следующим образом. Излучение бортового передатчика принимают антеннами 1.0-1.N′-1 и в радиоприемном устройстве 2 измеряют их комплексные амплитуды S ˙ n = E ˙ n + ξ ˙ n
Figure 00000022
, где ξ ˙ n
Figure 00000023
- шумы приема. В блоке определения азимута 3 по результатам измерений комплексной амплитуды сигналов решетки, поступающим по входам 0-N-1 с одноименных выходов радиоприемного устройства, оценивают разности фаз между сигналами ближайших антенн решетки по формуле: Δ n = arg ( S ˙ n 1 S n * )
Figure 00000024
, где arg ( x ˙ )
Figure 00000025
- аргумент комплексного числа заключенного в скобки (фаза вектора), ⊕ - операция сложения по модулю N, и рассчитывают азимут объекта
Figure 00000026
Для расчетного азимута (4), поступающего с выхода блока определения азимута 3 на второй вход, и возможного положения объекта по углу места, поступающего со второго выхода блока определения диаграмм направленности 5 на первый вход, в блоке 7 определения коэффициента отражения рассчитывают значение коэффициента по формуле (3). После чего в блоке 5 определения диаграмм направленности рассчитывают по формуле (2) комплексные диаграммы направленности антенн G ˙ n ( θ , β )
Figure 00000027
в направлении измеренного азимута, поступающего с выхода блока 3 по первому входу, и для поступающего по второму входу с выхода блока 7 расчетного коэффициента отражения в направлении возможного угла места. Типичная амплитудная диаграмма направленности показана на фиг. 3. Видны значительные ее изменения от угла места, что является следствием интерференции прямой и отраженной волны.
В анализаторе углового спектра 4 по измеренным комплексным амплитудам всех принятых сигналов, поступающим по входам 0-N′-1 и значениям диаграмм направленности по входу N′ с первого выхода блока 5, определяют нормированный угловой спектр как функцию угла места
Figure 00000028
В соответствии с формулой (5) при этом умножают измеренные комплексные амплитуды S ˙ n
Figure 00000029
на комплексно-сопряженные диаграммы направленности антенн в направлении полученного азимута объекта и возможных углов места, суммируют результаты умножения по совокупности всех антенн, определяют квадрат модуля суммы. В результате умножения происходит компенсация набегов фаз сигналов прямой и отраженной волны, а суммированием по совокупности антенн достигается когерентное накопление принятых сигналов. Возникающие вследствие сложения лучей направленные свойства антенн по углу места фиг. 3 учитывают нормировкой на сумму квадратов модулей диаграмм направленности. Пример нормированного углового спектра показан на фиг. 4. Этот спектр имеет максимум в окрестности истинного угла места объекта.
В устройстве определения максимума 6 определяют угол места объекта как положение максимума нормированного углового спектра. Результаты определения пеленга (вход 1 индикатора 8) и угла места (вход 2) отражают на индикаторе 8.
Эффективность изобретения выражается в повышении точности измерения угла места. Количественная оценка выполнена методом имитационного моделирования для следующих условий.
Исследовался радиопеленгатор, размещенный на ледяной поверхности с относительной диэлектрической проницаемостью, равной 5, и удельной проводимостью 0,05 Ом/м, и содержащий 8-элементную антенную решетку радиусом 0,5 м, поднятую на мачте высотой 5 м, и две дополнительные антенны, установленные над решеткой на высоте 1 и 2 м. Задана предельная чувствительность пеленгования 2 мкВ/м. Высота воздушного объекта 1000 м, мощность передатчика 10 Вт, длина волны излучения 1 м. Расчет коэффициента отражения выполнялся по формуле (3). Моделирующая программа разработана в системе Mathcad, имеется у авторов и патентообладателя.
Результаты показаны на фиг. 5 в виде зависимости погрешности измерения угла места Δβ от дальности d до объекта для способа-прототипа кружками, для предлагаемого решения - точками. Видно, что погрешности измерений в предлагаемом способе примерно на порядок меньше. Более наглядно эффект от предлагаемого изобретения показан на фиг. 6 в виде зависимости оценочной дальности от ее истинного значения. Оценочная дальность определяется по измеренному углу места β
Figure 00000030
при известной высоте объекта Н по формуле: d = ( H h ) c t g β
Figure 00000031
. В соответствии с фиг. 6 за счет увеличения точности измерения угла места область надежного определения дальности в предлагаемом способе увеличивается с 30 км (прототип) до 70-80 км, что упрощает, делает более надежным и безопасным привод воздушного судна на необорудованные аэродромы, буровые площадки.

Claims (1)

  1. Способ пеленгования воздушного объекта, включающий прием сигналов бортового передатчика с помощью антенн, образующих кольцевую решетку, располагаемую вблизи и параллельно земной поверхности, определение по принятым антеннами решетки сигналам азимута объекта, измерение комплексных амплитуд принятых сигналов и преобразование измерений в угловой спектр путем умножения на комплексно-сопряженные диаграммы направленности антенн, суммирования результатов умножения по совокупности антенн и определения квадрата модуля суммы, отличающийся тем, что сигналы принимают одновременно с помощью дополнительных антенн, располагаемых на нормали к плоскости решетки из ее центра, угловой спектр нормируют на сумму квадратов модулей диаграмм направленности антенн и определяют угол места объекта, как положение максимума нормированного углового спектра, при этом диаграммы направленности антенн определяют в направлении полученного азимута и с учетом отражения радиоволн от земной поверхности по формуле:
    Figure 00000032

    где θ
    Figure 00000033
    - полученный азимут объекта, β - угол места, g ˙ 1, n ( θ , β ) = е i k ρ cos β cos ( θ α n )
    Figure 00000034
    , g ˙ 2, n ( θ , β ) = g ˙ 1, n ( θ , β )
    Figure 00000005
    - диаграммы направленности в направлении прямого и отраженного луча антенн кольцевой решетки с номерами n=0, …, N-1 при числе антенн в ней N, g ˙ 1, n ( θ , β ) = е i k Δ h n sin β
    Figure 00000035
    , g ˙ 2, n ( θ , β ) = е i k Δ h n sin β
    Figure 00000036
    - диаграммы направленности в направлении прямого и отраженного луча дополнительных антенн с номерами n=N, …, N′-1 при общем числе антенн N′, Q ˙ ( θ , β )
    Figure 00000008
    - коэффициент отражения от земной поверхности, k=2·π/λ - волновое число, λ - длина волны излучения, h - высота поднятия решетки над земной поверхностью, ρ - радиус решетки, Δhn - высота поднятия над ней дополнительных антенн, π=3,14 …, i - мнимая единица.
RU2014125677/07A 2014-06-24 2014-06-24 Способ пеленгования воздушного объекта RU2567850C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014125677/07A RU2567850C1 (ru) 2014-06-24 2014-06-24 Способ пеленгования воздушного объекта

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014125677/07A RU2567850C1 (ru) 2014-06-24 2014-06-24 Способ пеленгования воздушного объекта

Publications (1)

Publication Number Publication Date
RU2567850C1 true RU2567850C1 (ru) 2015-11-10

Family

ID=54537211

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014125677/07A RU2567850C1 (ru) 2014-06-24 2014-06-24 Способ пеленгования воздушного объекта

Country Status (1)

Country Link
RU (1) RU2567850C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2613369C1 (ru) * 2016-01-28 2017-03-16 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Способ навигации летательного аппарата с использованием высокоточного одноэтапного пеленгатора и адресно-ответной пакетной цифровой радиолинии в дкмв диапазоне
RU2623452C1 (ru) * 2016-05-19 2017-06-26 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ навигации движущихся объектов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
САИДОВ А.С. и др. Проектирование фазовых автоматических пеленгаторов. Москва, "Радио и связь", 1997, с.47-48RU 2444755 C1, 10.03.2012RU 2410712 C1, 27.01.2011RU 2420755 C2, 10.06.2011US 6184830 B1, 06.02.2001JP 2012215559 A, 08.11.2012WO 2000019230 A, 06.04.2000WO 2000033419 A1, 08.06.2000 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2613369C1 (ru) * 2016-01-28 2017-03-16 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Способ навигации летательного аппарата с использованием высокоточного одноэтапного пеленгатора и адресно-ответной пакетной цифровой радиолинии в дкмв диапазоне
RU2623452C1 (ru) * 2016-05-19 2017-06-26 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ навигации движущихся объектов

Similar Documents

Publication Publication Date Title
CN104515909B (zh) 一种基于相关法的大天线方向图测量方法
US20190383930A1 (en) Method and device for radar determination of the coordinates and speed of objects
CN104569625B (zh) 一种基于可转动辅助天线的大型天线方向图测量方法
CN103885054B (zh) 一种基于分布源反射模型的米波雷达低仰角测高方法
RU2732505C1 (ru) Способ обнаружения и азимутального пеленгования наземных источников радиоизлучения с летно-подъемного средства
RU2711400C1 (ru) Способ местоопределения над земной поверхностью излучателя или пеленгаторных антенн
US6407702B1 (en) Method and system for obtaining direction of an electromagnetic wave
CN103487798A (zh) 一种相控阵雷达测高方法
RU2529355C2 (ru) Способ определения пространственного распределения ионосферных неоднородностей
RU2661357C1 (ru) Способ обзорной пассивной однопозиционной моноимпульсной трёхкоординатной угломерно-разностно-доплеровской локации перемещающихся в пространстве радиоизлучающих объектов
RU2567850C1 (ru) Способ пеленгования воздушного объекта
RU2275649C2 (ru) Способ местоопределения источников радиоизлучения и пассивная радиолокационная станция, используемая при реализации этого способа
RU2535174C1 (ru) Способ двухмерного пеленгования воздушного объекта
RU2546329C1 (ru) Способ поляризационно-чувствительного обнаружения подвижных объектов
RU2711341C1 (ru) Способ двухмерного пеленгования
US8952848B2 (en) System and method for determining the location of the phase center of an antenna
US20020126043A1 (en) Method and apparatus for locating a terrestrial transmitter from a satellite
Tsai et al. HF Radio Angle-of-Arrival Measurements and Ionosonde Positioning.
RU2602274C1 (ru) Радиолокационный способ и устройство для дистанционного измерения полного вектора скорости метеорологического объекта
US20130002473A1 (en) Short Baseline Helicopter Positioning Radar For Low Visibility Using Combined Phased Array and Phase Difference Array Receivers
US5812091A (en) Radio interferometric antenna for angle coding
Baskakov et al. Problem of detecting space debris objects using multi-position radar system
RU2620130C1 (ru) Способ амплитудного двухмерного пеленгования
RU2686113C1 (ru) Способ амплитудного двухмерного пеленгования
RU2405166C2 (ru) Способ определения местоположения передатчика переносным пеленгатором

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170625